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Abstract

Dynamic traitor tracing schemes were introduced by Fiat and Tassa in order
to combat piracy in active broadcast scenarios. In such settings, the data provider
supplies access control keys to its legal customers on a periodical basis. A number
of users may collude in order to publish those keys via the Internet or any other
network. Dynamic traitor tracing schemes rely on the feedback from the pirate
network in order to modify their key allocation until they are able either to in-
criminate and disconnect all traitors, or force them to stop their illegal activity.
Those schemes are deterministic in the sense that incrimination is always certain.
As such deterministic schemes must multiply the critical data by at least p + 1,
where p is the number of traitors, they may impose a too large toll on bandwidth.
We suggest here probabilistic schemes that enable one to trace all traitors with
an almost certainty, where the critical data is multiplied by two, regardless of the
number of traitors. These techniques are obtained by combining dynamic traitor
tracing schemes with binary fingerprinting techniques, such as those proposed by
Boneh and Shaw.

Keywords. Broadcast encryption, Traitor tracing, Fingerprinting, Watermarking,
Binary codes, Pay-TV, On-line algorithms.

1 Introduction

The concept of Dynamic Traitor Tracing was introduced in [7] in order to combat piracy
in dynamic data distribution systems. This was a natural extension of the concepts of
Traitor Tracing, Watermarking and Fingerprinting that were relevant for static data
distribution systems. A data distribution system is any setting in which a data provider
(the center) is providing data to a large group of paying users. Piracy occurs when one
or few legal users redistribute the data for which they paid to illegal customers, thus
rendering financial losses to the legitimate data provider. Hence, tracing techniques
are required in order to find the source of information leakage, disconnect it and press
charges against those traitorous users.

In order to distinguish between the static and dynamic models, we refer henceforth
to the legal data distribution, from the center to the paying users, as the primary data
distribution, while the illegal data distribution from the traitors to the illegal customers
is referred to as the secondary data distribution.

A static data distribution system is one in which the primary data distribution
completely precedes in time the secondary data distribution. Namely, primary and
secondary data distributions are perceived as actions that have no duration: the first
occurs at some time t1 and the second occurs at a later time t2 > t1. Assume that
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the data provider captures such secondary distributed material. Obviously, if all legal
users get the very same data, there is no way of tracing back one of the traitors, given
the pirate material. Hence, it is necessary to personalize the data prior to primary
distribution in such a way that any captured pirate material would enable the tracing
of at least one of the colluding traitors. Traitor tracing schemes, watermarking, finger-
printing, traceability schemes and parent-identifying codes are different terms that were
given to techniques that were designed to answer this need. One of the reasons for the
plurality of terms is the diverse scenarios that give rise to this problem. In the context
of decoders for Pay-TV, one usually thinks in terms of “traitor tracing”. On the other
hand, schemes that are designed to protect visual material are usually called “water-
marking” or “fingerprinting”. “Traceability schemes” or “parent-identifying codes” are
the mathematical tools that such schemes use.

In view of the above, we feel that it is imperative to set a general framework that
encompasses all scenarios of data distribution and all counter-piracy methods.

The Traitor Tracing Framework. Let U = {u1, . . . , un} denote the set of users and
T = {t1, . . . , tp} ⊂ U be the subset of traitorous users. T is called the pirate while its
members are referred to as traitors. An algorithm that aims at locating the traitors is
called a traitor tracing scheme. Such a scheme consists of the following ingredients:

• A marking alphabet, Σ = {σ1, . . . , σr}.
• A codebook Γ that is used for personalizing copies of the data prior to its distri-

bution. Γ is an (r, `, n)-code, meaning that Γ = {w1, . . . , wn} ⊂ Σ`, |Σ| = r.

• A personalization scheme P : U → Γ that determines how to mark the data that
is provided to a particular user with a codeword from the codebook.

• A generation assumption: let P (T ) = {P (t1), . . . , P (tp)} denote the set of code-
words in the copies that are owned by the traitors. We let 〈P (T )〉 denote the set
of codewords that could be generated by the pirate and be placed in the pirate
copy. 〈P (T )〉 ⊂ (Σ ∪ {?})`, where “?” denotes an unreadable mark. Different
assumptions were made in different studies about the strength of the generation
operation 〈·〉, depending on the underlying application.

• A tracing algorithm that, given a pirate copy, aims at tracing back (at least)
one traitor that collaborated in producing that copy. This algorithm may be
therefore viewed as a function A : 〈P (T )〉 → U . Obviously, a desired property is
that whenever w ∈ 〈P (T )〉, A(w) ∈ T . However, this is not always the case, as
indicated by the next ingredient.

• An upper bound on the probability of false incrimination, ε ≥ 0. In other words,
if w ∈ 〈P (T )〉, then Prob(A(w) ∈ U \ T ) ≤ ε. Traitor tracing or watermark-
ing schemes in which ε = 0 are called deterministic while those in which false
incrimination may occur are called probabilistic.

We exemplify the above framework with two fundamental examples.

Example 1: Pay-TV Decoders. Chor et al. [4] considered the setting of a Pay-
TV system, where Conditional Access techniques are implemented in order to deny
access to content from non-paying users. In order to achieve that goal, the stream of
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content that is broadcast from the center is encrypted, and each paying user is given a
decoder with embedded keys that are capable of decrypting this transmission. As such
decoders (typically, smartcards) are merely tamper-resistant, and not tamper-proof [8],
highly motivated and capable users may read the secret keys from their own decoder
in order to manufacture illegal pirate decoders and start their own business. Hence,
in order for the center to be able to trace the source of such piracy, the personal keys
are marked in some manner. The following is a basic technique of marking keys. The
center determines two parameters – r (the size of the marking alphabet) and ` (the
length of codewords) – in a manner that will be explained later. It then generates
r · ` random and independent encryption keys, (ki,j), 1 ≤ i ≤ r, 1 ≤ j ≤ `. Next,
each personal decoder is provided with a unique selection of ` of those keys – one from
each column. Namely, denoting Σ = {1, . . . , r}, the center employs a personalization
function P : U → Γ ⊂ Σ` and then each user u ∈ U gets the following personal key:

k(u) = {ki(j),j : 1 ≤ j ≤ ` , i(j) = P (u)j} .

Let s be the secret that needs to be communicated to all paying users (e.g., s is the
session key to be used throughout the next hour). Then s is broken in a random manner
into ` parts, s = s1 ⊕ · · · ⊕ s`, where ⊕ denotes XOR. Then, the secret sj is encrypted
r times with respect to each of the keys ki,j , 1 ≤ i ≤ r. The r · ` encrypted messages
{E(sj , ki,j) : 1 ≤ i ≤ r, 1 ≤ j ≤ `} are broadcast. Finally, since each user knows
exactly one key from each column, he can decrypt one of the r messages that contain
sj , for all j, and therefore recover the secret s.

Assume that T = {t1, . . . , tp} ⊂ U is a coalition of traitors. Then the arsenal of
keys that they have at their disposal is

K =
⋃

1≤j≤`

Kj where Kj = {ki,j : i ∈ Pj := {P (t1)j , . . . , P (tp)j}} .

They could manufacture a fully functional decoder if they install in it one key from
Kj , for all j. Namely, the set of all selections of ` keys that the pirate may make
corresponds to the subset of codewords

〈P (T )〉 = P1 × . . .×P` . (1)

This is indeed the correct generation assumption in this context since if in the jth
column the traitors have together, say, only two keys – ki1,j and ki2,j – they have no
choice other than selecting one of those two keys and placing it in the pirate decoder.
They could not remove those keys altogether, for then the decoder would not be able to
recover sj ; they could not deduce from those two keys the value of any other key from
the jth column; and they could not combine those keys in any manner that would yield
a different key that would be of any help in trying to decrypt the messages transmitting
sj .

Finally, the tracing algorithm in this context is by means of majority. When a
pirate decoder is captured, the keys in it are read and compared with the personal
keys of all users. The user that has the greatest number of matches is framed as a
traitor. By choosing the parameters r and ` appropriately, taking into consideration
the number of users n and an upper bound on the number of colluding traitors, p, it is
possible to decrease the tolerance parameter ε as desired.
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Example 2: Fingerprinting Digital Data. Consider a data provider that sells
viewing rights of the latest digital features. Since digital material may be cloned many
times without experiencing quality degradation, immoral users that paid for their copies
might redistribute such copies for a bargain price in the black market. In order to
deter such users and to be able to trace them in case that they do exercise such piracy,
Boneh and Shaw [3] suggested a fingerprinting technique. As in our framework, the
original data is personalized prior to distribution. The movie V is broken up to `
short segments, V = V1|| . . . ||V`, where || denotes concatenation, and to each segment,
Vj , r almost-identical variants are generated, Vj 7→ {V 1

j , . . . , V r
j }. As in the previous

example, we let Σ = {1, . . . , r} and then the personalization function is of the same
sort, P : U → Γ ⊂ Σ`. If user u ∈ U was assigned the codeword P (u), then he will get
the following version of the movie:

V (u) = V
i(1)
1 || · · · ||V i(`)

` where i(j) = P (u)j , 1 ≤ j ≤ ` .

Boneh and Shaw used a stronger generation assumption than Chor et al. They assumed
that in segments where the embedded mark is detectable by the pirate, namely, a seg-
ment j where the pirate owns at least two different variants, the pirate could reproduce
any of the r different variants of that segment, or render that mark unreadable. This
may be formulated as follows:

〈P (T )〉 = {w ∈ (Σ ∪ {?})` s.t. w = P (t1)|R} , (2)

where R = {j : P (t1)j = · · · = P (tp)j}. They called 〈P (T )〉 the feasible set of T .
Boneh and Shaw concentrated on the case r = 2 and designed watermarking

schemes that are capable of tracing at least one of the colluding traitors that par-
ticipated in producing the pirate version, with an error probability as small as desired.

Going back to the generation assumption (2), we note that in the binary case r = 2
it becomes quite similar to the previous assumption (1), the only difference being that
(2) allows the complete removal of detectable marks. However, in the binary case, a
detectable mark occurs in segments where the pirate has all r = 2 variants. In that
case there is not much point in the pirate removing the mark (an operation that usually
damages the quality of the produced copy); instead, he could pick any of the r = 2
variants that he has. Indeed, in accord with this observation, the Boneh-Shaw scheme
sets unreadable marks arbitrarily to zero. That closes entirely the gap between their
generation assumption (2) and the previous one (1).

We would like to note that when r > 2 assumption (2) is quite far-reaching in the
context of a digital video. For example, Cox et al. [6] have introduced methods to
generate secure video watermarks. Those watermarks could not be easily removed,
unless the pirate edits out the entire segment. In addition, if the pirate got at some
segment k distinct variants, 1 < k < r, he could not reproduce from them any of the
remaining r − k variants for that segment. Hence, when such secure watermarks are
used, the strong generation assumption (2) may be relaxed to (1).

As a concluding remark on the generation assumption (2), we note that this is
the relevant assumption in the centuries-old context of protecting logarithm tables.
When such tables were protected by means of introducing random errors in the least
significant digits, a pirate could detect (some of) the digits that were used for that
matter and then change their value as he pleased.

With this general framework, we are now ready to describe the dynamic setting,
that also complies to the same framework. In a dynamic data distribution setting the
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time dimension is introduced. That is, as opposed to static settings where primary and
secondary data distributions were single actions that may be viewed as “point events”
in time, in the dynamic setting they are continuous long-lasting events. The legal
users depend on the center for continuous delivery of data, be it content (such as TV
broadcasts in Pay-TV systems or Web pages in the case of Internet service providers)
or periodical session keys. The pirate retransmits this data to his dependent customers.
Hence, the secondary distribution exists in parallel to the primary one, with some delay.
In order to combat piracy scenarios in this setting, one may adopt similar techniques to
those in the static setting. However, since the feedback from the secondary distribution
network is available, it may be used in order to adapt codeword marking per user in
subsequent time steps. This capability is what distinguishes dynamic from static traitor
tracing.

Despite those differences, the above described framework, that was formulated with
static settings in mind, is adequate also for the dynamic setting, mutatis mutandis:

1. In static settings the code length, `, and the size of the alphabet, r, are determined
beforehand. In dynamic settings ` stands for the number of time steps until the
scheme closes on all traitors and disconnects them, or forces them to become
dormant. As for r, it is being updated along the search according to the findings
of the scheme.

2. Static schemes determine the entire codeword of each user prior to primary dis-
tribution. Dynamic schemes, however, determine the jth letter in the codeword
of each user only after receiving the feedback from the secondary distribution in
the previous (j − 1)th round.

We proceed with a formal definition of dynamic traitor tracing schemes. Let r =
r(j) denote the number of variants that are used in time step j, j ≥ 1; namely, the
marking alphabet in that time step is Σj = {1, . . . , r(j)}. The scheme decomposes U
into r(j) disjoint subsets, U =

⋃
1≤i≤r(j) Si,j , and assigns to all users in Si,j variant

number i of data segment j. It then waits to see what variant is being transmitted
by the pirate in the secondary distribution network. Based on that feedback, sj , and
possibly also the entire pirate transmission up to that stage, (s1, . . . , sj), the scheme:

• Decides whether any of the users may be accused at this stage as being a traitor
and be disconnected. If so, that user is removed from U .

• Determines the number of variants to be used in the next step, r(j + 1).

• Reassigns variants to users.

The first study of dynamic traitor tracing [7] offered two schemes. The first scheme
uses 2p + 1 variants, where p stands for the actual number of active traitors, and
converges in optimal time; it is described in Section 2 as it is the basis for the scheme
that we present there. The second scheme uses p + 1 variants, which is the minimal
size for the marking alphabet that allows deterministic tracing in view of [7, Theorem
1]; the convergence time of that scheme, however, depends exponentially on p, hence it
can be efficiently implemented only for very small coalitions. Berkman et al. [2] offered
a wide array of efficient dynamic traitor tracing schemes. They devised schemes with
an alphabet of size p + c + 1, for 1 ≤ c ≤ p, with a running time of O(p2/c + p log n).
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They also presented algorithms that used an alphabet of size pc + 1 that converge in
O(p logc n) time steps.

All of those schemes use an alphabet of size p + 1 at the least. When the pirate
controls a large number of traitors, say p ∼ 100, this duplication factor may be too
expensive to pay. (In Section 4 we discuss piracy scenarios in Pay-TV systems and
consider the implications of such a toll on the bandwidth in each of those scenarios.)
Therefore, it is advisable to devise dynamic traitor tracing schemes that use a small
fixed-size marking alphabet. This translates to a very important advantage in im-
plementing traitor tracing: when embarking upon a deterministic traitor tracing, the
tracer does not know in advance how much extra bandwidth is needed to support the
overhead of multiple variants. The pirate could always surprise the tracer by activat-
ing yet another traitor. As mentioned earlier, for large, yet reasonable values of p, the
tracer could meet the limits of his bandwidth capabilities. Schemes that use fixed-size
marking alphabets release us from such worries.

This significant advantage is accompanied by two inherent disadvantages:
(a) As deterministic scheme must use an alphabet of size (p + 1) at least, such

schemes would have to be probabilistic. Practically, this means that the center should
use the findings of the scheme as a very strong evidence against the framed user, but it
would have to conduct some further investigation in order to obtain physical evidence
against that user.

(b) Such schemes would be slower than schemes that use richer alphabets.

The paper is organized as follows. In Section 2 we present a dynamic scheme with
binary marks that is obtained by combining a deterministic dynamic scheme due to
Fiat and Tassa [7] with the Boneh-Shaw scheme. We also derive upper bounds for its
convergence time and error probability. In Section 2.4 we discuss the performance of
that scheme and compare it with a static scheme that was presented in [3]. We show
that the convergence time of our scheme is much better than that of the static one and
that this performance-gap stems mainly from the dynamic nature of our scheme. In
Section 3 we discuss other primitives that could serve as the inner or outer schemes,
including a recent binary fingerprinting scheme due to Tardos [10] that improves the
Boneh-Shaw scheme in an optimal manner. We also suggest a direction that should be
explored in order to find more efficient dynamic binary schemes. Finally, in Section 4
we discuss implementation issues in the context of Pay-TV.

2 A Dynamic Scheme with Binary Marks

Here, we show how to combine the time-efficient dynamic traitor tracing scheme of [7,
§3.3] with the Boneh-Shaw scheme (BSS henceforth) in order to yield a probabilistic
dynamic traitor tracing scheme that uses a binary alphabet. The first two schemes
are described in Sections 2.1 and 2.2; the dynamic hybrid scheme is presented and
analyzed in Section 2.3; finally, in Section 2.4, we compare the performance of our
dynamic hybrid scheme with that of a static hybrid scheme that was presented in [3,
§5.1].
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2.1 A Deterministic Dynamic Traitor Tracing Scheme.

This scheme maintains a parameter t that denotes a proven lower bound on the number
of active traitors; it is initialized to t = 0 and is updated according to the findings of
the scheme. The set of subscribers, U , is partitioned into 2t + 1 subsets,

U = ∪S∈P S where P = {L1, R1, . . . , Lt, Rt, I} , (3)

and each of those sets receives a unique variant. An invariant of the algorithm is
that the union Li ∪ Ri contains at least one traitor for all 1 ≤ i ≤ t, where I is the
complementary subset of users that is not known to include a traitor. Hence, there are
never more than 2p + 1 simultaneous variants, where p is the true number of traitors.
Whenever a variant of one of the subsets in P is distributed by the pirate, that subset is
split into two subsets in order to close on the traitors that it includes. If that subset is
a singleton, the single user in it is framed and disconnected. As shown in [7, Theorem
2], this scheme traces all p traitors and disconnects them within

L = p · (log n + 1) (4)

time steps, which is shown to be optimal in [7] and [2].

2.2 The Boneh-Shaw Scheme

BSS assigns binary codewords to all n users so that, no matter what is the size of
the coalition of traitors, any pirate copy may be traced back to one of the users that
participated in producing it with an error probability of no more than ε, for an arbitrary
ε > 0. The code is defined as follows:

1. Set d = d(n, ε) = 2n2 ln(2n/ε).

2. Set the length of the codewords to be d · (n− 1), namely

` = `(n, ε) = 2n2(n− 1) ln(2n/ε) . (5)

3. Select a secret random permutation π ∈ S`.

4. Define the n words wi = 0d(i−1)1d(n−i) ∈ {0, 1}`, 1 ≤ i ≤ n.

5. Assign to user ui the codeword πwi.

The tracing algorithm works as follows, [3, Algorithm 1]: Let πx ∈ {0, 1}` be the
codeword found in a pirate copy, let Bi = (x(i−1)d+1, . . . , xid) be the ith block of
consecutive d bits in x and let ki denote the number of ones in Bi, 1 ≤ i ≤ n− 1.

• If k1 > 0 then user 1 is guilty (with certainty).

• If kn−1 < d then user n is guilty (with certainty).

• For 2 ≤ i ≤ n − 1, if ki−1 < k
2 −

√
k
2 ln 2n

ε where k = ki−1 + ki, then user i is
guilty.
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2.3 The Hybrid Scheme

We denote the dynamic traitor tracing scheme by S and the ε-secure BSS for n users by
Γε = Γε(n). We now combine those two into a probabilistic dynamic scheme, denoted
S ◦ Γε, that uses a binary watermarking alphabet.

The scheme S ◦ Γε.

1. Use the deterministic traitor tracing scheme S as an external basic scheme. The
steps of S are referred to as time segments. Each time segment will be executed
by applying several time steps as explained below.

2. If at the beginning of the jth time segment of S there are 2tj + 1 subsets, apply
Γε(2tj + 1). The application of that fingerprinting scheme as an inner procedure
lasts ` = `(2tj + 1, ε) time steps, where ` is given in (5).

3. At the end of the Γε(2tj +1) procedure, apply the tracing algorithm [3, Algorithm
1] in order to decide which of the 2tj + 1 subsets includes a traitor.

4. Proceed along the lines of S.

Normally, the number of time segments in S until it traces and disconnects all traitors
is given by (4). However, when in each segment we rely upon the probabilistic method
Γε to find the subset that includes a traitor, there is a chance of making wrong decisions
that would split innocent subsets and add unnecessary time segments. Therefore, T –
the actual number of time segments in S ◦ Γε until it traces and disconnects all true p
traitors – might be larger than L, (4). In the next lemma we provide an almost certain
upper bound on the convergence time of our probabilistic scheme.

Lemma 1 Let λ ≥ 2 be an arbitrary integer for which ε satisfies

ε ≤
(

λ

Lλe

) λ
λ−1

where Lλ = (p + λ) · (log n + 1) . (6)

Then
Prob(T ≤ Lλ) > (1− ε) , (7)

where T is the number of time segments until S◦Γε traces and disconnects all p traitors.

Proof. Let xj be an indicator random variable that equals one if BSS made a wrong
accusation of a subset as being infected at time segment j. As we implement in that
time segment the scheme Γε(2tj + 1), we conclude that

Prob(xj = 1) ≤ ε . (8)

Note that even when BSS wrongly accuses a subset, that subset might be infected with
traitors that were dormant during that time segment. In that case we set xj = 0, in
order to let xj = 1 denote only “bad” time segments.

Let us assess the damage that is incurred by bad time segments j where xj = 1.
Assume that BSS wrongly accused the subset Li, 1 ≤ i ≤ t, as being infected. Then,
consequently, the adjacent subset Ri, that might be infected, will be absorbed in I.
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That way we lose the information that we already gained on the position of the traitors
that were trapped in Ri. Obviously, the smaller the subsets Li and Ri are, the larger
is the penalty that we have to pay in convergence time. If such an error occurs in the
worst case when |Li| = 1, the penalty in convergence time is maximal and, in addition,
we also accuse and disconnect an innocent user. It should be noted that if the wrongly
accused subset is I, the penalty is minimal since we do not lose any information and
no wrong accusations are made.

Let T denote the number of time segments until all traitors (and, possibly, also some
other innocent users) are traced and disconnected. Let λ =

∑T
j=1 xj denote the overall

number of BSS errors. In the worst case, where all λ errors happened with singleton
subsets, we have T = Lλ since we may view the λ innocent users as λ dormant traitors.
Hence, in general, T ≤ Lλ. Therefore, for a given λ, we conclude that T > Lλ implies
that

Lλ∑

j=1

xj > λ . (9)

Hence,

Prob(T > Lλ) ≤ Prob




Lλ∑

j=1

xj > λ


 . (10)

Using the Chernoff bound we get from (8) and (10) that

Prob(T > Lλ) ≤
(

eβ−1

ββ

)εLλ

where β =
λ

εLλ
. (11)

However, in view of (6),

(
eβ−1

ββ

)εLλ

<

(
e

β

)λ

=
(

eεLλ

λ

)λ

≤ ε . (12)

The desired estimate (7) now follows from (11) and (12). ¤

After estimating the number of time segments in our scheme, i.e., the number of rounds
in the outer scheme S, we turn to estimating the number of time steps until the scheme
traces all traitors and the probability of making false accusations.

Theorem 1 Let λ ≥ 2 be an arbitrary integer and let ε > 0 be a parameter satisfying
(6). Then the scheme S ◦ Γε will detect and disconnect all p traitors within M time
steps where

Prob(M = O(p4 ln(p/ε) log n)) > 1− ε . (13)

Moreover, the probability of incriminating and disconnecting an innocent user (in ad-
dition to the p true traitors) is at most Lε, where L = p · (log n + 1).

Proof. Let tj be the lower bound on the number of traitors in time segment j, as
inferred by the outer scheme S. In view of Lemma 1,

Prob(max
j

tj ≤ p + λ) > 1− ε , (14)
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where p is the number of true traitors. Let Mj denote the number of time steps in time
segment j. Then, by (14) and (5), the following bound holds for all j in probability of
at least (1− ε):

Mj ≤ `(2tj + 1, ε) < 2r3 ln(2r/ε) where r = 2(p + λ) + 1 . (15)

Consequently, the number of time steps until the scheme detects and disconnects all
traitors, M =

∑Lλ
j=1 Mj , is bounded as follows:

Prob(M ≤ Lλ · 2r3 ln(2r/ε)) > 1− ε . (16)

In view of (6), (15) and (16) we conclude that

M < 16(p + λ + 1/2)3 · ln (4(p + λ + 1/2)/ε) · (p + λ) · (log n + 1) , (17)

in probability of at least 1− ε. Rearranging the upper bound in (17), we get that

M ≤ 16γ1 · p4 · ln
(

4(p + λ + 1/2)
ε

)
·
(

1 +
λ

p

)
· (log n + 1) , (18)

where

γ1 =
(

1 +
λ + 1/2

p

)3

. (19)

This shows that the scheme will detect and disconnect all p true traitors within M time
steps where M = O(p4 ln(p/ε) log n), in probability of at least 1− ε.

Regarding the probability of falsely incriminating and disconnecting an innocent
user, we recall that assumption (6) guarantees that the number of wrong decisions
along the search is bounded by λ with probability at least 1− ε. We note that wrongly
accusing a subset as being infected when the size of that subset is greater than one,
affects only the number of time segments until complete convergence on all traitors
is achieved. However, wrongly accusing a singleton subset as being infected causes
an additional damage: an innocent user would be incriminated and disconnected. In
order to estimate the probability of such a misfortune, we introduce the following event
notations:

• A denotes the event of completing the entire tracing scheme without disconnecting
any innocent user. Note that the event A does allow for BSS errors during the
search; however, it does not allow such errors to occur with singleton sets of
innocent users.

• Ei denotes the event of having exactly i BSS errors until the completion of the
search.

With these notations, we see that

Prob(A) =
∞∑

i=0

Prob(A|Ei) · Prob(Ei) ≥ Prob(A|E0) · Prob(E0) . (20)

Since Prob(A|E0) = 1 and Prob(E0) ≥ (1− ε)L, we conclude that

Prob(A) ≥ 1− Lε . (21)
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This completes the proof. ¤

The lower bound in (21) may seem poor since it relies upon the first term only in
the infinite sum in (20). However, it cannot be improved significantly, as illustrated
by deriving an approximate upper bound for Prob(A): Letting Êλ = ∪λ

i=0Ei denote
the event of having no more than λ errors until the completion of the search, and Êc

λ

denote its complement, we get that

Prob(A) = Prob(A|Êλ) · Prob(Êλ) + Prob(A|Êc
λ) · Prob(Êc

λ) . (22)

In view of Lemma 1, Prob(Êλ) > (1− ε). Using this lower bound as an approximation
for the value of Prob(Êλ), we get that

Prob(A) ≈ Prob(A|Êλ) · (1− ε) + Prob(A|Êc
λ) · ε ≤ Prob(A|Êλ) · (1− ε) + ε . (23)

Let u denote the first innocent user that appears as a singleton set in the search (note
that such a singleton set must appear at some point; in case that more than one set of
that sort appear, for the first time, simultaneously, we let u denote one of them). Then

Prob(A|Êλ) ≤ Prob(Au|Êλ) , (24)

where Au is the event of never incriminating u. Next, let t0 denote the time segment
in which u popped up as a singleton set, t∞ denote the time segment when the search
has ended and, for every t0 ≤ i ≤ t∞, let bi be the number of innocent leaves in the
search tree at time segment i (i.e., how many subsets in the partition P , (3), do not
include a traitor). With these notations we conclude that

Prob(Au|Êλ) ≈
t∞∏

i=t0

(
1− ε

bi

)
. (25)

The number of innocent leaves that face the danger of being wrongly incriminated may
be bounded as follows,

bi ≤ p + 1 + λ t0 ≤ i ≤ t∞ , (26)

because in the error-free scheme there are always no more than p + 1 innocent leaves,
while any wrong decision (the number of which is assumed to be no more than λ) may
increase the number of innocent leaves by one at the most. Hence, in view of (24)-(26),

Prob(A|Êλ) ≤
(

1− ε

p + 1 + λ

)t∞−t0

. (27)

Next, as t∞ ≥ L, we get that

Prob(A|Êλ) ≤
(

1− ε

p + 1 + λ

)L−t0

. (28)

Regarding t0, the event of u popping up as a singleton set may happen no sooner than
after log n time segments. Hence, t0 ≥ log n. It is clear that as long as there are no
singleton sets in the search tree, there is no danger of harming innocent users. Hence,
the worst scenario is that in which the search tree develops in the most unbalanced
manner, in order to introduce singleton sets as early as possible. This is also apparent
from (28). Hence, it is in the interest of the pirate to activate only one of its traitors at
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the first log n stages, in order to decrease t0 to a minimum. Therefore, assuming such
a pirate strategy, we get that

Prob(A|Êλ) ≤
(

1− ε

p + 1 + λ

)L−log n

. (29)

Hence, by (23) and (29),

Prob(A) ≤
(

1− ε

p + 1 + λ

)L−log n

·(1−ε)+ε = 1−(L−log n)· ε

p + 1 + λ
+O(ε2) . (30)

Therefore, we arrive at the following approximate lower bound for the probability of
the complement event, assuming a malicious pirate policy:

Prob(Ac) ≥ (L− log n) · ε

p + 1 + λ
+ O(ε2) . (31)

Comparing this to the upper bound Prob(Ac) ≤ Lε, (21), we see that they differ by an
approximate factor of 1

p .

For the sake of performance comparison, it is convenient to rescale ε so that the
probability of falsely accusing an innocent user is bounded by exactly ε. The required
rescaling factor is L = p · (log n + 1), which involves the unkown number of traitors p.
Hence, assuming that c is a safe upper bound for the number of traitors, we rescale ε
using the larger factor L̂0 where

L̂λ = (c + λ) · (log n + 1) . (32)

With this, we may state the following consequence of Theorem 1.

Theorem 2 Assume that c is an upper bound for the number of traitors and let ε be
the required tolerance parameter of the scheme. Let λ ≥ 2 be an arbitrary integer for
which

ε < L̂0 ·
(

λ

L̂λe

) λ
λ−1

, (33)

where L̂λ is given in (32). Then the scheme S ◦ Γε/L̂0
will detect and disconnect all p

traitors within M time steps where Prob(M ≤ Md) ≥ 1− ε
L̂0

,

Md = 16γ1 · p4 · ln
(

4L̂0(p + λ + 1/2)
ε

)
·
(

log n + 1 +
λ

p

)
, (34)

and γ1 is given in (19). Moreover, the probability of incriminating and disconnecting
an innocent user (in addition to the p true traitors) is at most ε.

Remark. The parameter λ has a very minor significance. In fact, if ε < 0.1, assump-
tion (33) holds for all λ ≥ 2.

12



2.4 Performance Comparison

The idea of combining a binary code with a richer alphabet code in order to combine the
bandwidth efficiency of the former with the time efficiency of the latter already appeared
in [3, §5.1]. The static scheme presented there was obtained by the composition of BSS
with the simplest traitor tracing scheme of [5, §5.1]. This latter scheme, to which we
refer henceforth as the CFN scheme, assumes an upper bound on the number of traitors,
c, and then distributes codewords to users from Σ` where |Σ| = 2c and ` = γ2c log(n/ε),
with

γ2 =
2 ln 2

2 ln 2− 1
. (35)

(The CFN scheme, as presented in [5, §5.1], uses an alphabet of size 4c; however, it
may use any alphabet of size ηc where η is a constant greater than one. The example
in [3, §5.1] employs CFN with η = 2, as we do here.) With this choice of an outer
scheme, the inner scheme is Γε/2`(2c), where ` is given above. Hence, the length of its
codewords is d · (2c − 1) where d = 8c2 ln(8c`/ε). Multiplying the length of the outer
codewords over Σ by the length of the inner binary encoding, we get the overall length
of codewords generated by that scheme:

Ms = ` · d · (2c− 1) ≤ 16γ2c
4 ln

(
8γ2c

2 log(n/ε)
ε

)
log

(n

ε

)
. (36)

It may seem at first that Ms, the length of the static scheme,(36)+(35), is of the same
order of magnitude as that of the dynamic scheme, Md, (34)+(19). However, this is
not the case, as we clarify in the comperative discussion below.

• The upper bound c.
Both our scheme and the above described static scheme need an a priori bound on the
number of traitors, c. Our dynamic scheme needs it only for the sake of setting the
parameter ε/L̂0 to be used in the inner BSS (the outer scheme does not need to know
c since it learns the actual number of traitors, p, along the run). The static scheme,
however, needs to know c for the sake of the outer CFN scheme.

If our scheme uses a too low c, i.e. c < p, the error probability will become greater
than the desired one – ε (say, if c = p/2, the actual probability error would be 2ε).
If however, the CFN scheme uses any value of c ≤ p, it completely collapses and will
incriminate innocent users.

• The dependence of the run time on c.
As a consequence of the above, c must be set to a safe a priori bound (where the CFN-
based static scheme must be significantly more “cautious” than the dynamic scheme).
Such an a priori bound could be several times larger than p, the actual number of active
traitors. The resulting toll on the number of time steps in the static scheme could be
devastating due to the fourth power (c4 in (36) versus p4 in (34)). The run-time of the
dynamic scheme, however, depends only on ln c.

• Complete tracing versus partial tracing.
The dynamic scheme is guaranteed to trace and disconnect all p traitors within Md time
steps, with probability of at least 1− ε/L̂0. The static scheme, however, is guaranteed
to trace and disconnect at least one of the traitors, with probability at least 1 − ε.
Hence, if we utilize the static scheme in the dynamic setting, we would need to apply it
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p times until piracy stops! Hence, the actual run time of that scheme when used in the
dynamic setting is p ·Ms. Since p may easily be in the hundreds, that is yet another
crucial factor in favor of the dynamic scheme.

Example. Consider a system with n = 105 users where a coalition of size p = 10 is
exercising piracy. Assume that we wish to trace all traitors with an error probability
of no more than ε = 10−3 and that c = 50 is the assumed bound for the size of the
coalition.
The static scheme. The length of codewords in that scheme turns out to be Ms ≈
2.04 · 1011. The actual run-time until we trace all traitors and stop piracy would be
therefore p ·Ms ≈ 2.04 · 1012.
The dynamic scheme. The upper bound c = 50 gives us L̂0 ≈ 880. With λ = 2 we get
that Md ≈ 108. This run-time is four orders of magnitude lower than that of the static
scheme.

3 Alternative Primitives for the Inner and Outer Schemes

The above example illustrates the difficulty of traitor tracing in practice. While the
deterministic schemes of [7] and [2] may collapse due to devastating bandwidth require-
ments, the above scheme is bandwidth-efficient, but it requires an intolerable amount
of time to converge. This inefficiency is due to the inefficiency of the inner BSS (the
outer dynamic scheme runs in an optimal time). The problematic factor in the run-
time of BSS is the third power that appears in the codeword length of BSS, see (5)
and (15). Boneh and Shaw established a lower bound on the length of codewords in
a fingerprinting scheme over a binary alphabet. They showed that given a binary fin-
gerprinting scheme that is ε-secure against coalitions of size c at the most, the length
of its codewords is bounded from below by 1

2(c − 3) log
(

1
εc

)
, [3, Theorem 6.1]. This

lower bound was improved by Peikert et al. to Ω(c2 log 1
εc) [9]. After the acceptance

of this manuscript for publication, Tardos presented a paper [10] where he closes the
gap by offering a fingerprinting code of size n that is ε-secure against coalitions of
size c, where the length of the code is O(c2 log(n/ε)). That code is optimal to within
a constant factor for small error probabilities. Setting c = n we get a code that is
ε-secure against any coalition with length O(n2 log(n/ε)). Comparing this with (5) we
infer that utilizing the Tardos code instead of BSS as the inner scheme, we can shave
off a factor of O(p) in the convergence time of the hybrid scheme, (34).

Next, we consider other choices for the outer scheme. Berkman et al. presented
in [2] an array of time-efficient dynamic traitor tracing schemes. They showed that
using p + c variants, for any 1 ≤ c ≤ p + 1, it is possible to locate all p traitors
within O(p2/c+ p log n) rounds. The largest value c = p+1 corresponds to the scheme
presented in [7] that we used in Section 2. The scheme that corresponds to the smallest
value c = 1 is optimal in the sense that it uses the minimal number of variants that
allows deterministic detection: p + 1. The price that we need to pay for decreasing
the number of variants from 2p + 1 to p + 1 is twofold: (a) the run time increases
from p · (log n+1) to O(p log n+ p2); and (b) the algorithm becomes significantly more
intricate. The dominant factor in Md, (34), is 16p4. What gave rise to that factor is
the length of each time segment, namely, the length of codewords in the inner scheme.
That length depended on 2r3 (see (5) and (15)) and since in the outer scheme r ≈ 2p,
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we get the factor 16p3 (the additional p that raises the power from 3 to 4 comes from
(4)). Hence, if we replace the outer scheme with the scheme that uses only r = p + 1
variants we are expected to save a constant factor of 23 = 8. However, the constants
hidden in the run-time of that scheme, O(p log n+p2), render that choice unattractive.
Therefore, in the above mentioned range of deterministic schemes, 1 ≤ c ≤ p + 1, the
upper extreme one yields the most efficient as well as simplest binary scheme.

Another range of schemes studied in [2] corresponds to schemes that use r = pc+1
variants, where c ≥ 2. Their run-time is O(p logc n). Here it is quite obvious that the
choice c = 2 yields the most efficient binary scheme. In view of the above, it seems
that our choice of the (2p + 1)-variant deterministic scheme is best.

We conclude this section with the following observation: The recipe that we pre-
sented here in order to obtain dynamic schemes over binary alphabets may be too
restricted. That recipe uses a static scheme during any time segment; namely, the
feedback that is collected during a time segment is analyzed only at the end of that
time segment. Another direction that should be explored is that of fully-dynamic
schemes over small alphabets, where the feedback in each time step is taken into ac-
count immediately.

4 Traitor Tracing in Pay-TV Systems

The most notable example of a dynamic data distribution system is that of Pay-TV.
In order to assure that users pay for content in such systems, Conditional Access tech-
niques are used. Conditional Access techniques work as follows:

• Level 1. The content is encrypted using encryption keys that are called Control
Words.

• Level 2. The control words are delivered to all users in encrypted messages, called
Entitlement Control Messages, or ECMs, where the encryption key is a common
periodical key.

• Level 3. The periodical keys are refreshed on a regular basis and their value
is delivered to all users in encrypted messages. In the simplest setting, those
messages would be personally addressed and encrypted with the personal key that
is installed in the addressee decoder. However, due to bandwidth considerations,
the value of the periodical key may have to be delivered to each and every user
in more elaborated techniques.

Piracy occurs when a legal user (that may have registered as a customer several times
under different identities) performs one of the following actions:

• Scenario 1. Redistributes the decrypted content to illegal customers.

• Scenario 2. Redistributes the control words that encrypt the content.

• Scenario 3. Redistributes the periodical keys that encrypt the control words.

All those scenarios comply with the traitor tracing framework, Section 1. The first
scenario is the least probable: it seems unlikely that the pirate would rebroadcast the
MPEG-II material over the Internet, due to bandwidth limitations. Rebroadcasting the
content via cable or terrestrial networks, on the other hand, might expose the pirate.
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In any case, if piracy occurs on that level, the content would have to be marked (say,
by techniques similar to those presented in [6]) in order to enable the activation of
any traitor tracing scheme. As the transmission of content requires huge amounts of
bandwidth, only a small fraction of the content could be marked (say, 1 channel only,
and only 5 seconds in each minute) and the duplication factor should be limited to
O(1).

The second scenario is also quite hard for the pirate to undertake. Control words
are refreshed every few seconds and the ECMs that deliver their value must be repeated
very quickly in order to allow a reasonable switch delay in the decoder. Those require-
ments may be too large for the bandwidth limitations of the pirate. In the case where
piracy occurs on this level, the tracer would have to duplicate the control words of one
of the channels and, consequently, the entire encrypted transmission of the selected
channel. Such an overhead might be intolerable, unless bandwidth efficient schemes,
such as the ones presented here, are employed.

The third scheme is the most probable one. Here, the pirate has to retransmit only
one periodical key in a very low rate. If piracy occurs on that level, the tracer would
have to duplicate the periodical keys and, consequently, also the ECM stream. In this
context, the deterministic schemes are applicable despite their bandwidth overhead.
However, as the center might need to reallocate bandwidth from content channels to
control channels transmitting ECMs, this translates to immediate financial loses as well
as termination of services. Hence, the center might prefer to activate low-bandwidth
schemes, despite their disadvantages in comparison with deterministic schemes, since
they would not necessitate the termination of existing services.
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