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Abstract  

The software defined networking (SDN) paradigm separates the control plane from the data 

plane, where an SDN controller receives requests from its connected switches. 

Reassignments between switches and their controllers are performed dynamically, in order 

to balance the requests between SDN controllers. Most dynamic assignment solutions use a 

central element to gather information requests for reassignment of switches. Increasing the 

number of controllers causes a scalability problem, when one super controller is used for all 

controllers and gathers information from all switches. In a large network, the distances 

between the controllers are sometimes a constraint for assigning those switches. In this 

thesis, we present a new approach to solve the well-known load balancing problem in the 

SDN control plane with less load on the central element while meeting the maximum 

distance constraint allowed between controllers. We define an architecture with two levels 

of load balancing. At the top level, the main component called Super Controller, arranges 

the controllers in clusters, so that there is a balance between the loads of the clusters. At the 

bottom level, in each cluster there is a dedicated controller called Master that performs 

reassignment of the switches in order to balance the loads between the controllers. We 

provide the Dynamic Controllers Clustering algorithm, which is a two-phase algorithm for 

the top level load balancing operation. The load balancing operation takes place at regular 

intervals. The length of the cycle in which the operation is performed can be shorter, since 

the top-level can run independently of the bottom level. Shortening the cycle time enables 

more accurate load balancing results. Theoretical analysis demonstrates that our algorithm 

provides a near-optimal solution. The simulations of our algorithm show a five-times 

improvement compared to previously-known algorithm.  
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1. Introduction 

1.1 Background 

1.1.1 Software Defined Networking  

In recent years the volume of media in general has been increasing. There is a growing 

demand for network expansion and flexibility which allow changes [26, 31,32]. To enable 

this flexibility Software Defined Networking (SDN) has been developed. SDN replaces the 

need of complex protocols and communication components that have specific functionality 

and require direct configuration, with applications in high level language that run on the 

network. Through these applications, network administrators and researchers can control 

network components, configure them centrally, and develop various network management 

algorithms. In SDN administrators and researchers try new services by using different 

applications without having to change the hardware components, which do not have to be 

coordinated with a particular manufacturer. 

1.1.1.1 Structure 

The general architecture of an SDN structure is depicted in Figure 1 [7]. As illustrated in the 

figure, the Application Layer is separated from the Infrastructure Layer by the Control 

Layer that provides abstraction and a general view of the resources on the network. The 

Control Layer is used as a Network Operating System (NOS). The middle layer, called the 

Control Plane, has a controller that is responsible for the logic of how the data will be 

transmitted over the network, whereas the bottom layer, termed the Data Plane, comprises 

the data transfer components (i.e. switches, routers) that receive instructions from the control 

plane. The control layer provides an interface that facilitates the download of various 

applications, which are translated into data transfer rules and transferred to the data layer 

[27]. Application writing is done with high level language abstraction, which is easy to 

implement and maintain [9]. 

1.1.1.2 Control plane and data plane communication 

Each Network Device has a default controller address from which it receives data transfer 

information. The data from the hosts is routed by the Network Device components 

according to the rules stored in a Flow Table of each data element. These rules are set by the 

controller to which the component is connected and provide the Network Devices the 

knowledge of what to do with the data. The data comes in a sequence termed “flow” (for 

example, a sequence of packets). When there is no appropriate rule for the requested 

sequence, the Network Device sends a request to its Controller to which it is linked (usually 



 בס"ד

3 
 

with the first packet from the sequence). The controller receives the request and calculates 

the appropriate rules and sends its response. In order to maintain the most relevant and 

minimal  Flow Table, each rule has an expiration [7]. 

 

Figure 1: Software defined network architecture 

Figure 2 [29] depicts an example of a communication protocol called OpenFlow, which is 

one of the most common examples of communication between the control plane and the 

data layer. The communication in this protocol is via a secure channel that allows access 

through a remote controller to the Flow Table of the Network Device. This communication 

adds overhead to control messages, and may delay the results of the communication 

between the controller and the switch. 

 

Figure 2: OpenFlow protocol 



 בס"ד

4 
 

The SDN switches are simple and general, and can be supplied by different manufacturers. 

To use this protocol there is a minimum requirement of the Network Device to enable an 

interface by which rules can be embedded in its Flow Table. Figure 3 depicts the basic 

framework of such a flow table. Each entry in the table is for a particular flow [3], which is 

linked to a counter for statistical purposes and an action that is performed when the 

appropriate flow arrives. In the OpenFlow protocol, there are three options for handling a 

packet: (1) Transfer to the appropriate port (2) Delete (3) Transfer for processing in the 

controller. 

 

Figure 3: Flow table headers 

The OpenFlow was the pioneer protocol that was first applied to the networks of universities 

and colleges, and later to other networks. This resulted in the flexibility of introducing new 

inventions into the world of communication networks. The OpenFlow is one of the common 

SDN interfaces that enable control over hardware devices via a central controller. Many 

vendors like HP, NEC, NetGear, and IBM provide switches that enable the networks to 

work with the OpenFlow protocol. 

Currently there are many SDN controllers such as Beacon, Floodlight, NOX, POX, Reu and 

various work environments for developing software defined networking platforms, for 

example the famous OpenDayLight [1, 2, 3].  

1.1.1.3 Multi-controllers in SDN 

When the network is relatively small, one controller is sufficient to answer all requests from 

the switches [30]. But when the network several controllers are required to divide the load 

and shorten the setup time, i.e., the time it takes for the request to arrive from the switch to 

the controller. A network with only one controller is depicted in Figure 4 [32] on the left. The 

setup time of flows arriving from sites 2 and 3 extends to 50 msec because they have to reach 

the controller located in site 1. However, on the right side of the figure, is a network with 

several controllers where each site has at least one controller, and the data does not need to 

be transferred to another site, thereby shortening the setup time. 
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Figure 4: Multi controllers vs. one controller in the SDN 

A large number of controllers is also required for the network to recover from a crash [35]. 

When there are several network controllers, the question arises of where to place them. 

Determining the location of controllers and switches that will be linked to each controller 

can be done according to parameters such as the distance between the controllers and the 

switches, controller's processing power, estimated communication latency, expected loads, 

short setup time, etc. This consumes time and resources, but usually takes place upon 

initialization of the network. Much work has been conducted on the subject of initial 

placement of controllers [38, 39, 40, 28]. 

1.1.1.4 SDN types 

In order for all controllers to see the same network conditions, they need to communicate 

with each other. There are distributed networks [16,17] like the one illustrated in Figure 5 

[32], which enable communication of controllers through a network of control lines designed 

for this purpose. Each controller on the distributed network informs others of changes it 

made to the network. Any event that comes from one of the controllers is received by the 

other controllers. If this is an event that requires a system change, all controllers update the 

system status [32]. This method limits the number of controllers that can communicate with 

each other due to the required overhead [6]. 
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Figure 5: Multi controllers in a distributed network 

Another option is to set two levels of controllers. At the top level there is one central 

controller termed Super Controller (SC), which is connected to the second level SDN 

controllers. The SC is responsible for communication between controllers by collecting and 

disseminating information [33,34]. Recently, multi-level architectures have been proposed, 

where the lowest level of controllers are linked to the data plane and the other levels are 

connected so that one controller in each level is connected to several controllers in the level 

below it. In this hierarchical method, a controller in a particular layer can answer a request 

that is included in the field of switches that it manages. If the target switch of the request is 

not included in the controllers' switches, it passes the request upward in the hierarchy 

[37,36]. 

1.1.2 Load balancing 

1.1.2.1 Levels 

As networks expand they can contain more data, thus there is need to balance the loads 

intelligently. Figure 6 shows two levels in the network where the load balancing operation 

can take place. At the bottom level, the requests from hosts should be linked to the switches 

in order to avoid overloading the switch. These assignments enable hosts to receive services 

in reasonable quality time [19]. At the top level, there are requests that come from switches 

to controllers. These requests are generated when the switch needs information from the 

controller about the coming data. When the controller is overloaded, its response time for 

each request is lengthened, and if the number of requests exceeds the controller's processing 

power then requests may be lost. When balancing the requests between controllers, the 

distance of each switch from the controller to which it is connected needs to be taken into 
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consideration, both for fast response time and also to reduce the overhead that results from 

the control messages  sent via the network. 

 

Figure 6: Load balancing levels in SDN systems 

Each switch has to be linked to a controller in order to receive the flow rules sent to it. The 

more common approach is that each controller has a single default controller to which the 

requests are sent. With this approach, the default controller of a switch can be changed, thus 

causing all requests that reach the switch to be sent to the new controller. Another approach 

is to allow each switch to be linked to several controllers. Thus each switch can transfer 

some of the flows to one controller, and other flows to another controller. The distribution of 

flows to different controllers enables better load regulation accuracy [9]. The disadvantage 

of this method is that, "allocation rules", are required in addition to the standard rules in the 

flow table, i.e., the “normal rules” that determine the operation for each flow, in order to  

decide which controller will serve the switch if the appropriate flow rule does not exist. 

Figure 7 [9] illustrates an example of a Flow Table operating according to this method. As 

shown in the flow table, the allocation rules determine the switch, from which the controller 

receives a response for a particular flow group. The column "forward to controller" provides 

the controller for each flow group. 



 בס"ד

8 
 

 

Figure 7: Flow table with controllers for a switch 

Most of the existing switches do not support this approach, but perhaps advancements in its 

development will transpire in the near future. Nonetheless, there are load balancing methods 

that use this approach [9].  

1.1.2.2 Periodic balancing 

All load balancing approaches divide the timeline into cycles. At each start of the cycle, the 

load balancing operation is performed according to the load state as observed in the previous 

time cycle. This operation involves new assignments of switches to controllers to balance 

the load as much as possible between the controllers, assuming that the load state during the 

next cycle will be similar to the load state in the previous cycle. According to this 

assumption, the shorter the cycles, the more precise the load balances. Figure 8 illustrates 

the division of time into cycles. The run time of the load balancing algorithm, and the 

overhead required determines the length of the time cycle.  

 

Figure 8: Cycles in the timeline 
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1.2 Motivation and Goal 

Load balancing is done via a central component. In order to ensure that the main component 

is not a network bottleneck, algorithms and architecture must be developed that will allow 

network scalability for adding controllers without overloading the central component. Our 

goal is therefore to reduce the load on the main component without compromising the 

efficiency of the load balancing operation. 

When the network is large, it may be necessary to run different balancing algorithms on 

different parts of the network. In addition, flexibility in replacing the applied algorithms 

makes it possible to try different algorithms that have already been proposed in the literature 

and those that will be developed in the future. Our goal is therefore to develop architecture 

with this flexibility. 

The run time of the central element algorithm defines the bound on the time cycle length.  

Thus, the more the runtime in the central element increases (i.e., causing a larger time cycle), 

the less balance accuracy achieved in the balance operation. This is crucial in dynamic 

networks that need to react to frequent changes in loads [11]. Our goal is to reach a short run 

time of the cyclic operation, which will enable shortening each cycle of time. Short cycles 

enable accuracy in load balancing results. Precise results facilitate good response times by 

the controllers. As shown in Table 1, the time complexity of the various methods depends on 

the number of controllers and number of switches. When the number of controllers or 

switches increases, the time required for the balancing operation increases as well. Our goal 

was to find an algorithm with a short time complexity. The methods presented in the table 

are discussed in the related work section. The table only specifies the run time of each 

method. According to the first three methods the algorithm runs in one component and 

depends on the number of controllers and the number of switches. In the Hybrid Flow 

method, the algorithm runs in the super controller and other controllers but not 

simultaneously, thus the run time of the whole operation also depends on both the number of 

controllers and the number of switches. Our goal is to enable an architecture in which the 

processing power of the super controller and the controllers that run the balancing 

algorithm, are independent of one another, thereby enabling shorter run time and more 

precise operation. 
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Table 1: Load balancing time complexity in the existing methods 

Approach Balance flow SMT DCP Hybrid Flow 

(fixed clusters) 

Time 

complexity 

O(max(N2(logN2),N2M))   O(MNlogN) O(MNlogN) O(NM2) 

 

1.3  Work Methods 

The data collection included reading many articles, while filtering the qualitative ones. 

Familiarity with the SDN world and experience in running SDN networks is part of 

Coursera's online "Software Define Networks" course. Participation in conferences related 

to SDN networks also contributed to the ability of analysis and the idea to develop an 

appropriate architecture. Testing the existing algorithms for balancing load in networks and 

comparing them elucidated their disadvantages and advantages and constituted the basis for 

the development of the DCC algorithm. In order to develop an algorithm we used 

knowledge from the world of algorithms, and performed a theoretical analysis of run times 

and optimizations. Furthermore we wrote a simulator in C# for an SDN network, with 

several controllers and a central component, thereby implementing the algorithm to balance 

the load, and check the results in comparison to another existing algorithm, which 

confirmed the theoretical analysis. In the framework of this research we published two 

articles, one in Consumer Electronics (ICCE) [15] and a the other in Science of Electrical 

Engineering (ICSEE) of the  IEEE International Conference [25]. 

1.4 Results 

Table 2 provides the difference in the run time complexity of our algorithm, DCC, in 

comparison to the existing algorithms that appear in the columns on the left. The three 

leftmost methods do not divide the controllers into clusters. 

Table 2: Comparison of  the runtime complexity  by type of algorithm 

Approach Without division into 

clusters 

With fixed clusters DCC (dynamic 

controller clustering) 

Time 

complexity 

Depends on the number 

of controllers and the 

number of switches. See 

Table 1. 

Depends on the number 

of controllers and the 

number of switches. See 

Table 1. 

SC: O(M3) 

Master: Depends on 

the algorithm 

implemented. 
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 In the method to the left of the DCC, called “hybrid flow” the clusters are fixed, while the 

DCC algorithm allows dynamic clusters. In the DCC algorithm, the load balancing 

operation runs on both the super controller and on one of the controllers within each cluster, 

i.e., the Master. Nevertheless, the operations are independent of each other, such that their 

run times are calculated separately. The run time of the super controller operation depends 

on the number of controllers, while the run time of the operation running on the Masters 

depends on the number of controllers and switches belonging to the cluster.   All networks 

uphold M << N [30], where M is the number of network controllers and N is the number of 

switches in the network. The SC operation, performed in regular time cycles, facilitates the 

distribution of each time cycle to allow small time periods in which the Master runs on the 

cluster. This maximizes utilization of the processing power in the network components, and 

shortens the cycle time in which the balancing is performed. 

Table 3 presents a comparison of the load balancing results of our method compared to the 

fixed clusters method. Each row in the table indicates a particular simulation where the 

cycles are the number of time cycles, and times are the number of times the simulation runs 

on the networks with different initial loads. Each row contains the results indicating the 

differences between clusters' load according to the method of the fixed clusters and our 

method of dynamic clusters.  

The most right-hand column provides the improvement factor of the dynamic cluster results 

compared to the fixed cluster results. On average, dynamic clustering outperforms fix 

clustering by a multiplicative factor of 5. 

Table 3: Fixed vs dynamic results 

 

 

 

 

Simulation 

no. 

No. of 

controllers 

No. of 

clusters 

Cycles Times Hybrid 

Flow - Fix 

clustering  

Dynamic 

clustering 

Improvement 

Factor  

1 16 4 20 961 319.81 61.64 5.2 

2 44 11 29 226 999.09 185.33 5.3 

3 70 14 18 865 1501.95 267.33 5.6 

4 42 14 28 974 1044.48 209.15 4.9 

5 30 6 22 203 610 109 5.6 
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2. Related Work 

In general, load-balancing methods split the timeline into multiple time slots (TSs) in which 

the load balancing algorithms are executed. At the beginning of each TS, a load balancing 

algorithm is run based on the input gathered in the previous TS. Therefore, the input is also 

assumed to be relevant for the current TS (see Figure 8 above). The load-balancing algorithm 

is executed by a central element called the Super Controller (SC). Some of the methods 

presented in the literature are adapted to dynamic traffic [14,8]. These methods suggest 

changing the number of controllers and their locations, for instance by turning them on and 

off in each cycle based on dynamic traffic. In addition to load balancing, other methods [4,8] 

deal with additional objectives such as minimal setup time and maximal utilization, which 

indirectly help balance loads between controllers. Changing the controllers' locations causes 

reassignment of all its switches; consequently, such approaches are designed for networks 

where time complexity is not a critical issue. 

Other methods [8,9,10] presented in the literature that adapt to dynamic traffic, cause less 

noise in the network, whereby the controllers remain fixed and the reassignment of switches 

is performed only when necessary. According to these methods the SC runs the algorithm 

that reassigns switches according to the dynamic information (e. g., switch requests per 

second) it gathers each time cycle from all controllers, and changes the default controllers of 

switches according to the loads observed. Note that each controller should publish its load 

information periodically to allow SC to partition the loads properly. 

In [9] a load balancing strategy called “Balance flow” focuses on controller load balancing 

such that (1) the flow-requests are dynamically distributed among controllers to achieve 

quick response, and (2) the load on an overloaded controller is automatically transferred to 

appropriate low-loaded controllers to maximize controller utilization. This approach 

requires each switch to receive service from certain controllers for different flows. The 

accuracy of the algorithm is achieved by splitting the switch load between controllers 

according to the source and destination of each flow (for example see figure 7).  

DCP-GK and DCP-SA, are greedy algorithms for Dynamic Controller Placement (DCP) 

introduced by [8]. These algorithms use the Greedy Knapsack (GK) and Simulated 

Annealing (SA) for the reassignment phase, respectively, dynamically change the number of 

controllers and their locations under different conditions and then reassign switches to 

controllers.  Contrary to the methods in [8,9], the algorithm suggested by [10] , called 

Switches Matching Transfer (SMT) , takes into account the overhead derived from the 
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switch-to-controller and controller-to-switch messages. This algorithm achieves good 

results as shown in [10]. 

In the approaches presented above in this section, all the balancing work is performed by the 

SC. Consequently, the load on the SC can be too large causing a bottleneck in the network 

and obviously constitute a scalability problem. The load mainly results from gathering 

information from all controllers on all the switches on the network, and the balancing 

operation being performed only by the central component. This motivated the “Hybrid 

Flow” architecture defined and introduced in [18], in which controllers are grouped into 

fixed clusters. In order to reduce the load on the SC, the reassignment process is performed 

by the controllers in each cluster, where the SC is used only to gather load data and send it 

to/from the controllers. “Hybrid Flow” suffers from long runtimes caused by the 

dependency that exists between the SC's and other controllers' operations as depicted in 

Figure 9. A controller that needs to reassign switches sends a request to the SC which 

gathers the data from all controllers and sends it to the controller. After the controller 

finishes its reassignments it has to update the SC that maintains the relevant data for other 

controllers. 

 

Figure 9: Dependency between two load-balancing levels in Hybrid Flow 

Another disadvantage of this method is that each controller makes decisions about the 

reassignments to the switches from a local view of the switches that are in its possession 

only. This is due to the fact that the information each controller receives from the SC is 

general information about the loads on the controllers and not the loads on the switches 

associated with them. A decision based on local evidence helps a local problem and does not 

always provide an optimal solution for the entire network. 

Several works in the field of SDN [12,13,24], deal with hierarchical architectures for SDN 

where some layers of controllers use the data plane level. These works, which concentrate 

on two primary objectives of response time and overhead, inspired us to take into account 

the overhead objective in addition to the response time. Liu et al. [12] discuss the optimal 

number of hierarchical layers needed to reduce the response time for a request, but keep the 
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overhead stemming from the number of layers low. Orion's architecture [13] defines the area 

controller and domain controller in able to add controllers with a minimum addition to the 

control flow and a shorter path in the hierarchical network, which influence the overhead. 

Bohle et al. [24] show an implementation of a hierarchical network that enables network 

scalability and increases the throughput. 
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3. Model 

In this section we introduce the architecture of the network we propose. In the network there 

are M controllers, which are denoted C = {C1, C2, C3, ... CM}, and each controller has a set of 

switches associated with it. The total number of switches in the network is N. The 

controllers are divided into K clusters, such that there are M / K controllers in each cluster. 

The processing power, which relates to the number of requests it can support per second, per 

controller is P. In each cluster there is one controller called “Master”, which is responsible 

for balancing the loads within the cluster. Each controller has the address of its Master, and 

each Master controller has the list of controllers’ addresses connected to it, denoted 

ClusterVector (CV). The master controller receives information from the controllers 

belonging to its cluster, with respect to the loads they experience, and accordingly balances 

the loads between them. The relationship between the clusters is done by a single controller, 

SuperController (SC), linked to all the Master controllers by a list of Master controller 

addresses stored in it called the MastersVector (MV). The SC collects the master controller's 

information about the load experienced by all controllers, and then repartitions the 

controllers into clusters. In addition to the redistribution of the clusters, SC can modify the 

Master controllers, i.e. the MV. According to the new MV, the Masters are updated by 

means of the SC in their updated CVs. 

Figure 10 depicts two different examples of clustering. Figure 10.a. shows that SC 

communicates with all the MCs, i.e. c3, c6 and c12. Controller c3 is the master of

},,,{ 93211 ccccG 
. Controller c6 is the master of 

},,,{ 47652 ccccG 
 and Controller c12 is the 

master of
},,,{ 12111083 ccccG 

. In Figure 10.b.  c4 moved from group G2 to group G1, c9 

moved from group G1 to group G3 and c8 moved from group G3 to group G2. In group G1, 

after all the replacements c2 became the master. 

 

 
Figure 10: An example of dynamic clustering 
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The Masters' internal balancing operations in clusters and the SC's overall balancing are 

independent of one another and can therefore be performed simultaneously in the various 

network components. The super-level balancing operation, which is a division into dynamic 

clustering by the SC, is denoted "clustering" while the internal operation performed by the 

master controller, which actually reconnects switches to different controllers, is denoted 

"reassignment". The two actions together create the dynamic load balancing and are adapted 

to the network load state. On the one hand there is a cluster change so that the cluster level is 

balanced, and on the other hand within each cluster there is a balance between the loads. As 

a result, these operations are balanced in all controllers. 

The architecture, therefore, defines three levels: the SC level, the Masters' level, and the 

standard level of controllers. We call this architecture the Dynamic Cluster Flow (DCF) due 

to the fact that its main idea is the dynamic distribution of the clusters according to the load, 

which is measured by the average flow per controller. 

As depicted in Figure 12, the timeline is divided into time units, where a “clustering” 

balancing algorithm that updates the CVs is run at the beginning of each time unit. Each unit 

in the timeline is divided into sub-units, where the “reassignment” balancing algorithm is 

run at the beginning of each sub-unit. Nonetheless the “reassignment” algorithm is run 

concurrently by several controllers, i.e., by the Masters, each in its own cluster, on a limited 

number of controllers. Hence a short run time is achieved, which can significantly shorten 

the cycle time and thus result in more accurate balancing results. 

 

Figure 11: operations of the SC and the Masters when clusters are dynamic 
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4. DCC Problem Formulation 

4.1 Notation 

We consider a control plane with M  controllers, denoted by },...,,{ 21 MCCCC   where iC  

is a single controller and its processing power is denoted P , which stands for the number of 

requests per second that it can handle. We use  dij to denote the distance (number of hops) 

between iC and jC
. We use iG to denote the ith cluster and

},...,,{ 21 kGGGG 
, the set of all 

clusters. We assume that M / K  is an integer and is actually the number of controllers per 

cluster. Thus, the size of the CV is M/K. Y denotes a matrix, handled by SC, which consists 

of the matching of each controller to a single cluster. Each column of Y represents a cluster 

and each row a controller.  Therefore, Y is a binary KM  matrix as follows:   
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The load of controller j in time slot t is denoted  𝑙(𝑡)𝑗. This information arrives from the 

controllers that calculate the average of requests per second from all their switches in time 

slot t. CVLi denotes the Cluster Vector Load of Masteri. The super controller also contains 

the addresses of the masters for each cycle in the Master Vector (MV). Table 2 summarizes 

the key notations for ease of reference. 

 

Table 4: Key notations 

Symbol Semantics 

jC  jth controller 

iG  ith cluster 

P  the number of requests a controller can handle per second  

𝑑𝑖𝑗  Minimal hop distance between Ci and Cj 

jitY )(  jitY )( =1 if jth controller is in cluster i in time slot t, else jitY )( =0 

𝑙(𝑡)𝑗    Controller load - Average flow request of jth controller per second in 

time slot t 

SC  Super Controller – collects controllers' loads from masters and re-

clustering 
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To define the problem of the “Clustering” for the high level of the load balancing 

operation we defined two aspects; we sought the minimal differences between 

clusters' loads and the minimal distances between controllers in each cluster. These 

two aspects enabled us to decrease the response time and the overhead, respectively, 

in the lowest level of the load balancing, i.e., “Reassignment”. The next two sections 

define these two aspects. 

4.2 Clusters' Load Differences 

To achieve balanced clusters, the gaps between their loads must be narrowed. A 

cluster load is the sum of the controllers' average loads in it, as follows: 





M

j

jiji tYtlt
1

)()()(                                                    (1) 

Where i is the cluster number and M is the number of controllers.  

To measure how much a cluster load is far from other clusters' loads, we used the 

global cluster's load average: 

k

tl

Avg

M

j

j


)(

                                                           (2) 

Where, k is the number of clusters. We first defined the distance of a cluster from the 

global average Avg  as:   

|)()( Avgtt ii                                                       (3) 

Then, in a second step, we defined a metric that measures the total load difference 

between clusters as follows: 

K

t

t

K

i

i
 1

)(

)(



                                                             (4) 

Where if 0)( t  all clusters' loads equal the global average, which means that the 

sum of the load distances from the global average (i.e., the difference) is equal to 

zero.  

4.3 Controllers' Distances 

The greater the distance between controllers belonging to the same cluster, the 

greater the communication overhead between them. In order to prevent too much 

overhead we wanted to form clusters such that the controllers within the same cluster 

are not far from each other. For that purpose we defined a constraint on the maximal 

distance allowed which we denote Cnt . 
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The maximal distance between controllers within the same cluster is defined as 

follows: 

 jcicij
Mjikc

tYtYdt )()(maxmax)(
,11 

                                    (5) 

Where c is the cluster number, and i , j are the controllers in c cluster. To obtain a 

constraint on the distance corresponding to the network data, we set the 

"maxDistance" to the lower limit on the constraint value, i.e., the constraint could 

not be smaller than it. To enable a relaxation of this constraint an "offset" could be 

added, and the final maximal constraint, which is adjusted to the network's distance 

data is: 

Cnt  maxDistance + offset                                      (6) 

 

4.4 Dynamic Controllers' Clustering 

Our goal is to minimize )(t   (Eq. 4) while finding the matrix Y(t) and fulfilling the distance 

constraint (Eq. 6). Therefore, the problem formulation is as follows: 
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Equation 7 ensures that each cluster has exactly M/K controllers at a given time. Equation 8 

ensures that each controller is assigned to exactly one cluster at a time and Equation 9 

concerns the controller-controller distance in a cluster. 

In other words, the minimization problem defined above is: Given a connected graph G = 

(V, E) with a weight function w: V → Z+ and K ≥ 2 is a positive integer. For X ⊆ V, let w(X) 

denote the sum of the weights of the vertices in X. For the problem of G we need  to find a q-

partition P = (V1, V2, . . . , Vk) of V such that G[Vi] is connected (1 ≤ i ≤ q) and P maximizes 

min{w(Vi) : 1 ≤ i ≤ q} and | V1 | = |V|/K.  

In this problem, we address two aspects of the network, namely, the distance between the 

controllers within the same cluster and the load differences between the clusters, which 
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influence the overhead, and the response time, respectively. Regarding the distance aspect, 

the problem is a variant of a k-Center problem [20], where we look for the center's nodes in 

the network that are within distances which fulfil the distance constraint to build the clusters 

around them, in order to obtain a value for maxDistance that would be relevant to the 

network's distance data. When we consider the second aspect, i. e., the load differences 

between clusters, in addition to the distance constraint, the problem is a variant of a 

coalition-formation game problem [21], where the network structure and the cost of 

cooperation play major roles. These two general problems are NP-Complete because finding 

an optimal partition requires iterating over all the partitions of the player set, where the 

number of these partitions grows exponentially with the number of players, and is given by a 

value known as the Bell Number. Hence, finding an optimal partition in general is 

computationally intractable and impractical (unless P = NP).  

In this paper, we propose an approximation algorithm to solve this problem. We adapt the 

K-Center problem solution for initial clustering, and use game theoretic techniques to satisfy 

our objective function with the distance constraint. 
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5. Dynamic Controller Clustering Algorithm 

In this section, we divide the DCC problem into two phases and present our solutions for 

each of them. In the first phase, we define the initial clusters. We show some possibilities for 

the initialization that refer to distances between controllers and load differences between 

clusters. In the second phase, we improve the results. We further reduce the differences of 

cluster loads without violating the distance constraint by means of our replacement 

algorithm. We also discuss the connections between these two phases, and the advantages of 

using this two-phase approach for optimizing the overall performance. 

 

5.1 Phase 1: Initial Clustering 

The aim of initial clustering is to enable the best start that provides the best result for the 

second phase. Thus, we observe two options for initialization. The first option is where only 

the overhead is important and requires that a minimum distance value be set for the clusters, 

which determines the maximum distance between the controllers in the same cluster. The 

second option is where only the clusters’ loads is important and requires that a minimum 

difference value be set for the clusters ensure that the loads of the clusters are similar  

5.1.1 Initial clustering with the distance constraint 

Most of the control messages concerning the cluster load balancing operation are generated 

because of the communication between the controllers and their MC. Thus, we use the K-

Center problem solution to find the MCs [20, 22, 23]. In this problem, 𝐶 = {𝐶1, … , 𝐶𝑘} is the 

center's group and 𝑃 = {𝑝1, … , 𝑝𝑀} contains M controllers. We define 

𝑃𝐶 = (𝑑(𝑝1, 𝐶) ,  𝑑(𝑝2, 𝐶) ,  … ,  𝑑(𝑝𝑀, 𝐶)), where the ith coordinate of 𝑃𝐶  is the distance of 

𝑝𝑖 to its closest center in C. The K-Center input is: A set 𝑃 of M points and integer number 

k, where M ∈ ℕ , 𝑘 < 𝑀. The goal is to find a set of k points 𝐶 ⊆ 𝑃 such that the maximum 

distance between a point in P and its closest point in C is minimized. The network is a 

complete graph, and the distance definition [see Table 4] satisfies the triangle inequality. 

Thus, we can use an approximate solution to the K-Center problem to find MCs. Given a set 

of centers, C, the k-center clustering price of P by C is ‖PC‖∞ = maxp∈P d(p, C). Algorithm 

1 is an algorithm similar to the one used in [22]. This algorithm computes a set of k centers, 

with a 2-approximation to the optimal k-center clustering of P, i.e., ‖𝑃𝐾‖∞ ≤ 2𝑜𝑝𝑡∞(𝑃, 𝑘) 

with O(Mk) time and O(M) space complexity [22]. 

https://en.wikipedia.org/wiki/Complete_graph
https://en.wikipedia.org/wiki/Triangle_inequality
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Algorithm 1 : Find masters by 2-approximation greedy k-center solution 

 

In Line 1 the algorithm chooses a random controller as the first master. In Line 2 the 

algorithm computes the distances of all other controllers from the master chosen in line 1. 

Lines 3-4 are for the second master chosen, which is the farthest controller from the first 

master. In the loop, in row 5, in each iteration, another master is added to the collection by 

calculating the controller located in the farthest radius of all controllers already included in 

the master group. After )K-2( iterations in line 6 the set of masters is ready. After Algorithm 

1 finds K masters, we partition controllers between the masters by keeping the number of 

controllers in each group under M/K as illustrated in Heuristic 1 below.  

 

Input: set 𝑃 = {𝑝1, … , 𝑝𝑛} contains M controllers, controller-to-controller 
matrix distances 
 Output: set of master 𝐶 = {𝐶1, … , 𝐶𝑘}, 𝐶𝑃 

1. Pick an arbitrary point pi from P pi= 𝑐1̅, and set 𝐶1 = {𝑐1̅}. 
2. For every point 𝑝 ∈ 𝑃 compute the distance 𝑑1[𝑝] ≔ 𝑑(𝑝, 𝑐1̅) from 

𝑐1̅. 
3. Consider the worst point served by 𝐶1 – which is the point that 

realizes 𝑟1 = max𝑝∈𝑃 𝑑1[𝑝].  

4. Let 𝑐2̅ denote this point and add it to 𝐶1 , resulting in the set 𝐶2. 

5. In each iteration i = 1,2,…,k do: 
//Compute the quantity for each point 𝑝 ∈ 𝑃  

a. 𝑑𝑖−1[𝑝] = 𝑑(𝑝, 𝐶𝑖−1) = min𝑐̅∈𝐶𝑖−1
𝑑(𝑝, 𝑐̅) 

//Compute the radius of the clustering 

b. 𝑟𝑖−1 = ‖𝑃𝐶𝑖−1
‖

∞
= max𝑝∈𝑃 𝑑𝑖−1[𝑝] = max𝑝∈𝑃 𝑑(𝑝, 𝐶𝑖−1) 

c. Let 𝑐𝑖̅ denote the point realizing it. 
d. Add 𝑐𝑖̅ to 𝐶𝑖−1 to form the new set 𝐶𝑖 ≔ 𝐶𝑖−1 ∪ {𝑐𝑖̅}. 

Repeat this process k times. 

6. Return the final set 𝐶𝑘of the masters 
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Heuristic 1: Distance initialization

 

As depicted in Heuristic 1, lines 1-3 define the initial empty clusters with one master for 

each one. S contains the list of controllers to assign. Lines 4-5 are the candidate clusters 

which have less than M/K controllers, and each controller is assigned to the nearest master 

of these candidates. After the controllers are organized into clusters, we check the maximal 

distance between any two controllers in lines 1-5; this value is used for the “maxDistance” 

(that was used for Eq. 6).  

Regarding the time complexity, Lines 1-4 take O(K) time. For each controller Line 5.2 

checks the distance of a controller from all candidates, which takes O(MK) time. In line 6.1 

for each cluster the heuristic checks that there is (M/K)2 different distances for all clusters, 

thus taking O(M2) time. Line 7 takes O(K) time (K<M). The initial process with Heuristic 1 

entails an O(M2) time complexity.  

Heuristic 1 is based on the distances between the controllers. When the controllers' position 

is fixed, the distances do not change. Consequently, heuristic 1 can be calculated only one 

time (i.e., before the first cycle) and the results are used for the remaining cycles. 

Input: Controllers list C = {C1,C2,…,CM}, Masters List M={M1,M2,…,Mk}, 
controller-to-controller distances matrix 

Output: Clusters list CL = {CL1,CL2,..,CLk} where  CLi={C1i,C2i,C3i,…,C(M/K)i}  ki1 , 

and  maxDistance”- the maximum distance between any two controllers within 
a cluster. 
1. SC 
2. S S-{ M1,M2,…,Mk } 
3. for i0 to K 

3.1. CLi  

3.2. CLi CLi Mi 
4. for i0 to K 

4.1. if |CLi|<M/K 
4.1.1. Candidates CLi 

5. while  S    

5.1. Cnextthe next controller in S 
5.2. CLnear  Find the nearest master from Candidates list 
5.3. CLnear  CLnear   Cnext   
5.4. SS-{ Cnext } 
5.5. If |CLnear|=M/K 

5.5.1. Candidates Candidates-{ CLnear } 
6. For each CLi in CL 

6.1. maxDistanceCLi max distance between two controllers in CLi 
7. maxDistance maximum of  all maxDistanceCLi  
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5.1.2 Initial clustering based on load only 

This type of initialization is used when the overhead is less of an issue in the load balancing 

operation. Our purpose is to balance the loads between clusters in order to achieve minimum 

load differences between them. In this algorithm, the controllers need to be split into clusters 

based on their loads. Each cluster has a total load, which is the sum of the loads over all the 

controllers inside the cluster. To achieve a well-distributed load for all the clusters we 

sought a ”min-max”, i.e., we tried to minimize the load in the most loaded cluster. The 

constraint on the groups is that they must be with the same size. 

Heuristic 2 uses a greedy technique to partition the controllers. In each iteration, it fills the 

less loaded clusters with the most loaded controller.  

 

Heuristic 2: Load initialization 

 
 

Line 1 sorts the controllers by loads. In Line 2-3, each controller, starting with the heaviest 

one, is matched to the group with the minimum cost function, Costg(C), if the group size is 

less than K , where Costg(C) = CurrentClusterSum + Cload. The CurrentClusterSum is the 

sum of the controllers' loads already handled by cluster g, and Cload is the controller's load 

that will be handled by that cluster. Regarding the time complexity, sorting M controllers 

takes ))M(logM(O 2  time. Adding each controller to the current smallest group takes 

KM   operations. Therefore, heuristic 2 has )KM),M(logM(max(O 2  time complexity. 

  

5.2 Initial Clustering as Input to the Second Phase 

Input: Controllers list C={C1,C2,C3,…,CM}  ,Masters  CVLi s (average flow-request 
number (loads) for each controller) and an integer K for number of clusters. 

Output: Clusters list P={ P1,P2,P3,…,PK}  where  Pi={C1i,C2i,C3i,…,C(M/K)i}  ki1  

1. SortedListCSort M controllers in descending order according to their 
loads 

2. Candidates P 
3. foreach  controller C in  SortedListC Do 

a. Pminfind the cluster with minimal Costg(C)  from candidates 
b. Pmin  Pmin C 
c. If (|Pmin|=M/K) 

i. Candidates Candidates-{ Pmin } 
 
 



 בס"ד

25 
 

The two types of initialization, namely “distance” and “load”, mentioned above are used as 

an input for the second phase.  

The distance initialization process (Heuristic 1) ensures that we start with clustering that will 

meet a distance constraint.  The output of this process is an initial clustering and 

“maxDistance”, where the clustering meets the “maxDistance” constraint. An offset is 

added to the “maxDistance” constraint to create the final Cnt (Eq. 6). This clustering needs 

to be updated to improve the differences between the clusters' loads. Thus, this first phase is 

mandatory to fulfill the distance constraint. 

The load initialization process (Heuristic 2) is used when there is no distance constraint. In 

such cases, this process is not essential to solve the problem, but it can accelerate the 

convergence of the second phase.  

 

In the second phase, we apply the coalition game theory [21]. In a coalition game, there are 

participants in each coalition. We can define a rule to transfer participants from one 

coalition to another.  The outcome of the initial clustering process is a partition denoted   

defined on a set C that divides C into K clusters with M/K controllers for each cluster. Each 

controller is associated with one cluster. Hence, the controllers that are connected to the 

same cluster can be considered participants in the coalition. Thus, the clustering obtained 

from the first phase is suitable for use in the coalition game theory to further improve our 

results. 

 

5.3  Phase 2: Decrease Load Differences using a Replacement Rule  

We now leverage the coalitional game theory to improve the performance of the controllers 

clustering considering load differences between groups. A coalition structure is defined by a 

sequence 
},...,,,{ 321 lBBBBB 

where each iB
 is a coalition. In general, a coalition game is 

defined by the triplet ),,( BvN , where v  is a characteristic function, N  are the elements that 

need to be grouped and B is a coalition structure that partitions the N  elements [21]. In our 

problem the M  controllers are the elements, G  is the coalition structure, where each group 

of controllers iG
 is a coalition. Therefore, in our problem we can defined the coalition game 

by the triplet ),,( GvM  where )(tv  . The second phase can be considered a coalition 

formation game. In a coalition formation game each element can change its coalition based 

on the utility it can gain.  Thus, a controller may be transferred to another cluster with a 
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lower global load than its current cluster. We use itsm )(
 to denote the safety margin of 

cluster i, which specifies the load that can still be transferred to a particular cluster without 

exceeding its capacity.  This is derived as follows: 


K

c

M

i

M

j

jjcici tltYtYPKtsm )()()()(

                       

In order to keep the cluster size (i.e., the same number of controllers in each cluster), we 

exchange controllers, such that each controller which is moved must have a substitute.  To 

determine whether, after the replacement, the )(t  (Equation 4) was reduced or not, we 

define the Replacement Value (RV) as follows: 
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Each replacement involves two controllers ic
 and jc

 with loads itl )(
 and jtl )(

, 

respectively, and two clusters a  and b with loads aL
 and bL

 , respectively. We use the 

notations ”old” and “new” to indicate a value before and after the replacement. 

When 
Cntt new )(

(see equations 5 and 6), the controllers, after the replacement, are 

organized into clusters such that the maximum distance between controllers within a 

particular cluster exceeds the distance constraint Cnt . In this case, the value of the RV is set 

to zero, because the replacement is not relevant at all. 

 

When 
)))((&))(( AvgtAvgt oldold ba

 
 or 

))((&))(( AvgtAvgt oldold ba
 

(see 

equation 2 and 3), there are two options as follows:  One option is when the loads of the two 

clusters remain above average or both below average, even after the replacement. In this 

situation, oldt)(
 = newt)(

 (i.e., 
)(t

before and after the replacement; see equation 4). The 

second option is when one of the clusters moves to another side of the average. In such 

cases, we have oldnew tt )()(  
. With both options, oldt)(

does not improve and therefore 

the RV is set to zero.  

Figure 12 and Figure 13 provide an illustration of these two options. The dotted line denotes 

the average of all clusters. 
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Figure 12: Clusters loads after replacement on the same side with reference to the average 

In Figure 12, the sum of the loads’ distances from the global average, before the replacement 

is x+y.  After the replacement the sum is
yxtltlytltlx jiji  ))()(())()(((

. In 

the other symmetrical options, the result is the same. 

 

 

 
Figure 13: Clusters' loads after replacement on different sides with reference to the average 

In Figure 13 the sum of distances from the global average, before the replacement is x+y, 

and this sum after the replacement is
yxytltltltlx jiji  ))()(())()((

. In the 

other symmetrical options, the result is the same. 

In equation 10, If none of the first three conditions are met, RV is calculated by 

))()(())()(( oldoldnewnew baba
tttt  

, a value that can be greater than or less than zero. 

Using the RV, we define the following “Replacement Rule”: 
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Definition 1. Replacement Rule. In a partition   , a controller ic
 has incentive to replace its 

coalition a  with controller  jc
 from coalition  b  (forming the new coalitions 

ji

oldnew ccaa  )\(
   and ij

oldnew ccbb  )\(
 ) if it satisfies both of the following: 

(1) The two clusters 
newa  and 

newb  that participate in the replacement do not exceed their 

capacity K*P.  (2) The RV satisfies:   0),,,( baccRV jidis  (RV defined in Equation 10) 

In order to minimize the load difference between the clusters we iteratively find a pair of 

controllers with minimum RV, which then implement the corresponding replacement. This 

is repeated until all RV’s are larger than or equal to zero:    
0),,,( baccRV ji .  

Algorithm 2 details the replacement procedure.  

  

Algorithm 2: Replacement Procedure 

 

Regarding the time complexity of lines 1-4, i.e., find the best replacement, takes:
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time. 

Line 6 invokes the replacement within O(1) time. Since in each iteration the algorithm 

chooses the best solution, there will be a maximum of M/2 iterations in the loop of lines 1-5. 

Thus, in the worst case Algorithm 2 takes an O(M3) time complexity. In practice, the number 

of iterations is much smaller, as can be seen in the simulation section.  

 

5.4 Dynamic Controller Clustering Full Algorithm 

Input: Clusters list P={ P1,P2,P3,…,PK}  where  Pi={C1i,C2i,C3i,…,C(M/K)i}  ki1 ,  

distance constraint  Cnt  

Output: Clusters list P={ P1,P2,P3,…,PK}  where  Pi={C1i,C2i,C3i,…,C(M/K)i}  ki1  

1. bestVal0; 
2. bestVal the minimal ),,,,( CntbaccRV ji  for each two controllers 

belongs to different clusters in P 
3. ),,,( bacc ji  bestVal replacement details (controllers and clusters 

participants)  
4. If ),,,,( CntbaccRV ji < 0 

a. invoke the replacement ),,,( bacc ji  

b. repeat to 1 
5. else 

a. return P  
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Now we present the algorithm that includes the two stages of initialization and replacement, 

in order to obtain clusters in which the loads are balanced. 

 

DCC Algorithm 

 

 

The DCC Algorithm runs the appropriate initial clustering, according to a Boolean flag 

called “constraintActive”, indicating whether the distance between the controllers should be 

considered or not )Line 1(. If the flag is true, the “distance initialization” procedure 

)Heuristic1( is called )line 1.b(. Using the “maxDistance” output from Heuristic 1, the DCC 

calculates the Cnt = maxDistance + offset (Line 1.c). Using the partition and Cnt outputs, the 

DCC runs the “replacement procedure” )Algorithm2( )Line 1.d(.  

The DCC can run the second option without any distance constraint (Line 2). In Line 2.e it 

chooses the best solution in such cases, (referring to the minimal load differences) from the 

following three options: 

 (1) Partition by loads only (Line 2.b); 

 (2) Start partition by loads and improve with replacements (Line 2.c)  

 (3) Partition by replacements only (using the previous cycle partition) (Line 2 d). 

   

Input: Network nt with a Controllers list C = {C1,C2,…,CM}, and distances 
between controllers. K and M for the number of clusters and controllers, 
respectively, constaintActive to indicate that it meets the controller-to-
controller distance constraint, offset to calculate the  distance constraint 
(optional). 

Output: Clusters list P={ P1,P2P3,…,PK}  where  Pi={C1i,C2i,C3i,…,C(M/K)i}  ki1  

1. If (constaintActive = true) 
a. MastersAlgorithm1(nt) 
b. (initialDistanceClusters,maxDistance)Heuristic1(C,Masters) 
c. CntmaxDistance+offset 
d. finalPartitionAlgorithm2(initialDistanceClusters,true,Cnt) 

2. else 
a. initialStructureCluster structure from the previous cycle 
b. initialLoadsOnly Heuristic2(c) 
c. initialWithReplacementAlgorithm2(initialLoadsOnly,false) 
d. ReplacementOnly Algorithm2(initialStructure,false) 
e. finalPartition best solution from(initialLoadsOnly, 

initialWithReplacement, ReplacementOnly) 
3. return  finalPartition 
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Regarding the time complexity, DCC uses heuristic 1, heuristic 2, algorithm 1 and algorithm 

2, thus it has a )( 3MO time complexity.  

 

5.5  Optimality Analysis 

 

In this section, our aim is to prove how close our algorithm is to the optimum. Because the 

capacity of controllers is identical, the minimal difference between clusters is achieved 

when the controllers' loads are equally distributed among the clusters, where the clusters' 

loads are equal to the global average, namely 0)( t .  Since in the second phase, i.e., in the 

replacements, the DCC full algorithm is the one that sets the final partition and therefore 

determines the optimality, it is enough to provide proof of this. 

As mentioned before, the replacement process is finished when all RVs  0, at which time 

any replacement of any two controllers will not improve the result. Figure 14 shows the 

situation for each two clusters at the end of the algorithm. 

 

 

Figure 14: The loads of each two clusters at the end of all replacements 

For each two clusters, where the load of one cluster is above the general average and the 

load of the second cluster is below the general average, the following formula holds:   

 
bcactltlLLtt jijibaba  ,),)()(()()( 

.            (11) 

We begin by considering the most loaded cluster and the most under-loaded cluster. When 

the cluster size is g, we define X1 to contain the lowest g / 2 controllers, and X2 to contain 
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the next lowest g / 2 controllers. In the same way, we define Y1 to contain the highest g / 2 

controllers and Y2 to contain the next highest g / 2 controllers. 

In the worst case, the upper cluster has the controllers from the Y1 group and the lower 

cluster has the controllers from the X1 group. Since the loads of the clusters are balanced, 

one half of the controllers in the upper cluster are from X2, and the other half of controllers 

in the lower cluster are controllers from Y2.  

According to Formula 11, we can take the lowest difference between a controller in the 

upper cluster and a controller in the lower cluster to obtain a bound on the sum of the 

distance of loads of these two clusters from the overall average. The sum of distances from 

the overall average of these two clusters is equal to or smaller than the difference between 

the two controllers, i.e., between the one with the lowest load of the g most loaded controller 

and the one with the highest load of the g lowest controllers.  

))()(()()( _______ smallertngbiggerthgloadedundermostloadedmost tltltt 
              (12) 

The bound we received (Eq. 12), for the two most distant clusters, can now be multiplied by 

k / 2, in order to determine a bound for )(t . However, to obtain a more stringent bound, we 

can consider bounds of other cluster pairs, and summarize all bounds as follows:  

𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝐵𝑜𝑢𝑛𝑑 ≤ ∑ (𝑠𝑜𝑟𝑡𝐿𝑖𝑠𝑡(𝑀−𝑖𝑔) − 𝑠𝑜𝑟𝑡𝐿𝑖𝑠𝑡𝑖𝑔)
𝑀

2𝑔⁄

𝑖=1
                   (13) 

The 𝑠𝑜𝑟𝑡𝐿𝑖𝑠𝑡 indicates the load list of the controllers sorted in ascending order, 𝑀  the 

number of controllers, and 𝑔  the cluster size.  
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6. Results 

 

6.1 Simulation Results 

We simulated a Network, with several masters and one super controller. Each master 

balances the load inside the cluster. Each cycle time, Masters send their controllers' loads to 

the super controller that runs the DCC algorithm to re-cluster the controllers. Finally, the 

super controller sets the new masters for the next cycle. In our simulation, one can chose the 

number of controllers in the network, and the number of clusters. The distances between 

controllers and the loads on controllers in the network are random. The purpose of the 

simulation is to show that our DCC algorithm meet the difference bound and the number of 

replacements bounds. It uses best solution that can be achieved as final clustering according 

to the maximal distances allowed (see section IV). 

We began by clustering without the controller-to-controller distance constraint. This 

clustering balances clusters' loads by an initial partition of controllers according to their 

loads (see Heuristic 1) and improves the results by means of the replacement process (see 

Algorithm 2). There are three options to achieve the final clustering: (1) initial only – 

whereby we run the initial load balance only (Heuristic 2). (2) Replacement only – where we 

begin directly with the second process (Algorithm 2) and skip the initial load balance. (3) 

Initial with replacement – where we run the two-phase process, which includes the initial 

load balance and replacement to improve the results. 

The DCC algorithm chooses the best solution from the three options. Figure 16 depicts 10 

random networks with results of the three options, for 55 controllers and cluster size of 5. 

 

 

Figure 15: results of load difference  for three clustering options 

 



 בס"ד

33 
 

The simulation results presented in Figure 17 illustrate the best solutions chosen by the 

algorithm. The option of initial partition with replacements was chosen 52% of the cases, 

whereas the option of replacements only was chosen 47% of the cases. The motivation for 

using the initial load balance (Heuristic 2) is that it decreases the number of replacements 

needed in the second phase, due to the fact that it accelerates the convergence. 

Figure 16 shows the results of the best solutions (from 1000 random cases) among the three 

options. Occasionally two options provide the same best result. Figure 17.a. presents the 

results of the algorithm with 21 controllers and 7 clusters, Figure 17.b with 50 controllers and 

10 clusters and Figure 17.c, with 50 controllers and 10 clusters.  The findings of our 

simulations as presented in Figure 16 indicate that in most of the cases the replacement 

phase suggested in this paper assists in achieving the best clustering. 

 

 

Figure 16: Best Solution Percentages 

Next we show that the bound for the s(t) function is met. Figure 18 shows the optimality 

bound (Eq. 11), which appears as a dashed line, and the actual results for the differences 

achieved after all replacements. The results are for 70 controllers and 10 clusters with 50 

cycles. 
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Figure 17: Difference bound and the final difference 

As the number of controllers increases, the distance between the difference bound and the 

actual difference increases. This is because the bound is calculated according to the worst 

case scenario.  Figure 19 shows the increase in distance between the actual distance and the 

distance bound when the number of controllers increases. The results are for 5 controllers in 

a cluster with 50 cycles. 

 

Figure 18: Distance between the difference bound and the actual difference 
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We now refer to the number of replacements required. As shown in Figure 20, the actual 

replacement number is lower than the bound. The results are for 75 controllers and 25 

clusters with 50 cycles. 

 

Figure 19: Replacements bound and actual number of replacements 

The number of clusters affects the number of replacements. As the number of clusters 

increases, the number of replacements increases. Figure 21 shows the average number of 

replacements in 50 cycles, with 100 controllers, where the number of clusters increases. 

 

 

Figure 20: relation between the  number of replacements and  the number of clusters 
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As noted, the initialization of step 1 in the DCC algorithm reduces the number of 

replacements required in step 2. Figure 22 depicts the number of replacements required, with 

and without the initialization of step 1. The results are for 75 controllers and 15 clusters with 

50 cycles. 

 

Figure 21:  Number of replacements with and without initialization of step 1 

When a controller-to-controller maximal distance constraint is important, there is a lower 

bound on the maximal distance. By adding this lower bound to the offset defined by the 

user, an upper bound called "Cnt" is calculated (Eq. 6). Figure 23 shows the final maximal 

distance that remains within the upper and lower bounds. The results are for 50 controllers 

and 5 clusters with 30 cycles. 
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Figure 22: Maximal distance between lower and upper bounds 

Finally, we compare our method of dynamic clusters with different method of fixed clusters. 

As a starting point, the controllers are divided into clusters according to the distances 

between them (Heuristic 1). In each time cycle, the clusters are rearranged according to the 

controllers’ loads in the previous time cycle. The change in the load status from cycle to 

cycle is defined by the following transition function: 

f(n) = {
max ((l(t)i + random(range), P) random(0,1) = 1

max ((l(t)i − random(range), 0) else
 

where P is the number of requests a controller can handle per second. The load in each 

controller increases or decreases randomly. We set the range at 20, and P at 1000. Figure 24 

depicts the results with 50 controllers partitioned into 10 clusters. The results show that the 

differences between the clusters' loads are lower when the clusters are dynamic. 

 

 

Figure 23: Dynamic clustering vs. fixed clustering differences 

We simulated a comparison of random networks, with 3-10 clusters, 3-10 controllers in a 

cluster, and a random number of cycles. The simulation results in the following table 

indicate that the difference is improved fivefold by the dynamic clusters in comparison to 

the fixed clusters.  
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6.2 Additional Results 

Load balance accuracy: The short running time of the DCC algorithm, which runs at the 

"clustering" level, enables reduced cycle times and thus more accurate regulation. 

Scalability: Due to the three-tier architecture, the SC is only linked to Master controllers, 

which transmit load messages to the cluster controllers. The messages are in the order of K )

the number of clusters(, and the volume, on the order of M  ) the number of controllers(. 

Because SC is not overloaded, the network can be extended by adding controllers or resizing 

clusters. 

Flexibility: As a result of the CV definition, in each cluster the master controller can run one 

of the algorithms offered in the literature as described in the literature review, regardless of 

the algorithm running on SC. This makes it possible to adjust the balancing algorithm for 

each set of controllers. Flexibility is also achieved by using different algorithms for 

clustering, without having to change the algorithms running in the masters. All of this is 

possible due to a well-defined interface and a division between the layers. As a result of our 

three levels DCF architecture, the load balancing runtime of both the SC and MC is very 

short and enables a reduction in the TS accordingly. Thus the greater the reduction in the 

timeline the greater the accuracy achieved. 

Overhead:  In addition to the load, when the SC groups the controllers into clusters it should 

take into account the distance between them to ensure that it is not too far, thus the control 

traffic over the links decreases.  The additional overhead required to enable dynamic 

distribution of the clusters is compensated by the overhead saved in the load balancing 

function within the cluster. Thus no overhead was added for the dynamic clusters, namely 

no more than the overhead required for the fixed clusters. 

Simulation 

no. 

No. of 

controllers 

No. of 

clusters 

Cycles Times Hybrid 

Flow - Fix 

clustering  

Dynamic 

clustering 

Improvement 

Factor  

1 16 4 20 961 319.81 61.64 5.2 

2 44 11 29 226 999.09 185.33 5.3 

3 70 14 18 865 1501.95 267.33 5.6 

4 42 14 28 974 1044.48 209.15 4.9 

5 30 6 22 203 610 109 5.6 
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Runtime: At the end of each time cycle, the SC may update the CV of each cluster to 

balance the load of some overloaded clusters. The load balancing within a cluster can be 

performed independently of the load balancing performed at the SC level where the 

controllers are split into clusters according to their load.  This non-dependency enables 

parallel processing which reduces the runtime. 
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7. Discussion and Conclusions 

Our DCF architecture with the re-clustering algorithm enables a flexible load balancing 

operation due to the independence of the two-levels of balancing.  The short runtime helps 

achieve more accuracy in load balancing. The scalability problem is solved, because SC 

maintains global data on the controllers' loads. The important objectives of the response 

time and overhead are met. The two-phase DCC algorithm provides near optimal solutions. 

Our simulations show that the two-phase algorithm works well even in large networks. 

The division of labor between components in the network enables the efficiency of the load 

balancing operation and its speed. Table 5 provides the distribution of the load balancing 

operation between the network elements.  

Table 5: Distribution of work between network elements 

 Classical methods Fixed clusters Dynamic clusters 

SC V V V 

MC   V 

Controllers  V  

 

While the entire load balancing operation is performed by the Super Controller in classical 

methods thereby causing a bottleneck, in the fixed cluster method, the work is divided 

between the super controller and the regular controllers. But this division is done so that 

most of the work is done by the regular controllers with local vision, while the super 

controller serves only as a source of information. This division does not allow flexibility and 

increases the running time of the balancing operation. The method we propose, in which the 

clusters are dynamic, intelligently divides the work between the components, with some of 

the work being done by the super controller and some by the master controllers. This 

exploitation of the processing power of the various elements on the network shortens the 

runtime. 

It is noteworthy that we first defined the target function )(t , as the sum of the difference in 

the load of each two controllers. This definition was good for some situations. But after the 

theoretical analysis it became clear that the number of iterations of the substitution phase 

could not be blocked. Therefore, we updated )(t to be the average of the distances of the 

clusters from the global average of the clusters' loads. For each two clusters, the index was 

the sum of their distances from the general average. A measure that gives an indication of 
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the closeness of the two clusters where the indication is relative to the loads of the other 

clusters. 

The comparison between the fixed clusters and dynamic clusters clearly shows the 

improvement in the load difference between the controllers. Re-arrangement of clusters 

requires overhead, but using dynamic clusters decreases the overhead by eliminating the 

necessity of collecting load information of the switches. In various simulations that we 

conducted with multiple controllers and diversified sizes of clusters always showed better 

results with the dynamic clusters. 
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8. Summary and Suggestions for Further Research Directions  

Various methods and architectures for balancing the load of requests reaching controllers on 

SDN networks were reviewed. The objectives of the architecture and the algorithms that I 

developed for this purpose are scalability, flexibility and small cycle unit time as well as 

optimization of load balancing to enable accuracy. In addition, a goal was defined to meet 

the distance constraints between controllers in order to maintain overhead control. The 

architecture we developed comprises three layers: Super Controller, Master Controller and 

regular controllers. We defined two load balancing operations, one called "clustering" 

performed by the Super Controller, which is designed to dynamically arrange clusters of 

controllers, and the other called "reassignment" performed by the Master Controller, which  

transfers switches from controller to controller for load balancing within the cluster. We 

then developed a formula for clustering, proposed a two-stage algorithm to solve the 

problem. At the bottom level, we proposed algorithms existing in the literature, which were 

proven to work well in the architecture we developed.  The results of the simulation of the 

network and the algorithms proposed clearly indicate the advantage of using dynamic 

clusters, and the advantage of the correct and intelligent distribution of the load balancing 

function between network elements and the utilization of the processing power. This work 

provides a direction and a way to implement a flexible network with simple operations on 

two levels which jointly provide efficient and accurate load balancing. 

One limitation of the work is that it still needs to be adapted to other existing architectures 

for SDN hierarchical and flat networks. Another limitation is that currently the controls' 

processing power might not be sufficient for load balancing operations in existing networks. 

This issue still needs to be addressed. 

Furthermore, in order to implement dynamic clusters, additional memory is required to 

preserve the MV and CV, i.e., vectors that keep clusters' addresses of the masters and 

controllers, respectively. Another issue is the constraint that we defined on the maximal 

distance between two controllers. In some networks w the delay or other parameters 

between the controllers are more critical than the distance. 

For a future research, we suggest to explore the optimal cluster size. Reducing the size of the 

cluster allows the algorithm running within the cluster to operate very quickly and to 

accurately measure the load with minimal overhead. However, a small cluster size is 

possible when there are more clusters, and as explained above, the more the clusters the 
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longer the algorithm runs. Therefore, in future work it is important to determine the optimal 

size of the cluster. 

Another direction of research could engage in clusters of different sizes, with controllers 

with different processing powers, or broken down into clusters which can overlap with each 

other (not foreign groups). 

Another interesting direction of study would be to examine the ratio of the time required to 

run the load balancing algorithm in each unit of time between the unit time length in order to 

achieve accuracy in the load balancing operation while controlling the required overhead. 
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