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Abstract 

While traditional relational databases are still used in a large scope of applications, we 

have seen recently an explosion in the number of a new data bases technologies 

developed in particular for Big Data serving. Currently the main alternatives to RDMBS 

are NoSQL and NewSQL databases. The primary focus of this paper is to survey, compare 

and evaluate a number of NoSQL and NewSQL databases. 

The NoSQL databases were created as a mean to offer high availability at the price of 

losing the ACID (Atomic, Consistent, Isolated, Durable) guarantees of the traditional 

databases in exchange with keeping a weaker BASE (Basic Availability, Soft state, 

Eventual consistency) feature. We’re going to survey four main categories of NoSQL 

databases: 

 Key-value stores 

 Document stores 

 Column family stores 

 Graph databases 

Additionally we will evaluate NewSQL which is another class of modern database 

management systems that seek to provide the same scalable performance of NoSQL 

systems for OLTP (online transaction processing) workloads while still maintaining the 

ACID trait of a traditional database system. 

This paper provides a comparative survey of NoSQL and NewSQL data stores focusing on 

the technical characteristics as well as the popularity and applications suitability. 

Additionally we also refer in this paper to the practical evaluation of the performance 

of NoSQL and NewSQL data stores that we performed as a part of the Final Project. In 
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the project we utilized BG benchmarking system that rates data store by processing 

interactive social networking actions. To do so we implemented separate clients for 

Cassandra and NuoDB and then conducted various experiments using BG in order to 

obtain practical results for these two data store types. 
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1. Introduction 

Over the past decade, we have witnessed a rapid growth in a number of different types 

of data bases. It’s related to the development of the Internet, mobile devices and cloud 

computing. All these environments impose new requirements for an effective storage 

and processing of data. 

In order to deal with these challenges, some companies maintain data centers and farms 

which contains clusters with thousands of commodity hardware machines. 

Old fashioned relational databases do not provide a good solution in this situation, due 

to their normalized data model and full ACID support.   

Additionally it turns out that the common approach “one size fits all” is no longer valid 

for current application scenarios. On the contrary, in the new reality it is more 

appropriate to design systems based on the nature of the applications and its data/ 

query demands.  

Consequently, multiple alternative database solutions were specifically designed to 

satisfy diverse needs. Many of these new databases belong to NoSQL and NewSQL classes 

of DBMS. In this paper we survey, compare and evaluate four main categories of NoSQL 

and also NewSQL databases. In particular we analyze and compare the following DB 

characteristics: 

 Data model 

 Querying possibilities 

 Concurrency control 

 Replication 

 Scalability 
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 Partitioning 

 Consistency 

 Security features/ drawbacks 

 Use cases/ applications suitability 

 Popularity 

 Performance 

The rest of this paper is structured as follows. Section 2 provides the background 

information to the survey. It discusses Big Data challenges, the CAP Theorem and the 

critical reception of NoSQL/ NewSQL movement. Section 3 introduces taxonomy used 

throughout this paper. It discusses databases popularity and different data models. 

Section 4 compares NoSQL/ NewSQL databases types by various features, such as 

querying possibilities, concurrency control, replication, scalability, partitioning, 

consistency and security. Section 5 discusses applications and scenario suitability. 

Section 6 surveys several articles discussing performance. Section 7 provides the 

description of the Final Project. It discusses the implementation and thoroughly 

analyzes practical results that were obtained. Finally, Section 8 presents our 

conclusions. 
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2. Background 

This chapter provides a brief background for NoSQL / NewSQL survey. Here we discuss 

Big Data challenges, ACID (Atomicity, Consistency, Isolation, and Durability) properties 

versus BASE (Basic Availability, Soft state, and Eventual consistency) and the CAP 

Theorem (also known as Brewer's theorem). This chapter also covers the critical 

reception of NoSQL movement and in particular focuses on Prof. Stonebraker’s opinion.  

2.1. The CAP Theorem 

Current NoSQL trend is motivated by the tremendous growth of data mostly in web and 

mobile domain. If we consider Social Networking web pages such as Facebook, LinkedIN 

and Twitter, which are dealing with thousands of terabytes of data then, we must 

notice that besides handling huge data volume, those systems still have to maintain a 

reasonable latency, meaning that read and write are supposed to be responded very 

promptly. These new requirements for a data volume and processing speed sometimes 

are referred as the Big Data challenge. 

The term Big Data was originally used by Doug Laney in his research report in 2001 [3]. 

Nowadays the widely accepted interpretation defines Big Data as 3 V’s: 

1. Variety: data today is present in varied formats be it text, video, images, 

sound and much more. 

2. Velocity: the rate at which data is generated is far beyond imagination 

a. E.g. around 100 terabytes of data is uploaded daily on facebook.com.  

b. YouTube users upload 48 hours of video every minute.  

3. Volume: terabytes of data being processed daily requires efficient techniques 

to store and process data 
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Figure 1 describes the increase in data volume, variety and complexity while new Big 

Data components are introduced. 

 

Figure 1: Big Data Transactions with Interactions and Observations [57] 

The traditional relational database is facing many new challenges with large scale and 

high concurrency while handling big data and moreover some of the researchers in the 

field [11] consider traditional “old” DB wisdom as obsolete. 

While traditional relational DB still hold the biggest part of the market, some of the 

modern Internet corporations and other companies turned their gaze toward another 

data store paradigm, the so called NoSQL. The reason why NoSQL has been so popular 

the last few years is mainly because, when a relational database grows out of one server, 
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it is no longer that easy to use. In other words, they don't scale out very well in a 

distributed system.  

NoSQL stands for “Not Only Structured Query Language” and usually define a family of 

data stores that forfeits the ACID properties of consistency and isolation in favor of 

“availability, graceful degradation, and performance” or BASE.  

The acronym ACID stands for 

 Atomicity: all of the operations in the transaction will complete, or none will. 

 Consistency: transactions never observe or result in inconsistent data. 

 Isolation: the transaction will behave as if it is the only operation being 

performed. 

 Durability: upon completion of the transaction, the operation will not be 

reversed, but will be persistent 

The term BASE was defined by Eric Brewer [6] who is also known for formulating the CAP 

theorem. BASE stands for Basically Available, Soft state, Eventual consistency and 

Brewer himself does admit that the acronym is contrived [9]: 

 Basically Available - indicates that the system does guarantee availability, in 

terms of the CAP theorem. 

 Soft state - indicates that the state of the system may change over time, even 

without input. This is because of the eventual consistency model. 

 Eventual consistency - indicates that the system will become consistent over 

time, given that the system doesn't receive input during that time. 

 

http://en.wikipedia.org/wiki/Eric_Brewer_%28scientist%29
http://en.wikipedia.org/wiki/CAP_theorem
http://en.wikipedia.org/wiki/CAP_theorem
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The CAP Theorem coined by Brewer in 2000, states that it is impossible for a distributed 

service to be consistent, available, and partition-tolerant at the same instant in time 

[6].  

Proponents of NOSQL often cite Eric Brewer’s CAP theorem which is summarized as 

following: a system can have no more than two out of the following three properties 

 Consistency:  

 Availability 

 Partition Tolerance 

In other words, according to Brewer, the BASE model gives up on ACID property of 

consistency and isolation in favor of “availability, graceful degradation and 

performance”. 

Figure 2 describes the characteristics of NoSQL systems in terms of the CAP Theorem. 
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Figure 2: Different properties that a distributed system can guarantee at the same 

time, according to Brewer's theorem 

In 2012 Eric Brewer has released another article providing some details and more up-

to-date vision of the subject. That paper mentioned that "In ACID, the C means that a 

transaction preserves all the database rules, such as unique keys. In contrast, the C in 

CAP refers only to single-copy consistency, a strict subset of ACID consistency. ACID 

consistency also cannot be maintained across partitions; partition recovery will need to 

restore ACID consistency. More generally, maintaining invariants during partitions might 

be impossible, thus the need for careful thought about which operations to disallow 

and how to restore invariants during recovery." [10]  

  

ACID BASE 

 
Strong consistency for transactions  
highest priority  
 
Availability less important  
 
Pessimistic  
 
Rigorous analysis  
 
Complex mechanisms 
 

 
Availability and scaling highest priorities 
 
Weak consistency 
 
Optimistic 
 
Best effort 
 
Simple and fast 
 

 
Table 1: ACID vs BASE per Brewer [6] 
 

In his articles Eric Brewer contrasts ACID vs BASE (see Table 1), however in general 

those two concepts are usually not considered as an alternatives, but rather as a 

spectrum. 
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2.2. Critical reception 

2.2.1. Skepticism  

There are various aspects on which NoSQL movement have been criticized, one of them 

is the business side. In the article about NoSQL meetup in San Francisco in 2009 [42] 

the authors mention business related issues “preventing” or disturbing wide spread of 

NoSQL technologies. The fact that most of the NoSQL solutions are open-source 

software is very highly appreciated by the developers’ community. However, 

“sometime this is a “scary” situation for business people, who are not willing to end up 

with failures with nobody to blame for it” [65]. Since then the situation was slowly 

changing. For example for open-source Cassandra [25] one can use and Enterprise 

Edition version that is support by DataStax [20]. Most of the NewSQL solutions are free 

only for “sand box” purposes and require a license for commercial use. 

Some of other NoSQL criticist are just being sceptics saying that “any new technology 

provokes a considerable enthusiasm and there is nothing new in the NoSQL/ NewSQL 

movement. The participants of NoSQL meetup provided actually a pragmatic advice on 

such remarks: they said that there is no need to switch to NoSQL if your current RDBMS 

solution does a job, there is simple no reason to replace that [42]. 
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2.2.2. Stonebraker view 

Michael Stonebraker is a computer scientist specializing in database research. Through 

a series of academic prototypes and commercial startups, Stonebraker's research and 

products are central to many relational database systems on the market today. He is 

also the founder of a number of database companies, including Ingres, Postgres and 

VoltDB [49]. 

Prof. Michael Stonebraker has been a huge critic of the NoSQL movement from the very 

beginning. In his publication from 2009 [39] Prof. Stonebraker defines two main reasons 

for moving towards non-relational data stores: flexibility and performance. The 

flexibility argument according to Stonebraker basically means that there might be a 

data that does not fit into a rigid relational model and which is bound too tightly by the 

structured of a traditional RDBMS. In this case something more flexible might be needed. 

As to the performance argument: Stonebraker mostly focuses on the workloads for 

which NoSQL databases are most often considered update- and lookup- intensive OLTP 

workloads . He sees 2 main options to improve OLTP transactions performance: 

1) Horizontal scaling archived by automatic sharding, meaning that performance 

gets improved by adding new nodes. This has been done by traditional DBMS 

many years ago, so “nobody should ever run DBMS that does not do this”. 

2) Better performance of a single node while handling OLTP. 

Stonebraker concentrates in that work [39] on the second option and he and his team 

analyze factors that impact performance of a single node. They have found out that 

this overhead has “nothing to do with SQL” and the degradation is primarily caused by 

the following five factors: 

https://en.wikipedia.org/wiki/Computer_scientist
https://en.wikipedia.org/wiki/Relational_database
https://en.wikipedia.org/wiki/Ingres_(database)
https://en.wikipedia.org/wiki/VoltDB
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 Communication 

 Logging 

 Locking 

 Latching  

 Buffer Management 

Prof. Stonebraker claims when these factors are eliminated the performance of single 

node has been improved drastically by the order of magnitude [39] [40]. 

It worth to mention that currently he’s advocating NewSQL technologies and he was 

involved into development of some of them including VoltDB [38]. 

I have also reviewed other related articles by Michael Stonebraker in the research-

seminar, the seminar report can be found in the Appendices to this work [Appendix A].  
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3. Taxonomy 

In this chapter we introduce the taxonomy which is used throughout this paper. First, 

we discuss databases popularity. After that we describe various data models surveyed 

in this paper, such as: Key-value stores, Document stores, Column family stores, Graph 

databases and NewSQL databases. 

3.1. Popularity 

In this final paper we survey general taxonomy of NoSQL/NewSQL databases, define 

major categories based on Data Model and will focus on the most popular database 

systems representing each one of the categories.  

To determine which data stores are “most prominent” we evaluate popularity of the 

databases using DB-Engine Ranking [34]. This system ranks database systems according 

to their popularity by using the parameters like: 

 General interest according to Google Trends. 

 Number of mentions on Web sites, measured as number of results in search 

engines queries. . At the moment Google and Bing are used for this 

measurement. 

 Frequency of technical discussions on the Web. To count this measure they 

use the number of related questions and the number of interested users on 

the well-known IT-related Q&A sites Stack Overflow [31] and DBA Stack 

Exchange [32]. 

 Number of job offers. Here they use the most popular professional 

network measured by means of LinkedIn [33] social network. 

http://www.google.com/
http://www.bing.com/
http://stackoverflow.com/
http://dba.stackexchange.com/
http://dba.stackexchange.com/
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 Number of professional profiles in which the solutions are mentioned 

(measured by the leading job search engines). 

 Relevance in social networks according to the number of Twitter tweets, in 

which the system is mentioned. 

DB-engines ranking portal also provides a ranking per various DB types categories. Next 

we compare several NoSQL models and systems based on their popularity. 

Figure 3 shows the popularity ranking of Document Stores in May 2015. 

 

Figure 3: NoSQL databases ranking – May 2015 [34] 
 

Figure 4 shows that currently Neo4J is by far the most popular Graph database.  

http://twitter.com/
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Figure 4: Graph DB ranking as of May-2015 
 

The graph in the Figure 5 shows the historical trend of the popularity of various 

database categories. 

Figure 5: Popularity changes per category, June-2015 [34] 
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As it can been seen from the chart (Jun-2015) above, the Relational Databases 

popularity trend is decreasing, while the most popular trending categories are:  

 Graph DB 

 Column-family  

 Document stores 

In the next chapter we provide a detailed description for these three categories as well 

as for Key-value stores. 

3.2. Data Model 

NoSQL data stores vary widely by data model and have some distinct features on its 

own. In this paper we review the taxonomy of NoSQL databases based on the data model, 

which usually propose following categories: 

 Key-value stores 

 Document stores 

 Column family stores 

 Graph databases 

In addition to NoSQL systems we also review NewSQL data stores category, which is 

essentially a hybrid between NoSQL and relational databases. 

3.2.1. Key-value stores 

Key-value data stores sometimes considered to be the “simplest” form of data base. 

Those DBs are usually schema-less. The data is stored in a form of a pair keyvalue, so 

KV data model resembles structure similar to Associative or Hash Array data structure 

(also known as a map or dictionary). Keys are used as indexes to fetch the data (value) 
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and this makes those data stores much more efficient for data retrieval than classical 

RDBMS.  

Figure 6 provides an example illustrating simple key-value data. 

Figure 6: Key/Value Store NoSQL Database – data example 
 

KV data model is very simplistic and sometimes it’s used as a baseline while more 

complicated data models are implemented on top of it. The key-value model can be 

extended to an ordered model that maintains keys in lexicographic order. This 

extension is powerful, in that it can efficiently process key ranges [14]. 

In terms of the CAP theorem those databases usually prefer availability over consistency.  

Example key value databases include Voldemort [22] and Amazon Dynamo DB [1].  

Amazon Dynamo DB model provides a fast, highly reliable and cost effective NOSQL 
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database service designed for internet scale applications. It offers low, predictable 

latencies at any scale [1]. 

Further in this final paper we’ll focus on Project Voldemort as an example of KV store. 

Project Voldemort is an advanced key-value store, written in Java [21, 22]. It is open 

source, with substantial contributions from LinkedIn [33]. 

3.2.2. Document-based stores 

Document-based databases are probably most popular among other NoSQL types and 

their popularity keeps growing. These databases store their data in a form of documents. 

In general this type of data bases encapsulates “key-value” concept, while key is an ID 

of the document and the value is the document itself, which can be retrieved by ID. 

Various formats can be used as a metadata for document oriented DBs: XML, JSON and 

some others. 

In contrast with the traditional RDBMS, where every row follows the schema, in 

document-oriented DBs each document may have a different structure. And usually 

document oriented stores provide additional indexing based on document contents. 

That’s one of the main enhancements of document stores over the more basic key-value 

store model. 

Both provide querying mechanism based on the “primary key”, but in document store 

model one usually able to query data also by the value (document) contents. Similarly 

to KV-stores, this type of DB systems is less efficient when application requires multiple-

key transactions.  

Figure 7 provides a visual demonstration of the differences between the Relational data 

model and the Document data model. 
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Figure 7: Comparing document-oriented and relational data [23] 
 

In this paper we are going to survey MongoDB which the most popular representative of 

document data store category [34]. MongoDB (from “humongous”) is a cross-platform 

document-oriented database [24]. This is a GPL open source data store which written 

in C++ and supported by 10gen. 

3.2.3. Column family stores 

The standard column family is a NoSQL object which contains columns of related data 

[17]. The approach of accessing and processing data by column rather than by rows has 

been used in analytic tools for quite a long time. However the subclass of NoSQL 

Databases called Column-family stores refers specifically to systems derived from 

Google Bigtable. Google researchers describe this model as “sparse, distributed, 

persistent, multidimensional sorted maps” [15]. In Bigtable the dataset consists of 

several rows, each can be addressed by a key – primary key. Some of the most popular 

Data stores in this category implement the basic Google Bigtable model, e.g. HBase 
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[16]. While others, like Cassandra extend the model by introducing super-columns, 

where the value can be column-family by itself [25] 

The term Column family means a pair that consists of key and value, where the key is 

mapped to a value that is a set of columns. In analogy with relational databases, 

a column family can be considered as a "table", while each key-value pair represent a 

"row". 

However using this analogy we may illustrate one of the main differences between 

traditional RDBMS model and Colum-family model, which is the fact that the same 

“table” (column family) can contain different columns and different number of columns, 

while the traditional relational model is absolutely strict about this. 

There is also a similarity to the most basic key-value model, since the row key functions 

as a “key”, while the set of columns resembles the “value”. Due to the data model 

specifics Column-families usually do not handle complex relational logic. Hence as in 

case of the basic Key-value stores, if complex relational querying functionality is 

required, then it has to be implemented in the client side. 

Figure 8 describes a layout of a single row within Column Family and a row within Super 

Column Family. 
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Figure 8: Column Family / Super Column family layout [26] 

 

In this final paper we’ll be focusing on Cassandra [25]. Cassandra is Column-family (or 

extensible record) database written in Java, and used under Apache licensing. It is 

heavily backed by DataStax [20], and was originally open sourced by Facebook in 2008 

[18]. See section 6.1 for additional information about Cassandra. 

3.2.4. Graph databases 

Graph data bases is the model which has its origins in the graph theory. Moreover the 

data model of these NoSQL databases is based on a graph structure. Basically it means 

that data is stored in a form of nodes (vertices), while relations between data are 

presented as edges that interconnect the vertices.  
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These data stores considered to be NoSQL data bases, because these systems don’t 

offer SQL support and the data model is not similar to relational. Nevertheless many of 

the Graph data bases, including Neo4j [19], are fully ACID-compliant.  

Another difference between this sub-group and other NoSQL categories is that this 

model is not an extension of “key-value” concept and it’s more efficient for storing 

interconnected data and handling relational querying. Thus naturally they are more 

suitable for dependency analysis problem solving and some of the social networking 

scenarios. 

While being effective in those areas, graph databases might be less suitable in other 

Big Data problems handling. In particular, these data bases are not that efficient on 

horizontal scaling as key-value or column-families. This “weakness” stems from the fact 

that if related data is stored on a different servers, than traversing such a graph may 

be very “expensive” operation in terms of performance. 

Figure 9 provides a graphical example of NoSQL Graph Database. 

Figure 9: Graph NoSQL Database example [27] 
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The most popular graph database is Neo4j (see Figure 4) and we’re going to analyze 

and survey it in the following chapter of this paper as a representative of this database 

category. Neo4j is an open-source graph database, implemented in Java [19] 

3.2.5. NewSQL 

NewSQL is another class of modern database management systems. Until recently 

implementing of a scale-out architecture required some NoSQL solution because old-

fashioned relational databases didn’t provide a good support for “horizontal” scale. 

As it was mentioned above such NoSQL solutions usually didn’t provide ACID and rather 

provided some type of eventual consistency. This tension is what inspired NewSQL 

movement. 

NewSQL solutions by definition are based on the relational model. Besides that these 

databases seek to provide the same scalable performance of NoSQL systems for online 

transaction processing (OLTP) read-write workloads, while still maintaining the ACID 

guarantees of a traditional database system [28]. 

However even though they use SQL as main interface language and clients interact with 

NewSQL in traditional relational DB terms such as “tables” and “relations”, the actual 

internal representation might be absolutely different from that of traditional DB. For 

example, NuoDB can store its data into key-value store [29]. 

The term “NewSQL” has been created by Matt Aslett from “the 451 group”. He writes:  

“’NewSQL’ is our shorthand for the various new scalable/high performance SQL 

database vendors. We have previously referred to these products as ‘ScalableSQL’ to 

differentiate them from the incumbent relational database products. Since this implies 

horizontal scalability, which is not necessarily a feature of all the products, we adopted 

https://en.wikipedia.org/wiki/Open-source
https://en.wikipedia.org/wiki/Graph_database
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the term ‘NewSQL’ in the new report. 

And to clarify, like NoSQL, NewSQL is not to be taken too literally: the new thing about 

the NewSQL vendors is the vendor, not the SQL.” [36] 

According to Prof. Stonebraker the NewSQL goals are to bring the benefits of the 

relational paradigm to distributed architectures or to provide such good performance 

that horizontal scalability is no longer a necessity [28]. 

Table 2 provides a comparison of the main characteristics of OldSQL, NoSQL and 

NewSQL. For instance, only NoSQL databases are considered to be schema-less, 

meaning that they allow to store unstructured data without prior knowledge of the 

schema; traditional SQL (“OldSQL”) or NewSQL systems don’t allow it. 

 Old SQL NoSQL NewSQL 

Relational 
SQL 
ACID transactions 
Horizontal scalability 
Performance/ big volume 
Schema-less 

Yes 
Yes 
Yes 
No 
No 
No 

No 
No 
No 
Yes 
Yes 
Yes 

Yes 
Yes 
Yes 
Yes 
Yes 
No 

 

Table 2: The “NewSQL promise” in brief [41] 

In this paper we’re focusing on the following two NewSQL data stores: 

 VoltDB – a new RDBMS designed for high performance (per node) as well as scalability 

[37]. VoltDB is an open-source system (AGPL v3.0 license) written in Java and C++ 

[38]. 

 NuoDB – another distributed database which is SQL compliant. It’s is defined as 

“client/cloud relational database” [29]. NuoDB is a “closed source” system. It’s 

available in Amazon Web Services (AWS) marketplace as a service, as an appliance 

and as a stand-alone software. 

https://en.wikipedia.org/wiki/Distributed_database
https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/Relational_database


32 

 

4. Features comparison 

This section compares NoSQL/ NewSQL database types by a number of determinative 

features, such as querying possibilities, concurrency control, replication, scalability, 

partitioning, consistency and security. 

4.1. Query Possibilities  

In general data models are tightly coupled with query possibilities. Therefore the 

analysis of the queries that will be needed for an application is an important process in 

order to find a suitable data base solution. Various NoSQL/ NewSQL data stores not only 

differ in the provided data model, but also have different APIs and interfaces to interact 

with them. This again is directly dependent upon the data model utilized by the data 

store. 

For instance, key-value stores usually cannot provide value-based querying. The values 

in KV data stores are opaque and they only provide key-based “put”, “get” and “delete” 

operations. Thus any query language would be unnecessary overhead for these stores. 

And in systems when additional more complex query functionalities are required, they 

have to be implemented on the application layer, which can lead to much more system 

complexity and performance penalties. Therefore key-value stores shouldn’t be used in 

applications where complex queries or queries based on values are required. 

On the other hand document stores offer richer API including queries based on the value. 

This type of data stores provide range queries on values, secondary indexes, querying 

nested documents and operations like “and”, “or” and “between”. MongoDB queries 

can be extended with regular expressions and besides that MongoDB provides a support 

to operations such as count and distinct [24]. 
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Most of document stores also support REST interfaces [43]. However those data stores 

do not provide any query language with SQL-like syntax. 

Column family stores usually support range queries and operations “in”, “and”, “or” 

and regular expressions. However those operations can be applied just on the row keys. 

Even if CF data store provide query language (e.g. CQL for Cassandra) – only row keys 

can be considered in the where clause and not the values. 

Graph data bases provide query possibilities in two ways: graph pattern matching and 

graph traversal. Pattern matching usually refers to a mechanism which performs a 

search of parts of the original graph which will match the pattern. The graph traversal 

is another graph search technique which traverses the graph according to some 

description and starting from the chosen node. Traversal abilities may support various 

strategies as BFS (breadth first search) and DFS (depth first search). 

Most of the graph data bases offer REST API and additionally in the graph databases 

realm there is a common language supported by multiple graph databases SPARQL [44] 

including Neo4j [19]. 

REST API is an API (Application Program Interface) that adheres to the principles of REST 

(Representational State Transfer). REST is an architectural style that uses simple HTTP 

calls for inter-machine communication. Using REST means API calls will be message-

based and reliant on the HTTP standard [43]. 

In summary, various NoSQL data stores classes differ significantly in their query 

capabilities and it’s absolutely necessary to consider specific application requirements 

in order to choose the most suitable NoSQL data base type with appropriate data model 

and offered interfaces. 
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On the contrary, most of the NewSQL data stores are providing SQL support as one of 

their main features. However NuoDB is considered to be more SQL-compliant, while 

VoltDB has various restrictions in place, for instance: it’s not possible to use “having” 

clause, tables can’t join themselves and all joined tables must be partitioned over the 

same values. 

4.2. MapReduce 

MapReduce is a parallel programming model for large data sets processing introduced 

by Google.  MapReduce is typically used to do distributed computing on clusters of 

computers [45].  

In this model, a user specifies the computation by two functions, Map and Reduce: 

 In the mapping phase, MapReduce takes the input data and feeds each data 

element to the mapper.  

 In the reducing phase, the reducer processes all the outputs from the mapper 

and arrives at a final result. In simple terms, the mapper is meant to filter and 

transform the input into something that the reducer can aggregate over.  

The underlying MapReduce library automatically parallelizes the computation, and 

handles complicated issues like data distribution, load balancing and fault tolerance.  

The original MapReduce implementation by Google, as well as its open source 

counterpart, Hadoop [46], is aimed for parallelizing computing in large clusters of 

commodity machines. Map Reduce has gained a great popularity as it gracefully and 

automatically achieves fault tolerance. It automatically handles the gathering of results 

across the multiple nodes and returns a single result or set. MapReduce model 

advantage is the easy scaling of data processing over multiple computing nodes. 
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Now let’s consider an example for MapReduce – WordCount application, which reads 

text files and counts how often words occur. The input is text files and the output is 

text files, each line of which contains a word and the count of how often it occurred, 

separated by a tab. The WordCount is given below in pseudo code: 

1. class Mapper  

2.    method Map(docid id, doc d)  

3.       for all term t in doc d do  

4.          Emit(term t, count 1)  

1. class Reducer  

2.    method Reduce(term t, counts [c1, c2,...])  

3.       sum = 0  

4.       for all count c in [c1, c2,...] do  

5.          sum = sum + c  

6.       Emit(term t, count sum) 

Each mapper takes a line as input and breaks it into words. It then emits a key/value 

pair of the word and 1.  

Each reducer sums the counts for each word and emits a single key/value with the word 

and sum. 
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Figure 10 shows an example of MapReduce execution diagram. 

 

Figure 10: MapReduce Execution Overview [45] 

 
When applied to databases, MapReduce means to process a set of keys by submitting 

the process logic (map and reduce functions code – see above) to the storage nodes, 

which in their turn locally apply the map function to the keys that they own.  

Clusters of document and column family stores are able to store huge amounts of 

structured data, therefore queries can get very inefficient if just a single machine has 

to process the required data. That’s the reason why all document and column family 

stores provide MapReduce frameworks which enable parallelized calculations over large 

data sets on multiple machines.  
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NoSQL Key-Value stores, graph databases and NewSQL usually do not support 

MapReduce.  

Table 3 summarizes querying capabilities of all the NoSQL and NewSQL systems 

surveyed in this final paper. 

 

 

Table 3: The NoSQL/ NewSQL Querying capabilities 

4.3. Scalability 

Vertical scalability is an ability to scale up or to add resources to a single node in a 

system, typically involving the addition of CPUs or memory to a single computer. 

 
 

NoSQL/NewSQL 
databases 

 
Querying capabilities 

Rest API 
 

Query Language Other API MapReduce 
Support 

Key Value 
Store 

Voldemort Yes No Clients for 
several languages 

Yes 

Document 
Store 

MongoDB Yes No CLI and API in 
different 
languages. 
Support Thrift 
interface 

Yes 

Column 
Family 
Store 

Cassandra Yes Cassandra Query 
Language (CQL) 

CLI and API in 
different 
languages 

Yes 

Graph 
Database 

Neo4j Yes Cypher, Gremlin 
and SparQL 

CLI and API in 
different 
languages 

No 

NewSQL VoltDB Yes SQL CLI and API in 
different 
languages. 
JDBC support. 

No 

NuoDB No SQL CLI and drivers 
for most common 
data access APIs 
(JDBC, ODBC, 
ADO.NET).  
Also provides a 
C++ support. 
 

No 
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Application scalability refers to the improved performance of running applications on a 

scaled-up version of the system 

Traditional databases were designed primarily to scale vertically by adding more power 

to a single node.  

Horizontal scalability is an ability to scale out or to add more nodes (servers) to the 

system.  As computer prices have dropped and performance continues to increase, high-

performance computing applications have adopted low-cost "commodity" systems for 

tasks that once would have required supercomputers. Size scalability is the maximum 

number of processors that a system can accommodate. Horizontal scalability is one of 

the main characteristics of NoSQL and NewSQL systems. 

There are tree aspects that are considered with regards to scalability:  

 scaling read requests 

 scaling write requests  

 scaling storage  

In the next chapters we’re focusing on the main strategies which have major influence 

on these scaling capabilities in NoSQL/NewSQL: Concurrency Control, Replication, 

Partitioning and Eventual Consistency. 

4.4. Concurrency Control 

Concurrency control is of special interest in NoSQL and NewSQL data stores, because 

they generally need to accommodate a huge amount of users that have access to a data 

source in parallel.  

Traditional databases (RDBMS) use pessimistic concurrency strategies with exclusive 

access on a dataset. Pessimistic concurrency control, or pessimistic locking assumes 
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that two or more concurrent users will try to update the same record at the same time. 

To prevent this situation a lock is placed onto the accessed entity, so that exclusive 

access is guaranteed to a single user operation only, other clients accessing the same 

object will have to wait until the initial one finishes its work.  These strategies can be 

suitable, if costs for locking are low. However in database clusters which are distributed 

over large distances, pessimistic consistency strategies can lead to performance 

degradation, especially when applications have to support high read request rates. 

Optimistic concurrency control or optimistic locking assumes that conflicts are possible, 

but they are not common.  So before changed data is committed, every transactions 

checks whether another transactions made any conflicting modifications to the same 

datasets. If there are conflicts identified, the transaction will be rolled back. This 

strategy can work well if updates are very rare, and therefore chance for conflicting 

are relatively low. In this situation rolling back will be cheaper that locking data set 

exclusively as in pessimistic locking [7]. 

Several of the data stores including Voldemort and NuoDB implement multi version 

concurrency control (MVCC). In concurrent access is not managed with locks but by 

organization of many unmodifiable chronological ordered versions. Multiple versions are 

stored, but only the one is marked as current, all the rest are marked as obsolete. 

Using this strategy, a read operation can see the data as it was when it started reading, 

while a concurrent process can accomplish write operation on the same dataset in the 

meantime [47]. 

Besides consistency cutbacks MVCC also causes higher space requirements as multiple 

versions are kept in parallel. So usually to work with MVCC it’s necessary to have a 
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garbage collector that deletes no longer needed versions  and also some  conflict 

resolving algorithm to deal with inconsistencies. This causes additional system 

complexity. 

A number of NoSQL databases allow applications to implement optimistic concurrency 

control by providing primitives such as “check and set” (CAS). The CAS method is used 

to ensure that a write will be performed only if no other client operation performed 

another write since the data was last read.  

Some of the NewSQL solutions also implement innovative approaches to concurrency 

control. NuoDB is primarily relying on the MVCC as discussed above. On the contrary, 

VoltDB has a different approach regarding the concurrency. This data store assumes 

that the whole data base can fit into memory, meaning that there is enough memory 

and transactions are short-lived. Based on these assumptions, transactions are executed 

sequentially in a lock-free, single – threaded environment.  
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Table 4 summarizes concurrency control mechanisms used in NoSQL/ NewSQL 

databases. 

 
NoSQL/NewSQL databases 

 

 
Concurrency Control 

 
Key Value Store 
 

 
Voldemort 

 
MVCC with vector clock 
 

 
Document Store 
 

 
MongoDB 

 
Readers-writers lock 

Column Family 
Store 

 
Cassandra 

Client-provided timestamps are used to 
determine the most recent update to a column. 
The latest timestamp always wins and eventually 
persists 

 
Graph Database 

 
Neo4j 
 

Write locks are required on nodes and 
relationships until committed 

 
NewSQL 

 
VoltDB 
 

Single threaded model, no concurrency control 

 
NuoDB 
 

MVCC 

 

Table 4: The NoSQL/ NewSQL concurrency control techniques 

4.5. Replication 

Besides the increasing scalability and improved performance though load balancing, 

replication also brings better reliability, fault tolerance, and durability. As we have 

already mentioned in the “CAP Theorem” chapter Eric Brewer noticed, that only full 

availability or full consistency can be guaranteed at one time in distributed systems [6]. 

Thus if all the replicas in the master are updated synchronously, the system wouldn’t 

be available until all slaves had committed the operation. But if the messages got lost 

due to network problems, then the system won’t be available until all slaves had 

committed the write operation. 
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This solution might be not suitable for systems that rely on high availability, like Web 

retailers as Amazon [52] or internet trading systems as eBay [53]. Therefore these 

systems usually implement asynchronous or lazy replication which may result in a 

situation where reads on replicas might be inconsistent for a short period of time. This 

approach is use by a majority of NoSQL systems while those systems can be classified 

according to Brewer [6] as eventually consistent or providing BASE (as an opposite of 

ACID). On the contrary in synchronous or eager replication, all the changes are 

propagated to nodes prior to sending an acknowledgement about successful write 

operation. This actually means that an additional latency is introduced in execution of 

write operation, because it will incorporate all the propagation time. This may result 

in serious performance degradation and therefore this approach is rarely used in NoSQL 

systems. 

Another determining characteristic is a mode of replication, there two types: master-

slave and master-master replication.  

The master-slave replication is a scheme where a single node is defined as master and 

this is the only node which accepts and processes write requests (see Figure 11.a). Then 

changes are being propagated from master to the slave nodes. Two of the four NoSQL 

databases considered in this final paper support master-slave replication: MongoDB and 

Neo4j. 

In multi-master replication (shown in Figure 11.b) multiple nodes can process write 

requests, which is then propagated to the remaining nodes. So basically in master-slave 

the propagation works in one directions only: from master to slave, which in multi-

master replication propagation can happen in various directions. 
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Figure 11 demonstrates differences between two types of replication: master-slave and 

multi-master. 

 

Figure 11: replication modes [7] 

The remaining NoSQL databases which are surveyed in the final paper, Project 

Voldemort and Cassandra, support masterless replication, which is similar to multi 

master described above, because multiple nodes accept “write” requests. However it’s 

called masterless replication, because all nodes play the same role in replication system, 

so there is no master. Note that the data stores with masterless replication mechanism 

also use consistent hashing as a partitioning strategy. The replicas placement strategy 

is very much related to node position on partitioning ring.  

In both Cassandra and Voldemort, the total number of replicas across the cluster is 

referred to as the replication factor [20] and it’s a configurable system parameter. The 

configuration tuning of RF have a major impact on the performance and we have 

practically observed that with Cassandra during one of the experiments we conducted 

as a part of the Final Project. We performed data loading using 3-nodes  
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Cassandra cluster: once with “replication factor” (RF) set to 1 and another time with 

RF set to 3, which makes the write operation fully durable. The result was interesting 

although theoretically predictable: loading time with higher RF setting was more than 

two times longer for the same size of the database (see Figure 17). 

NewSQL replication models can be considered as masterless or multi-master, because 

any node can be receiving update statement. In NuoDB, the rows are internally 

represented as “in memory” objects which asynchronously communicate to replicate 

their state changes. VoltDB has a transaction/session manager which is responsible for  

getting the updates and forwarding it to all replicas to be executed in parallel.   
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Table 5 describes different replication techniques used in NoSQL/ NewSQL databases. 

 
NoSQL/NewSQL databases 

 

 
Replication 

 
Key Value Store 
 

 
Voldemort 

 
Masterless, asynchronous replication. 
Replicas are located on the first R nodes moving over the 
partitioning ring in a clockwise direction. 
 

 
Document Store 
 

 
MongoDB 

 
Master-Slave, asynchronous replication. 
Designed for off-line operation. Multiple replicas can 
maintain their own copies of the same data and 
synchronize them at a later time. 
 

Column Family 
Store 

 
Cassandra 

 
Masterless, asynchronous replication. 
Two strategies for placing replicas: replicas are placed on 
the next R nodes along the ring; or, replica 2 is placed on 
the first node along the ring that belongs to another data 
center, with remaining replicas on the nodes along the 
ring on the same rack at the first 
 

 
Graph Database 

 
Neo4j 
 

 
Master-slave, but can handle write requests on all server 
nodes. Write requests to slaves must synchronously 
propagate to master. 
 

 
NewSQL 

 
VoltDB 
 

 
Updates executed on all replicas at the same time 

 
NuoDB 
 

 
Multi-master (distributed object replication). 
Asynchronous 
 

 

Table 5: The NoSQL/ NewSQL replication modes 

4.6. Partitioning 

When we’re dealing with Big Data, while huge amounts of data and very high read and 

write request rates exceed the capacity of one machine, databases have to be 

partitioned across clusters. Traditional relational databases (RDBMS) usually do not 

support horizontal scalability, because of their normalized data model and ACID 
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guarantees. Consequently doubling of number of servers in RDBMS clusters does not 

double the performance. This problem is one of the reasons why big Web players like 

Google, Amazon and Facebook started to develop their own data bases, which are 

designed to scale horizontally and therefore satisfy the very high requirements on 

performance and capacity of these systems [5]. 

There are multiple techniques of partitioning used by various data stores. Most NoSQL 

and NewSQL data stores do implement some kind of horizontal partitioning or sharding, 

which actually involves storing sets of rows into different segments/ shards. On the 

contrary the vertical partitioning involves storing sets of columns into different 

segments and distributing them accordingly. The partitioning strategy is strongly 

depending on data model. For example in Column Family data stores they usually 

support vertical partitioning, which is natural because partitioning segments containing 

predefined sets of columns. 

Since data models of key-value, document data stores and column-families databases 

stores are very key oriented, the two major strategies related to horizontal partitioning 

are also key oriented.  

 First is called range partitioning - this strategy distribute datasets to partitions 

residing on different servers based on ranges of a partition key. Initially routing 

server splits the whole dataset by the range of their keys. Afterwards every node 

is responsible for storing and read/write handling of a specific range of keys. The 

advantage of this approach is that query by range might become very efficient, 

because the neighbor keys usually reside on the same node (within the same 

range). However there are some disadvantages of this approach, such hot spots 
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and load-balancing issues. For example, since the routing server is responsible 

load balancing, key load allocation and partition block advices  - means that the 

processing will be always concentered in that one server (or a  few servers when 

routing machine is replicated).  So the availability of the whole cluster depends 

on that specific routing machine, if it fails it may seriously disturb cluster work. 

 The second partitioning strategy called consistent hashing provides higher 

availability and simpler cluster structure comparing to range partitioning. This 

shared nothing technique works as follows: the dataset is represented as a ring 

or circle, which is divided into a number of ranges equal to a number of available 

nodes, and every node, is mapped to a corresponding point on the ring.  

Figure 12 illustrates consistent hashing on an example with four nodes - N1 to N4. 

 

Figure 12: consistent hashing example [7] 
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 To determine the node where the data object should be placed, the system 

calculates the hash value of the object’s key and finds its location on the ring. 

In the example from Figure 12, object a is located between nodes N4 and N1.  

 After that the ring is walked clockwise until the first node is encountered, and 

the object gets assigned to that node. Accordingly, object a from Figure 12 gets 

assigned to node N1.  

 Consequently, each node is responsible for the ring region between itself and its 

predecessor; in Figure 12: node N1 is responsible for data range 1, node N2 for 

data range 2, and so on [7].  

One of the advantages of the consistent hashing is that there is no need for a mapping 

service as in range partitioning and the target location of an object can be calculated 

very fast. Besides that this approach is also efficient in dynamic resizing: if nodes are 

added to or removed from the ring, only neighboring regions are to be reassigned to 

different nodes, and the majority of records remain unaffected [7]. However, 

consistent hashing might have a bad impact on range queries because adjacent keys are 

distributed across a number of different nodes. 

Among the systems surveyed in this paper the following use consistent hashing: Project 

Voldemort, Cassandra and VoltDB. 

Partitioning in graph databases is much more challenging problem than in other NoSQL 

databases. Key-value stores, column family databases document stores usually offer 

partitioning base on the key value, which is relatively stable and can be looked up by 

using searching techniques. On the contrary, graph databases do not have stable keys 

and those databases perform lookups, but by exploiting relations among entities.  

http://www.journalofcloudcomputing.com/content/2/1/22/figure/F2
http://www.journalofcloudcomputing.com/content/2/1/22/figure/F2
http://www.journalofcloudcomputing.com/content/2/1/22#B16
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Therefore there are 2 contradicting requirements with regards to the graph databases: 

first all the related nodes of the graph should be kept on one node in order to enable 

efficient traversal though it, on the other hand we can’t keep too many nodes on the 

same server, because it may cause heavy load and other performance issues. There are 

multiple graph data base partitioning mechanisms proposed [60], however their 

implementation is very limited in the actual Graph DB systems, because intensive 

rebalancing operations that may be a result of quickly changing data in the data store. 

The graph database system observed in this paper: Neo4j doesn’t implement a 

partitioning; however it offers a cache sharding.  

Sharding is a type of database partitioning that is used to separate very large databases 

into smaller, faster, more easily managed pieces called data shards [64]. 

NewSQL systems also provide various types of partitioning solutions. For instance VoltDB 

uses a consistent hashing approach in which each table is partitioned using a single key 

and rows are distributed among servers. Stored procedures can be executed on a single 

partition or on all of them; nevertheless, the drawback is that in VoltDB the user is 

responsible for selecting between these options. Another NewSQL solution analyzed in 

this final paper NuoDB uses a completely different approach for data partitioning [29]. 

A NuoDB deployment is made up of a number of Storage Managers (SM) and Transaction 

Managers (TM). The SMs are the nodes responsible for maintaining the data, while the 

TMs are the nodes that process the queries. Each SM has a complete copy of the entire 

data, which basically means that no partitioning takes place within the SM. 

Nevertheless, the underlying key-value store used by the SMs can partition the data by 

itself, although this is neither controllable nor viewable by the user. 
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4.7. Consistency 

Consistency is very strongly related to the partitioning implementation discussed in the 

previous chapter. In general there are 2 major types of consistency that can be 

distinguished: strong consistency and eventual consistency.  

Strong consistency ensures that when all the write requests are confirmed, the same 

data is visible to all the subsequent read operations. Usually strong (immediate) 

consistency can be obtained by synchronous replication or a complete lack of 

replication. However these 2 options are not acceptable for the purposes that NoSQL 

data stores are designed to, because it either introduces a large latency and impacts 

availability, or has a bad effect on scalability. 

Therefore most of the NoSQL data bases, including the systems analyzed in this paper, 

are implementing the 2nd type of consistency – eventual consistency. In the eventual 

consistency model the changes propagate to replicas through the system given 

sufficient time. It means that some nodes may be outdated (inconsistent) for some 

period of time. Asynchronous replication will lead to eventual consistency, since there 

is a lag between write confirmation and change propagation. 

While the majority of the NoSQL systems associated with the eventual consistency, 

many of them provide some level of configuration to set up the tradeoff between 

performance and consistency level. 

 One of the NoSQL system considered in this paper, MongoDB can achieve strong 

consistency by using 2 parameters: first set to read only from the master, 

meaning that only one node will be accessed for read and “read scalability” will 

be removed. Another way is to set “write concern” parameter to “replica 
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acknowledged”, which ensures that write is successfully completed on all the 

replicas. These techniques actually force the data store to the synchronous 

replication and therefore degrade performance. 

 Other two NoSQL databases: Project Voldemort and Cassandra use consistent 

hashing and masterless replication, those systems also use a quorum in the 

consistency. Quorum means a minimal number of replicas that must respond to 

a request for it to be considered as successful. For read operation they use “read 

quorum” and for write operations – it’s a separated “write quorum”. If the 

following statement is true: R + W > RF, where R is the “read quorum”, W is the 

“write quorum” and RF is the Replication factor (RF was explained in the 

“replication” chapter above), then we end up with a strong consistency data 

store.  

 One of the two NewSQL systems – VoltDB is strongly consistent, fully transactional 

DB whereas the other one NuoDB uses asynchronous replication and therefore 

can be defined as eventually consistent data store.  
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Table 6 summarizes partitioning and consistency types of all the NoSQL and NewSQL 

systems surveyed in this final paper. 

 
 NoSQL/NewSQL databases 

 

 
Partitioning   

 
Consistency 

 

Key Value Store Voldemort Consistent hashing Configurable, based on 
quorum read and write 
requests.  

Document Store MongoDB Range partitioning based on a shard 
key (one or more fields that exist in 
every document in the collection). In 
addition, hashed shard keys can be 
used to partition data. 

Configurable. 
Two methods to achieve 
strong consistency:  

 set connection to read 
only from primary 

 set write 
concern parameter to 
“Replica  
Acknowledged” 

 

Column Family 
Store 

Cassandra Consistent hashing and range 
partitioning (known as order 
preserving partitioning in Cassandra 
terminology) is not recommended due 
to the possibility of hot spots and 
load balancing issues. 

Configurable, based on 
quorum read and write 
requests. 

Graph Database Neo4j No partitioning (cache sharding only).  Eventual consistency. 

 
 

NewSQL 

VoltDB Consistent hashing. Users define 
whether stored procedures should run 
on a single server or on all servers 

Strong consistency. 

NuoDB No partition. The underlying key-
value store can partition the data, 
but it is not visible by the user 

Strong consistency. 

 

Table 6: The NoSQL/ NewSQL partitioning and consistency type 

4.8. Security  

Security is one of the most important aspects of modern data stores. Since different 

types of sensitive or personal data can be stored in NoSQL and NewSQL, security has 

become a major concern for a companies that are going to choose what technology to 

adopt. In this subsection, we’re going to survey the data stores and compare them with 

regards to the following: 
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 Authentication 

 Authorization 

 Auditing 

 Encryption 

In the article “Security Issues in NoSQL Databases” [8] from 2011 the researchers from 

Ben-Gurion University surveyed two of the systems that we relate to in this paper: 

MongoDB and Cassandra. 

They found various issues, such as lack of encryption in communication and lack of 

auditing in Cassandra. Nevertheless some of those issues were addressed in the most 

recent versions of those data stores and those security aspects no longer provide a 

cause for concern.  

In Tables 7 and 8 we summarize the AAA (Authorization, Authentication and Auditing) 

security features and the supported encryption correspondingly. 
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Table 7: The NoSQL/ NewSQL security: AAA 

 
 NoSQL/NewSQL databases 

 

 
Authentication   

 
Authorization 

 

 
Auditing 

Key Value Store Voldemort No No No 

Document Store MongoDB Yes, store 
credentials in a 

system 
collection. 

REST interface 
does not support 
authentication. 

Enterprise 
Edition supports 

also Kerberos 

Yes, permissions 
include read, 
read/write, 
dbAdmin and 
userAdmin. 

Granularity of 
collections 

No 

Column Family Store Cassandra Yes, store 
credentials in a 
system table. 

Possible to 
provide 

pluggable 
implementations 

Yes, similar to the 
SQL GRANT/ 

REVOKE approach. 
Possible to provide 

pluggable 
implementations 

Enterprise Edition 
only. 

Based on log4j 
framework. 

Logging categories 
include ADMIN, ALL, 

AUTH, DML, DDL, DCL, 
and QUERY. Possible 
to disable logging for 
specific key spaces 

Graph Database Neo4j No, however 
developers can 

create a Security 
Rule and register 
with the server 

No No 

 
 

NewSQL 

VoltDB Yes, users are 
defined in a 

deployment file 
that needs to be 
copied to each 

node 

Yes, roles are 
defined at the 

schema level, and 
each stored 

procedure defined 
which roles are 

allowed to execute 
it 

Yes, logging 
categories, include 
connections, SQL 

statements, 
snapshots, exports, 

authentication/ 
authorization, and 

others 

NuoDB Yes Yes, SQL-like Yes, logging 
categories, include 
SQL statements, 
security events, 

general statistics and 
others 
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4.9. Encryption 

This refers to mechanisms that encrypt data so that it will not be readable by 

unauthorized parties. A complete encryption solution should be present in at least three 

different levels: 

 Data at rest 

 Client to Server  

 Server to Server 

 
 

NoSQL/NewSQL databases 

 
Encryption support 

Data at rest 
 

Client / Server Server/ Server 

Key Value Store Voldemort Possibly if 
BerkleyDB is used as 

a storage engine 

No No 

Document Store MongoDB No, however a third 
party partner 

(Gazzang) provides 
an encryption plug-

in 

Yes – SSL based Yes 

Column Family 
Store 

Cassandra Enterprise Edition 
only. Commit log is 

not encrypted 

Yes – SSL based Yes, 
configurable: 
all server-to-

server 
communication
, only between 
datacenters or 

between 
servers in the 

same rack 

Graph Database Neo4j No Yes – SSL based No 

NewSQL VoltDB No No No 

NuoDB Native store does 
not support it. 

Theoretically, it 
could use a 

pluggable store that 
supports it 

Yes Yes  

 

Table 8: The NoSQL/ NewSQL security: encryption 
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The main observation regarding security is that NoSQL solutions are still not as mature 

as those included in traditional RDBMS systems.  

Another interesting finding is that MongoDB and Cassandra offer additional security 

functionalities in their enterprise editions, because security is a particularly important 

concern for large companies. For example, data-at-rest encryption and auditing are 

available only in Cassandra Enterprise Edition. 
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5. Applications and scenario suitability 

Each one of the articles describing various data stores [18] [19] [21] [24] [25] provides 

some sort of recommendation what use-case every system is most suitable for.  

Jablonsky et al also provided some recommendations for the databases they were 

focusing on in their article [5]. In this paper we’ll go over each one of the data store 

categories as defined in the “Taxonomy” chapter and try to evaluate what scenarios 

would benefit from particular features of each one of the data bases types. 

5.1.1. Key-Value stores 

Due to their data model key value stores are useful for simple operations, which are 

based on key attributes only. In order to speed up a user specific rendered webpage, 

parts of this page can be calculated before and served quickly and easily out of the 

store by user IDs when needed. There are also some other use cases for key-value based 

data stores, for example KV stores are widely used for the following application types: 

 Caching 

o Since most key value stores hold their dataset in memory, they are 

oftentimes used for caching of more time intensive SQL queries. 

 Queuing 

o Some K/V stores supports lists, sets, queues and more. 

 Distributing information / tasks 

 Keeping live information 

o Applications which need to keep a state can use K/V stores easily. 

 MySQL-like Applications, dynamic queries, many data updates 
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5.1.2. Column Family 

Column family stores only store a key value pair in one row, if a dataset needs it. It’s 

completely different approach from the traditional relational databases that would 

store a null values in each column a dataset has no value for. Therefore column family 

are more suitable in domains with huge amounts of data with varying numbers of 

attributes. Thus the main use cases for CF data stores would be: 

 Keeping unstructured, non-volatile information 

o If a large collection of attributes and values needs to be kept for long 

periods of time, column-based data stores come in extremely handy. 

 Scaling 

o Column based data stores are highly scalable by nature. They can handle 

an awful amount of information. 

 Search engines, log data analytics. 

5.1.3. Document stores 

Document stores offer multi attribute lookups on records which may have complete 

different kinds of key value pairs, that’s one of the reasons those systems are very 

convenient in data integration and schema migration tasks 

 Those data stores usually also support nested data structures, links and JSON 

documents besides that document stores such as MongoDB are considered to be very 

easy to maintain and are therefore suitable for flexible web applications. Most popular 

use cases are: 

 Nested information use cases 
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o Document-based data stores allow you to work with deeply nested, 

complex data structures 

 Real time analytics 

 Logging  

 Storage layer of small and flexible websites like blogs 

 Different JavaScript friendly applications 

o Hence one of the most critical functionalities of document-based data 

stores are the way they interface with applications: using JS-friendly JSON. 

Key value stores, document stores and column family stores have in common, that they 

do store deformalized data in order to gain advantages in distribution. As a result 

relationships must be handled completely in the application logic. The famous Social 

Networking domain problem - friend-of-a-friend and similar recommendation queries 

would lead to many queries, performance penalties and complex code in the application 

layer if one of these databases was used for such use cases [5]. The remaining NoSQL 

data store category – Graph databases are much more appropriate solution in this 

domain.  

5.1.4. Graph Databases 

Graph databases, such as Neo4j are suitable in scenarios as: 

 Pattern matching 

 Dependency analysis 

 Recommendation systems 

 Social networking applications 

 Solving path finding problems in navigation systems 
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Some graph data bases and Neo4j [19] in particular are fully ACID compliant. 

Nevertheless they are not as sufficient as other NoSQL types reviewed above in 

scenarios other than handling graphs and relationships 

5.1.5. NewSQL 

NewSQL databases are providing ACID and supporting transactions, therefore the 

natural match for NewSQL would be applications that involve OLTP (on line transaction 

processing). For example, according to Prof. Stonebreaker [49] NewSQL would fit into 

the following fields: 

 Web-based applications such as  

o Multi-player games,  

o Social networking sites, and  

o Online gambling networks.  

 Smartphone applications that use the phone as a geographic sensor and provide 

location-based services.  

 Machine-to-machine (M2M) applications. 
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6. Survey of articles discussing performance 

In this chapter we provide a short survey on a few papers dealing with NoSQL/ NewSQL 

database performance comparison. 

6.1. “Yahoo! Cloud Serving Benchmark” [2] 

First we must provide a brief description of the YCSB benchmarking suite used in the 

experiments described in all the articles reviewed in this part of the paper. YCSB 

acronym stands for Yahoo! Cloud Serving Benchmark. YCSB system has been developed 

by a team of developers in 2010 and its main goal was to come up with an extensible 

and generic framework for the evaluation of key-value stores [2].  

YCSB allows to generate synthetic workloads which are defined as a configurable 

distribution of CRUD (create, read, update and delete) operations on a set of records. 

Records have a predefined number of fields and are logically indexed by a key. This 

generic data model can easily be mapped to a specific key-value or column-based data 

model. Figure 13 describes YCSB client architecture as it was given in the original article 

by Brian Cooper [2]:  

Figure 13: YCSB high-level design [2] 
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The reason for YCSB’s popularity is that it comprises a data generator, a workload 

generator, as well as drivers for several key-value stores, some of which are also used 

in this evaluation. 

6.2. “A comparison between several NoSQL databases with comments and 

notes” [51] 

The authors of that article are trying to comment on the various NoSQL (Not only 

Structured Query Language) systems and to make a comparison between them. Initially 

they provide a definition for the term NoSQL, ACID and BASE and indicate some of the 

differences between NoSQL approach and the traditional RDBMS. Further they are trying 

to determine “what to compare” and come up with the taxonomy, which is similar to 

the one used in this paper, but slightly different: 

 Wide Column  

 Document Store  

 Tuple Store 

 Eventually Consistent Key Value Store  

 Graph Databases  

Further they propose two approaches for the comparison - one is A QUALITATIVE and a 

QUANTITATIVE. 

 QUALITATIVE evaluation is done by comparing what features are available for 

the NoSQL databases taken into account.  

 For QUANTITATIVE evaluation criteria they used two different sets, one related 

to size and one related to performance.  
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The performance measurements listed in the last few paragraphs and included in the 

figures is obtained from [2] which is describing a laboratory based benchmark which 

uses YCSB (Yahoo! Cloud Serving Benchmark) as a measurement tool. The benchmark 

was run on 120 million records of small size (1kB), 6 node, and 0.12 TB equivalent 

installations of the three products. Figures 14 and 15 show the results of the 

experiments. 

  

Figure 14: workload A latencies 
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Figure 15: workload B latencies 

 

Finally the conclusion that the authors come to is that even though the SQL and the 

NoSQL databases have some shared features, but they are not similar in their behavior. 

Therefore they cannot be used interchangeably for solving any type of problem and for 

a particular given problem one shall consider both types and choose between them.  
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6.3. ”NoSQL Databases: MongoDB vs Cassandra” [55] 

This article is mainly focusing on the comparison two of the most popular NoSQL 

databases: MongoDB and Cassandra. In the related work chapter the authors relate to 

the same famous article describing YCCB in action [2] and they point out that Brian F. 

Cooper et al. analyzed NoSQL databases and MySQL database performance using YCSB 

benchmark by relating latency with the number of operations per second [2]. In their 

paper they are prioritizing different execution parameters.  

Further the paper provides a definition for the terms NoSQL, BASE and define the 

taxonomy which is exactly the same as we use in this final paper.  

The article also gives a brief description for MongoDB and Cassandra and summarizes 

both data stores features as follows in Table 9:  

 

Table 9: MongoDB and Cassandra features 
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The paper describes the experiments that were conducted using YCCB (Yahoo! Cloud 

Serving Benchmark). YCSB has a client that consists of two parts: workload generator 

and the set of scenarios. The scenarios, known as workloads, are combinations of read, 

write and update operations performed on randomly chosen records. The workloads 

that were used in the experiments described in the article are the following 

 Workload A: Update heavy workload. This workload has a mix of 50/50 reads and 

updates.  

 Workload B: Read mostly workload. This workload has a 95/5 reads/update mix 

 Workload C: Read only. This workload is 100% read. 

 Workload D: Read latest workload. In this workload, new records are inserted, 

and the most recently inserted records are the most popular.  

 Workload E: Short ranges. In this workload, short ranges of records are queried, 

instead of individual records. 

 Workload F: Read-modify-write. In this workload, the client will read a record, 

modify it, and write back the changes. Because our focus is on update and read 

operations, workloads D and E will not be used. Instead, to better understand 

update and read performance, two additional workloads were defined: 

 Workload G: Update mostly workload. This workload has a 5/95 reads/updates 

mix.  

 Workload H: Update only. This workload is 100% update. 

Eventually after executing multiple experiments using YCCB and the workload 

mentioned above the authors come to the following conclusions: 

 With the increase of data size, MongoDB started to decrease performance 
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 Cassandra just got faster while working with an increase of data 

 Cassandra is faster than MongoDB, providing lower execution time independently 

of database size used in our evaluation.  

Thus, as overall analysis turns out that Cassandra show the best results for almost all 

scenarios.  

6.4. “Solving big data challenges for enterprise application performance 

management” [56] 

This article provides a comprehensive performance evaluation of six modern (open-

source) data stores: Apache Cassandra, Apache HBase, Project Voldemort, Redis, 

VoltDB, and a MySQL. They evaluated these systems with data and workloads that can 

be found in application performance monitoring, as well as, on-line advertisement, 

power monitoring, and many other use cases.  

Initially the paper provides a background on a large scale enterprise systems and APM. 

Large scale systems are heterogeneous and have many interdependencies which makes 

their administration a very complex task.     

Application Performance Management (APM) tools, provide a more sophisticated view 

on the monitored system, their purpose is to give administrators an on-line view of the 

system health.  These tools instrument the applications to retrieve information about 

the response times, as well as about failure rates, resource utilization, etc.  

The article then point out that APM has similar requirements to current Web-based 

information systems such as weaker consistency requirements, geographical 

distribution, and asynchronous processing. Because of this similarity of APM storage 

requirements to the requirements of Web information system applications, obvious 
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candidates for new APM storage systems are key-value stores and their derivatives 

(NoSQL and NewSQL). 

In the next chapter the authors provide a more thorough description of the use case 

and big data challenge, as following: in a highly distributed system, it is difficult to 

determine the root cause of performance degradations especially since it is often not 

tied to a single component, but to a specific interaction of components. System 

components are heterogeneous and there is no unified code base and often access to 

the entire source code is not possible. Thus, an in depth analysis of the components or 

the integration of a profiling infrastructure is not possible. To overcome this challenges, 

application performance management systems (APM) have been developed.  

In general the APM data is in general relatively simple. It usually consists of a metric 

name, a value, and a time stamp. With regards to the storage the queries can be 

distinguished into two major types:  

 Single value lookups to retrieve the most current value and  

 Small scans for retrieving system health information and for computing 

aggregates over time windows.  

Based on these properties they define a benchmark. Similar to other articles surveyed 

above in the chapter the benchmarking system used in the experiment was YCSB 

benchmark. For the experiment they chose each two of the following classes according 

to the classification presented by Cartell in [4]: 

 Key-value stores: Project Voldemort and Redis  

 Extensible record stores: HBase and Cassandra  

 Scalable relational stores: MySQL Cluster and VoltDB 
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In Table 10 we’ve summarized all the various workloads presented in the paper. 

Workload Type Read 
 

Write 
 

 
Scan 

 

Workload R  95% 5% 0% 

Workload RW 50% 50% 0% 

Workload W 1% 99% 0% 

Workload RS 47.5% 5% 47.5% 

Workload RSW 25% 50% 25% 

  

Table 10: workloads details 

The graph in Figure 16 below shows some of the results that were obtained using those 

workloads. 
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Figure 16: latency and throughput for various workloads 

Finally, the paper reports on details of their experiences with these systems from an 

industry perspective. They point out that Cassandra’s setup was relatively easy, since 

there are quick-start manuals available at the official website. Another observations 

was a linear scalability for Cassandra, HBase, and Project Voldemort in most of the 

tests. Cassandra’s throughput dominated in all the tests, however, its latency was in 

all tests peculiarly high. 

The configuration of Project Voldemort was easy for the most part. However, in 

contrast to the other systems, we had to create a separate configuration file for each 

node. Regarding the performance - Project Voldemort exhibits a stable latency that is 

much lower than Cassandra’s latency. 

The VoltDB configuration was mostly inspired by the VoltDB community documentation 

that suggested the client implementation and configuration of the store [37]. The 
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VoltDB developers benchmarked the speed of VoltDB vs. Cassandra themselves with a 

similar configuration, but only up to 3 nodes – I’ve described that experiment in the 

seminar report (Appendix A). Performance wise the observation is the following: VoltDB 

exhibited a high throughput for a single node, however the multi-node setup did not 

scale well. 

It is worth to mention that the results presented in the article are valid also for related 

use cases, such as on-line advertisement marketing, click stream storage, and power 

monitoring. Unlike previous work, this paper focused on the maximum throughput that 

can be achieved by the systems. One of the future plans mentioned in the article is to 

determine the impact of replication and compression on the throughput in the APM use 

case.   
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7. Final Project: NewSQL/ NoSQL in Social Networking  

In this chapter we provide a description of the Final Project (see Appendices B and C). 

7.1. Background 

As part of the Final Project implementation we have performed Practical evaluation of 

NewSQL/ NoSQL systems using advanced benchmarking system called BG. BG is a 

benchmarking system that rates data store by processing interactive social networking 

actions [9]. It has been inspired by prior benchmarks that evaluate cloud services such 

as YCSB [2] [62] and YCSB++ [63], e-commerce sites, and object-oriented and 

transaction processing systems [61].   

We used Cassandra as an example of NoSQL data store. This data store can be 

considered as a definitive representative of NoSQL movement since it’s one of the most 

popular NoSQL databases [34] and it’s built using various concepts of two major initial 

NoSQL projects: Dynamo [1] and BigTable [15].  

We have chosen NuoDB as NewSQL data store, since it’s an independent project which 

became widely used in the Cloud environment. Internally it has implemented various 

techniques that were touched base above, such as MVCC [47] and asynchronous 

replication. 

We used BG because of the conceptual data model (Appendix B) which is more complex 

than that of the YCSB and YCSB++. Besides the schema, BG main contributions are two 

folds. First, it emphasizes interactive social actions that retrieve a small amount of 

data. Second, it promotes the amount of unpredictable data produced by a solution as 

a first class metric for comparing different data stores with one another [59].  
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BG populates data base with a social graph consisting of a fixed number of members, 

friends per member, and resources per member. It consists of social networking actions 

such as extend a friendship invitation to a member and view a member profile. See 

Table 11 for a list of the BG actions considered in this study.  

 

 
     

View Profile (VP) 
     

List Friends (LF) 
     

View Friend Requests (VFR) 
     

Invite Friend (IF) 
 

Add to 
Circle 

Follow 
 

Subscribe 

Accept Friend Request (AFR) 
     

Reject Friend Request (RFR) 
     

Thaw Friendship (TF) 
 

Remove 
from 
Circle 

Unfollow 
 

Unsubscribe 

View Top-K Resources (VTR) 
     

View Comments on a Resource 
(VCR) 

     

Post Comment on a Resource 
(PCR) 

  

Reply to 
a Tweet 

Send a 
Recommendation 

 

Delete Comment on a Resource 
(DCR) 

  

Delete 
Reply to 
a Tweet 

Withdraw 
Recommendation 

 

 

Table 11: Social Actions 

We use BG to establish two important metrics:  

1. Database population time, i.e. measure the time to fully load BG database 

including 10000 members with 100 friends per user and 100 resources per user. 

Load is done using 10 loading threads. 

http://www.facebook.com/
http://plus.google.com/
http://www.twitter.com/
http://www.linkedin.com/
http://www.youtube.com/
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2. Social Action Rating (SoAR): this rating compute the number of concurrent 

actions performed by a system when a fixed percentage of requests (say 98%) 

observe a latency equal to or lower than a pre-specified threshold (say 100 msec) 

with the amount of unpredictable data less than a fixed threshold (say 0.01%) 

for some fixed duration of time (say 10 minutes). The values in the parenthesis 

are inputs to BG. BG's output is the SoAR rating of its target data store [59]. 

7.2. Implementation 

In the following chapters we describe briefly our implementation of BG data model 

schema in Cassandra and NuoDB data stores. A detailed description is given in the final 

project report. 

7.2.1. Cassandra Schema Description 

 Data is stored in the following 3 Column Families: 

o Members 

o Resource 

o Manipulation 

 Profile and thumbnail images for a user are stored as Blobs (Binary Large OBjectS) 

columns within Members column family. 

 PengingRequests and ConfirmedFriendship are stored as a collection-type 

columns within Members column family. Those columns contain sets of user ids 

of the corresponding users. 

 We decided to implement Manipulation as a separate Column Family and not as 

a collection-type column within Resources, because of the following 2 reasons: 

o The length of the collection-type field is limited (CQL3 limitation is 64K) 
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o In Cassandra 1.2 they do not support non-primitive type as a member of 

collection column. According to Datastax: it might be possible to support 

such functionality in the future if that is deemed useful, but it will require 

additional work [20] 

 Primary Keys 

o "Members" primary key is userid 

o "Manipulation" primary key is manipulationid (mid) 

o "Resource" has a compound primary key of (walluserid, rid) 

 Indexes 

o The "Resource" column family is also indexed on creatorid 

o The "Manipulation" column family is also indexed on resourceid (rid) 

 

7.2.2. NuoDB Schema Description 

 Data is stored in the following tables:  

o users 

o friendship  

o resources  

o manipulation 

 Friendship is stored in one table, "friendship", as two records for every confirmed 

friendship. 

 Aggregates are calculated by issuing aggregate queries. 

 Profile and thumbnail images for a user are stored in the file system. 

 Indexes 
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o The "users" table is indexed on userid. 

o The "friendship" table is index on friend1 and friend2. 

o The "resources" table is indexed on resourceid and walluserid (the userid 

for the wall, where the resource is posted on). 

o The "manipulation" table is indexed on manipulationid and resourceid. 

7.2.3. Social Actions 

We’ve noticed that the design and implementation of the required social actions for 

NewSQL database as NuoDB which is almost fully SQL-compliant [29] usually requires 

much less effort than of implementation of corresponding NoSQL client. Table 

summarizing social actions implementation can be found in the final project report 

(Appendix B).  

Experiment setup and execution details including screen captures can be seen in the 

attachment for final project report (Appendices B and C).  

That’s an interesting outcome of this investigation is the observation that NuoDB 

operates much faster during the initial Social graph data load (data population). 

This is an obvious advantage of NoSQL databases related to the fact that there are less 

relation between column families than in tables within relational schema.  

7.3. Results 

More detailed explanation on the experiment setup (database installation/ access), 

configuration parameters (SLA, RF) as well as the table providing parameters for various 

workloads (VeryLowUpdate, LowUpdate and High Update) can be found in the final 

project report (Appendix B). 

Figure 17 displays data base loading time for the configurations described above. 
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Figure 17: Database loading 

Relational databases in general are more suitable for data loading when relations are 

known up front and reflected in the schema accordingly. Besides that we have noticed 

that when Cassandra is configured with “non-durable write” (replication factor less 

than the number of nodes), then the loading performance is much higher comparing to 

“durable write” (replication factor equals to the number of nodes). 

On the other hand Cassandra has shown a better performance during the experiment 

emulating interactive social actions. 
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Figure 18 shows experimental results obtained for the configurations described above. 

 

Figure 18: SoAR rating of databases using different workloads 

It can be explained by decentralization features as well as lack of normalization [18] 

which makes NoSQL database easily scalable and showing better results in distributed 

application when multiple clients perform concurrent actions. The latest is a result of 

special architecture characteristics contributing to Cassandra’s write: eventual 

consistency, lack of locking mechanism and usage of in memory structures called 

memTable. Same theoretical observation has been made by Grolinger et al. in their 

article “Data management in cloud environment” when they classified Cassandra use 

case as “heavy write load environment” [7]. 
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8. Conclusions 

In the recent past, cloud computing along with distributed web and mobile applications 

dictated a new storage and processing requirements for data bases. Those demands 

were more challenging than the traditional database techniques can handle and as a 

result new architectures started to emerge. Two major categories that define 

themselves as alternatives to the traditional SQL databases are NoSQL and NewSQL 

stores.  

In this paper, we did a detailed comparative study of NoSQL and NewSQL data stores on 

several parameters, both technical and non-technical. We performed comparison based 

on data model, querying capabilities, concurrency control, replication, scalability, 

partitioning strategies, consistency models and security features. Furthermore we have 

discussed use-cases suitability and possible applications in which each type of NoSQL/ 

NewSQL databases can be used.  

Additionally, we have also surveyed a number of articles dealing with performance 

analysis and quantitative comparison of various data stores based on the results 

obtained by using YCSB benchmarking system.  

Finally we have presented the experiments that we conducted as a part of the Final 

Project implementation. The project was dealing with an evaluation of performance of 

NoSQL/ NewSQL data stores in the environment emulating social actions network (BG 

benchmark suite). The practical results obtained during the Final Project were 

comprehensively analyzed in this paper. 

In summary, there is number of NoSQL/NewSQL databases types with differing 

capabilities. There are a variety of existing and newly-emerging applications that can 
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benefit from principles and techniques provided by those systems. The comparison 

among the most popular NoSQL/NewSQL data stores along with the description of the 

possible use cases provided in this paper may provide additional assistance for 

practitioners on choosing the best data storage solution for their application needs. 
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Appendices 

 

Appendix A – Seminar report 

Report for the seminar “Traditional SQL, NoSQL or NewSQL?” has been prepared within 

research-seminar course “Database Systems and Data Mining” (22953 – 2014a).  

 

Appendix B - Final Project report 

Report on the Final Project “Practical evaluation of NoSQL/NewSQL systems”,  

Prepared under the supervision of Prof. Ehud Gudes (February 2015)                     
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Appendix C - Final Project implementation 

Our Cassandra Client implementation has been evaluated by the creators of BG 

benchmark in the University of Southern California and they requested to post it on the 

official BG benchmark Web page in.  

That is the URL with the description and download details for Cassandra Client that was 

implemented as a part of Final Project:  

http://bgbenchmark.org/BG/CassandraClient.html 

 

http://bgbenchmark.org/BG/CassandraClient.html

