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Abstract

This paper contains three parts where each part triggered and motivated the subsequent
one. In the first part (Proper Secrets) we study the Shamir’s “k-out-of-n” threshold secret
sharing scheme. In that scheme, the dealer generates a random polynomial of degree k − 1
whose free coefficient is the secret and the private shares are point values of that polynomial.
We show that the secret may, equivalently, be chosen as any other point value of the polynomial
(including the point at infinity), but, on the other hand, setting the secret to be any other
linear combination of the polynomial coefficients may result in an imperfect scheme. In the
second part ((t, k)-Bases) we define, for every pair of integers t and k such that 1 ≤ t ≤ k− 1,
the concepts of (t, k)-spanning sets, (t, k)-independent sets and (t, k)-bases as generalizations
of the usual concepts of spanning sets, independent sets and bases in a finite-dimensional vector
space. We study the relations between those notions and derive upper and lower bounds for
the size of such sets. In the third part (Linear Codes) we show the relations between those
notions and linear codes. Our main notion of a (t, k)-base bridges between two well-known
structures: (1, k)-bases are just projective geometries, while (k − 1, k)-bases correspond to
maximal MDS-codes. We show how the properties of (t, k)-independence and (t, k)-spanning
relate to the notions of minimum distance and covering radius of linear codes and how our
results regarding the size of such sets relate to known bounds in coding theory. We conclude
by comparing between the notions that we introduce here and some well known objects from
projective geometry.

Keywords. Threshold Secret Sharing, Discrete Linear Algebra, Linear Independence, Span-
ning Sets, Linear Codes, Projective Geometry.

1 Introduction

In his seminal work on secret sharing, [28], Shamir introduced the concept of threshold secret
sharing. Given a set U = {u1, . . . , un} of n participants, he showed how to share a secret S
among those participants by giving each one of them a share, such that two properties hold:

• Correctness. Any subset of k shares may be used to recover the secret unequivocally.

• Perfect Security. Any subset of k−1 shares reveals no information about the secret.

In his scheme, the secret and the shares all take values in a finite field Fq whose size is at
least n + 1. The dealer generates a random polynomial of degree k− 1 over that field, P (x) =
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∑k−1
i=0 aix

i, so that the secret S is the free coefficient of that polynomial, S = a0. Then, the
dealer identifies each participant with a unique public identity in the field, ui ← xi ∈ Fq \ {0},
1 ≤ i ≤ n, and gives that participant the private share P (xi). Qualified subsets, namely,
subsets of size at least k, may recover the entire polynomial by means of interpolation and
then deduce the value of the secret, S = a0 = P (0). Non-qualified subsets, on the other hand,
may reveal no information about the secret from the shares that they hold.

It is clear that any value of the form P (x0) is also a suitable choice for the secret, provided
that there is no participant in U whose identity equals x0. Such a modification of the Shamir’s
scheme is obviously also correct and perfect. In addition to that, also the value of ak−1 may
serve as the secret [19, Theorem 2.1].

The coefficient ak−1 may be viewed as the value of P “at infinity”, since the vector
(0, . . . , 0, 1), that does not equal (1, x, x2, . . . , xk−1) for any x ∈ Fq, is the “point at infin-
ity” in the corresponding projective geometry PG(k − 1, q).1 (Another way of associating the
leading coefficient to the value of the polynomial at infinity is by looking at the polynomial
as if it was a polynomial over the reals and then taking the limit limx→∞ P (x)/xk−1 = ak−1.)
Hence, any (generalized) point value of the polynomial P is a suitable choice of the secret in
Shamir’s scheme.

All those point values are linear combinations of the coefficients of the secret generating
polynomial P . Any qualified subset may recover all of the polynomial coefficients, and, conse-
quently, may also compute all linear combinations of those coefficients. Therefore, a natural
question arises: can any linear combination of the polynomial coefficients serve as the secret?
In Section 2 we prove that the answer to this question is negative.

The discussion in Section 2 motivates the one that follows in Section 3. The section begins
with definitions of novel notions in discrete linear algebra. For every pair of integers t and k
such that 1 ≤ t ≤ k− 1, we define a set of vectors in a k-dimensional vector space over a finite
field to be (t, k)-spanning if any vector in the space is a linear combination of at most t vectors
from that set. A minimal (t, k)-spanning set is a (t, k)-spanning set that has no proper subset
that is still (t, k)-spanning. We proceed to define the related notion of a (t, k)-independent set:
A set of vectors in a k-dimensional vector space is (t, k)-independent if no vector in that set is
a linear combination of up to t other vectors from that set. A maximal (t, k)-independent set
is a (t, k)-independent set that has no proper superset having the same property. Such a set is
called a (t, k)-base.2 Those notions generalize the usual concepts of spanning sets, independent
sets and bases in a finite-dimensional vector space. We discuss the relations between those
notions, exemplify them, and derive upper and lower bounds for the size of (t, k)-bases and
minimal (t, k)-spanning sets.

In Section 3.2 we discuss the relations between our (t, k)-notions and linear codes. The
notion of (t, k)-bases coincides with projective geometries when t = 1, while, on the other
hand, it corresponds to Maximum Distance Separable (MDS) codes when t = k − 1. Hence,
the notion of (t, k)-bases, 1 ≤ t ≤ k − 1, “interpolates” between the concepts of projective
geometries and MDS codes, that, to the best of our knowledge, were previously unrelated.
We then show how every spanning set of n vectors V ⊂ Fk

q defines a [n, k] code CV and a
corresponding dual [n, n − k] code C∗V . Namely, the vectors are just the rows of a generating
matrix for CV and hence they are the rows of a parity check matrix for C∗V . Then, the (t, k)-
independence of V is related to the minimum distance of C∗V , while its (t, k)-spanning property
is related to the covering radius of C∗V . Moreover, the bounds that we derived in Section 3 on
the size of (t, k)-independent and (t, k)-spanning sets are related to the well known Hamming

1The projective geometry PG(d, q) is the collection of all
∑d

i=0 qi one-dimensional subspaces of Fd+1
q .

2After the completion of this work, the authors were notified that Y. Dodis defined the notion of (t, k)-spanning
sets in his master thesis [10]. In addition, we found out that Damelin et. al. introduced recently the notion of
(t, k)-independence in [9, 8]. We describe herein their results.
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and Gilbert-Varshamov bounds for linear codes.
In Section 4 we discuss the relation of our notions of (t, k)-independence and (t, k)-bases

to well-known structures in projective geometry. Finally we conclude in Section 5, where we
propose some interesting open problems.

2 Proper secrets in the Shamir’s secret sharing scheme

In this section we address the question that we posed in the introduction about the Shamir’s
secret sharing scheme. Namely, can the secret in that scheme be any linear combination of
the coefficients of the secret generating polynomial P , other than the linear combinations that
correspond to (generalized) point values of the polynomial?

A counterexample immediately emerges. Consider the case k = 3 and assume that
char(Fq) ≥ 3. In that case P (x) = a0 + a1x + a2x

2. S = a0 = P (0) and S = a2 = P (∞)
are both proper choices of the secret. However, S = a1 is an improper choice, since then any
non-qualified subset {ui, uj} with identities xi, xj that satisfy xi = −xj 6= 0 will be able to
recover the secret. Indeed, the share of ui in this case is a0 + a1xi + a2x

2
i , while the share of

uj is a0 − a1xi + a2x
2
i . The difference of these two shares equals 2a1xi, and it discloses the

value of the secret S = a1. A similar failure occurs for any value of k if we select the secret to
equal one of the intermediate coefficients of the polynomial (namely, one of the coefficients ai

for 1 ≤ i ≤ k − 2).
It should be noted that even if we select the secret to equal one of the intermediate coeffi-

cients of the polynomial, the resulting scheme might still be perfect, for some selections of the
participant identities in the field. For instance, in the above example of k = 3 and S = a1,
if the set of participant identities does not include pairs xi and xj such that xi = −xj 6= 0,
then everything works just fine. Other choices of linear combinations to represent the secret
may result in other conditions on the participant identities that might be significantly harder
to verify. In view of this, we introduce the concept of proper secrets in Shamir’s scheme.

Definition 2.1 Let Fq be the underlying field in Shamir’s secret sharing scheme, and let
P (x) =

∑k−1
i=0 aix

i be the secret generating polynomial. Then a linear combination of the
coefficients of the polynomial P (x) is a proper choice for the secret if there exists x0 ∈ Fq such
that the resulting scheme is perfect for any choice of participant identities in Fq.

In view of the above, all polynomial point values are proper secrets. Our main result here
is the following theorem.

Theorem 2.1 All point values of the polynomial P (x), namely,

P (x0) =
k−1∑

i=0

aix
i
0 x0 ∈ Fq, and P (∞) := ak−1 , (1)

are proper secrets in Shamir’s scheme. If

q ≥ (k − 1)2 and k ≤ char(Fq) , (2)

then any linear combination of the coefficients of P (x) that is not a point value of cP (x) for
some c 6= 0 is improper.

We begin with some definitions of basic terminology.

Definition 2.2 A vector v ∈ Fk
q , k ≥ 2, is called a regular Vandermonde vector if it takes

the form v = v(x) := (1, x, x2, . . . , xk−1) for some x ∈ Fq. A vector v ∈ Fk
q is called a
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Vandermonde vector if it is a regular Vandermonde vector or if v = (0, . . . , 0, 1). The set of
all (q +1) ∗ (q− 1) Vandermonde vectors in Fk

q and their nontrivial scalar multiples is denoted
by Vk (or simply V).

The set V, when interpreted as a set of points in the projective geometry PG(k − 1, q), is
called a normal rational curve. We are now ready to state the key ingredient in the proof of
Theorem 2.1.

Proposition 2.2 Let Fq be a field of cardinality at least k. Then:

1. All nonzero vectors in Fk
q \V may be expressed as a linear combination of k − 1 regular

Vandermonde vectors, provided that (2) holds.

2. For k ≥ 3, there exist nonzero vectors in Fk
q \ V that cannot be expressed as a linear

combination of k − 2 Vandermonde vectors.

3. No vector in V may be expressed as a linear combination of k − 1 other Vandermonde
vectors.

The proof of Proposition 2.2 is given in Section 2.1. Note that the lower bound on the
size of the field in Proposition 2.2 is implied by the lower bound on the field size in Shamir’s
scheme. Indeed, as Shamir’s scheme requires that q ≥ n+1 and n ≥ k, fields that are suitable
for the secret sharing scheme always satisfy the condition in Proposition 2.2.

Proof of Theorem 2.1. First, we prove that all point values of P , (1), are proper secrets.
This claim is obviously true for regular point values, P (x0), for some x0 ∈ Fq. As for the point
value P (∞) = ak−1, we include herein, for the sake of completeness, the proof of [19, Theorem
2.1]. Let V ⊂ U be an arbitrary maximal non-qualified subset. We aim at showing that the
information that the members of V hold does not reveal any information about the secret ak−1.
To show that, we need to prove that the k− 1 linear equalities in the unknowns (a0, . . . , ak−1)
that are implied by the shares possessed by the members of V do not pose any restriction on
the value of ak−1. This is equivalent to the statement that the vector (0, . . . , 0, 1) ∈ Fk

q is not
spanned by the rows of the matrix




1 x1 · · · xk−2
1 xk−1

1
...

...
...

...
...

1 xk−1 · · · xk−2
k−1 xk−1

k−1


 ,

where x1, . . . , xk−1 are the distinct identities of the participants in V. This is indeed the case
since

det




1 x1 · · · xk−2
1 xk−1

1
...

...
...

...
...

1 xk−1 · · · xk−2
k−1 xk−1

k−1

0 0 · · · 0 1


 =

∏

1≤i<j≤k−1

(xj − xi) 6= 0 .

After establishing the positive part of the theorem, we turn to prove its negative part.
Given a linear combination of the coefficients of P (x) =

∑k−1
i=0 aix

i, say
∑k−1

i=0 viai, we refer to
the vector (v0, . . . , vk−1) as the vector of the linear combination. Each point value of the poly-
nomial P (x) =

∑k−1
i=0 aix

i is a linear combination of (a0, . . . , ak−1) where the corresponding
vector is a Vandermonde vector. More specifically, the point value P (x0) is a linear combi-
nation with the vector (1, x0, x

2
0, . . . , x

k−1
0 ) while the point value P (∞) := ak−1 is a linear

combination with the vector (0, . . . , 0, 1). In view of the above, all of those point values, that
are linear combinations of the coefficients with a Vandermonde vector, are proper values for
the secret. All linear combinations of the polynomial coefficients that are not point values of
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cP (x) for some c 6= 0 correspond to nonzero vectors in Fk
q \ V. In view of Proposition 2.2,

such vectors may be expressed as linear combinations of k − 1 regular Vandermonde vectors,
say v(x1), . . . ,v(xk−1). Hence, if U includes participants with identities x1, . . . , xk−1, their
coalition, whose size is less than k, may recover such a linear combination. Namely, such
secrets that correspond to linear combinations of the polynomial coefficients whose vector is
not a Vandermonde vector (or a nonzero multiple of such a vector) are improper. 2

Before moving on to the main part of proving Proposition 2.2, we note in passing that
while the original Shamir scheme imposes the following lower bound on the size of the field,
q ≥ n + 1, the modified Shamir scheme with the secret being the most significant polynomial
coefficient, S = ak−1, relaxes that demand to q ≥ n. The reason is that with this choice of
the secret, we identify the dealer with the point at infinity, which is not a field element (while
in the original Shamir scheme the dealer was identified with the point x0 = 0); that way, we
“free” all of the field elements to be suitable candidates for participant identities.

2.1 Proof of Proposition 2.2

The third part of the proposition is obvious since any selection of k Vandermonde vectors
is linearly independent (provided that q ≥ k). The second part is also straightforward: All
vectors of the form (0, . . . , 0, 1, vk) are in Fk

q \ V and they cannot be expressed as a linear
combination of k− 2 Vandermonde vectors since then, by projecting such a linear dependence
onto Fk−2

q , we would get k − 2 Vandermonde vectors in Fk−2
q that are linearly dependent.

Hence, we concentrate on the first part of the proposition, but only for k ≥ 3 (since
F2

q \V = {0}). We prove that if v = (a0, a1, . . . , ak−1) ∈ Fk
q \V is nonzero then the polynomial

Gv(x1, . . . , xk−1) :=

∣∣∣∣∣∣∣∣∣

a0 a1 · · · ak−2 ak−1

1 x1 · · · xk−2
1 xk−1

1
...

...
...

...
...

1 xk−1 · · · xk−2
k−1 xk−1

k−1

∣∣∣∣∣∣∣∣∣
(3)

has a zero (x1, . . . , xk−1) ∈ Fk−1
q for which xi 6= xj for all 1 ≤ i < j ≤ k − 1. This will

imply that the rows of the matrix in (3) are linearly dependent for that choice of x1, . . . , xk−1,
whence the vector v is a linear combination of the corresponding k − 1 regular Vandermonde
vectors.

Expanding the determinant in (3) by the first row, we get that

Gv(x1, . . . , xk−1) =
k−1∑

j=0

(−1)jaj · Vj(x1, ..., xk−1) (4)

where

Vj(x1, ..., xk−1) =

∣∣∣∣∣∣∣

1 x1 · · · xj−1
1 xj+1

1 · · · xk−1
1

...
...

...
...

...
...

1 xk−1 · · · xj−1
k−1 xj+1

k−1 · · · xk−1
k−1

∣∣∣∣∣∣∣
. (5)

In order to evaluate the determinants in (5) we review the basic definitions and results regard-
ing generalized Vandermonde determinants. Given a monotonic non-decreasing sequence of
integer offsets, d0 ≤ · · · ≤ dn−1, the corresponding generalized Vandermonde determinant is

V(d0,...,dn−1)(x1, . . . , xn) =

∣∣∣∣∣∣∣

xd0
1 xd1+1

1 · · · x
dn−2+n−2
1 x

dn−1+n−1
1

...
...

...
...

...
xd0

n xd1+1
n · · · x

dn−2+n−2
n x

dn−1+n−1
n

∣∣∣∣∣∣∣
.
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It is given by

V(d0,...,dn−1)(x1, . . . , xn) = S(d0,...,dn−1)(x1, . . . , xn) · V(0,...,0)(x1, . . . , xn) (6)

where
V(0,...,0)(x1, . . . , xn) =

∏

1≤i<j≤n

(xj − xi) (7)

is the regular Vandermonde determinant and S(d0,...,dn−1)(x1, . . . , xn) is the Schur polynomial
which is symmetric and homogenous of degree d = d0 + · · · + dn−1 [20]. The determinant
in (5) is the general Vandermonde determinant that corresponds to the offset vector dj :=
(0, . . . , 0, 1, . . . , 1) that has k − 1 components and j leading zeros. It may be shown that the
Schur polynomial in this case is given by

Sdj
(x1, . . . , xk−1) =

∑

1≤i1<i2<···<ik−1−j≤k−1

xi1 · xi2 · · ·xik−1−j
. (8)

Namely, S(0,...,0,1) =
∑

1≤`≤k−1 x`, S(0,...,0,1,1) =
∑

1≤`<m≤k−1 x`xm, and so forth up to
S(1,...,1) =

∏
1≤`≤k−1 x`. It should be noted that S(0,...,0,0) = 1 (and not zero, as given by

the right hand side of (8) in the case j = k − 1).
Combining (4) through (8) we infer that

Gv(x1, . . . , xk−1)∏
1≤i<j≤k−1(xj − xi)

=
k−1∑

j=0

(−1)jaj ·




∑

1≤i1<i2<···<ik−1−j≤k−1

xi1 · xi2 · · ·xik−1−j



 . (9)

Denoting the polynomial on the right hand side of (9) by H(x1, . . . , xk−1), we have

H(x1, . . . , xk−1) = a0 · x1x2 · · ·xk−1

−a1 ·
∑

1≤i≤k−1
x1x2···xk−1

xi± · · ·
+(−1)k−2ak−2 · (x1 + · · ·+ xk−1)
+(−1)k−1ak−1 .

(10)

We proceed to prove that H(x1, . . . , xk−1) has a zero (x1, . . . , xk−1) ∈ Fk−1
q for which xi 6= xj

for all 1 ≤ i < j ≤ k − 1.
Assume that the first component of the vector v = (a0, . . . , ak−1) that is nonzero is a`,

where 0 ≤ ` ≤ k− 2 (note that ` < k− 1 since otherwise the vector v would be a multiple of a
Vandermonde vector). Then H(x1, . . . , xk−1) is of degree k−1−`. Let b1, . . . , bk−2 ∈ Fq be any
selection of k−2 distinct field elements, and consider the bivariate polynomial Ĥ(y, z) := H(y+
b1, . . . , y + bk−2, z). Then, in view of (10) and the above discussion, Ĥ(y, z) = z ∗P (y) + Q(y)
where P (y) is of degree k − 2− ` and Q(y) is of degree k − 1− ` (unless ` = 0 in which case
Q(y) is of degree k − 2).

The leading monomial in P (y) is
(
k−2

`

)
yk−2−`. The second part of assumption (2) implies

that
(
k−2

`

) 6= 0 in Fq, whence P is not the zero polynomial. Therefore, it has at most k − 2
zeros. Let y be any value in the field that is different from each of the roots of P . Then we
set z = −Q(y) · P (y)−1. By doing so, we found a zero (y, z) for Ĥ which translates to a zero
(y + b1, . . . , y + bk−2, z) of H. However, while the first k − 2 components of the latter zero
are obviously distinct from each other, we still need to show that z may be selected so that it
differs from all of those k − 2 components. Hence, we need to guarantee that

−Q(y) · P (y)−1 /∈ {y + b1, . . . , y + bk−2} .
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Namely, y must not be a zero of any of the polynomial equations

Q(y) + P (y) · (y + bj) = 0 , 1 ≤ j ≤ k − 2 . (11)

The polynomials on the left hand side of (11) are of degree k− 1− `. Their leading monomial
equals the leading monomial of Q(y) + P (y) ∗ y = Ĥ(y, y) := H(y + b1, . . . , y + bk−2, y), which
is

(
k−1

`

)
yk−1−`. As the second part of assumption (2) implies that

(
k−1

`

) 6= 0 in Fq, we infer
that each of the k − 2 polynomials on the left hand side of (11) is a nonzero polynomial of
degree k − 1 at the most. Consequently, each of those polynomials has at most k − 1 roots.
Therefore, there are at most (k−2)∗ (k−1) bad selections of y that may lead to an inequality
between z and one of the other components. Together with the previous k − 2 bad selections
of y (the roots of P ), we conclude that there are at most (k − 2) ∗ k bad selections of y. Any
other selection of y guarantees that z is well defined and, in addition, that its value is different
from from each of the values in {y + b1, . . . , y + bk−2}. Therefore, since we assumed that the
size of the field is at least (k− 2) ∗k +1 (the first part of assumption (2)), we can find distinct
x1, . . . , xk−1 for which the determinant is zero. 2

3 (t, k)-spanning sets, independent sets and bases

3.1 Definitions and basic results

The discussion in the previous section motivates the following definition.

Definition 3.1 A family V of vectors in a k-dimensional vector space U is called a (t, k)-
spanning set, if any vector u ∈ U is a linear combination of t vectors from V . A (t, k)-spanning
set is called a minimal (t, k)-spanning set if it does not have a proper subset that is also a (t, k)-
spanning set.

These concepts generalize the usual concepts of a spanning set and a base. Any base of a
k-dimensional vector space is a (minimal) (k, k)-spanning set.

Proposition 3.1 Assume that k ≥ 3, q ≥ max{k, (k − 2)2}, and k − 1 ≤ char(Fq). Then the
collection V of q + 1 Vandermonde vectors is a minimal (k− 1, k)-spanning set in Fk

q , but not
(k − 2, k)-spanning.

Proof. We begin by showing that under the assumed conditions on the size of the field and its
characteristics, the set V is (k−1, k)-spanning. Consider an arbitrary vector u = (u1, . . . , uk) ∈
Fk

q . By the first part of Proposition 2.2, its restriction to Fk−1
q , u′ = (u1, . . . , uk−1), may

be expressed as the linear combination of k − 2 regular Vandermonde vectors in Fk−1
q , say

v′i = (1, xi, . . . , x
k−2
i ), 1 ≤ i ≤ k − 2. Recall now that V includes, apart from the q regular

Vandermonde vector, also the vector v = (0, . . . , 0, 1). Hence, u may be expressed as the linear
combination of the k−1 Vandermonde vectors {v,v1, . . . ,vk−2}, where vi = (1, xi, . . . , x

k−1
i ),

1 ≤ i ≤ k − 2.
Next, we observe that the set V is in fact a minimal (k − 1, k)-spanning set. Indeed, since

any selection of k vectors from V is independent, then all vectors in V are essential for this
property.

Finally, the set V cannot be (k−2, k)-spanning, as implied by the second part of Proposition
2.2. 2

It is tempting to call a minimal (t, k)-spanning set a (t, k)-base. However, the correct way
to define a (t, k)-base starts from the opposite notion of (t, k)-independence.
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Definition 3.2 A family V of vectors in a k-dimensional vector space U is called (t, k)-
independent, if none of its vectors is a linear combination of up to t other vectors from V . A
(t, k)-independent set is called a maximal (t, k)-independent set, or a (t, k)-base, if it does not
have a proper superset that is also (t, k)-independent.

In view of the above, the collection V of q + 1 Vandermonde vectors is a (k − 1, k)-base
whenever the conditions of Proposition 3.1 are met. We also note that any base of a k-
dimensional space U , say B = {v1, . . . ,vk}, is a (k, k)-base. Indeed, no vector in B is a linear
combination of up to k other vectors in B, while B ∪ {u} is not (k, k)-independent for any
u ∈ U \B (since u is a linear combination of the k vectors in B).

Next, we study the relation between the notions of minimal (t, k)-spanning sets and max-
imal (t, k)-independent sets (namely, (t, k)-bases). To that end, we first introduce some nota-
tions that we shall use here and also in subsequent sections.

Definition 3.3 Let (k1, . . . , k`) be a sequence of positive integers and let k =
∑`

j=1 kj. Then

the mapping ϕj : Fkj
q → Fk

q is defined by ϕj(w1, . . . , wkj
) = (0, . . . , 0, w1, . . . , wkj

, 0, . . . , 0)
where the number of leading zeros is

∑j−1
i=1 ki and the number of trailing zeros is

∑`
i=j+1 ki.

If, in addition, Uj is a family of vectors in Fkj
q , 1 ≤ j ≤ `, then U1

⊎ · · ·⊎ U` =
⋃`

j=1 ϕj(Uj).

Proposition 3.2 All (t, k)-bases are minimal (t, k)-spanning sets. However, for all 2 ≤ t ≤
k − 1 there exist minimal (t, k)-spanning sets that are not (t, k)-independent.

Proof. Let V be a (t, k)-base in U . Namely, it is (t, k)-independent, while V ∪{u} is no longer
(t, k)-independent for any vector u ∈ U \ V . This implies that all vectors u ∈ U \ V may be
represented as a linear combination of t vectors from V . Hence, V is a (t, k)-spanning set. It
is also a minimal (t, k)-spanning set since if there was a vector v ∈ V such that V \ {v} was
still a (t, k)-spanning set, then v would have been a linear combination of t other vectors in
V , thus contradicting our assumption that V is (t, k)-independent. Hence, any (t, k)-base is
also a minimal (t, k)-spanning set.

Next, we exemplify the existence of minimal (t, k)-spanning sets that are not (t, k)-independent
for all 2 ≤ t ≤ k−1. Let Vt be the set of all Vandermonde vectors in Ft

q, Mk−t be the set of all
monic vectors in Fk−t

q , and set B = Vt

⊎
Mk−t = ϕ1(Vt)

⋃
ϕ2(Mk−t). (Here, k = t + (k − t),

` = 2, and then ϕ1 and ϕ2 are defined as in Definition 3.3.) We claim that B is a minimal
(t, k)-spanning set that is not (t, k)-independent.

First, we show that it is (t, k)-spanning. Consider an arbitrary vector w = (w1, . . . , wk) ∈
Fk

q . Define v = (w1, . . . , wt, 0, . . . , 0) and u = (0, . . . , 0, wt+1, . . . , wk). By Proposition 2.2,
v is a linear combination of t − 1 vectors from ϕ1(Vt) (when the underlying field size and
characteristic are sufficiently large). On the other hand, u must be a linear combination of
one vector from ϕ2(Mk−t). Hence, w = v+u is a linear combination of at most t vectors from
B.

Next, B is a minimal (t, k)-spanning set. Indeed, assume that we remove from B a vector
v ∈ ϕ1(Vt). Then the vector v+ et+1 cannot be expressed as a linear combination of t vectors
from B \ {v} since such a linear combination must involve at least t vectors from ϕ1(Vt) \ {v}
and at least one vector from ϕ2(Mk−t). If, on the other hand, we remove from B a vector
v ∈ ϕ2(Mk−t), then the vector v + et−1 cannot be expressed as a linear combination of t
vectors from B \ {v}. Indeed, such a linear combination must involve at least t − 1 vectors
from ϕ1(Vt) (as explained in the proof of the second part of Proposition 2.2) as well as at least
two vectors from ϕ2(Mk−t).

Finally, B is not (t, k)-independent since any t + 1 vectors from ϕ1(Vt) are linearly depen-
dent. 2
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Example. Consider the space V = F3
2. A (2, 3)-spanning set in V must be of size at least

four, since any set of three vectors in V can (2, 3)-span at most seven vectors, while |V | = 8.
Consider the two families

B1 = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1)} and B2 = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0)} .

It may be easily seen that both sets are (2, 3)-spanning. However, while B1 is also (2, 3)-
independent, the set B2 is not (the fourth vector in it is the sum of the first two). 2

Proposition 3.3 A family V of vectors in a k-dimensional vector space U is a (t, k)-base if
and only if it is (t, k)-independent and (t, k)-spanning.

Proof. If V is a (t, k)-base, then, by definition, it is (t, k)-independent, and, in view of Propo-
sition 3.2, it is (t, k)-spanning. On the other hand, assume that V is (t, k)-independent. Then
if it is also (t, k)-spanning, it means that any vector from U \ V is a linear combination of t
vectors from V . This implies that V is a maximal (t, k)-independent set, namely, a (t, k)-base.
2

The Vandermonde vectors in Fk
q , Vk, constitute a (t, k)-base for the maximal value of

t = k − 1. It is not clear whether there are other (k − 1, k)-bases that are not obtained from
Vk through trivial independence-preserving linear transformations. The other extreme case,
however, of t = 1, is much simpler. Here, there is only one (1, k)-base up to independence-
preserving linear transformations.

Definition 3.4 A vector v ∈ Fk
q is called monic if it takes the form v = (0, . . . , 0, 1, vi+1, . . . , vk)

for some 1 ≤ i ≤ k.

Proposition 3.4 The set of all monic vectors in Fk
q is a (1, k)-base.

Proof. The family of all monic vectors is

V =
k⋃

i=1

Vi , where Vi = {(0, . . . , 0, 1, vi+1, . . . , vk) : vj ∈ Fq, i + 1 ≤ j ≤ k} .

This is a (1, k)-independent set since no vector in V is proportional to another vector in V .
It is also a maximal (1, k)-independent set since if u ∈ Fk

q is a nonzero vector whose left-most
nonzero component is ui, 1 ≤ i ≤ k, it is proportional to some vector in Vi. Therefore, no
vector may be added to V while still respecting its (1, k)-independence. We conclude that V
is a (1, k)-base. 2

3.2 (t, k)-bases and linear codes

(t, k)-independent and (t, k)-spanning sets are naturally related to linear codes. Let us recall
some basic notions about linear codes.

A code C of length n over Fq is a subset of Fn
q . It is called a linear code of dimension

1 ≤ k < n if there exists a matrix G ∈ Mn×k(Fq), of full rank k, such that the code coincides
with {Gu : u ∈ Fk

q}. Namely, looking at all the vectors u ∈ Fk
q as messages, the codewords

are obtained from those messages by embedding them in Fn
q through the linear transformation

that corresponds to the so-called generating matrix G. Such a code is referred to as a [n, k]
code.

9



Given two codewords x,y ∈ C, their Hamming distance, dist(x,y), is defined as the number
of entries in which they differ. (The Hamming distance of a given codeword x to 0 is called
the Hamming weight of x.) The minimal distance of a code C is defined as

d = d(C) = min{dist(x,y) : x,y ∈ C, x 6= y} .

A [n, k] code with minimal distance d is referred to as a [n, k, d] code.
Given a linear [n, k] code C, the dual code C∗ is the set of vectors in Fn

q that are orthogonal
to all codewords in C. Clearly, C∗ is a [n, n− k] code that coincides with {w ∈ Fn

q : wtG = 0},
where G is a generating matrix of C. A generating matrix for C∗ is called a parity check matrix
for C, and it plays a significant role in error correction.

Every (t, k)-base V defines a [n, k] code CV , where n = |V |, in a natural way: The corre-
sponding generating matrix G is the n × k matrix whose rows are the vectors of V . Since V
spans all of Fk

q , the matrix G has indeed a full rank k. We note that any set V of n vectors
that spans all of Fk

q defines a [n, k] code CV in this manner (namely, V does not need to be
(t, k)-independent). Note that G is also a parity check matrix for C∗V .

There is a well known relation between the rows of a parity check matrix H and the
minimum distance d of a [n, k, d] code. Namely d ≥ r if and only if any r − 1 rows of H are
linearly independent. This assertion may be restated in terms of (t, k)-independence.

Lemma 3.5 Let V ⊆ Fk
q be a set of vectors that spans Fk

q . Then, for any 1 ≤ t ≤ k− 1, V is
a (t, k)-independent set if and only if d(C∗V ) ≥ t + 2.

Proof. The codewords in C∗V may be viewed as vectors of coefficients of those linear combina-
tions of the vectors in V that equal zero. Hence, the Hamming weight of a given codeword in
C∗V is the number of vectors in V that appear in the corresponding linear combination. If V
is (t, k)-independent, then no nontrivial linear combination of up to t + 1 vectors in V is zero.
This implies that the Hamming weight of any non-null codeword of C∗V is at least t + 2. The
converse is shown similarly. 2

Consider, as an example, the set V of all monic vectors in Fk
q , that is (1, k)-independent

but not (2, k)-independent. Lemma 3.5 implies that the code C∗V is a [ qk−1
q−1 , qk−1

q−1 − k, 3] code.
Namely, it is the well known Hamming code.

It may be shown that for [n, k, d] codes, d ≤ n− k + 1 [21, Chapter 1, Theorem 11]. Codes
with d = n−k+1 are called Maximum Distance Separable (MDS) codes. The dual of an MDS
code is also MDS. An example of MDS codes are the Reed-Solomon codes. An example of the
Reed-Solomon codes is the [q, k, q−k +1] code whose generating matrix consists of all regular
Vandermonde vectors in Fk

q as its rows.
A [n, k] code over Fq is MDS if and only if every k rows of the generating matrix G are

linearly independent [21, Chapter 11, Corollary 3]. Namely, a [n, k] code over Fq is MDS if
and only if the rows of its generating matrix are (k − 1, k)-independent. Hence, the notion of
(t, k)-independence extends the notion of MDS codes.

The covering radius ρ(C) of a code C is the maximum Hamming distance between a vector
w ∈ Fn

q \ C and the code. That is,

ρ(C) = max
w∈Fn

q \C
(dist(w, C)) = max

w∈Fn
q \C

(
min
w′∈C

dist(w,w′)
)

.

While Lemma 3.5 established a relation between (t, k)-independence of V and the minimal
distance of the corresponding dual code, C∗V , the next lemma establishes a similar relation
between the (t, k)-spanning property of V and the covering radius of C∗V .
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Lemma 3.6 Let V ⊆ Fk
q be a set of vectors that spans Fk

q . Then, for any 1 ≤ t ≤ k− 1, V is
a (t, k)-spanning set if and only if ρ(C∗V ) ≤ t.

Proof. Let n = |V | and let G be the n× k matrix whose rows are the vectors in V . Consider
the following mapping from Fn

q to Fk
q : ut 7→ vt = utG. Since V spans Fk

q , this mapping is
a surjective. Indeed, every vector v ∈ Fk

q can be written as a linear combination of some
vectors in V . Letting u ∈ Fn

q be the vector of the coefficients in such a linear combination, we
have vt = utG. Conversely, every u ∈ Fn

q defines a vector v ∈ Fk
q as the corresponding linear

combination of the vectors in V . As before, the number of vectors of V that are involved in
that linear combination is exactly the Hamming weight of u.

Let v be an arbitrary vector in Fk
q and let u ∈ Fn

q be such that vt = utG. By the definition
of the covering radius, there exists a codeword w ∈ C∗V such that dist(u,w) ≤ ρ(C∗V ). Hence,
the Hamming weight of u−w is at most ρ(C∗V ). But as (u−w)tG = utG−wtG = vt−0 = vt,
we conclude that there exists a linear combination of at most ρ(C∗V ) vectors in V that equals
v. This implies that V is a (ρ(C∗V ), k)-spanning set.

Conversely, if V is a (t, k)-spanning set then for every u ∈ Fn
q there exists a vector û ∈

Fn
q with Hamming weight at most t such that utG = ûtG. Thus, w = u − û ∈ C∗V and

dist(u, C∗V ) ≤ dist(u,w) ≤ t. This concludes the proof since then ρ(C∗V ) ≤ t. 2

Invoking Proposition 3.3, we may summarize Lemmas 3.5 and 3.6 as follows:

Proposition 3.7 Let V ⊆ Fk
q be a set of vectors that spans Fk

q . Then, for any 1 ≤ t ≤ k − 1,
V is a (t, k)-base if and only if ρ(C∗V ) ≤ t ≤ d(C∗V )− 2.

3.3 On the size of (t, k)-bases

In this subsection we address the question of the size of (t, k)-bases over some finite field Fq.
To this end, we first recall the definition of a matroid.

Matroids are a combinatorial structure that generalizes both linear spaces and the set of
circuits in an undirected graph. They are a useful tool in several fields of theoretical computer
science, e.g., optimization algorithms. A matroid M = 〈V, I〉 is a finite set V and a collection
I of subsets of V that satisfy the following three axioms:

(I1) ∅ ∈ I.

(I2) If X ∈ I and Y ⊆ X then Y ∈ I.

(I3) If X and Y are members of I with |X| = |Y |+ 1 then there exists an element x ∈ X \Y
such that Y ∪ {x} ∈ I.

The elements of V are called the points of the matroid and the sets in I are called the
independent sets of the matroid. Axiom (I1) assures that there is at least one independent set
in I. Axiom (I2) asserts that the collection I is closed under containment. Finally, Axiom (I3)
enables the expansion of every small independent set in I. A dependent set of the matroid is
any subset of V that is not independent.

As a consequence of Axiom (I3), all maximal independent sets in a matroid have the same
size, which is called the rank of the matroid. Those maximal independent sets are called bases.
The family of all bases of a matroid M determines the matroid.

Definition 3.5 Let k and t be integers such that 1 ≤ t ≤ k − 1. Then It,k;q (or It,k for
simplicity) denotes the collection of all (t, k)-independent sets in U = Fk

q . In addition, I0
t,k;q

denotes the subfamily of maximal sets in It,k;q.
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We note that It,k is nontrivial since if V is any set of independent vectors in U then it is
(t, k)-independent.

A natural question that arises is whether It,k is a matroid.

Theorem 3.8 It,k is a matroid if and only if t = 1.

Proof. As Axioms (I1) and (I2) are obviously satisfied by It,k, we concentrate on Axiom (I3).
Let us begin with the case t = 1. I1,k is the collection of all subsets V ⊂ U , such that V
does not include vectors that have the same direction. Assume that X, Y ∈ I1,k and that
|X| = |Y | + 1. Given x ∈ X \ Y , the augmented set Y ∪ {x} is not (1, k)-independent if
and only if x is in the same direction as some vector in Y . As X and Y are both (1, k)-
independent, it means that X has vectors in |X| different directions and Y has vectors in |Y |
different directions. Since |X| = |Y |+1, the set X must include a vector, x, whose direction is
not the direction of any vector in Y . For that vector, Y ∪{x} must be still (1, k)-independent.
Therefore, I1,k satisfies also the third matroid axiom, (I3), whence it is a matroid.

Assume next that t > 1. We proceed to show that It,k fails to satisfy Axiom (I3). Letting
ei, 1 ≤ i ≤ k denote the standard basis vectors in Fk

q , we define

Y = {e1, . . . , ek} , and X = {e1, e1 + e2, e2 + e3, . . . , ek−1 + ek, ek} .

We claim, and show later, that X,Y ∈ It,k. Since each vector in X is a linear combination
of at most two vectors from Y , and t ≥ 2, we infer that Y ∪ {x} /∈ It,k for all x ∈ X. As
|X| = |Y |+ 1, this contradicts Axiom (I3).

It remains to show that X and Y are (t, k)-independent. This is equivalent to showing
that every t + 1 vectors from each of those sets are independent. As t + 1 ≤ k, we proceed to
show a stronger claim - every k vectors from each of those sets are independent. This clearly
holds for Y . Let us prove the claim for X.

The k vectors in X \ {e1} are independent since if we write them in the rows of a square
matrix we get an upper-triangular matrix with determinant 1. Similarly, the k vectors in
X \ {ek} are also independent (here we get a lower-triangular matrix with determinant 1).
Consider now the k vectors in X \{ej +ej+1}, where 1 ≤ j ≤ k−1. The corresponding matrix
here is not triangular. However, by applying the elementary row operations Ri ← Ri −R1,
2 ≤ i ≤ j, we arrive at an upper-triangular matrix with determinant 1. Therefore, all subsets
of X of size k are independent subsets. This implies that X ∈ Ik−1,k. As t ≤ k − 1, we infer
that X ∈ Ik−1,k ⊂ It,k. The proof is thus complete. 2

Since I1,k;q is a matroid, then all (1, k)-bases in I0
1,k;q have the same size. By Proposition

3.4, the set of all monic vectors in Fk
q is a (1, k)-base, and its size is qk−1

q−1 =
∑k−1

j=0 qj . We
note that the collection of all monic vectors in Fk

q coincides with the projective geometry
PG(k − 1, q) (e.g. [21, Appendix B]).

Next, we address the question of the size of (t, k)-bases, namely, the size of the maximal
sets in It,k. As It,k is not a matroid, for 2 ≤ t ≤ k − 1, (t, k)-bases may have different sizes.
The following examples show that this is indeed the case.

Example 1. Consider the case q = 2, t = 2 and k = 4. Then the following two sets are
(2, 4)-bases in F4

2. The first one has eight vectors (written in columns) and the second has five
vectors: 




0 1 1 0 0 1 0 1
1 0 1 0 1 1 0 0
0 1 0 0 1 1 1 0
1 1 0 1 0 1 0 0









1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1
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Example 2. Consider the case q = 5, t = 2 and k = 4. The following two sets, of sizes 16
and 26 respectively, are (2, 4)-bases in F4

5:




1 0 1 1 1 1 1 1 1 1 0 0 1 0 1 0
0 0 1 2 3 4 1 2 3 2 1 0 0 1 4 1
0 0 1 4 4 1 2 2 0 0 3 1 1 4 2 0
0 1 1 3 2 4 3 1 3 1 1 4 3 2 0 0









1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 0 1 1 0 1 1 1 0
0 0 1 2 3 4 2 2 1 4 3 1 0 3 3 1 2 0 1 1 4 1 0 4 1 0
0 0 1 4 4 1 2 1 3 0 3 4 4 1 0 1 3 3 0 2 2 4 2 3 0 1
0 1 1 3 2 4 1 1 0 0 2 2 3 4 4 2 3 2 2 0 4 0 0 3 1 3





In view of the above, the notion of dimension does not have a natural parallel of (t, k)-
dimension. Instead, we introduce the notions of minimal and maximal (t, k; q)-dimensions:

Definition 3.6 Let Fq be a finite field of size q and let I0
t,k;q be the family of (t, k)-bases

in Fk
q . Then the minimal (t, k; q)-dimension, d(t, k; q), and the maximal (t, k; q)-dimension,

D(t, k; q), are:

d(t, k; q) = min
{|A| : A ∈ I0

t,k;q

}
, D(t, k; q) = max

{|A| : A ∈ I0
t,k;q

}
.

A natural question is to obtain lower and upper bounds on those minimal and maximal
(t, k; q)-dimensions.

3.3.1 The size of (2, k)-bases over F2

We begin by identifying the value of D(2, k; 2) and later on we determine d(2, k; 2).

Proposition 3.9 D(2, k; 2) = 2k−1.

Proof. Let V ∈ I0
2,k;2 be a (2, k)-base in Fk

2 and let n = |V |. Let us identify the vectors of V
with the vertices of the complete graph Kn and consider the following edge-coloring of that
graph:

c({u,v}) = u + v , ∀u,v ∈ V .

This is a legal coloring in the sense that any two adjacent edges must have a different color.
Hence, the size of the palette of colors must be at least the edge-chromatic number of Kn which
is either n − 1 or n. The palette of colors is exactly Fk

2 \ (V ∪ {0}), because every nonzero
vector in Fk

2 may be expressed as a linear combination of two vectors from V , while, owing to
the (2, k)-independence of V , no vector from V ∪{0} can. This implies that 2k−n−1 ≥ n−1,
whence n ≤ 2k−1. To conclude the proof, we show that I0

t,k;q always includes a set of size
2k−1. Indeed, the collection

V = {(a1, . . . , ak−1, 1) : a1, . . . , ak−1 ∈ F2}
is clearly a (2, k)-independent set (the sum of any two vectors in V is no longer in V ), it is max-
imal (since any vector (a1, . . . , ak−1, 0) ∈ Fk

2 \V is the sum of the two vectors (a1, . . . , ak−1, 1)
and (0, . . . , 0, 1), both of which are in V ), and its size is 2k−1. 2

The last proof is constructive in the sense that it describes a specific (2, k)-base V of
maximal size. From a geometric point of view, V is a complement of a particular hyperplane
in Fk

2 . In the next proposition we show that the same holds for any hyperplane.
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Proposition 3.10 If H is a hyperplane in Fk
2 then V = Fk

2 \ H is a (2, k)-base of maximal
size. Conversely, if V is a (2, k)-base of Fk

2 and |V | = D(2, k; 2) then Fk
2 \ V is a hyperplane

in Fk
2 .

Proof. Let H be a hyperplane in Fk
2 and V = Fk

2 \ H. Proving that V is a (2, k)-base is
straightforward when considering the quotient vector space Fk

2/H ∼= F2: All vectors in H
correspond to the scalar 0 while all those in V correspond to 1. Hence, the sum of two
vectors in V cannot be in V (i.e., V is (2, k)-independent), whence it must be in H (i.e., V is
(2, k)-spanning).

Now, let us assume that V is a (2, k)-base of Fk
2 and |V | = D(2, k; 2) = 2k−1. Then

|Fk
2 \V | = |V |. For any v ∈ V , we have |v+V | = |{v+v′ | v′ ∈ V }| = |V |. But v+V ∩V = ∅,

since V is a (2, k)-independent set. Thus, v + V = Fk
2 \ V for all v ∈ V . This implies

that given w1,w2 ∈ Fk
2 \ V and v ∈ V , there exist v1,v2 ∈ V such that w1 = v + v1 and

w2 = v + v2. Hence, w1 + w2 = v1 + v2 ∈ Fk
2 \ V . Therefore, Fk

2 \ V is a vector subspace.
Since |Fk

2 \ V | = 2k−1, it is a hyperplane in Fk
2 . 2

In order to determine d(2, k; 2) we first introduce some notation. For any proper subset V
of Fk

2 we define S(V ) = (V + V ) \ {0} = {v1 + v2 | v1,v2 ∈ V, v1 6= v2}. Then we claim the
following:

Proposition 3.11 d(2, k; 2) ≥ α(k) :=
√

2k+1 − 7
4 − 1

2 .

Proof. Let V be a (2, k)-base of Fk
2 of size n. As V is a (2, k)-spanning set, |Fk

2 | = 2k ≤
1 + |V |+ |S(V )| ≤ 1 + n +

(
n
2

)
. But 2k ≤ 1 + n +

(
n
2

)
is equivalent to n ≥

√
2k+1 − 7

4 − 1
2 . 2

If V is a (2, k)-base of Fk
2 of size n then |S(V )| ≤ (

n
2

)
. In the following lemma we characterize

the cases where S(V ) is of maximal size.

Lemma 3.12 Let V be a (2, k)-independent set of Fk
2 . Then |S(V )| = (|V |

2

)
if and only if V

is also a (3, k)-independent set.

Proof. A (2, k)-independent set V is also (3, k)-independent if and only if no vector v ∈ V can
be expressed as a sum v = v1 +v2 +v3, where v1,v2,v3 are three distinct vectors in V \ {v}.
But v = v1 + v2 + v3 if and only if v + v1 = v2 + v3. Namely, V is also (3, k)-independent if
and only if there do not exist four vectors v,v1,v2,v3 in V such that v + v1 = v2 + v3. As
the latter condition is equivalent to |S(V )| = (|V |

2

)
, that completes the proof. 2

As a consequence, every (2, k)-base of Fk
2 with cardinality α(k) (if one exists) is also a

(3, k)-base. That is, d(2, k; 2) = α(k) implies D(3, k; 2) ≥ α(k). However, this situation can
rarely happen since α(k) must be an integer and, additionally, there must exist a (2, k)-base
with that number of vectors.

Lemma 3.13 α(k) is an integer exactly for k = 1, 2, 4 and 12.

Proof. α(k) =

√
2k+3 − 7− 1

2
can be an integer if only if 2k+3 − 7 = x2 for some odd integer

x. The diophantine equation 2m− 7 = x2, known as the Ramanujan-Nagell equation [30], has
only a finite number of integral solutions. Those solutions correspond to m = 3, 4, 5, 7 and 15.
Since k must be positive, the only possible values for k are 1,2,4 and 12. 2
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For k = 1, 2 every (normal) base is in particular a (2, k)-base with cardinality α(k). An
example of a (2, 4)-base with α(4) = 5 vectors was given in Example 1. As for the last case,
k = 12, we do not know whether a (2, 12)-base of size α(12) = 90 exists.

3.3.2 The size of (t, k)-bases over a general field

Here, we obtain upper and lower bounds on the size of (t, k)-bases over a general field. To

that end, we introduce the useful notation Vq(n, e) =
e∑

`=0

(
n
`

)
(q − 1)`, where 0 ≤ e ≤ n.

Lemma 3.14 Let V be a (t, k)-independent set in Fk
q and let n = |V |. Then

qk ≥ Vq(n, b t+1
2 c) . (12)

Proof. Although the lemma can be proven directly, we prefer to relate it to the well known
Hamming upper bound on the size of a code. According to that bound, the maximal size
Aq(n, d) of a code C ⊆ Fn

q with minimum distance d is upper-bounded by

Aq(n, d) ≤ qn

Vq(n, bd−1
2 c) .

Applying this bound to the code C∗V , that is a [n, n− k, d∗] code, we infer that

qn−k ≤ qn

Vq(n, bd∗−1
2 c) .

By Lemma 3.5, the (t, k)-independence of V implies that d∗ ≥ t + 2. Therefore, qk ≥
Vq(n, b t+1

2 c). 2

Neglecting all terms, excluding the last one, in the sum on the right hand side of (12), and
using the simple lower bound on the binomial coefficient,

(
n
s

) ≥ (
n
s

)s, we obtain the following
explicit upper bound on D(t, k; q).

Corollary 3.15 D(t, k; q) ≤ s
q−1 · qk/s where s = b t+1

2 c.

The following recursive estimate bounds the rate in which D(t, k; q) increases with respect
to t and k.

Theorem 3.16 D(t, k; q) ≤ D(t− 1, k − 1; q) + 1 for all t ≤ k − 1.

Proof. Assume that D(t, k; q) = n and that {v1, . . . ,vn} ⊂ Fk
q is a (t, k)-base. Without loss

of generality we assume that vn = ek = (0, . . . , 0, 1) since, if it is not the case, there exists an
invertible matrix A ∈ Mk(Fq) such that Avn = ek and then we may consider the (t, k)-base
{Av1, . . . , Avn}.

Let P : Fk
q → Fk−1

q denote the projection P (u1, . . . , uk) = (u1, . . . , uk−1). We proceed to
show that {Pv1, . . . , Pvn−1} ⊂ Fk−1

q is (t − 1, k − 1)-independent, hence proving that D(t −
1, k− 1; q) ≥ n− 1 = D(t, k; q)− 1. To that end we need to show that every t vectors from the
set {Pv1, . . . , Pvn−1} are independent. Consider the subset {Pvi1 , . . . , Pvit}. By the (t, k)-
independence of {v1, . . . ,vn}, the t+1 vectors {vi1 , . . . ,vit ,vn} are independent in Fk

q . Hence,
they may be complemented into a base of Fk

q by additional k−1−t vectors, say w1, . . . ,wk−1−t.
Consider now the matrix B ∈ Mk(Fq) whose rows are {w1, . . . ,wk−1−t,vi1 , . . . ,vit ,vn}. As
it is an invertible matrix, its determinant is nonzero. But since its last row is vn = ek, the
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determinant of B equals the determinant of the upper left (k− 1)× (k− 1) minor whose rows
are {Pw1, . . . , Pwk−1−t, Pvi1 , . . . , Pvit}. This implies that the vectors {Pvi1 , . . . , Pvit} are
independent. 2

Combining Theorem 3.16 and Proposition 3.9, we infer that D(t, k; 2) ≤ 2k−t+1 + t − 2.
Combining Theorem 3.16 and Corollary 3.15, we arrive at the following conclusion.

Corollary 3.17 D(t, k; q) ≤ t
2(q−1) · q2(k−1)/t + 1.

The original estimate in Corollary 3.15 for even values of t was D(t, k; q) ≤ t
2(q−1) · q2k/t.

Hence, Corollary 3.17 always improves Corollary 3.15 for even values of t. When t is odd, on
the other hand, we cannot use Theorem 3.16 in order to improve the estimate provided by
Corollary 3.15 since the reduction from t to t−1 changes the corresponding value of s = b t+1

2 c.
Next, we derive a lower bound for d(t, k; q).

Lemma 3.18 Let V be a (t, k)-spanning set in Fk
q and let n = |V |. Then

qk ≤ Vq(n, t) . (13)

Proof. As V is a (t, k)-spanning set, any vector in Fk
q must be a linear combination of at most

t vectors from V . Therefore,

|qk| ≤
∑

E⊂V

|E|≤t

(q − 1)|E| =
t∑

`=0

(q − 1)`

(
n

`

)
.

2

This lemma is related to the Gilbert-Varshamov lower bound on the maximal size Aq(n, d)
of a code C ⊆ Fn

q with minimum distance d:

Aq(n, d) ≥ qn−1

Vq(n− 1, d− 2)
.

Indeed, consider a (t, k)-base of Fn
q , denoted V . From Lemma 3.18 and the definition of Vq(n, t)

we conclude that

qk ≤ Vq(n, t) = Vq(n− 1, t) + (q − 1)Vq(n− 1, t− 1) ≤ qVq(n− 1, t) . (14)

The corresponding dual code, C∗V , is of size qn−k. Using (14), we conclude that

|C∗V | = qn−k ≥ qn−1

Vq(n− 1, t)
.

But, as Lemma 3.5 implies that t ≤ d∗ − 2, we infer that

|C∗V | ≥
qn−1

Vq(n− 1, d∗ − 2)
.

But this is exactly the lower bound that is implied by the Gilbert-Varshamov bound since C∗V
is a [n, n− k, d∗] code.
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Using the simple upper bound on the binomial coefficient,
(
n
s

) ≤ ns

s! , and the fact that
n ≥ t, inequality (13) implies that

qk ≤ (t + 1)
(q − 1)tnt

t!
≤ (t + 1)

qtnt

t!
.

This implies the following explicit lower bound on d(t, k; q).

Corollary 3.19 d(t, k; q) ≥
(

t!qk−t

t + 1

)1/t

.

Finally, Lemmas 3.14 and 3.18 imply the following result.

Corollary 3.20 Let V be a (t, k)-independent set and a (t′, k)-spanning set in Fk
q . Then

t′ ≥ b t+1
2 c. Moreover, t′ = b t+1

2 c if and only if (12) and (13) hold with equality.

After the completion of this work we came across two recent papers by Damelin et. al.
[9, 8] in which the notion of (t, k)-independence is defined. The first of these papers, [9],
concentrated on binary fields and its results may be summarized as follows:

Proposition 3.21 (Damelin et. al.) The following formulae hold:

1. D(2, k; 2) = 2k−1 for k ≥ 3.

2. D(k −m− 1, k; 2) = k + 1 for k ≥ 3m + 2, m ≥ 0.

3. D(k −m− 1, k; 2) = k + 2 for k = 3m + i, i = 0, 1, m ≥ 2.

The first part of the above proposition is equivalent to our Proposition 3.9. In [8], the
size of (t, k)-independent sets is studied over general finite fields and the result that is derived
there is as follows.

Proposition 3.22 (Damelin et. al.) D(t, k; q) = k + 1 if and only if q(k+1)
q+1 ≤ t + 1.

3.3.3 (k − 1, k)-bases and maximum distance separable codes

A well-known research problem in the theory of error-correcting codes is the following: Given
k and q, find the largest value of n for which a [n, k] MDS code exists over Fq [21, Research
Problem (11.1a)]. That value of n is denoted m(k, q). Rephrased in our terms, the problem
is to determine the size of the largest (k − 1, k)-base over Fq, namely, the exact value of
D(k − 1, k; q). Although MDS codes were first studied by Singleton [29], the problem of
determining m(k, q) = D(k−1, k; q) has already been studied as a problem in statistics [6] and
as a problem in geometry [25, 26]. This problem is equivalent to several other combinatorial
problems, as listed in [21, Chapter 11].

We now review the known results regarding the value of m(k, q) and the conjecture that
they suggest. (The reader is referred to [12, 21] for a thorough discussion of those results and
relevant references.) When k ≥ q, it is easy to show that m(k, q) = D(k − 1, k; q) = k + 1.
(Note that Proposition 3.22 extends this claim on the value of D(t = k − 1, k; q) to all values
of t.) The interesting cases are when 2 ≤ k < q.

Conjecture 3.23 If 2 ≤ k < q then m(k, q) = q + 1, unless q = 2h and k = 3 or k = q − 1,
in which case m(k, q) = q + 2.
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The conjecture has already been shown to be true for k = 2, 3, 4, 5 [7, 12, 25]. Using duality
arguments, the truth of the conjecture for all k ≤ 5 implies its truth also for all k in the range
q − 3 ≤ k ≤ q, see [32]. The conjecture was also shown in [32] to be true for q odd in the
ranges q > (4k − 9)2 and q − 3 > k > q − 1

4

√
q − 5

4 . The conjecture has also been verified by
exhaustive search for all q ≤ 11 and all k [18, 22].

In addition to the above mentioned results, it is known that the conjectured values of
m(k, q) are all lower bounds. Namely, for 2 ≤ k < q we have m(k, q) ≥ q +1 (as demonstrated
by the q + 1 Vandermonde vectors in Fk

q that are a (k − 1, k)-base), and when q = 2h and
k = 3 or k = q − 1, m(k, q) ≥ q + 2. Finally, it is known that m(k + 1, q) ≤ m(k, q) + 1 (we
have generalized this result in Theorem 3.16). This, coupled with the truth of the conjecture
for k = 5, implies the upper bound m(k, q) ≤ q + k − 4 for all k ≥ 6.

3.4 On the size of minimal (t, k)-spanning sets

Our main focus in the preceding discussion was (t, k)-bases (i.e., maximal (t, k)-independent
sets). A similar discussion may be dedicated to minimal (t, k)-spanning sets. In the spirit of
Definition 3.6, we let δ(t, k; q) and ∆(t, k; q) denote the minimal and maximal sizes of minimal
(t, k)-spanning sets in Fk

q . In view of Proposition 3.2, we have

δ(t, k; q) ≤ d(t, k; q) ≤ D(t, k; q) ≤ ∆(t, k; q) .

In addition, by the example given in the proof of Proposition 3.2, it holds that

δ(t, k; q) ≤ hq,2 + hq,k−t ≤ ∆(t, k; q) ,

where hereinafter hq,m =
∑m−1

i=0 qi. We proceed to improve the above bounds for ∆(t, k; q)
and δ(t, k; q).

The idea behind the proof of the second part of Proposition 3.2 is formalized in Lemma
3.24 below.

Lemma 3.24 Let (k1, . . . , k`) and (t1, . . . , t`) be sequences of positive integers and let k =∑`
j=1 kj and t =

∑`
j=1 tj. Assume that Uj is a (tj , kj)-spanning set in Fkj

q , 1 ≤ j ≤ `. Then

U =
⋃`

j=1 ϕj(Uj) is a (t, k)-spanning set in Fk
q . If, in addition, for all 1 ≤ j ≤ `, Uj is

minimal (tj , kj)-spanning and it is not (s, kj)-spanning for any s < tj, then U is a minimal
(t, k)-spanning set, and it is not (s, k)-spanning for any s < t.

Proof. Let w be an arbitrary vector in Fk
q . Then there exist unique vectors wj ∈ Fkj

q ,
1 ≤ j ≤ `, such that w =

∑`
j=1 ϕj(wj). Since ϕj(wj) may be expressed as a linear combination

of tj vectors from ϕj(Uj), we infer that w is a linear combination of t vectors from U .
We turn to prove the second part of the claim. Assume that we remove from U a vector

that belongs to ϕj(Uj). By the minimality of Uj as a (tj , kj)-spanning set, there exists a
vector uj ∈ Fkj

q such that ϕj(uj) cannot be expressed as a linear combination of tj vectors
from ϕj(Uj). Also, by the second assumption that none of the sets Ui is (s, ki)-spanning
for any s < ti, we infer that for all 1 ≤ i ≤ ` there exists a vector wi ∈ Fki

q that cannot
be expressed as a linear combination of less than ti vectors from Ui. Then the vector u =∑

1≤i 6=j≤` ϕi(wi) + ϕj(uj) cannot be expressed as a linear combination of t vectors from U .
This proves that under the additional assumptions, U is a minimal (t, k)-spanning set in Fk

q .
In addition, the vector w =

∑
1≤i≤` ϕi(wi) cannot be expressed as a linear combination of

less than t vectors from U . This proves that U it is not (s, k)-spanning for any s < t. 2
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We proceed to use this idea of a superposition of minimal spanning sets to find minimal
(t, k)-spanning sets that are smaller or larger than the minimal (t, k)-spanning set that we
exemplified in Proposition 3.2. All of our examples rely on Propositions 3.1 and 3.4.

Consider the sequences of length ` = t where (k1, . . . , k`) = (1, . . . , 1, k − t + 1) and
(t1, . . . , t`) = (1, . . . , 1). The corresponding minimal (tj , kj)-spanning set, Uj , 1 ≤ j ≤ `,
consists of all monic vectors in Fkj

q . As |Uj | = 1 for all 1 ≤ j ≤ t− 1 and |Ut| = hq,k−t+1, we
have |U | = t− 1 + hq,k−t+1. We infer that

∆(t, k; q) ≥ t− 1 + hq,k−t+1 . (15)

Next, we prove the following upper bound on δ(t, k; q).

Proposition 3.25 Let k and t be integers such that 1 ≤ t ≤ k − 1. Let m = bk
t c and

r = k −mt. Then:

1. δ(t, k; q) ≤ (t− r)hq,m + rhq,m+1 when m ≥ 2.

2. δ(t, k; q) ≤ r(1 + q) when m = 1 and q ≥ k
r .

Proof. Assume first that m ≥ 2 (namely, t ≤ k
2 ). We prove our claim by demonstrating a

minimal (t, k)-base of size (t − r)hq,m + rhq,m+1. We set ` = t and consider the following
decomposition sequence for k:

(k1, . . . , k`) where kj =
{

m 1 ≤ j ≤ t− r,
m + 1 t− r + 1 ≤ j ≤ t.

The corresponding decomposition sequence for t will be (t1, . . . , t`) = (1, . . . , 1). Note that
indeed

∑`
j=1 kj = m · (t− r) + r · (m + 1) = mt + r = k. The corresponding minimal (tj , kj)-

spanning set, Uj , 1 ≤ j ≤ `, consists of all monic vectors in Fkj
q . As |Uj | = hq,kj for all

1 ≤ j ≤ `, the size of the resulting minimal (t, k)-spanning set is (t− r)hq,m + rhq,m+1.
Next, assume that m = 1, namely, t > k

2 . Here, we set ` = r = k − t and consider
the decomposition of k, (k1, . . . , kr), where kj ∈ {bk

r c, dk
r e}, 1 ≤ j ≤ r. The corresponding

decomposition of t will be (t1, . . . , tr) where tj = kj − 1, 1 ≤ j ≤ r. (Note that as t > k
2 ,

all tj are well defined since kj ≥ 2.) Finally, relying on our assumption on q in this case, the
minimal (kj − 1, kj)-spanning set in Fkj

q will be the set Uj of all Vandermonde vectors in Fkj
q .

Since the size of Uj is 1 + q, our claim is settled in this case as well. 2

Y. Dodis derived lower and upper bounds on δ(t, k; q) in [10]. Our upper bound in Propo-
sition 3.25 is a slightly improved version of his upper bound. (His upper bound assumed that
t divides k while ours does not.) In addition to this bound, Dodis derived also the following
two additional results:

Proposition 3.26 (Dodis) Let k and t be integers such that 1 ≤ t ≤ k − 1.

• If k − k
q < t < k then δ(t, k; q) = k + 1.

• If 1 ≤ t ≤ k − k
q then δ(t, k; q) ≥ tqbk/tc/(e(q − 1)).

Note that the first part of Proposition 3.26 covers the case t > k/2 and q < k
k−t that is

not covered by Proposition 3.25.
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3.5 Applications of (t, k)-independence

3.5.1 An application to network coding

We describe here an application to network coding [1] where the notion of (t, k)-independence
arises. A network is a directed graph with a source and a set of terminals (or sinks). Assuming
that all edges have a uniform capacity of, say, 1 bit (namely, we can transmit along each edge
one bit in a given time unit), then for each terminal we have a maximum data rate that equals
the maximum flow from the source to that terminal. The goal in network coding is to increase
the maximum data rate by assuming that the nodes can perform computations.

To illustrate the idea of network coding and its relation to our notion of (t, k)-independence
we borrow the following example from [17]. Consider the family of three-layered graphs Gn,k =
(V, E) where the set of nodes is V = {s} ∪ U ∪ T , with U = {u1, . . . , un} and T = {tW : W ⊆
U, |W | = k}, and the set of edges is E = {(s, u) : u ∈ U} ∪ {(u, tW ) : tW ∈ T, u ∈ W}.
Namely, the first layer consists of the source s, the second layer consists of the n intermediate
nodes in U , and the third layer consists of the

(
n
k

)
terminals in T . The source is connected

to all intermediate nodes in U , while each of those nodes is connected to all terminals that
correspond to subsets of U to which that node belongs.

Assume that we wish to broadcast messages M1,M2, . . . from s to all the terminals tW ∈ T ,
and that the messages take values in some finite field Fq. If all edges have the same capacity,
say dlog2 qe bits, s may broadcast the message Mi in the ith time unit to all intermediate
nodes and from them to all terminals. If k ≤ bn+1

2 c, this data rate of 1 may not be improved.
Indeed, even if s attempts to send in the same time unit two messages (say, message M1 to
some of the intermediate nodes and M2 to the remaining ones), at least one terminal will
be connected to a subset of the intermediate nodes that got only one of the two messages.
(Note that if k > bn+1

2 c then we may achieve a data rate of 2 by sending M1 to bn+1
2 c of the

intermediate nodes and M2 to the others.) However, by assuming that the nodes may perform
linear algebraic computations, we may achieve for this network a data rate of k.

Assume that s wishes to transmit the vector x ∈ Fk
q to all terminals. It will select a

(k−1, k)-independent set of n vectors in Fk
q , {a1, . . . ,an}. Then, it will send to ui the message

ai · x. Each node ui will output the message that it got to all the terminals to which it is
connected. Finally, the terminal that corresponds to {ui1 , . . . , uik

} for 1 ≤ i1 < · · · < ik ≤ n
will recover x from {aij ·x : 1 ≤ j ≤ k} by solving the corresponding system of linear equations.
Each of those linear systems is solvable since {a1, . . . ,an} is (k − 1, k)-independent, whence
any selection of k vectors from it is independent.

3.5.2 Multivariate Lagrange interpolation

Consider a k-variate polynomial of degree less than or equal to d over a finite field Fq,

P (x) =
∑

0≤|r|≤d

arxr ,

where x = (x1, . . . , xk) is a point in Fk
q , r = (r1, . . . , rk) ∈ Nk is a multi-index, xr =

∏k
i=1 xri

i ,
and |r| = ∑k

i=1 ri. The number of coefficients in such a polynomial is
(
d+k

k

)
. Hence, interpo-

lation of such a polynomial requires
(
d+k

k

)
point values of the polynomial. Not every

(
d+k

k

)
points give rise to a well-posed system of linear equations. However, if those points are the in-
tersection points of d+k flats in general position in Fk

q , it is guaranteed that the corresponding
system of linear equations is well-posed.

Let
{Li(x) = ai · x + ci = 0}1≤i≤d+k (16)
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be a collection of d+k flats in Fk
q in a general position (namely, every k of these flats intersect

in a single point, and no two of these points coincide). Let j = {j1, . . . , jk}, 1 ≤ j1 < j2 <
· · · < jk ≤ d+ k, denote a selection of k of these flats, and let xj denote the single intersection
point of the k selected flats. Assume that we are given the values of the polynomial P at these(
d+k

k

)
intersection points,

P (xj) = fj where j = {j1, . . . , jk} and 1 ≤ j1 < j2 < . . . < jk ≤ d + k .

Then P is given as follows:

P (x) =
∑

1≤j1<j2<...<jk≤d+k

fjLj(x)

where

Lj(x) =
∏

1≤i≤d+k
i/∈j

Li(x)
Li(xj)

.

Lj(x) is a product of d linear polynomials, whence it is a polynomial of degree d. It equals
1 in xj and it vanishes in every other intersection point, because any other intersection point
lies on at least one flat Li where i /∈ j. (For more details on multivariate interpolation see [3].)

A necessary condition for a family of flats (16) to be in a general position is that their
corresponding normal vectors, ai, constitute a (k − 1, k)-independent set in Fk

q . Hence, in
settings where it is necessary to enable a recovery of such a polynomial by means of multivariate
Lagrange interpolation, one needs to find a (k− 1, k)-independent set of vectors of some given
cardinality. An application of that sort is described in [2].

4 (t, k)-Bases and Projective Geometry

A structure that is related to (t, k)-bases is defined in projective geometry. Herein we describe
that structure and the results that are known regarding that structure that coincide with some
of our results. The following summary is based on [13].

Let PG(d, q) be the projective space of d dimensions over Fq. Namely, PG(d, q) consists
of all

∑d
i=0 qi one-dimensional subspaces of Fd+1

q . A subspace of dimension ` in PG(d, q) is
denoted π`. A π0 is a point (that stands for a monic vector, or a subspace of dimension one
in the linear space Fd+1

q ), a π1 is a line (that stands for a two-dimensional subspace in Fd+1
q ),

and so forth.

Definition 4.1 A (k; r, s; d, q)-set K is a set of k points in PG(d, q) that satisfies two prop-
erties:

1. There is a πs that contains r points of K, but no πs contains r + 1 points of K.

2. There is a πs+1 that contains r + 2 points of K.

A (k; r, r − 1; d, q)-set is called a k-set of kind r.

In a k-set of kind r there are at most r points in any πr−1, but there exist r + 2 points in
a πr. Phrased in linear algebraic terms, a k-set, K, of kind r is a set of k monic vectors in
Fd+1

q for which:

1. All r + 1 vectors from K are linearly independent.

2. There exist r + 2 vectors from K that are linearly dependent.
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Hence, in our terminology, a k-set of kind r in PG(d, q) is a (r, d + 1)-independent set of size
k in Fd+1

q where r is maximal. It is important to note the difference between this notion and
our notion of a (r, d+1)-base (of size k). While the latter is a (r, d+1)-independent set that is
maximal with respect to set-inclusion (namely, it cannot be augmented by additional vectors
without violating the property of (r, d + 1)-independence), a k-set of kind r is a (r, d + 1)-
independent set that is maximal with respect to r (i.e., it is not (r′, d+1)-independent for any
r′ > r).

Proposition 4.1 A set K of k vectors in Fd+1
q is (r, d + 1)-independent if and only if it is a

k-set of kind r′ for some r ≤ r′ ≤ d.

Proof. Let K be a set of k vectors in Fd+1
q that is (r, d + 1)-independent. Namely, all r + 1

vectors in K are linearly independent. Let r′ be the largest integer for which all r′+ 1 vectors
in K are linearly independent. Namely, r′ is the largest integer for which K is (r′, d + 1)-
independent. Clearly, r′ ≥ r and r′ ≤ d. Then K is a k-set of kind r′. Conversely, let K be a
k-set of kind r′ for some r ≤ r′ ≤ d. Then K is (r′, d +1)-independent and, consequently, also
(r, d + 1)-independent. 2

Hirshfeld [13] defines a complete (k; r, s; d, q)-set as one that is maximal with respect to
inclusion. Hence, every complete k-set of kind r in PG(d, q) is a (r, d + 1)-base in Fd+1

q , but it
is not clear whether the contrary holds as well.

The maximal size of a k-set of kind r in PG(d, q) is denoted Mr(d, q). We proceed to prove
that although the notion of a (r, d + 1)-base does not (necessarily) coincide with the notion
of a k-set of kind r in PG(d, q), the maximal size of a (r, d + 1)-base, D(r, d + 1; q), equals
Mr(d, q). To that end we state and prove the following basic inequality.

Lemma 4.2 Mr+1(d, q) ≤ Mr(d, q).

Proof. As linear independence of vectors is preserved by injective maps, we can inject any
(r, d)-independent set V in Fd

q into a (r, d+1)-independent set in Fd+1
q by means of the natural

injection ϕ which maps (x1, . . . , xd) to (x1, . . . , xd, 0). Actually, V is (r, d)-independent if and
only if ϕ(V ) is (r, d + 1)-independent. Thus, V is a k-set of kind r if and only if ϕ(V ) is.
Hence,

Mr(d− 1, q) ≤ Mr(d, q) .

On the other hand, if V is a (r, d)-independent set then so is W = ϕ(V ) ∪ {(0, . . . , 0, 1)}.
Moreover, if V is a (r, d)-independent set but not (r + 1, d)-independent, then W is also a
(r, d + 1)-independent set which is not (r + 1, d + 1)-independent. Therefore,

Mr(d− 1, q) + 1 ≤ Mr(d, q) .

Finally, combining this inequality with the following result due to Gulati [11],

Mr+1(d, q) ≤ Mr(d− 1, q) + 1 ,

we infer that
Mr+1(d, q) ≤ Mr(d, q).

2

Proposition 4.3 Mr(d, q) = D(r, d + 1; q).
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Proof. Let K be a (r, d + 1)-base in Fd+1
q with a maximal size, D(r, d + 1; q). By Lemma 4.2,

K is a k-set of kind r′ for some r ≤ r′ ≤ d, whence is size is bounded by Mr′(d, q). But since
Lemma 4.2 implies that Mr′(d, q) ≤ Mr(d, q) we conclude that D(r, d + 1; q) ≤ Mr(d, q).

Conversely, let K be a k-set of kind r in Fd+1
q with a maximal size, Mr(d, q). Then K is

also a (r, d + 1)-independent set. There exists K ′ ⊇ K that is a (r, d + 1)-base. Hence,

Mr(d, q) = |K| ≤ |K ′| ≤ D(r, d + 1; q) .

That completes the proof. 2

Numerous results have been proved regarding the value of Mr(d, q). Some of those results
coincide with the results that we proved here:

• Proposition 3.9 was proven in [4] for k-sets of kind 2 in PG(d, 2). (A k-set of kind 2 is
called a k-cap.) Namely, M2(d, 2) = 2d.

• Lemma 3.14 was proven for k-sets of kind r in [4, 5, 24]. Namely, if m = Mr(d, q) then
qd+1 ≥ Vq(m, b r+1

2 c).
• Theorem 3.16 was proven for k-sets of kind r in [11]. Namely, Mr+1(d + 1, q) ≤ 1 +

Mr(d, q).

We proceed to review other interesting results about values of Mr(d, q). The reader is
referred to [13, 14, 15] for a more thorough review of known results.

Tallini [31] showed that Mr(d, q) = d + 2 for q ≤ r+1
d+1−r , a result that coincides with

Proposition 3.22, due to Damelin et. al.
Bose [4], Seiden [27] and Qvist [23] proved that M2(3, q) = D(2, 4; q) = q2 +1 for all q > 2.

We note that for q = 2 we have M2(d, 2) = D(2, d + 1; 2) = 2d (Proposition 3.9 and [4]).
Examples of other known values of Mr(d, q) are (the reader is referred to [13] for the

relevant references):

• D(2, 5; 3) = M2(4, 3) = 20

• D(2, 6; 3) = M2(5, 3) = 56

• D(3, 5; 2) = M3(4, 2) = 6

• D(3, 6; 2) = M3(5, 2) = 8

• D(3, 7; 2) = M3(6, 2) = 11

• D(3, 8; 2) = M3(7, 2) = 17

• D(3, 5; 3) = M3(4, 3) = 11

• D(3, 6; 3) = M3(5, 3) = 13

• D(4, 7; 2) = M4(6, 2) = 9

• D(4, 6; 3) = M4(5, 3) = 13

Finally, some authors give explicit constructions of (t, k)-bases for small values of t, k and
q.

5 Conclusion and open questions

The discussion in Section 2 motivated our definitions and discussion in the subsequent sections.
Considering the vector space Fk

q and letting t be a parameter in the range 1 ≤ t ≤ k − 1, we
defined the notions of (t, k)-spanning, minimal (t, k)-spanning, (t, k)-independent and maximal
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(t, k)-independent sets (or (t, k)-bases). We discussed the relations between those notions and
exemplified them. Then we turned our attention to discussing the size of (t, k)-bases. We
showed that such (t, k)-bases over Fq may have different sizes (unless t = 1) and continued to
derive lower and upper bounds on the size of such bases. To that end, we defined d(t, k; q)
and D(t, k; q) to be the minimal and maximal size of a (t, k)-base over Fq.

The two extreme cases — t = 1 and t = k − 1 — relate to two well-known structures:

• (1, k)-bases in Fk
q coincide with the projective geometry PG(k − 1, q).

• (k − 1, k)-independent sets correspond to MDS codes.

Hence, the notion of (t, k)-bases, 1 ≤ t ≤ k − 1, “interpolates” between the concepts of
projective geometries and MDS codes, that, to the best of our knowledge, were previously
unrelated.

The first question that we raise here is triggered by the above mentioned two extreme cases.
The only examples that we have for (t, k)-bases over a general field are for the cases t = 1 (all
monic vectors, Proposition 3.2) and t = k − 1 (all Vandermonde vectors). The sizes of those
bases are

∑k−t
i=0 qi. This suggests the following conjecture.

Conjecture 5.1 For all 1 ≤ t < k it holds that d(t, k; q) ≤ ∑k−t
i=0 qi ≤ D(t, k; q).

If B = {v1, . . . ,vm} is a (t, k)-base, then so is B′ = {c1Av1, . . . , cmAvm}, where ci ∈ F∗q ,
1 ≤ i ≤ m, and A ∈ Mk(Fq) is a nonsingular matrix. We refer to bases that relate to each
other this way as being equivalent. A natural question that arises is the following:

Question 5.2 How many non-equivalent (t, k)-bases exist in Fk
q?

For example, the set of all monic vectors in Fk
q is clearly the only (1, k)-base, up to equivalence.

But, assuming that Conjecture 3.23 is true and D(k − 1, k; q) = q + 1 for all 2 ≤ k ≤ q, is the
Vandermonde base the only (k− 1, k)-base, up to equivalence? (A similar question appears in
[25]; a review of known results appears in [16].)

Finally, we raise the following two questions, the first of which was triggered by Lemma
3.24.

Question 5.3 Can a minimal (t, k)-spanning set be (s, k)-spanning for s < t?

Question 5.4 Can a maximal (t, k)-independent set be (s, k)-independent for s > t?

Using the terminology given in Section 4, we may rephrase Question 5.4 as follows: Is it
true that given a (r, d + 1)-base of k vectors in Fd+1

q then it is a k-set of kind r? In view of
Proposition 4.1, all we can say at the moment is that such a (r, d + 1)-base is a k-set of kind
r′ for some r ≤ r′ ≤ d.
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