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Abstract
In this paper we propose a novel microkernel-based virtual ma-
chine (µKVM), a new code-based security framework with a sim-
ple and declarative security architecture. The main design goals of
the µKVM are to put a clear, inviolable programming interface be-
tween different codebases or security components, and to limit the
size of the trusted codebase in the spirit of a microkernel. Secu-
rity policies are enforced solely on the interface because all data
must explicitly pass through the inviolable interface. The archi-
tecture of the µKVM effectively removes the need for expensive
runtime stack inspection, and applies the principle of least privi-
lege to both library and application code elegantly and efficiently.
We have implemented a prototype of the proposed µKVM. A se-
ries of benchmarks show that the prototype preserves the origi-
nal functionality of Java and compares favorably with the J2SDK
performance-wise.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Frameworks; D.3.4
[Programming Languages]: Processors—Run-time environment;
D.2.11 [Software Engineering]: Software Architecture—Languages

General Terms Design, Languages, Security

Keywords Language-based Security, Virtual Machine, Frame-
works, Java, Kernel, Interface, Access Control

1. Introduction
One important means by which software can be secured is via code-
based security mechanisms, whereby different code components
can be given different access rights. The interest in code-based
security blossomed with Java; in fact, dealing with dynamically
downloaded code of limited trustworthiness was the primary initial
goal of the language. The Java J2SDK [LY99, GJSB05] and the
Microsoft CLR [FJ03, MG01] both define security architectures
that limit access rights of different blocks of code [Gon99, Gon,
DW02, Bro].

1.1 Dimensions of Code-Based Security

The J2SDK code-based access control mechanism is centered
around the set of Permissions needed to access various re-
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sources such as network connections, files, clipboard, or user-
defined resources, and a policy that maps different codebases to
the Permissions they have. The J2SDK access control system is
monolithic, all code-blocks are treated as equal. Thus, individual
applications running as e.g. Applets are just different codebases
in the JVM, and system libraries are also treated as just another
codebase.

We believe it is important to forego a monolithic approach and
to factor code-based security into three distinct dimensions of in-
teraction: inter-application security between largely independent
applications running in a single VM, system service security for
system resource access, and intra-application security for applica-
tions with multiple security domains. We cover each of these in
turn.

One reason why the monolithic approach is lacking is for the
case of applets: different applets should not be interacting with
each other at all, and so a more natural architecture is one that
completely isolates different applications running in the same VM.
Several good solutions for application isolation have been devel-
oped [JSR, App, HCC+98, BG98, CD01, DBC+00, DC05]. We
term this dimension of code-based security inter-application secu-
rity.

The primary use of the J2SDK access control mechanism in
practice is to limit access by applications to system resources.
There are two mutually supporting reasons for limiting access: in
the case of downloaded code, the trustworthiness of the code is
partial. Additionally, even if the code producers are not malicious,
the code may contain errors which are security vulnerabilities. The
Principle of Least Privilege [SS75] states that only the permissions
needed in practice should be given out, and so limiting the permis-
sions given to an application to only what it should need will make
a system more secure. We term this dimension system service se-
curity, and it is the primary focus of this paper.

An additional dimension of code-based security arises by ap-
plying the Principle of Least Privilege within a single application:
the different components of a large application may not all need the
full set of privileges given to the application as a whole. For exam-
ple, a component of an application that is doing nothing but logging
only needs access to the log file, and no other system resources. If
the component was given all the privileges the application has, it
could mistakenly, or because of a virus, misuse some of those per-
missions. We term this dimension intra-application security since
it is within a single application.

1.2 Securing system services in the J2SDK

The primary focus of this paper is securing application access
to system services. First we review the J2SDK approach to this
problem, and point out some of its weaknesses.
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Java system libraries (java.*, javax.*) have privileges to all sys-
tem resources. Those system libraries have to be guarded against
being lured into being a “confused deputy” [Har88], in which
libraries become victims of malicious applications and misuse
their privileges to do things on behalf of attackers. The runtime
stack inspection algorithm [Gon, WF98] is designed to address
this problem. Upon initiation, the stack inspection traverses back
on the call stack to check if each stack frame has the required
permissions, and fails if a frame is found that is from untrusted
code. In cases where some trusted code such as a library class
needs to perform operations on behalf of untrusted code, it calls
doPrivileged() to temporarily raise the security level of the
untrusted code; stack inspection will then stop its traversal when
encountering this doPrivileged() frame. The Java security ar-
chitecture is mainly encapsulated in the SecurityManager class,
whose checkPermission() method triggers the stack inspection.

Perhaps the most serious shortcoming of the J2SDK security
architecture is the lack of a clear runtime interface between dif-
ferent code components: objects in one codebase can freely refer
to objects in other codebases, and new references can be dynam-
ically passed at runtime, there can be no precise division in the
object reference graph, and there can thus be backdoor channels by
which system services can be accessed. Guaranteeing system se-
curity becomes a formidable mission for library programmers be-
cause they have to completely understand the boundary between
libraries and applications by carefully tracking where sensitive ref-
erences are passed. Here is an obvious example: leaking a reference
of an opened file to an application would give the application ac-
cess to the file even if it does not have such permission by itself
(recall that file permission is only explicitly checked upon opening
files in the J2SDK, and not upon reading or writing).

Not only is there no clear runtime interface, there is also no
clear compile-time interface: security-related code snippets in the
form of checkPermission() and doPrivileged() are scattered
throughout library code. Such a blurred security interface hinders
application developers because they would have hard time to get a
handle on the accurate security architecture on which they will run
their applications. For instance, a method call from an application
might either fail or succeed depending on whether there is a library
doPrivileged() frame on the call stack. Without knowing how
and where the doPrivileged() is located, the application cannot
make assumptions about how its computation will proceed.

The fact that security decisions in Java are made by traversing
the call stack brings tremendous subtleties to compiler optimiza-
tion because optimizations usually incur changes to the call stack,
which might alter the security semantics of the whole system.

Another major shortcoming in the J2SDK is that the Principle
of Least Privilege has not been applied to Java system libraries:
each library in fact only needs access to the relevant resources it
is operating on, e.g. java.io library does not need network ac-
cess. The J2SDK currently gives all system library all privileges. If
privileges were doled out only to the libraries that needed them, a
large runtime cost would be introduced because the stack inspec-
tion could not collapse many consecutive system stack frames. Re-
searchers have developed static, declarative approaches to the stack
inspection via type systems [SS00, TH03], but not all checks can
be performed statically due to the fundamentally dynamic nature of
components.

1.3 A Microkernel Approach to Securing System Services

In this paper we propose the µ-Kernel Virtual Machine (µKVM), a
new code-based security framework with a simple and declarative
security architecture. The main design goals of the µKVM are to
put a clear, inviolable programming interface between the trusted
codebase and less trusted one, and to decrease the size of the core

trusted codebase. The kernel in our VM is a small trusted system
codebase; since it is small compared to the large J2SDK system
libraries, we term the architecture a microkernel VM architecture.
The kernel is the only component with system-wide privileges,
which effectively removes the need for runtime stack inspection:
system libraries are not part of the kernel and have no privileges,
therefore no malicious code can trick them to misuse any privileges.
Such a microkernel based architecture embodies the Principle of
Least Privilege for its system libraries: they have only the privileges
they need.

Kernel-application interactions and the system security policy
enforcement are defined solely on the interfaces between the ker-
nel and applications. Connectors and services are the two types of
cross-domain interfaces defined in the µKVM, representing per-
sistent heavyweight interactions and lightweight one-time invoca-
tions, respectively. The key to the interface design is to give enough
expressiveness to allow full functionality, but to make sure there are
no backdoors.

We test our ideas in a prototype implementation of the µKVM,
built by modifying the Sun sources of the J2SDK to replace the
J2SDK security architecture with our new microkernel-based ar-
chitecture. This change in architecture is internal in the sense that
existing Java applications can run in the µKVM with basically
no change, a fact that further illustrates the power and general-
ity of the approach. By running a series of benchmark suites, we
show the original Java functionality is preserved, and performance
benchmarks indicate that the µKVM compares favorably with the
J2SDK. Indeed, the µKVM is faster on enforcing security policies.
The prototype at this point implements enough of the interfaces,
namely those for file, network, thread and core part of the GUI, to
show feasibility of the approach.

1.4 Intra-Application and Inter-Application Security

The techniques used to secure system services can be used anal-
ogously within a single application: a single-codebase application
can be refactored into multiple codebases, where each codebase
has the minimal privileges it needs, and it interacts with the other
parts of the application via connectors. We will show how the above
ideas can also be directly applied to the intra-application case.

Inter-application security has been covered well by many
projects such as [JSR, App, HCC+98, BG98, CD01, DBC+00,
DC05] and so that is not our focus here. However, placing the
security fence at the proper place with the proper conditions is
the key to achieve security in a system. The connector/service in-
terface draws a clear line between different security components,
making it a suitable abstraction for securing system services, intra-
application interaction, as well as inter-application interaction.

2. Design of the µKVM
In this section, we first give a high-level overview of the proposed
microkernel virtual machine model, and the intuitions behind the
design. Then, the overall design blueprint of the µKVM is intro-
duced.

2.1 Architecture Overview

A microkernel virtual machine is analogous to a microkernel oper-
ating system [Lie95, GDFR90]: the size of the codebase with spe-
cial privileges is held to a minimum. An operating system micro-
kernel usually provides minimal OS-neutral abstractions, such as
memory address spaces, threads, etc. Sophisticated servers can be
built upon those abstractions and run in user space. A microkernel
architecture brings benefits such as robustness and configurability.
Additionally, it has strengthened security guarantees due to the fact
that only small number of services need maximal privileges.
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Features that must be in our virtual machine kernel are the
minimal services for a language runtime, which include the core
language execution model, bytecode execution, threads, garbage
collection, and code loading. Additionally, any potentially sensitive
operation needs to be in the kernel so its use can be controlled. Most
of these operations are input/output operations such as opening
files, network connections, window system operations, etc. In order
to minimize the size of the kernel, it is not necessary to put the
whole file I/O library in the kernel—only the most low-level system
operations need to be in the kernel. Virtual machines such as the
JVM and CLR are not microkernel VM’s: all of the system library
code is placed in the kernel in the sense that all the system libraries
have full privileges.

The central component of our virtual machine is the kernel, as
shown in Fig. 1. The kernel is a special component that is created
when the virtual machine starts, and it stays resident in memory
thereafter. It manages system resources and exposes uniform inter-
faces via which user applications running on the VM can interact
with the kernel. The kernel runs in system mode as a privileged
component, while user applications run outside the kernel in user
mode. The system/user modes in the µKVM are in close analogy
to the dual modes in operating systems. Specifically, execution in
user mode cannot issue privileged instructions directly, but only in-
directly through the kernel.

Operating System
Virtual Machine

Kernel

read
w

rite
seek

FileIO

O
SVersion

plugout
plugin

connector service

Operating System

Virtual Machine
Kernel

FileIO

O
SVersion

read
write
seek

FileIO
Application

data.txt

open the file
“text” for 
read & write

runtime connection

(a) (b)

Figure 1. (a) Building blocks of the µKVM (b) Runtime connec-
tion on connectors

There are two types of interfaces in the µKVM, connectors and
services. Connectors are designed to be used for long term interac-
tions with objects such as files, and services are for simple query-
ing. Connectors [RS02, LS04] are connection oriented in the sense
that connections are required for communication on connectors.
Services however are connection-less and therefore are one-time
invocations. Connector interfaces are bidirectional: they import
plugin and export plugout operations. Runtime connections have to
be established before connector plugins/plugouts can be used. The
kernel in Fig. 1(a) statically declares a connector “FileIO”, which
exports three plugouts, “read”, “write” and “seek”. Services are the
interfaces for standard client/server style invocations. “OSVersion”
is a service via which an application can query the version of the
native operating system. Connectors do an excellent job of express-
ing persistent communication channels such as file operations and
socket connections, but simple operation requests are not persistent
and are more elegantly implemented as services; thus the µKVM
has both connectors and services.

Connections on matching connectors are peer-to-peer persistent
links constructed by mutual agreement between the two parties in-
volved. Once a connection has been established, calls on a plugin
are delegated to the corresponding plugout. For example, in order to

read/write a file, the application in Fig. 1(b) first needs to request a
connection with the kernel, which links a pair of matching “FileIO”
connectors as shown in the figure. After this point, the application’s
call on its “read” plugin triggers the kernel’s “read” plugout, etc.
For each open file there is a different connection established, and
the connection is maintained as long as the file is open. A connec-
tion can be disconnected by either party. We use plain connectors
as pictured in Fig. 1(a) to symbolize static connector interfaces, and
coupled connectors in dark shade to represent runtime connections
as shown in Fig. 1(b). We follow this convention throughout this
paper.
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Virtual Machine

Kernel

Application

 

 

Application

 

 

 

Library

sys-app
connection

inter-app 
connection

intra-app 
connection

Operating
 System

Virtual Machine 

native methods

(b)

Application

Libraries

(a)

method
invocation

 system
resources

Figure 2. (a) The µKVM runtime overview and (b) J2SDK Run-
time

Fig. 2(a) is a sketch of the µKVM runtime. The three dif-
ferent types of connections are shaded differently to emphasize
their different uses: kernel-application, intra-application and inter-
application connections.

As mentioned before, one of the main reasons for defining a
clear application-kernel boundary is so all access control checks
can be made at this interface. To be precise, a connection to an
application is established only if the kernel’s security policy al-
lows it. For services, proper permissions are checked each time be-
fore the service is invoked by user applications. In Fig. 1(b), the
kernel grants the application a connection associated with the file
“data.txt” only if the application has the permission to access the
file. And, importantly, the kernel does not give the direct file handle
to the application: the connection is just a channel through which
the file may be accessed. Since only the kernel holds the file han-
dle, it can revoke the application’s access to the file at any point by
disconnecting.

Unlike the Java J2SDK (Fig. 2(b)), libraries in the µKVM do not
have any special system privileges and they interact with the kernel
on services/connectors to fulfill their functionalities. Applications,
with proper permissions, also have the option of directly interacting
with kernel connectors/services without going through libraries.
The two applications in Fig. 2(a) communicate with the kernel via
libraries, or directly on a kernel connector.

A simple view of how the µKVM can be implemented is that we
take a Java system library such as java.io and divide it into two
parts, a non-privileged I/O library, and a core file operations in the
kernel. The fact that such a split is possible is because a very small
interface to the most low-level system routines can be constructed.
The principle behind the success is that typically there are only a
few, low-level channels of data in and out of an application.

2.2 Design Overview

Fig. 3 shows a static view of the µKVM, detailing the design of the
interface between the kernel and system libraries. In the following
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Figure 3. The µKVM design overview

sections, we first focus on the core part of the µKVM, the kernel-
application interaction, and then in Sec. 6 we address how single
applications can be divided into multiple security domains and
secured with intra-application connectors.

There are four types of system resources that are crucial to a
language runtime system: the file system, network sockets, the lan-
guage runtime environment, and the graphical user interface. A se-
cure system needs to protect these resources from unauthorized use.
Fig. 3 illustrates how the µKVM kernel guards system resources
and at the same time exposes a set of connectors/services so that
applications are able to access resources with proper permissions.

The interface exported by the kernel represents the bare min-
imum set of connectors and services. The file system has two
connectors, FileDescriptor and FileSystem, which plug out
essential operations for accessing a file or the local file system,
respectively. Operations exported on StreamSocketDescriptor
and DatagramSocketDescriptor are for stream and datagram
communication using network sockets. The Runtime Environment
component in the diagram is the means whereby an application may
influence its own execution, via ThreadConnector, etc. A GUI
component of a system at the lowest level consists of interactions
with local graphic devices and the event queue, modeled by the con-
nectors WindowConnector and EventConnector in the µKVM.

Fig. 3 also helps illustrate the difference between connec-
tors and services. A connector is used for persistent system re-
sources that are dynamically allocated. For instance, a connection
on FileDescriptor is a handle to an opened file. For a one-time
interaction with the kernel, a service interface is more appropriate,
e.g. the getSystemTimeZone service.

Every dotted square in Fig. 3 represents a module that has an
equivalent J2SDK system component. For example, the network

library in the diagram has matching interfaces of the kernel’s net-
work component interfaces. Together, they form a module that has
the same functionality as the J2SDK java.net package.

The µKVM implementation so far includes complete file I/O,
network, and thread implementations, and core GUI functionality.
We have up to now left a few language features out of the design,
including reflection and object serialization. These features are
important but not essential to a language runtime and we decided
to leave them out for future work. The design reflects the essence
of the µKVM: only a handful of essential operations are performed
by the kernel and in a well designed architecture it is possible to
put a clear and declarative interface between the kernel and user
applications.

3. Implementation of the Kernel
We have implemented a prototype of the µKVM by modifying the
Java J2SDK source code tree1.

To fit the design into the J2SDK, the µKVM connector/service
architecture has been mapped on to Java classes. Such a mapping
allows us to test our ideas, and in fact does not suffer significant
performance overhead, as we show in Sec. 7.

The java.kernel package implements the kernel functional-
ity and provides service/connector interfaces. The system libraries,
such as library.io.*, are re-implemented as non-privileged li-
braries that interact with the kernel on services/connectors. They
are closely based on the analogous java.*, but have no special
privileges and obtain system services from the kernel like any other

1 The J2SDK1.4.2 source code is obtained through the Sun Community
Source License
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applications would do. The Java Virtual Machine is modified to ac-
commodate these new components of the µKVM.

In this section, we elaborate how the kernel is constructed.
Building libraries in the µKVM is discussed in Sec. 4.

3.1 The Kernel Runtime and the java.kernel Package

library.io.* library.net * ; library.lang.Thread ; library.awt.*

User Application Code

 Kernel
Java Virtual Machine 

java.lang packagejava.kernel package

System 
Library

Figure 4. The µKVM kernel structure

We loosely used the term “kernel” in previous sections; there are
in fact two closely related concepts, the kernel and the java.kernel
package. The kernel is a runtime component, and as shown in Fig. 4
the kernel itself includes a Java package named java.kernel. We
call this package the kernel package. We inject this package into
the J2SDK as system code by giving it the prefix java and placing
it in the system directory of the J2SDK.

The java.lang package, except the Thread class, is treated as
part of the kernel in the current prototype. This is simply because
we have at this point only implemented the Thread portion of this
package; all potentially unsafe features of java.lang should even-
tually be implemented as connectors/services, and java.lang.*
can then be replaced with a safe library.lang.*. Some examples
of potentially unsafe classes in java.lang include ClassLoader
and System.

3.2 Services and the java.kernel.President class

In the prototype, there is a special President class in the kernel,
which is the interface used by applications to request new connec-
tions and access kernel services. The kernel exports services via the
President in the form of public methods. A unique President
object in the µKVM represents the handle to the kernel and is fore-
known by all applications. Fig. 5 lists all kernel services currently
declared in this class. Data passed in and out these services are sub-
ject to certain syntactic restrictions discussed in Sec. 3.4.

public static President getPresident();
public static Connector connect(Connector);
public static String getProperty(String);
public static int NetworkInterfaceGetNumber();
public static void NetworkInterfaceGetByIndex

(int, NetworkInterface);
public static void NetworkInterfaceGetByName

(String, NetworkInterface);
public static void NetworkInterfaceGetByInetAddress

(byte[], NetworkInterface);
public static String getHostByAddr(boolean, byte[])
public static String getLocalHostName(boolean)
public static boolean isEqualPath(String, String);
public static boolean impliesIgnoreMask(String, String);
public static void checkPermission(String);
public static void yield();
public static void sleep();

Figure 5. Kernel services exported via the President

3.3 Connectors

The kernel provides connectors for accessing persistent system re-
sources like files and sockets. Since Java has no built-in notion
of connector, each type of connector must be individually imple-
mented in terms of Java classes.

A kernel connector is instantiated from a connector class in
the java.kernel package. These kernel connector classes are de-
clared package private so that only the kernel can access them. On
the other hand, a kernel connector needs to export its operations
to the application connector that is connected with it. Public con-
nector interface classes for connectors are introduced for this pur-
pose. Each established connection is constituted at runtime by two
connector objects, with mutual references from each other. One of
these connector objects belongs to the kernel, and the other is part
of the application.

Even though two matching connectors are mirrors of each other,
with reversed plugins and plugouts, a common connector interface
that includes declaration of all plugins and plugouts is used for
both. In the connector objects themselves, a plugout is implemented
as a method of the connector class with a concrete implementation,
and a plugin is implemented simply as a forwarder to its corre-
sponding plugin.

Extensive changes have been made to the Java Virtual Machine
for building the µKVM kernel. Take GUI as an example, Fig. 6
shows the detailed GUI architecture of the µKVM. The system-
wide event dispatch thread used in the J2SDK is replaced with
application-level threads. Events are delivered from the kernel to
an application via EventConnector. Native windows are managed
by the kernel and accessible to applications via connectors. Notice
that the kernel only posts events to an application event queue,
the application’s private dispatch thread is responsible for invoking
the event listeners. Similarly, applications may request to draw on
corresponding native windows via WindowConnector, instead of
operating on them directly using JNI. This architecture effectively
removes privileges from the original Java AWT/Swing libraries and
puts the kernel in full control of GUI resources.
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Figure 6. GUI model in the µKVM

Fig. 6 also illustrates the threading model of the µKVM:
threads are built on connectors. A GUI application has at least
two such thread connections at runtime: one is the connection
on the main thread fired by the VM to launch the application
and the other on the event dispatching thread instantiated from
library.lang.Thread class, a µKVM library class. We will dis-
cuss libraries in the next section.

Corresponding to the kernel’s fixed set of connectors, we pro-
vide matching application side connector classes for applications
to directly import and use.

3.4 Syntactic Restrictions on the Kernel Interface

In order to maintain the invariant that all interactions with the ker-
nel are solely through its services and connectors, the kernel pack-
age must follow some strict syntactic rules. First of all the ker-
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nel package has no static fields visible to applications. Connec-
tor/service interfaces are the only public components that are ac-
cessible to applications. Moreover, we only allow the exchange of
primitive data and certain immutable objects on these interfaces.

DataType defined in Fig. 7 represents types that can be ex-
changed on the kernel-application interface. Datatypes are safe to
be passed across domains because intuitively they are pure data ob-
jects, without references to unrestricted objects. DataType includes
PrimitiveType and StructType. PrimitiveType are Java primitive
types such as int, java.lang.String, arrays of PrimitiveType,
etc. PrimitiveTypes are passed by copy. StructTypes are simple
classes that are similar to the struct in C. Their contents are re-
stricted as follows: StructType classes can only have instance fields
of PrimitiveType, and they can have neither static fields nor meth-
ods other than methods for getting field values. Only two Struct-
Type classes, NetworkInterface and DatagramPacket (appear-
ing in Fig. 5), so far have been needed and implemented in the
kernel package. This again demonstrates the how fundamental the
kernel-application interface can be in practice.

We assert that the kernel-application boundary is sound by
showing that the applications share no references to non-DataType
objects with the kernel, except references to the President and
kernel connector objects. Here is a proof sketch. The kernel pack-
age contains no public static fields, from where object references
internal to the kernel can escape. The only way that data can be
exchanged is via connectors and services, and this data must be
DataTypes only. PrimitiveTypes are passing by copy so exchang-
ing them does not introduce any reference sharing between the
kernel and applications. StructType objects have only immutable
PrimitiveType fields, an application cannot get any other object
references from a StructType object.

Currently we check by hand to guarantee that the kernel inter-
face obeys the restricted type grammar. This is a fairly easy job
since the kernel-application interface only includes a handful of
connectors/services: Fig. 3 illustrates that there are 7 kernel connec-
tors and Fig. 5 shows that the kernel now has a total of 14 services.
Eventually an automatic grammatical checker will be developed.

4. Library Implementation
The existing J2SDK libraries cannot be placed directly into the
µKVM because the java.* libraries are privileged system code
with all permissions. For example, every class in java.io.* has
the privilege, no matter such privileged is actually needed for the
class to perform its task, to bypass the virtual machine and interact
with the local operating system directly via Java Native Interface
(JNI)[Lia99]. Only the kernel in the µKVM have such privileges
so we need to develop a new set of libraries specifically tailored for
the µKVM.

We have so far developed library.io.*, library.net.*,
library.lang.Thread, and library.awt.*. They have nearly
identical functionality as their java counterparts, but do not need
special system privileges to perform their jobs. Due to space lim-
itation, we focus our discussion on the I/O and GUI libraries.
The library.net.* is developed in a similar way as the I/O li-
brary, while the library.lang.Thread has been briefly covered
in Sec. 3.3.

The most difficult part of the µKVM library implementation is
to move a large amount of native code in original Java system li-
braries to the kernel. Native code is a back door through which
an application can bypass the language runtime, thus libraries are
not allowed to have native methods in the µKVM as in the current
prototype. Any use of native code in µKVM should properly be
viewed as a kernel extension since it is not allowed in application
space. The restriction on native code does not mean that our model
is less flexible than the J2SDK: when a secure runtime is required,

the J2SDK also must disallow arbitrary native code with the help
of the Java SecurityManager. A production µKVM should sup-
port native code kernel extensions, which of course must be pro-
grammed very defensively. The other major challenge is to remove
privileges originally possessed by the Java system libraries, which
means the µKVM libraries have to be able to fulfill their tasks with-
out any doPrivileged() calls.

4.1 I/O Library Implementation

4.1.1 Review of java.io

For comparison reason, let us first review how the J2SDK java.io
package works. Fig. 8(a) includes the major classes of the J2SDK
java.io package. The dependence of these classes on native code
is drawn as dotted lines between classes and the Java Native Inter-
face box.

Instances of java.io.FileDescriptor serve as an opaque
handle of an open file or socket. FileDescriptor itself does not
perform any I/O operations, but mainly serves as data holder storing
references to opened native file handlers. The RandomAccessFile
class supports random file access. The FileInputStream and the
FileOutputStream are for raw bytes read and written, respec-
tively. Each of the three classes has its own set of native methods
performing I/O operations such as open/read. To enforce access
control on I/O, the Java SecurityManager has to be called to per-
form stack inspection.

java.io.FileSystem is a class for local file system ab-
straction. It defines machine-dependent operations such as file
canonicalization. The File class is an abstract representation of
file and directory path names. It delegates file operations to the
FileSystem.

4.1.2 The library.io package in the µKVM

Fig. 8(b) shows the class structure of the library.io package for
the µKVM. Notice that this package is pure java code without any
dependence on JNI, in contrast to java.io package.

Almost every class in the library.io.* has a peer class with
the same class name in the java.io package. The inheritance
structures among classes are almost identical in both packages.
However, despite the surface similarities, the internal details of the
implementations differ greatly.

Different from their java.io counterparts, RandomAccessFile,
FileInputStream and FileOutputStream in library.io.*
no longer have their own native file I/O implementations. Instead,
they uniformly use a kernel connector, the FileDescriptor, via
which the kernel exports file operations. This structure adequately
illustrates how the kernel can have absolute control over all privi-
leged I/O operations and at the same time provide a very minimal
interface with adequate support for library/application functionali-
ties.

Let us now show how a connection with the kernel is built
with an example. Fig. 9 shows a code snippet opening a file.
When a RandomAccessFile object is instantiated, its construc-
tor tries to create a library.io.FileDescriptor object. The
library.io.FileDescriptor class constructor in turn consults
the President to access the file "data.txt". If the kernel grants
this request, it returns a kernel FileDescriptor associated with
the requested file. At this point, the two FileDescriptor objects,
one from the library and the other from the kernel form a persistent
connection via which the newly created RandomAccessFile ob-
ject gets read/write access to the designated file. Disconnecting the
connection happens when the file is closed or the kernel’s new se-
curity policy requires the access to be revoked. Another connector
implemented in the I/O library is the library.io.FileSystem.
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Definition 1 (DataType)
DataType ::= PrimitiveT ype | StructT ype;

Definition 2 (PrimitiveType)
PrimitiveType ::= int | short | byte | long | char | float | double | boolean |

String | array of PrimitiveT ype;
Definition 3 (StructType)

StructType ::= public final class Identifier†
{ClassBodyDeclarationsopt}

ClassBodyDeclarations ::= ClassBodyDeclaration
ClassBodyDeclarations ClassBodyDeclaration

ClassBodyDeclaration ::= ConstructorDeclaration
F ieldDeclaration
MethodDeclaration

ConstructorDeclaration ::= public Identifier†(F ormalP arameterListopt)
{ConstructorBody†}

FormalParameterList ::= F ormalP arameter
F ormalP arameterList, F ormalP arameter

FormalParameter ::= PrimitiveT ype V ariableDeclaratorId†
FieldDeclaration ::= F ieldModifiers PrimitiveT ype V ariableDeclarators†
FieldModifiers ::= F ieldModifier

F ieldModifiers F ieldModifier
FieldModifier ::= public | protected | private | final | transient | volatile
MethodDeclaration ::= PublicAccessorMethod

PrivateInternalMethod

PublicAccessorMethod ::= public PrimitiveT ype getIdentifier†(F ormalP arameter)
{return Identifier; }

PrivateInternalMethod ::= private ReturnT ype† Identifier†(F ormalP arameterList)
{MethodBody†}

†The denoted term is defined in the Java Language Specification

Figure 7. Type Definitions

Java Native Interface

Native Operating System

Java Virtual Machine

RandomAccessFile

FileOutputStream

FileInputStream

FileDescriptor

java.io

File

FileSystem

UnixFileSystem

FilePermission

Java Native Interface

Native Operating System

Java Virtual Machine

FileSystemIfc

java.kernel library.io

Connector

UnixFileSystem

    FileDescriptor

FileSystem

   FileDescriptorIfc

FileSystem

     FileDescriptor

FilePermission

FileInputStream

FileOutputStream

RandomAccessFile

       File

(a) (b)

FileSystemIfc

Figure 8. (a) Java io library (b) µKVM io library

Native Operating System

Virtual Machine

Kernel

RandomAccessFile randFile =
new RandomAccessFile(“data”, 
“rw”);

 

 write
read

seek

      FileDescriptor

data.txt

randFile

Application

skip

Figure 9. Access file using RandomAccessFile

4.2 GUI library

Implementing the µKVM GUI model, shown in Fig. 6, is a more
challenging task. Java GUI consists of AWT and Swing. The
java.awt package alone involves more than 400 classes tightly

coupled with more than 100 platform-dependent classes. However,
despite its tremendous size, the Java AWT has only a few core
classes: Component, Container, Windows, Frame and Dialog.
Those classes encapsulate the most fundamental functionalities
such as the event dispatching mechanism. Swing is extended from
the core AWT classes. With the core Java AWT classes imple-
mented, building a Swing package for the µKVM is relatively
easy.

Therefore, our focus is to refactor the core Java AWT classes
into the µKVM GUI model: all platform-dependent code such as
calls to native methods to create windows in those classes needed
to be moved to the kernel, and a framework supporting the inter-
actions between the kernel and the new library.awt classes on
services/connectors has to be introduced.

At this stage we have implemented a primitive µKVM GUI
component, which includes the kernel side graphic supports as
discussed in Sec. 3.3 and a machine independent library.awt
package consisting of Component, Container, Window, Frame
and around 100 supporting classes. These two parts cooperate on
WindowConnector and EventConnector.

Although the GUI component is still in its debugging stage,
the fact that the prototype now supports essential AWT operations
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such as showing a frame and posting a paint event to the frame
demonstrates the feasibility of the proposed GUI model.

5. The Security Architecture
In this section we describe how access is secured in the µKVM,
and briefly justify its correctness.

The µKVM prototype reuses the Java protection domain frame-
work: we keep the J2SDK concepts of codebases, policies, and per-
missions [Gon]; we are only changing how the policy is enforced.
For policy enforcement, we re-implement the checkPermission()
of the Java SecurityManager to simply check if the caller has re-
quired permissions; no stack inspection is performed. This does not
weaken the security properties of the µKVM because all protected
resources in Java are protected by the kernel-application boundary
of the µKVM. The difference is that Java performs such protection
using stack inspection while the µKVM guards sensitive resources
by placing them in the kernel, behind the kernel-application inter-
face.

The clear interface defined on connectors and services means
that all permissions can be checked at that gateway since there
are no side channels or callbacks. The µKVM implementation
of checkPermission() is invoked solely by the kernel at the
start of service invocations and when connections are requested on
kernel connectors. If the immediately invoking code has required
permissions, it would succeed in these operations.

Object reference sharing breaks component isolation, so confin-
ing references across the kernel-application boundary is a key de-
sign requirement of the µKVM. Applications can obtain two types
of references to the kernel-application interface: references to the
President object (representing the kernel), and references to ker-
nel connector objects. The connect() method of the President
can only return kernel connectors to callers to form connections
with the kernel. And, on these connections, only DataType can be
passed in and out. Data passing on kernel services follows the same
rule. In Sec. 3.4, we have proved that no uncontrolled references to
kernel objects can be leaked out of the kernel-application interface.
Moreover, the java.kernel package doesn’t depend on any user
classes. This prevents the kernel from invoking user class construc-
tors, which eliminates direct callbacks from the kernel to applica-
tions.

Exceptions also need to be considered: they can traverse arbi-
trary domains, so a kernel exception may be propagated to appli-
cations. In order to protect the integrity of the kernel interface, the
kernel only throws exceptions with at most string messages. Thus
exceptions do not become a backdoor communication channel.

6. Securing Multiple Application Components
Large scale programs typically consist of several components, each
of which has different responsibilities, and needs different permis-
sions to accomplish its task. For instance, a I/O component requires
permissions for file read/write, while a component conducting pure
mathematical computation does not. If the application is config-
ured into multiple code ownership domains, each component can
be given only the permissions it needs, in line with the Principle of
Least Privilege.

The application in Fig. 10 is divided into two components,
Client and LogService. This division allows fewer privileges to be
given to each component: the Client does not need I/O permissions
and therefore has an empty set of permissions. LogService pro-
vides a logging service of the operations performed by the Client,
and has permissions which allow it to access a local log file. In our
model, we re-use the existing J2SDK notion of a codebase and de-
fine the two as separate codebases with their distinct permissions.
This way, the Client may record its data into a log file, without hav-
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Figure 10. Application consists of code components with hetero-
geneous permissions

ing to have the explicit permission to access the file—the LogSer-
vice intermediary is the only code needing access to the file. This
division achieves the goal of separating permissions among com-
ponents so that each component only gets the permissions it needs
for completing its job.

The J2SDK also supports multiple code ownership domains.
However, the J2SDK architecture does not prevent references to
resources from being passed from one codebase to another. The es-
sential difference between our approach and the J2SDK approach is
how such codebase boundary is enforced. We proceed analogously
with how we enforce the kernel/library interface boundary, and re-
quire the components within an application to interact with each
other on connectors/services only, which can pass primitive data
only. In this example, the Client and the LogService build a con-
nection on LogConnector.

The restriction on data passing on connector/service interface
sounds severe in that the different code components cannot share
references. The comparison is that the J2SDK allows more tightly
coupled interaction between domains, but at the expense of a mud-
dled interface which may not even be working. We believe that a
clear component boundary is the essential foundation of a secure
runtime system and it is a worthwhile tradeoff; it would be better to
simply put both components of the application into one codebase
rather than use the J2SDK model to lull one into believing there
was a secure separation between the two.

Notice that both the Client and the LogService have their own
copies of the µKVM libraries. This is because if the two compo-
nents had shared the libraries, the library code would be operating
on permissions coming from different sources, the root of confused
deputy problem. The figure also accurately reflects that the µKVM
libraries do not have system privileges – they only have the same
permissions as the codebase components that use them, which illus-
trate that library code also gets the minimum permissions needed.

We have implemented the architecture in Fig. 10 by using a dif-
ferent class loader to load each codebase, and thus each component
will load their own copy of the µKVM libraries. This is not an effi-
cient implementation, but it does serve as a proof of concept.

7. Performance Evaluation
Microkernel operating systems historically suffer from runtime per-
formance problems, which makes microkernel-based architectures
potentially less appealing for practical systems. To show that the
µKVM does not have such a performance pitfall, we benchmarked
the performance of the µKVM on accessing system resources such
as reading from files and transferring data on sockets. We designed
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our own test programs2 because we could find no existing bench-
marks that met our need. We also benchmarked the functionality of
the kernel and the system libraries using mauve test suite3 to show
that the observable functionality to the user was unchanged, in spite
of fundamental changes in architecture.

The benchmark results show that the µKVM has performance
comparable with the J2SDK. Most importantly, the µKVM has
significant efficiency advantages in providing a secure runtime
environment. For instance, when security was switched on in both
the J2SDK and the µKVM, the µKVM outperformed the J2SDK
in both speed and memory. In particular, the µKVM was 27%
faster than Java when 500 files were opened and 19% faster when
the file number increased to 1000. As for memory consumption,
the µKVM consumed only 0.01% more memory in the 500 case
while 1.63% less in the 1000 case. Details about the benchmark
and results are omitted here for lack of space and can be found at
the µKVM website2.

8. Related Work
8.1 Application Isolation

Much research has been done to provide isolated application run-
times that allow multiple applications to run in a VM without
interfering with each other’s computation. The application do-
mains of the .NET CLR [App, FJ03, MG01], JKernel [HCCDH97,
HCC+98, JKe], Isolates [JSR, BG98, Cza00, DBC+00] and the
Multitasking Virtual Machine (MVM) [CD01, CL01, DC05] fall
into this category. These ideas could also be incorporated into the
µKVM, but since that problem is mostly solved, our focus is on
kernel-application and intra-application interaction.

8.2 Securing the System Domain

JOS is a JKernel extension in which file operations are put in a
protected domain and can only be accessed via the JOS server.
Theoretically, system libraries in the JKernel can be placed in
separate privileged domains as the JOS does for file operations.
However, they have to be carefully re-implemented so that only
the most essential parts are in the privileged domains, otherwise
cross-domain communication would slow down the whole system
significantly.

The KaffeOS [BH99, BHL00] acknowledges the importance of
the user/kernel distinction to maintain system integrity like we do
in the µKVM. However, user/kernel modes in the KaffeOS indicate
different environments with respect to termination and resource
consumption. For instance, an application running in user mode
should not hold kernel locks in order to terminate safely. In the
µKVM, on the other hand, user/kernel modes represent domains
with or without security privileges. Such difference in philosophy
results in different system architectures. Specifically, part of the
runtime libraries in the KaffeOS are fully trusted but run in the user
mode, while the µKVM disallows any privileged code to exist in
user space. The KaffeOS enables direct sharing between processes
via a shared heap.

The SPIN operating system [BSP+95] uses the safe language
Modula-3 to ensure safety within the kernel. It allows safe exten-
sions to be loaded into the kernel dynamically and then integrated
themselves into the existing infrastructure. SPIN uses software pro-
tection to protect the OS kernel on dynamic extensions and imple-
ments protected communication using procedure calls. But it does
not provide any code-based access control of the type found in ar-
chitectures such as Java and .NET [Raz02].

2 www.cs.jhu.edu/∼xiaoqilu/MicrokernelVM
3 http://sources.redhat.com/mauve/

The JX operating system [GFWK02] builds a complete oper-
ating system in Java. It has a small microkernel containing func-
tionalities such as system initialization. Other components are pure
Java code and may be loaded into different domains using differ-
ent system configurations. JX components use RMI-style portals to
communicate. The JX and the µKVM share a similar design phi-
losophy in the sense that non-kernel components in µKVM cannot
have native code to bypass the control of the kernel. But the two
systems are otherwise addressing different problems. JX focuses
on performance of low-level operations such as memory manage-
ment, but not on high-level code-based access control policies.

8.3 Control of Intra-application interference

The Code-based security in the J2SDK gives fine-grained access
control. But the lack of runtime enforcement for keeping different
codebases from interfering with each other leads to problems such
as authorizations implicitly being extended to client code. MARCO
[PFKS05] uses static interprocedural analysis to detect such im-
plicit leaks of authority and “tainted” variables which are untrusted
values and might have been used by the high authority code without
proper sanitization.

In the µKVM, code components with different permissions in
an application are isolated in sub-domains and only can interact
on connector/service interface. Consequently, the µKVM does not
have the problem of implicit authority transfer. This illustrates
how the µKVM improves on the J2SDK. The ”tainted” variable
detection performed by MARCO is still a useful utility for the
µKVM since it is a fundamental property of any data transferred
between security domains.

8.4 Capability-based Security

Capabilities have been used in both computer systems and lan-
guages for security. KeyKOS [Key] and its successor EROS [ERO]
are pure capability operating systems. The E language[E L] is a
capability-based distributed programming language, in which ob-
ject references are treated as capabilities. The revocation aspect of
connections on connectors relates the µKVM to capability revoca-
tion, But the similarity stops here as connections between two par-
ties in the µKVM are not transferable, whereas capabilities are. The
lack of transferability of connections prevents them from unautho-
rized use by external parties. We can enforce stronger constraints
because we have a purely local model for securing code, and capa-
bilities are a more general security model.

9. Conclusion
In this paper, we proposed a novel microkernel-based language
VM, the µKVM, in which the kernel manages system resources
and implements a core set of low-level system functionalities. Sys-
tem libraries such as I/O library are implemented outside the kernel
so that stack inspection is no longer needed for protecting them. All
kernel-application and intra-application interactions are declared
on explicit connector/service interfaces. The µKVM has a small
trusted codebase which includes only the kernel and the underlying
virtual machine. It is well-known that the smaller the trusted code-
base is, the lesser the impact of making programming mistakes.

The security architecture of the µKVM is simple and declara-
tive. Accesses to all sensitive system resources are through publicly
declared connectors and services. Permission checks are explicitly
placed on those interfaces, and are controlled by the kernel. The
simple, declarative nature of the µKVM security framework has
obvious benefits: programmers can easily understand the security
architecture and hence build their secure applications confidently.
Moreover, the Principle of Least Privilege can be easily deployed
in the µKVM via imposing fine-grained security schemas on inter-
faces.
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Benchmarks show that our µKVM prototype can provide a
secure runtime environment with less overhead than the J2SDK,
thus avoid the runtime performance pitfall commonly found in
microkernel-based operating systems.
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