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Abstract

This work provides an introduction to a very simple yet powerful
technique that is very useful in a variety of algorithmic problems — the
iterative rounding method. The generality of the iterative rounding
method allows us to apply it on many known optimization problems.

The main goal of this work is to illustrate the power and the po-
tential of iterative rounding algorithms. We explain the basics that
are needed to understand the iterative algorithms, and illustrate the

method by several examples.
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1 Introduction

The objective of this work is to explore the iterative rounding method. In
order to understand this method we analyze a number of specific iterative
algorithms. In this work we will also try to summarize some of the basic
ideas. It does not include all the material relevant to iterative algorithms.
Some of the theorems and lemmas in this work are not proved. In such
cases, the reader is referred to other books or papers for further study. A
large part of our work follows the book Iterative Methods in Combinatorial
Optimization (by L. Chi Lau, R. Ravi and M. Singh) [1] very closely. Many
of the theorems and Lemmas (as well as the ideas behind the proofs) are
taken from the book. However, we also survey some recent developements,
and in particular summarize the recent papers of J. Cheriyan and L. Vegh
[27] and A. Ene and A. Vakilian [2].

Understanding the iterative method should be easy via an example. Let

us examine the classic Minimum Weight Bipartite Perfect Matching problem:

Problem 1.1. (Minimum Weight Bipartite Perfect Matching) Given
a bipartite graph G = (V4 U Vo, E) with |Vi| = |Va| and a weight function
w: E— R, match every vertex from Vi with a distinct vertex from Vy while

minimizing the total weight of the matching.

This is one of the oldest problems in combinatorial optimization (see
[23]). We will examine the problem by analyzing the following example (as

can be seen in Figure 1):

Example 1.1. Vi = {a,b} and Vo = {c,d}. E = {(a,c), (a,d), (b, c), (b,d)}.
The weight function is defined as follows: w(a,c) =1; w(a,d) = 4; w(b,c) =
4; w(b,d) = 2.



Figure 1: Min Matching in Bipartite Example

It is obvious that the minimum weight matching includes the marked

edges as can be seen in Figure 2.

Figure 2: Min Matching in Bipartite Example - Solution

In order to use an iterative algorithm, we first formulate it as a linear
programming problem. A linear program is a mathematical way to model
a problem. It uses a system of linear constraints and an objective function
that should be maximized (or minimized, as in our case). In our example
we shall use z,, as an indicator to mark if the pair (u,v) is matched (i.e.
{u,v} € E); w will denote the weight function (i.e. w,, means the weight of

the edge (u,v)). The following are the linear programming constraints:

minitmize E Wy Luv

U,V

subject to Z Typ = 1 Yu e Vi
vi{u,v}€E

Z Tyy = 1 Vv e Vs
u{u,v}el

Ty € {0,1} V{u,v} € E



Solving (finding the optimal solution to) the linear program for z,, that
may only receive 0 or 1 is hard. It is possible to solve problem if we relax

each constraint z,, € {0,1}, and use the following requirement instead:
Ty > 0 V{u,v} € E

It is known that the obtained relaxation can be solved in polynomial
time ( [6]). In our example (Example 1.1) the obtained linear program is as

follows:

minitmize Z Wele
ecl

subject to Ty + Tog =1
Tpe + Tpg = 1
Tae + Tpe = 1
Tad + Tpa = 1

Tz, >0 Veec F

It is common to write the set of conditions in a linear program as a matrix
multiplication. The w and z are vectors corresponding to the edges (w, and
z.). The A matrix holds the coefficients in the condition. The b vector holds

the results for the conditions. In our example we get the following:

minimize w' -z

subject to Ax =b
Te > 0 Vee B



Where:

wac wac 1
a a ]'
xr = r d w = w d b g
Tpe Wpe 1
Tbd Whd 1
And:
11 00
0011
A=
1 010
01 01

An optimal solution to the linear program may not give us the desired
result since we need a "binary” solution, namely, a solution that assigns to
each edge a value in {0,1}. Finding a good ”binary” solution is where the
iterative algorithm comes into place. The iterative algorithm is comprised of
3 steps that have to be repeated until the desired solution is received (the

formal algorithm is presented in a later section, see Algorithm 1):
1. Find an optimal solution to the current LP.

2. If any x,, is set to 1 in the solution, then we take the edge (u,v) into
our solution and delete the pair {u, v} from the instance to get a smaller

problem.

3. If any variable x,, is set to 0 in the solution, we remove the edge (u,v)

from the instance to get a smaller problem.

Running the iterative algorithm until each edge gets value either 0 or 1
produces the optimal solution. This claim is very simple to prove induc-
tively. The fact that the algorithm actually works correctly (i.e. during each
iteration, there is at least one edge with 1 or 0) is not trivial and should be
proven. We will return to this proof later. We need some definitions and
preliminary claims.

The definition of the linear program and how it is handled is presented in
the next section. In this section, it is assumed that the reader understands

the linear programming method.



Definition 1.1. Let P = {z : Az = b,z > 0} C R" be a set of feasible
solutions to a linear program. Then x € R™ is an extreme point solution

of P if there does not exist a non-zero vectory € R" such that z+y,z—y € P.

An extreme point solution is one of the corner points of the set of feasible
solution. For example, if our set of feasible solutions is defined by the shape
in Figure 3, the extreme points solutions are the solutions on the corners

marked in red.

Figure 3: Extreme Point Solution Example

Extreme point solutions are used in the next two lemmas:

Lemma 1.1. Let P = {x : Ax = b,x > 0} and assume that the optimum
value min{c'x : & € P} is finite. Then for any feasible solution x € P, there

exists an extreme point solution ' € P with c'z' > cT'x.

Lemma 1.2. (Rank Lemma) Let P = {z: Az = b,z > 0} and let = be an
extreme point solution of P such that x; > 0 for each i. Then the number of
variables is equal to the number of linearly independent constrains of A. i.e.

the rank of A is the number of variables.

Using the above two lemmas it is possible to prove the correctness of the
algorithm described earlier. We do that by proving that in each iteration
there is a variable with value of 0/1 in the matching. We will prove that by
contradiction. Assume that no z,, receives 0 or 1 during the iteration. Let
us denote the number of remaining vertices in Vj (or V2) by n.

Step 1: Let’s look at a vertex v € V;. Since each edge received a value

less than 1 and the sum of all edges connected to v must be 1, there must be



at least 2 edges connected to v. This is true for all vertices in Vj. So there
are at least 2n vertices in the graph.

Step 2: We have 2n constraints (1 per each vertex). It is easy to see
that the 2n constraints have dependencies between them (since the sum of
constraints for Vj are equal to the sum for V3). So at most we have 2n — 1
independent constraints. Looking at the Rank lemma, this means that there
are at most 2n — 1 variables (or vertices).

Step 3: The upper bound we found at Step 2 is 2n — 1 vertices. The lower
bound we found in Step 1 is 2n vertices. Therefore we have a contradiction.
Hence, there is always a variable of value 0 or 1.

This proves that the algorithm works correctly.

In the next section we give basic background for linear programing and

how should linear programs be approached.

10



2 Linear Programming

In order to fully understand the iterative method we first need to understand
linear programming. The subject of linear programming is extensively ex-
plored in the world of computer science and is addressed by many books. In
this section we use chapter 2.1 of [1] for the main reference as well as [18§]
chapter 12 and [7]. For further study regarding linear programming and the
methods of solving and analyzing linear programs, the user is referred to [4],
[5] and [8].

As seen in the previous chapter, a linear program can be (and usually is)

expressed as follows (matrix notation):

minimize c'x
subject to Ax > b
z>0

We say that x is feasible if it satisfies the constraints of the linear program
(Az > b and & > 0 for the linear program above). A linear program can
be feasible or infeasible depending on whether a feasible solution exists. A
solution z* is called optimal if it fulfills ¢’ z* = min{c’z : Ax > b,z > 0}. A
linear program is called unbounded (from below) if VA € R, 3 feasible = such
that ¢’z < .

In some cases a linear program may be presented in a max form (i.e.
maximize Lz and < constraints). It is easy to show that any maximization
problem can be easily turned into an equivalent minimization problem, and
in this work we will also use the maximization version of the problem.

Before understanding the usage of iterative algorithms in linear programs,
we first need to understand how extreme points affect the linear programming

environment. First, let us define the following;:

Definition 2.1. An extreme point solution x of a polytope (a geometric object
with flat sides over a general number of dimensions) P is integral if each
coordinate of x is an integer. A polytope P is said to be integral if every

vertex of P s integral.

11



The following lemma was already referred to in the previous chapter. Now

we prove it.

Lemma 2.1. Let P = {x : Ax = b,z > 0} and assume that min{c'z : x €
P} is finite. Then for every x € P, there exists an extreme point solution
2’ € P such that ¢z’ < cTx. i.e. there is always an extreme point optimal

solution.

Proof. Let x be an optimal solution. If x is an extreme point we are done.
Otherwise, we will show that it is possible to find an extreme point solution.
If x is a solution and not extreme point then by definition, there exists y # 0
such that x +y € P and x —y € P. This leads to

Alz+y) >bxz+y>0

We want to show that we can find a new optimal solution with more zero
coordinates or tighter constraints. Let A’ be a submatrix of A obtained by
choosing only rows for ehich equality holds at x, and let &’ be the vector b
restricted to these rows, and &' be a vector comprised of elements from b (so
A’z =1'). Since z is not an extreme point, there is a y # 0 such that A’y > 0
and A'(—y) > 0, therefor A’y’ = 0. Since z is optimal we get:

We know that y # 0. So there must be at least one j such that y; < 0
(in y or —y). Lets look at = + Ay for A > 0 and increase A until 4+ Ay is no
longer feasible due to the non-negativity constraints on x:

A" =min{ min —-~, min ————}
j:yj<0 —y] it A;x>bi, Ajy<0 _Azy
Since x +y > 0 and z — y > 0, either both x; and y; are zeros or none of

them is zero. Therefore, the coordinates that were at 0, remain at 0. Also,

12



A(x+y) = Az = b since A'y = 0. Therefore, the tight constraints remain
tight. We assumed min{c’z : z € P} is finite, so we get that \* is finite and
the solution x + A\*y has one more zero coordinate (when \* = (z;)/(—y;))
or one extra tight constraint (Ax = (A;z — b;)/(—A;y)). So z + A\*y is an
optimal solution with more zeroes or tight constraints.

Using this method we can convert any optimal solution to an extreme

point optimal solution. O

The proof of Lemma 2.1 not only proves that there is an extreme point

solution, it also shows us that it is possible to find it.

Lemma 2.2. Let P = {x : Ax = b,x > 0}. For x € P, let A’ be the
submatriz of A restricted to rows which are at equality at x, and let Al
denote the submatriz of A" consisting of the columns corresponding to the
nonzeros in x. Then x is an extreme point solution if and only if A’ has

linearly independent columns (i.e. A’ has full column rank).
We will skip the proof of this lemma. It can be found in [1].

Lemma 2.3. (Rank Lemma) Let P = {z : Ax = b,z > 0} and let x be an
extreme point solution of P such that x; > 0 for each i. Then any mazimal
number of linearly independent tight constrains of the form A;x = b; for some

row i of A equals the number of variables.

Proof. We know that x; > 0. We have A! = A’. From Lemma 2.2 it follows
that A" has full column rank. Since the number of columns equals the number
of non-zero variables in  and row rank of any matrix equals the column
rank, we have that row rank of A’ equals the number of variables. Then
any maximal number of linearly independent tight constraints is exactly the
maximal number of linearly independent rows of A" which is exactly the row

rank of A’ and hence the claim follows. O]

In the next part we introduce possible ways to solve the linear program.

13



Let us consider the problem:

minimize c'x

subject to Ax >b

x>0

In order to solve it, we first wish to introduce a variable s; for each

constraint in order to obtain the standard form:

minimize clx

subject to Axr+s=0»
x>0

s>0

Now we can use the linear program in the standard form (i.e. equality
instead of greater or equal: Az = b). We assume that A is of full row rank.
If this is not the case we can remove dependent constraints and reduce the
matrix size without affecting the optimal solution.

A subset of columns B of the constraint matrix A is called a basis if the
matrix of columns corresponding to B, i.e. Ag, is invertible. A solution x is
called basic if and only if there is a basis B such that z; = 0 if j € B and
xp = AZ'b. If in addition to being basic, it is also feasible, i.e., Az'b > 0, it
is called a basic feasible solution. There can be many bases which correspond
to the same basic feasible solution. The next theorem shows the equivalence

of extreme point solutions and basic feasible solutions.

Theorem 2.1. Let A be a m x n matriz with full row rank. Then every
feasible x to P = {x : Ax = b,x > 0} is a basic feasible solution if and only

iof x 1s an extreme point solution.

The proof for this theorem can be found in [1] Theorem 2.1.5.

There are number of ways to solve a linear program. The simplex algo-
rithm is one of them (see [12] for further study). It works on the standard
form of the problem. The basic idea behind the simplex algorithm is to start

14



with a basic feasible solution and to move to a neighboring basic feasible
solution which improves the objective function. This is done repeatedly un-
til an optimal basic feasible solution is found. The main problem with the
simplex algorithm is that for some inputs it runs in exponential time.
There are several known polynomial time algorithms for linear program-
ming problems, among them the ellipsoid method (see [10]) and the interior
point method [11]. There are also efficient algorithms that compute a near

optimal solution in polynomial time.

Theorem 2.2 (Optimal Solution Theorem). There exists a polynomial
time algorithm that given an instance of a linear programming problem, either
returns an optimal extreme point solution, or determines that the problem has

no feasible solution.

In the last part of this section we introduce the dual problem. A linear

program of the following type:

n

MINIMILZE g CjT;

j=1

subject to Zaijxj > b, Vi<i<m
j=1
x; >0 Vi<j<n

has the following dual program:
maximize Z b;y;
i=1

m
subject to Zaijyi < Vi<j<n

=1

yi =0 Vi<i<m

The following theorem is useful. It will not be proved here, but we will

use it later on.

15



Theorem 2.3 (Strong Duality Theorem). If the primal linear program
has an optimal solution, so does its dual, and the respective optimal values

are equal.

The subject of linear programming is very complex and can be further
studied for a long time. The reader is referred to linear programming litera-

ture such as [7].

16



3 Matching and Vertex Cover in Bipartite
Graph

3.1 Matching in Bipartite Graph

In this section we analyze problems over bipartite graphs, based on chapter
3 of [1].

The first problem we examine is Matchings in Bipartite Graphs. This
problem also appeared in the introduction section. In this section we repeat

it with a more formal approach.

Problem 3.1. (Matchings in Bipartite Graphs) Given a bipartite graph
G = (Vi UV, E) and weight function w: E — R, the mazimum matching

problem is to find a set of vertex-disjoint edges of maximum total weight.
Let’s look at the following example (illustrated in Figure 4):

Example 3.1. Vi = {a,b} and Vo = {c,d}. E = {(a,c),(a,d), (b, c), (b,d)}.
The weight function is defined as follows: w(a,c) = 1; w(a,d) = 4; w(b,c) =
4; w(b,d) = 2.

b d

Figure 4: Max Matching in Bipartite Example

The matching includes the marked edges as can be seen in Figure 5.

17



b d

Figure 5: Max Matching in Bipartite Example - Solution

The first thing we do is to find the linear program representing the prob-

lem (we actually look at the relaxation of the problem):

maxrimize E WeTe

ecFk

subject to ergl Yve ViUV,
e€d(v)
Te >0 Vec F

From now we refer to this problem as LB, (G). Here 6(S) (where S is a
set of vertices) denotes the set of edges which have exactly one endpoint in
S. In our case S has only one vertex. We will use this definition in the entire
paper. Let us note that the number of constraints is similar to the number
of vertices in the problem. This linear program can be solved optimally in
polynomial time as stated in previous theorem (see Theorem 2.2). Let’s look

at the linear problem for Example 3.1:

maximize E Wele
ecl

subject to Ty + Toqg < 1
Tpe + Tpg < 1
Tae + Tpe < 1
Taqg + Tpg <1
Te >0 Vec F

Before continuing we define the characteristic vector:

18



Definition 3.1. Let x(F) where F C E denote the vector RIF| that has a 1
corresponding to each edge e € F', and 0 otherwise. This vector is called the

characteristic vector of F.

Now that x(F) is defined, we characterize the problem’s extreme points
solution. We will use the Rank Lemma (Lemma 2.3) in the following way.
The Rank Lemma says that the number of variables (i.e. number of edges
|E)|) is equal to the number of tight linearly independent constraints. In the
following lemma we see the three requirements (size, tightness and linearly

independence).

Lemma 3.1. Given any extreme point solution x to L Py, (G) such that z, >
0 for each e € E there exists W C Vy UV, such that

1. z(0(v)) =1 for each v € W.
2. The vectors in {x(6(v)) : v € W} are linearly independent.

Now we are ready to present the iterative algorithm.

3.1.1 The iterative Algorithm

Algorithm 1 Iterative Bipartite Matching Algorithm

1. F+ 0

2: while E(G) # 0 do

3:  (a) Find an optimal extreme point solution z to LP,(G) and remove
every edge e with z, = 0 from G.

4:  (b) If there is an edge e = {u, v} with x, = 1, then update F' <— FU{e},
Vi < Vi\{u} and V; <V, \ {v}.

5: end while

6: Return F'

19



3.1.2 Correctness

In order to prove that the algorithm returns an optimal solution we need to
prove the following two things. First, that if the algorithm returns a solution,
it is optimal. Second, that the algorithm actually works (i.e. the while loop
actually ends).

In order to prove that the solution is optimal we use the following claim:

Claim 3.1. If the algorithm, in every iteration, finds an edge e with x, =0
or an edge e with x. = 1, then it returns a matching F' of weight at least the

optimal solution to L Py, (G).

Proof. By induction on the number of iterations (n).

For the base case (n = 1) the result is trivial.

For (n > 1) we assume that we either find an edge e with z. = 0 or
T, = 1.

If 2. = 0 then according to line 3 we remove the edge from the graph G
and apply the algorithm on the new G’ which is now smaller. By induction
the solution to the new problem is optimal for the new G’. Now we only
need to understand why this solution is also optimal for the original G. Let
us mark the solution for LP,,,(G’) as x¢. Since the edge we removed had
r., = 0, we can assume that w - xg = w - x. Since zg is a solution to the
relaxation of the LP,,,(G") problem we know that it is at least as good as
the optimal solution to the problem. Since w - xg = w - x, x is also optimal.

If x, = 1 then the solution contains e and we still need to find a solution
for LP,,,(G") which is similar to LB, (G) without vertices v and v (where
u and v are the endvertices of e) and all edges that have u and v as end-
vertices. Just like in the previous case we end up with an optimal solution
for LP,,,(G"). Let us mark this solution (ie. set of edges) as F’. Since it is
optimal we know that w(F”") > w-xc. The algorithm as a whole returns the

solution F' = F’" U e and we get:
w(F) =w(F") +w, and w(F") > w - xg
which implies that

wF)>w-ze+we=w-x

20



This proves our claim. O]

Now we need to prove that the algorithm always finds and edge with

z. = 0 or z, = 1, namely, we need the following lemma.

Lemma 3.2. Given any extreme point solution x of LPy,(G) (with E # )

there exists an edge e with x, =0 or x, = 1.

Proof. We will prove this by contradiction. Let us assume that no edge e
has z. = 0 or ., = 1. This means that 0 < x. < 1 for all edges e € E.
According to Lemma 3.1 there exists W C V; U V4 such that |W| = |E| and
the constrains corresponding to W are linearly independent. We want to
show that for each v € W the rank of v is 2 (i.e. dg(v) = 2) and the rank
of any v € W is 0 (i.e. dg(v) =0). Since z(d(v)) = 1 for each v € W and
0 <z, < 1 we must have at least 2 edges per each v € W. And:
W[ =2|E| = > dg(v) =2 3 de(v) = 2|W]|.
veV veW
Therefore dp(v) = 2 for v € W and dg(v) = 0 otherwise. Now, since each
vertex in W is connected to 2 edges from E, we can see that F is a cycle
cover on W (a cycle cover of a graph G is a set of cycles which are subgraphs
of G and contain all vertices of GG). Let’s examine a cycle C' on W. Since
our graph is bipartite C"’s length is even. Further more:
> x(6@) = > x(6(v))

veCNVy veCNVa
This contradicts the independence constraint of the second condition in
Lemma 3.1. Thus proving that not all edges fulfill 0 < z, < 1. [

Combining the claim and the lemma proved that the algorithm performs

as required.

3.2 Vertex Cover in Bipartite Graph

Let us examine the following problem:

21



Problem 3.2. (Vertex Cover in Bipartite Graphs) Given a bipartite
graph G = (V, E) with cost function c: V. — R, the vertex cover problem
asks for a set of vertices V' such that e NV’ # () for each e € E and c(V') =

Zvev, ¢, 18 minimized.
For example let us look at the following problem(illustrated in Figure 6):

Example 3.2. The graph G is divided into two sets of vertices: Vi = {a, b, c}
and Vo = {d,e, f}. E = {(a,d),(a,e),(b,e),(c,d),(c,e),(c, f)}. The cost
function is defined as follows: c(a) = 2; ¢(b) = 1; ¢(c) = 3; ¢(d) = 3;
cle)=1;¢(f) =2.

Figure 6: Vertex Cover in Bipartite Example

One possible cover includes the marked vertices as can be seen in Figure 7.

a=2 d=23

Figure 7: Vertex Cover in Bipartite Example - Solution

The linear program LP,,.(G) for the problem is as follows (z, is an indi-
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cator for vertex v):

minimaize E Cy Ty

veV
subject to  x, + x, > 1 Ve ={u,v} € £
T, >0 YoeV

For Example 3.2 this is translated to:

minimize 2%q + Ty + 3T + 3xq + Te + 27y
subject to x, +xq>1
Tog+Te>1
Tp+ x> 1
Tetag>1
Te+Te > 1
Tet+ap>1
T, >0 YoeV

Since the number of constrains is equal to the number of edges (i.e.
bounded) this problem can be solved optimally in polynomial time (see The-

orem 2.2).

Definition 3.2. The characteristic vector of W C V is a vector in RVl that
has an 1 corresponding to each vertex v € W, and 0 otherwise. This vector

is denoted by x(W).

Now we are ready to present the iterative algorithm:

3.2.1 The iterative Algorithm

3.2.2 Correctness

Similarly to the Matching problem, we prove the correctness in two steps.

First, we prove that if the algorithm returns a solution, then it is optimal.
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Algorithm 2 Iterative Bipartite Vertex Cover Algorithm
1 U<+ 0

2: while V(G) # () do

3:  (a) Find an optimal extreme point solution x to LF,,.(G) and remove
every vertex v with x, = 0 and dg(v) = 0 from G.

4:  (b) If there is an vertex v € V with z, = 1, then update U <— U U{v},
V(G) < V(G)\ {v} and E(G) « E(G) \ 0(v).

5: end while

6: Return U.

Second, we prove that the algorithm actually ends and returns a solution.

Claim 3.2. If the algorithm finds a vertex v with x, = 0 and dg(v) =0 or a
verter v with x, = 1 inside the while loop, then it returns a vertex cover U

of cost at most the optimal solution to LPy,.(G).

Since the proof of this claim is almost the same as Claim 3.1 we will not
elaborate on it.
Consider the following lemma (it is derived by the Rank Lemma in a

similar manner to Lemma 3.1).

Lemma 3.3. Given any extreme point x to LPy.(G) with x, > 0 for each
v €V there exists ' C E such that

1. x4y +x, =1 for each e = {u,v} € F.

2. The vectors in {x({u,v}) : {u,v} € F} are linearly independent.
3. |V|=|F|.

Using the above lemma we prove the following:

Lemma 3.4. Given any extreme point solution x to LPy,.(G) there must

exist a vertex v with x, = 0 and dg(v) =0 or a vertex with x, = 1.

According to this lemma, the algorithm returns a cover of cost at most

the cost of an optimal solution of LP,,.(G).
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Proof. By contradiction, let us assume that z, < 1 and x,, = 0 while dg(v) >
1 for all v € V. Let us look at an edge e = {u,v}. From the constraints in
the LPy,.(G) we know that x, + z, > 1. Since we assumed that =, < 1 then
2y > 0. In order to see that the assumption is incorrect we use Lemma 3.3.
According to the lemma there exists F' C E such that |F| = |V|. We want
to show that F' is acyclic. If we show that F' is acyclic then it implies that
|F| <|V|—1, giving a contradiction. Assume that C' C F'is a cycle. C' must
be even since G is bipartite. Since G is bipartite, C' is a disjoint union of
two matchings, say M; and M,. The sum of the constraints for edges in M;
and M, is the same, but this contradicts the independence of the constraints

according to lemma 3.3. Therefore C' is acyclic. O

3.3 Vertex Cover and Bipartite Matching Duality

As the reader probably noticed the vertex cover and maximum matching
problems discussed in the previous sections seem very similar. It is possible

to prove that on bipartite graphs they have the same value.

Theorem 3.1. Given an unweighted bipartite graph G = (V, E) we have
max{|M| : M is a matching} = min{|U| : U is a vertezx cover}

Proof. First, let us remind the reader Theorem 2.3: The dual linear program
has an optimal solution that is equal to the optimal solution of the primal
problem. For simplicity, let us assume that the cost functions we use are
constant 1 (the following can also be proved when the costs are different).
Let M* be a matching returned by Algorithm 1 and U* be a cover returned
by Algorithms 2. We already know that the solutions are optimal for both
problems. If we consider the dual problem for the matching, we see that it
is the same as the vertex cover primal problem and vice versa. Now we use
the strong duality theorem (Theorem 2.3) and get that both programs have

optimal solutions of equal value. n
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4 Spanning Trees

In this section we explore the spanning tree problems. The exploration of

the spanning tree problems is based on chapter 4 of [1].

4.1 Minimum Spanning Tree

Let us examine the following problem:

Problem 4.1. Minimum Spanning Tree (MST) Given an undirected
graph G = (V| E) edge costs ¢c: E — R, and the task is to find a spanning

tree of minimum total edge cost.
Let us consider the following example (illustrated in Figure 8):

Example 4.1. For the graph G the vertices are: V = {a,b,c,d} and E =
{(a,b), (a,c),(a,d),(b,c), (b,d),(c,d)}. The cost function is defined as fol-
lows: c(a,b) =1; c(a,c) =1; c(a,d) = 4; c¢(b,c) = 4; ¢(b,d) = 2; ¢(¢,d) = 3.

b d

Figure 8: Minimum Spanning Tree Example

For this problem the minimum tree is obvious as can be seen in the

following Figure 9.
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Figure 9: Minimum Spanning Tree Solution Example

4.1.1 The Linear Program Relaxation

Let us define z. as an indicator that states whether edge e is included in the
spanning tree. Let ¢, denote the cost of edge e. For a subset F' of edges, let

z(F) denote Y x.. For a subset S of vertices, 6(5) is the set of edges with
eck

exactly one endpoint in S. Finally let E(S) be the set of edges with both
endpoints in S.

The following describes the so called subtour linear program relazation
for MST:

minimize E CeTe

eck

subject to  x(E(S)) < |S] -1 V) £SCV
(E(V)) =V]-1
Te > 0 Veec F

The constraints demand that for each subset of V| the sum of all z, for
edges inside the set is at most |S| — 1. This means that there is at least one
edge going out of the set. In addition, we require that sum of all edges is
V| — 1. So we know that all vertices are connected once.

Let us note that even though the number of constraints in this problem
is exponential in |V|, it is still possible to solve it in time polynomial in |V/|
(see [1] section 4.1.2).

Now we wish to analyze the extreme point solution. Remember that

an extreme point solution is a unique solution that fulfills the following: it
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is defined by n linearly independent tight inequalities (n is the number of
variables in the LP). Since our LP has exponential number of inequalities,
some may not be satisfied as equalities. In order to analyze the extreme point
solution, we need to find a "good” set of tight inequalities. We will ignore
edges with ., = 0 as these edges can be removed from the graph without
affecting the feasibility of the objective value.

Let us examine the Uncrossing Technique (see [9]). This technique is
used to find a good set of tight inequalities for n extreme point solution in
the subtour LP. Let x(F) (F C E) denote the characteristic vector in RI”!
that has a 1 corresponding to each edge e € F' and 0 otherwise. Then:

Proposition 4.1. For X, Y CV,
X(E(X))+x(E(Y)) < x(E(XUY))+x(E(XNY))

and equality holds if and only if E(X \Y,Y \ X) = 0.

Proof. Immediate from
X(E(X)) +x(E(Y)) = x(E(XUY)) +x(E(XNY)) - E(X\Y,Y \ X)

]

Given an extreme point solution x to the subtour LP, let F = {S C
V| x(E(S)) = |S|—1} be the family of tight inequalities for z. The following

lemma shows that this family is closed under intersection and union.

Lemma 4.1. If S;T € F and SNT # 0, then both SNT and SUT are in
F. Furthermore, x(E(S))+ x(E(T)) = x(E(SNT))+ x(E(SUT)).

We will skip this proof. It can be found in Lemma 4.1.4. in [1].

Definition 4.1. span(F) is defined as the vector space generated by the set
of vectors {x(E(S)) | S € F}.

Definition 4.2. Two sets X,Y are intersecting if XNY, X —-Y and Y — X

are nonempty.
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Definition 4.3. A family of sets is laminar if no two sets are intersecting.

We use the above 3 definitions in order to state that an extreme point
solution is characterized by tight inequalities whose corresponding sets form

a laminar family.

Lemma 4.2. If L is a mazximal laminar subfamily of F, then span(L) =
span(F)

The proves for Lemma 4.2 is very mathematical and it is available in [1]

under Lemma 4.1.5.
Definition 4.4. A singleton is defined as a subset with only one element.

Proposition 4.2. A laminar family L over the ground set V without single-

tons has at most |V| — 1 distinct members.

Now we are ready to present the iterative algorithm.

4.1.2 Leaf-finding Iterative Algorithm

Algorithm 3 Iterative Leaf-finding MST Algorithm
1. F+ 0
while V(G) > 2 do
(a) Find an optimal extreme point solution z to the subtour LP and
remove every edge e with e, = 0 from G.
(b) Find a vertex v with at most one edge e = uv incident to it, then
update F' < F U {e} and G <+ G\ {v}.
end while
: Return F.

>

e

4.1.3 Correctness

We start by proving that the algorithm terminates.

Lemma 4.3. For any extreme point solution x to the subtour LP with x, > 0

for every edge e, there exists a vertex v with d(v) =1
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Proof. By contradiction let’s assume that each vertex has d(v) > 1. This

means that 3 Y. d(v) > |[V|. On the other hand, since there are no edges
veV
with z. = 0 all tight inequalities are in the form of x(E(S)) = |S| — 1. By

Lemma 4.2, there are |£| linearly independent tight constraints of the form
X(E(S)) =|S| — 1, where L is a laminar family with no singleton sets. As a
result |E| = |£| by the Rank Lemma 2.3. By Proposition 4.2, |£| < [V|—1
and therefore |E| < |V| — 1 which contradicts the original assumption. [

Once we established that the algorithm terminates, we need to see that

it returns a minimum spanning tree.

Theorem 4.1. The Iterative MST Algorithm returns a minimum Spanning

tree in polynomial time.

Proof. By induction on the number of iterations of the algorithm. Let’s
assume the algorithm finds a vertex v with d(v) =1 (i.e. leaf) in line 4 (step
(b)) of the loop. The edge e connects v to the rest of the graph. Then z, = 1
since z(d(v)) > 1 is a valid inequality of the LP. The algorithm removes e
from the graph and adds it to the spanning tree. Now we are left with a
smaller problem (i.e. to solve the MST problem for G\ {v}). Once we know
the solution to the smaller problem, we can add e to the solution for a full

MST. It is easy to see that the cost of such tree is optimal. O]

30



5 Directed Graphs

In this chapter we discuss directed graphs and how the iterative technique
can help us solve problems on directed graphs. This section is based on
chapter 6 of [1].

5.1 Minimum Cost Arborescence

Problem 5.1. Given a directed graph D = (V, A) and a root vertex r € V,
a spanning r-arborescence is a subgraph of D so that there is a directed path
from r to every vertex V. — r. The minimum spanning arborescence problem

is to find a spanning r-arborescence with the minimum total cost.
For example let us look at the following example (illustrated in Figure 10):

Example 5.1. For the graph G the vertices are: V = {a,b,c,d} and E =
{(a,b), (a,c), (a,d), (b,c), (b,d),(c,d)} (all edges are directed from first vertex
to second). The cost function is defined as follows: c(a,b) = 1; ¢(a,c) = 1;
cla,d) =4; c(b,c) = 4; ¢(b,d) = 2; ¢(c,d) = 3.

Figure 10: Minimum Cost Arborescence

For this problem the minimum spanning arborescence is obvious as can

be seen in the following Figure 11.
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Figure 11: Minimum Cost Arborescence Solution Example

As in previous sections we will first find the linear program and then
characterize the extreme point solutions. Only then we will explore the

iterative algorithm.

5.1.1 Linear Programming Relaxation

Here we define the linear program for the solution of Problem 5.1

In the following linear program c, is the cost of arc a and z, is an indicator
for the choosing of arc a. We mark §*(S) as the set of all arcs incoming to
a vertex v € S from any vertex outside of S C V. The expression x(6(S))
represents a vector in Rl for set S. This vector has 1 for each arc a € §™(9),
and 0 otherwise. This vector is called the characteristic vector of 6*(S) and
is denoted by x(6(S)). The term z(§"(S)) means the sum > x,.

acdin(S)
minimaize Z Colq
acA
subject to  z(6™(S)) > 1 VSCV —r
Tqe >0 Ya € A

The linear program simply states that for each subset of V' without r
(S CV —r) we can find at least one arc that is coming into S from A — S.
5.1.2 Characterization of Extreme Point Solutions

In this section we analyze the extreme point solution to the minimum span-

ning arborescence. The reader may note that the conclusions and lemmas

32



in this section are very similar to the ones in the Minimum Spanning Trees
section.

Just like in the minimum spanning trees, we use the uncrossing technique
to find a good set of tight inequalities that define an extreme point solution

to the directed LP. In this section we will use F to represent this family of
tight inequalities (F = {S]z(6"(9)) = 1}).

Proposition 5.1. For XY C V|,
2(0"™(X)) +2(8™(Y)) > 2(6"™(X UY)) +z(6™(X NY))

and equality holds if and only if E(X \Y,Y \ X) = 0.

This is similar to proposition 4.1.

Now we want to see that F is closed under intersection and union:

Lemma 5.1. If S, T € F and SNT # () then both SNT and SUT are in
F. Furthermore, x(6"(S)) + x(6™(T)) = x(6™(SNT)) + x(6™(SUT))

The proof for this can be found in [1] lemma 6.1.2.

In this section we use the following definition:

Definition 5.1. span(F) is defined as the vector space generated by the set
of vectors {x(6™(S)) | S € F}.

Let us also remind the reader that a family of sets is laminar if no two

sets are intersecting.

Lemma 5.2. If L is a mazimal laminar subfamily of F, then span(L) =
span(F)

This is similar to Lemma 4.2 and will not be proven here.

Corollary 5.1. Let x be any extreme point solution to the directed LP. Then

there exists a laminar family L such that:
1. z(6™(S)) =1 for all S € L.
2. The vectors in {x(6™(S)) : S € L} are linearly independent.
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3. 1A = |L).

A laminar family £ defines naturally a forest L as follows: Each node of
L corresponds to a set in £, and there is an arc from set R to set S if R is
the smallest set containing S. R is called the parent of S, and S is called
the child of R. A node with no parent is called a root, and a node with no
children is called a leaf. Given a node R, the subtree rooted at R consists of
R and all its descendants. The forest L corresponding to the laminar family

L will be used to perform the token counting arguments inductively.

5.1.3 The Iterative Algorithm

The following is an iterative algorithm for the directed LP. This algorithm is

very similar to the MST algorithm in the previous chapter.

Algorithm 4 Iterative Minimum Spanning Arborescence Algorithm
1. F+ 0

2: while |V (D)| > 2 do

3:  (a) Find an optimal extreme point solution « to the directed LP and
remove every arc a with x, = 0 from D.

4: (b) Find an arc a = uv with z, = 1 and update F' <— F U {a} and
D « D\ {uv}.

5: end while

6: Return F'.

5.1.4 Correctness and Optimality

The first step in proving the correctness and optimality is to prove that the

algorithm terminates.

Lemma 5.3. For any extreme point solution x to the directed LP, either

there is an arc with x, = 0 or there is an arc with x, = 1.

Proof. We explain the idea behind the proof (for a full proof see [1] Lemma
6.1.6). The proof is by contradiction — assume that there is no arc with
zq, = 0 or x, = 1. We can use the laminar family £ from Corollary 5.1 in

order to create the contradiction. The idea is to show that the number of
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constraints (number of sets in £) is smaller than the number of arcs. The

proof is very similar to the MST problem proof. O]

Now that we know that the algorithm terminates (since the number of
iterations is now limited) we only need to prove that the algorithm runs in
polynomial time. The proof for this is roughly the same as the proof for

Theorem 4.1. The reader may refer to it for further study of the case.
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6 Matching

In the previous sections we met the maximum matching problem in bipartite
graphs. In this section we want to explore the matching in a general weighted

undirected graph. This section is based on chapter 9 of [1].

6.1 Graph Matching

When we examined the bipartite matching we used a linear programming
relaxation to the problem. For general graphs this relaxation does not work.

Let us start by defining the problem:

Problem 6.1. Given an undirected graph G = (V, E) with a weight function
w: E — R the mazimum matching problem is to find a set of vertex-disjoint

edges of maximum total weight.

6.1.1 Linear Programming Relaxation

Before looking at the linear program relaxation let us recall that F(S) denotes
the set of edges with both endpoints in S C V' and z(F) is short for ) .z,
for F C F.

The linear programming relaxation for the maximum matching problem
is given by the following LPy/(G) (remember that §(z) is defined as a set of
edges that have z as one of their endpoints).

due to Edmonds [13]:

maxrimize E Wele

eck
subject to  x(6(v)) <1 YoeV
-1
z(E(9)) < |S|2 VS C V,|S| odd
T, >0 Vee E
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6.1.2 Characterization of Extreme Point Solutions

In this section we define y(F') in the following way: For a subset of edges
F C E, x(F) is the characteristic vector x(F) € R/*! with an 1 corresponding

to each edge in F' and 0 otherwise.

Lemma 6.1. Let x be an extreme point solution to LPy(G) with 0 < z, < 1
for each edge e € E(G). Then there exists a laminar family £ of odd-sets
and a set of vertices T'C V' such that:

1. z(E(S)) = (|S| —1)/2 for each S € L and x(6(v)) =1 for each v € T.

2. The vectors in {x(E(S)) : S € L} U{x(6(v)) : v € T} are linearly

independent.
3. E(S) is connected for each set S € L.
4. |El = |L] + |T].

The proof for Lemma 6.1 is relatively long and mathematical. The reader

can find the detailed proof in [1] under Lemma 9.1.2.

6.1.3 The Iterative Algorithm

Algorithm 5 Iterative Matching Algorithm
: F (—(Z)

—_

2: while |V(G)| # 0 do

3:  (a) Find an optimal extreme point solution x to the directed LPy(G)
and remove every edge e with z. = 0 from G.

4:  (b) If there is an edge e = {u, v} with z. = 1 then update F' < FU{e}
and G < G\ {u,v}.

5: end while

6: Return F'.

6.1.4 Correctness and Optimality

If we knew that during each iteration the algorithm would find an edge e
with x. = 1, then the returned solution would be optimal, by induction. So

what we need to show is that such an edge always exists.
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Lemma 6.2. Given any extreme point x to LPy(G) there must exist an edge

e withz, =0 orz,=1.

Proof-sketch: By contradiction, let’s assume that 0 < x. < 1 for all edges
e € E. Let £ be a laminar family of tight odd-sets and 7" be a set of tight
vertices satisfying the properties of Lemma 6.1. Let £ = L UT be the
extended laminar family. If we show that |E| = |£]| + |T'| = |£'| then by
contradiction our proof is done. We will use token counting argument. In
the beginning we give each edge a token (total of | E| tokens). Then each edge
gives its token to the smallest set in £’ that contains both of its endpoints.
Now we redistribute the tokens inductively so that each member in £ has
one token. Naturally there are some tokens left. This implies that |L| > |£'].
The complete proof is found in [1] Lemma 9.1.7.

6.2 Hypergraph Matching

In this section we consider matching problems on hypergraphs. It is easy to

understand what what hypergraphs from the following definitions:

Definition 6.1. A hypegraph H = (V, E) consists of a set V of vertices
and a set E of hyperedges.

Definition 6.2. A hyperedge e¢ € E is a subset of vertices.

Definition 6.3. A subset M C E(H) of hyperedges is a matching if every

pair of hyperedges in M has an empty intersection.

The following is the main problem we discuss over hypergraphs. Before
handling hypergraphs, let us first review what are approximation algorithms.
Sometimes, it is difficult to find a solution to an optimization problem effi-
ciently (in polynomial time). One possible approach, is instead of finding an
optimal solution to the problem, to find an approximate solution. In order
to classify the approximation we use the concepts of “p-approximation algo-
rithm” and “approximation ratio p”. Here p denotes the ratio between the
optimum solution and the approximate solution. We say that an algorith has

approximation ratio p, or that it is a p-approximation algorithm if it runs in
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polynomial time and produces a solution of value at most p the value of an
optimal solution in the case of a minimization problem, and of value at least

1/p the value of an optimal solution in the case of a maximization problem,

Problem 6.2. Given a hypergraph, a weight w, on each hyperedge e, the
hypergraph matching problem s to find a matching with the maximum

total weight.

Note that the graph matching problem is a special case when every hy-

peredge has exactly two vertices.

Definition 6.4. A hypergraph H is called k-uniform if every hyperedge has

exactly k vertices.

Definition 6.5. A hypergraph H is called k-partite if H is k-uniform and
the set of vertices can be partitioned into k disjoint sets Vi, Vs, ..., Vi so that

each hyperedge intersects every set of the partition in exactly one vertex.
Note that a bipartite graph is a 2-partite hypergraph.

Theorem 6.1. For the hypergraph matching problem, there is a polynomial
time (k — 1+ %)—approximatz’on algorithm for k-uniform hypergraphs, and a

(k — 1)-approximation algorithm for k-partite hypergraphs.

For k = 3, the problem in Theorem 6.1 is known as the 3-dimensional
matching problem. It is a classic NP-complete problem. In this work we
prove the theorem for the 3-partite hypergraphs.

6.2.1 Linear Programming Relaxation
In this section we use §(v) to denote the set of hypergraphs that contains v.

The standard linear programming relaxation would be:

maximize g Wele

ecF

subject to Z Te <1 YoeV
e€d(v)
e >0 Vee E
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As usual x. is an indicator for edge e; w, is the weight of edge e. The
original linear program would require that at most one edge of all the edges
that include the vertex v is chosen into the matching.

Let B denote the vector of all degree bounds 0 < B, < 1 for each vertex
v € V. Let us consider the following general linear problem denoted by
LPy(H,B) (Initially B, =1 for each v € V).

maximize E Wele

ecE

subject to Z Te < B, YveV
e€d(v)
Te > 0 Vee B

For the analysis of the iterative algorithm, we will use the LPy(H, B).

6.2.2 Characterization of Extreme Point Solutions

The lemma below follows by a direct application of the Rank Lemma.

Lemma 6.3. Given any extreme point solution x to LPy(H,B) with x. > 0
for each edge e € E, there exists W C V' such that:

1. 2(6(v)) = By, > 0 for each v € W.
2. The vectors in {x(6(v)) : v € W} are linearly independent.

3. |E| = |W|.

6.2.3 Iterative Algorithm

The algorithm consists of two phases. In the first phase we use an iterative
algorithm to provide a "good” ordering of the hyperedges. In the second
phase we apply the local ratio method to this good ordering to obtain a
matching with cost at most twice the optimum.

The Local-Ratio routine described below provides an efficient procedure

to obtain a 2-approximate solution for the 3-dimensional matching problem.
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Algorithm 6 Iterative 3-Dimensional Matching Algorithm

1:

Find an optimal extreme point solution x to LPy(H,B) with B, = 1 for
all v.
F+10
for i from 1 to |E(H)| do
(a) Find a hyperedge e with z(Nle]) < 2.
(b) Set f; <~ e and F < FU{f;}.
(c¢) Remove e from H.
(d) Decrease B, by z. for all v € e.
end for
M < Local-Ratio(F,w), where w is the weight vector of the hyper-
edges.
Return M.

Algorithm 7 Local-Ratio(F, w)

1:
2:
3:

4:
5:

Remove from F' all hyperedges with non-positive weights.

if ¥ =0, then return 0.

Choose from F' the hyperedge e with the smallest index. Decompose the
weight vector w = wy + wy where

n | w(e) if € € Nlel,
wi(e’) = { 0 otherwise.

M’ + Local-Ratio(F, ws)
If M" U {e} is a matching, return M’" U {e}; else return M’

6.2.4 Correctness and Optimality

We prove the following theorem:

Theorem 6.2. After the loop (i.e. line 8) of the iterative algorithm, there
s an ordering of the hyperedges such that:

x(Nle;] N{ei, ity em}) < 2 for all 1 < i < m, where m is the number of

hyperedges in x with positive fractional value.

In order to prove Theorem 6.2 we first need to prove the following Lemma:

Lemma 6.4. Suppose x is an extreme point solution to LPy(H,B). If x. > 0

for all e € E, then there is a hyperedge e with x(Nle]) < 2.
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Proving this is done using Lemma 6.3. Let us assume that W is a set of
tight vertices as described in Lemma 6.3. We start by proving that in any
extreme point solution to LPy(H, B), there is a vertex in W with maximum
degree of 2. By contradiction, let us assume that all vertices in W have a

degree of 3 or above. Therefore:

> vy [0(v)] > > vew 6(V)]

W= |EF| =
W= |B| = Seet S0 5 Seet

> W],

The result implies that all inequalities must be held as equalities. This
implies that every hyperedge is contained in .
Let V1, V5, V3 be the tri-partition of V, and W; = W NV, for 1 <i < 3.

Since each hyperedge intersects W; exactly once we get:

Y x(6() = ) x(6(v)

veWr veWs

This implies that the characteristic vectors in W are not linearly indepen-
dent, contradicting Lemma 6.3. Therefore there is a vertex u € W of degree
at most two. Let e = {u,v,w} be the hyperedge in d(u) with larger weight.
Since u is of degree at most two, this implies that 2z, > z(6(u)). And:

z(Nle]) < z(6(u)) + z(0(v)) + z(6(w)) — 2z, < x2(d(v)) + 2(d(w)) < B, + By < 2.

We have a hyperedge e with 2(Nle]) < 2 in an extreme point solution
to LPy(H,B). Now we need to show that the remaining solution in the
algorithm (second part of the iterative loop - after removing e and updating
B,) is still an extreme point solution to LPy(H,B). We will do this by

proving the following lemma:

Lemma 6.5. In any iteration of the loop of the algorithm (lines 2-7) the re-

striction of the fractional solution is an extreme point solution to LPy(H, B).

Proof. Suppose the graph in the current iteration is H = (V, E). Let g
be the restriction of the initial extreme point solution x to E. We prove by
induction on the number of iterations that zp is an extreme point solution
to LPy(H,B). This holds in the first iteration by first line of the algorithm.
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Let e = {v1,v2,v3} be the hyperedge found in the first line of the loop in
the algorithm. Let £ = E —e and H' = (V, E’). Let B’ be the updated
degree bound vector. We prove that zp is an extreme point solution to
LPy(H',B"). Since the degree bounds of vy, vs,v3 are decreased by exactly
T, it follows that x g is still a feasible solution. Suppose to the contrary that
x g is not an extreme point solution to LPy(H’, B"). This means that g can
be written as a convex combination of two different feasible solutions y; and
y2 to LPy(H',B'). Extending y; and ys by setting the fractional value on e
to be x., this implies that xg can be written as a convex combination of two
different feasible solutions to LPy(H, B), contradicting that x g is an extreme

point solution. Hence zp is an extreme point solution to LPy (H',B'). O

Now that we also established that the solution remains an extreme point
solution we can apply Lemma 6.4 inductively. The algorithm will succeed in
finding the ordering we require.

We now wish to obtain an efficient approximation algorithm for the 3-

dimensional matching problem. We introduce the Local Ratio Theorem from
[14]:

Theorem 6.3 (Local Ratio Theorem). Let C be a set of vectors in R™.
Let w, wy, wy € R™ be such that w = wy+ws. Suppose x € C is r-approrimate
with respect to wy and r-approrimate with respect to wo. Then x is r-

approzimate with respect to w.

Proof. Let x*, zj, and x; be optimal solutions with respect to w, wy, and

way, respectively. Clearly, wy - 27 < wy - 2%, and wy - 25 < wy - 2*. Thus

wer=w;-xr+we - < r(w -xl)+r(wy-xy) <r(w-x*) +r(wy - z*). O

Now it remains to prove that the cost of the matching we received is at

least half the optimum.

Theorem 6.4. Let x be an optimal extreme point solution to LPy(H,B).
The matching M returned by the algorithm satisfies w(M) > 3 -w - x

Proof. We prove this using induction on the number of hyperedges having

positive weights. If the number of hyperedges with positive edges is 0 the case
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is trivial. Let e be the hyperedge chosen by the Local-Ratio algorithm. e has
the smallest index in the ordering. So by Theorem 6.2, we get z(Nle]) < 2.
Let w, wy, wy be the weight vectors from the algorithm. Let y and ¢y’ be the
characteristic vectors for M and M’ from the algorithm. Since w(e) > 0
and wsy(e) = 0, wy has fewer hyperedges with positive weights than w. By
the induction hypothesis, wq - 3y’ > % -wy - x. Since wy(e) = 0, this implies
that wy -y > % -wy - x. By the last step of the algorithm, at least one
hyperedge in Nle] is in M. Since z(Nle]) < 2 and wy(e’) = w(e) for all
e’ € Nlel, it follows that wy -y > % -y - x. Therefore, by Theorem 6.3, we
have w -y > % -w - x. This shows that M is a 2-approximate solution to the

3-dimensional matching problem. O
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7 Network Design

In this chapter we study the survivable network design problem (SNDP).
This chapter is based on chapter 10 of [1]. In addition this chapter analyzes
the degree bounded SNDP as described in [2].

Definition 7.1. Given an undirected graph G = (V, E) and a connectivity
requirement 1., for each pair of vertices u, v, a Steiner network is a subgraph
of G in which there are at least ry, edge-disjoint paths between u and v for

every pair of vertices u,v.

7.1 SNDP

Problem 7.1. The Survivable Network Design Problem is to find a Steiner

network with minimum total cost.

Note that the survivable network design problem generalizes the minimum
Steiner tree problem, the minimum Steiner forest problem, and the minimum
k-edge-connected subgraph problem.

In the first part of this section we introduce the 2-approximation algo-
rithm to the problem. This was first introduced by Jain [15]. Then we show
the connection to the traveling salesman problem and finally we consider the

minimum bounded degree Steiner network problem.

7.1.1 Linear Programming Relaxation

First we define skew supermodular set functions.

Definition 7.2. A function f: 2" — Z is called skew supermodular if at
least one of the following two conditions holds for any two subsets S, T C V':

FS)+ [(T) < f(SUT)+ f(SNT)
fS)+ f(T) < F(S\T)+ f(T\5)
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It is not hard to show that the set function f defined by f(.5) = maxyes.vzs{rus}
for each S C V is a skew supermodular function.

The linear program L Py, qp:

minimize E Cele
eckE

subject to  x(6(S)) > f(S) VSCV
0<z., <1 VeekF

It is not known whether there is a polynomial time separation oracle for a
general skew supermodular function f. This linear program for the minimum
Steiner network problem, however, can be solved in polynomial time by using
a maximum flow algorithm as a separation oracle.

7.1.2 Characterization of Extreme Point Solutions

Similar to previous sections (spanning trees) the extreme point solution to
L P, 4, is characterized by a laminar family of tight constraints. The following

Lemma follows from the uncrossing arguments and the Rank Lemma.

Lemma 7.1. Let the requirement function f of L Ps,ap be skew supermodular,
and let x be an extreme point solution to LPg,q, with 0 < z. < 1 for every

edge e € E. Then, there exists a laminar family L such that:
1. 2(6(S)) = f(S) for each S € L.
2. The vectors in {x(0(S)) : S € L} are linearly independent.
3. |El =|L].

7.1.3 The Iterative Algorithm

The following algorithm is due to Jain [15]:
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Algorithm 8 Iterative Minimum Steiner Network Algorithm
 F o+ @, f/ — f;

—_

2: while f' # 0 do

3:  (a) Find an optimal extreme point solution = to LPs,4, with cut re-
quirements [’ and remove every edge e with =, = 0.

4:  (b) If there is an edge e with x, > 1/2, then add e to F' and delete e
from the graph.

5. (c) For every S C V: update f'(S) « max{f(S) — dr(S),0}.

6: end while

EN|

: Return H = (V, F)).

7.1.4 Correctness and Performance Guarantee

Jain’s proof of the algorithm uses a token counting argument.

Theorem 7.1. Suppose f is an integral skew supermodular function and x
is an extreme point solution to LPg,q,. Then there exists an edge e € E with

1
1'625.

It is obvious that if Theorem 7.1 is true then the iterative algorithm
terminates (since step (b) in the loop is fulfilled). Now we wish to prove

Theorem 7.1. This proof uses the fractional token idea as can be seen in [3].

Proof. We start by assuming in contradiction that 0 < z, < 1/2 for each
e € E. We will show that |E| > |£| as contradiction to Lemma 7.1. The
fractional token method is used as follows: Assign each edge e = {u,v} one

token. Now, reassign the tokens as follows:

1. Rule 1 Let S € L be the smallest set containing u and let R € L be
the smallest set containing v. Let e distribute z. (which is smaller than
1/2 by assumption) token to S and R.

2. Rule 2 Let e distribute the remaining 1 — 2z, tokens to the smallest
set containing both u and v (denote this set as 7' € L).

Now choose any set S € L. This set has k children (kK > 0) denoted by
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Rl, RQ, Rk Then:

We define 3 groups of edges:

A={e:len(U;R;)| =0,len S| =1}
B={e:len(UR)| =1,lenS| =2}
C=A{e:len(UR;)| =2,]len S| =2}

Edges in A have only one vertex in S but no vertices in the children.
Edges in B and C' have both endnodes in S but for an edge in B only one
side of the edge is in some child of S.

According to Rule 1, for each edge e € A, S receives z, tokens. For any
edge in B, both rules apply; Rule 1 for the edge that is also shared with the
children of S, and Rule 2 as trivially seen. So S received 1 — z, tokens. For
any edge in C, S receives 1 — 2x. tokens by Rule 2.

We rewrite the previous equation and get:

k

2(A) —a(B) = 22(C) = f(S) = Y f(R)

=1
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According to the token redistribution:

0<) me+> (1—mz)+ > (1-2z)

ecA ecB ecC
=z(A) + |B| — z(B) + |C] — 2x(C)
k

=Bl +|C| + f(C) = > f(R)

i=1

Since the function f is integral, the sum on the last sum (right side of

equation) must be at least 1. This means that S receives at least one token.

Now, choose a set R to be the maximal set in £. Choose any edge

e € 0(R). We want to see why Rule 2 cannot be applied. There is no set T’

with |7 N e| = 2 because we already chose the maximal set. So the 1 — 2z,
tokens cannot be assigned according to the rule.

Since every set in L receives at least one token but there are still unas-

signed tokens we get the contradiction |E| > |L]. O

Now we can see why the algorithm is a 2-approximation algorithm. This
is done using a simple induction. The base case is trivial. For the induction
step, let’s look at the solution H. We can write the cost as: cost(H) =
cost(H') 4+ c. where €' is the edge with x. > 1/2 as found in Theorem 7.1.

Using the induction step we know that cost(H') < 2 > cex.. Therefore
ecE—e’
we get that cost(H) <2 Y c.z. (because zo > 1/2).
eckE

7.1.5 Connection to the Traveling Salesman Problem
First, we recall the traveling salesman problem (TSP):

Problem 7.2. Given an undirected graph G = (V, E) and a cost function
c: E — Ry, the Traveling Salesman Problem (TSP) is to find a minimum

cost Hamultonian cycle.

In this section we show a generalization of the survivable network design
problem and the traveling salesman problem. We claim that any extreme

point solution of this generalization has an edge e with z, > %, and in some
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cases T, = 1. In this section we do not show the proofs, we only generally

describe the concept.

7.1.6 Linear Programming Relaxation

The following linear program relaxation models both the survival network
design problem and the traveling salesman problem. It will be denoted by

LP; where f is a skew supermodular function.
minimaize E Coe

subject to x(6(5)) > f(S) VSCV
z(6(v)) = flv) YveW
0<z. <1 VeckE

For the survivable network design problem we set f(S) = max,esvgs{ruv}
for each subset S C V and set W = (). For the traveling salesman problem
we set f(S)=2foreach SCV, f(V)=0and W =V.

7.1.7 Characterization of Extreme Point Solutions

The following is very similar to lemmas we have already seen:

Lemma 7.2. Let the requirement function f of LP; be skew supermodular,
and let x be an extreme point solution to LP; with 0 < z. < 1 for every

e € E. Then, there exists a laminar family L such that:

1. 2(0(S)) = f(5) for each S € L
2. The vectors in x(6(S)) : S € L are linearly independent

3. |E| =|L]

7.1.8 Existence of Edges with Large Fractional Value

There is an edge e with . = 1 in any extreme point solution of the traveling
salesman problem (this was proven by Boyd and Pulleyblank [19]). The

following theorem generalizes their result as well as Jain’s (Theorem 7.1)
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Theorem 7.2. Let f be an integral skew supermodular function, and x be
an extreme point solution to LP; with x. > 0 for all e. Then, there exists
an e € B with x, = % Moreover, if f(S) is an even integer for each subset

S CV then there exists an edge e with r. = 1.

7.2 Degree-bounded SNDP

Problem 7.3. The degree-bounded SNDP problem is similar to the SNDP
problem with a degree bound b(v) on the vertices; namely, each vertex v is

incident to at most b(v) edges in the solution graph H.
In addition we define the following problem:

Problem 7.4. The element connectivity SNDP (Elem-SNDP) problem is
similar to the SNDP problem but with two sest of vertices R,W. The vertices
in R are called reliable vertices or terminals, while the vertices in W are called
unreliable vertices. The vertices in W and the edges are called elements. The
goal of the Elem-SNDP problem is to satisfy the connectivity requirement
between each pair u,v of terminals, while the paths are element-disjoint (i.e.

paths do not share unreliable nodes or edges).

In this section, we present a bicriteria approximation to the problem
based on [2].

Theorem 7.3. There is a polynomial time approrimation algorithm for the
degree bounded Elem-SNDP problem in undirected graphs that achieves an
(O(1),0(1)b(v)) bicriteria approximation.

We will get back to the problems later. First, we need to establish some
preliminary statements.
7.2.1 Preliminaries

We now introduce a number of definitions. Let V be a ground set.

Definition 7.3. A biset A = (A, A") is a pair of sets such that A C A’ C V.
A is the inner part of A and A’ is the outer part of A. bd(A) = A" — A is
the boundary of A.
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In addition we need the following definition.
Definition 7.4. intersection/union/difference of two bisets:
1. ANB=(ANnB,ANB)
2. AUB=(AUB,AUDB)
3. A—B=(A-B' A - B)
Also A is contained in B: A CB if and only if AC B and A’ C B’
Now we define disjoint/intersecting bisets:
Definition 7.5. Two bisets A and B are disjoint if AN B is empty.

Definition 7.6. Two bisets A and B are intersecting if A and B are not
disjoint.

Definition 7.7. Two bisets A and B are strongly disjoint if A’ N B and
AN B are empty.

Definition 7.8. Two bisets A and B are overlapping iof A and B are not
strongly disjoint.

Definition 7.9. A family of bisets is bilaminar if, for any two bisets A and
B in the family, one of the following holds: A C B, B C A, or A and B are

disjoint.

Definition 7.10. A family of bisets is strongly bilaminar if , for any two
bisets A and B in the family, one of the following holds: A C B, B C A, or
A and B are strongly disjoint.

Definition 7.11. Let f be defined as f : 2V x 2V — Z. f is bisupermodular
if for any two bisets A and B:

fA)+ [(B) < f(ANB) + f(AUB)

f s intersecting bisupermodular if the inequality above holds for any two
bisets A and B that intersect.
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f is positively bisupermodular if the inequality above holds for any two
bisets A and B such that f(A) >0 and f(B) > 0.
f 1s bisubmodular if —f s bisupermodular.

f is binegamodular if for any two bisets A and B:
fA)+ f(B) < f(A-B)+ f(B-A)

f is biposimodular if —f is binegamodular.

f 1s skew bisupermodular if for any two bisets A and B:
fA) + f(B) < max{f(ANB)+ f(AUB), f(A—B)+ f(B—A)}

f s positively skew bisupermodular if the inequality above holds for any two
bisets A and B such that f(A) >0 and f(B) > 0.

Definition 7.12. Let F' denote a set of undirected edges. dp(A) defines the
set of all edges e € F' such that e has one endpoint in A and another endpoint
inV — A" x(6r(A)) is defined as the characteristic vector of §p(A).

Definition 7.13. Let G denote a set of directed edges. 6,(A) defines the set
of all edges e € G with head in A and tail in V — A'. §5(A) defines the set
of all edges e € G with head in V — A" and tail in A .

The following lemmas are brought here without proof.

Lemma 7.3. For any set F' of edges and any positive weight function w on
F, the function f(A) = w(0p(A)) is both bisubmodular and biposimodular.

Lemma 7.4. For any set I of directed edges and any positive weight function
w on F, the function f(A) =w(dz(A)) is bisubmodular.

Lemma 7.5. For any two bisets A and A, we have:

|bd(A)| + |bd(B)| = |bd(ANB)| + |bd(A UB)|

|bd(A)| + |bd(B)| = |bd(A — B)| + [bd(B — A)| + 2|bd(A) N bd(B)|
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Before going to the problem definitions we define covering.

Definition 7.14. Let G = (V, E) be an undirected graph and let f : 2V x
2V — R be a biset function. G covers f if |6g(A)| > f(A) for each A. For
directed graph we need the inequality |6, (A)] > f(A)

Now we define the problems that we consider. Let G = (V, E) be an
undirected graph with weights w(e) on edges and degree bounds b(v) on the

nodes.

Problem 7.5. Degree-bounded Element-SNDP: The vertices of V are
partitioned into two sets, the set R of reliable vertices and the set W of
unreliable vertices. The vertices of W and the edges are called elements.
The element-connectivity of a pair u,v of nodes is the maximum number of
element-disjoint paths from u to v; these paths do not share any unreliable
nodes or edges, but they may share reliable nodes. Two vertices u and v are [-
element-connected if their element connectivity is at least |. In addition to the
weights and bounds, we add integer requirement r(u,v) foru,v € R. The goal
of the Degree-bounded Elem-SNDP is to select a minimum weight subgraph

H of G such that each pair u,v of terminals is r(u,v)-element-connected in

H and |0g(v)] < b(v) for each v.

Problem 7.6. Degree-bounded VC-SNDP: The vertex-connectivity of a
pair u,v of vertices is the maximum number of paths between u and v that
are internnally vertex disjoint. Two vertices u and v are l-vertex-connected
if their vertex connectivity is at least [. In the Degree-bounded VC-SNDP
problem, in addition to the graph G, we are given integer requirements r(u, v)
for each pair u,v of vertices. The goal is to select a minimum-weight subgraph
H of G such that each pair u,v of vertices is r(u,v)-vertez-connected in H
and |5 (v)| < b(v) for each vertex v.

Problem 7.7. Degree-bounded k-Connected Subgraph: A graph H is
k-vertex-connected if each pair u,v of vertices is k vertex connected in H. In
the Degree-bounded k-Connected Subgraph problem, the goal is to select a
minimum-weight spanning subgraph H = (V, E') of G such that H is k-vertex

connected and |0g(v)| < b(v) for each vertez v.
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Problem 7.8. Degree-bounded Rooted k-Connectivity: A vertex r is
k-vertez-connected in H to each other vertex if, for any vertexv € V.— {r},
the pair r,v is k verter connected in H. In the Degree-bounded Rooted k-
Connectivity problem, we are given a root vertex r and the goal is to select a
minimum-weight subgraph H of G such that the root r is k-vertex-connected

in H to every other vertex and |0y (v)| < b(v) for each vertex v.

Problem 7.9. Degree-bounded Residual Cover: In the Degree-bounded
Residual Cover problem, we are given a function f: 2V x 2V — 7Z satisfying
FA) =r(A) —[bd(A)| — |0r(A)| for each biset A, where r is a biset function
and F' C FE is a set of edges, and the goal is to select a minimum weight
set F' C E — F of edges such that |0p(A)| > f(A) for each biset A and
10 (V)] < b(v) for each vertex v.

We describe approximation algorithms for the problems defined. We start
with the Degree-bounded Residual Cover problem that has an (O(1), O(1)b(v))

approximation if function r satisfies a certain condition:

Theorem 7.4. Consider an instance of the Degree-bounded Residual Cover
problem in which the function f satisfies f(A) = r(A) — [bd(A)| — [6r(A)],
where r is an integer-valued biset function and F C E is a set of edges. Let
OPT be the weight of an optimal solution for the instance. Suppose that r
and f satisfy the following conditions:

1. For each biset (A, A’) and each vertex v € A'— A, we have r((A, A")) <
r((A, A" —v)).

2. The function [ is positively skew bisupermodular.

Then there is a polynomial time iterated rounding algorithm that selects a
set F' C E — F of edges such that w(F') < 30PT and |0p (v)] < |0p(v)] +
6b(v) + 5 for each vertex v.

Let us assume that Theorem 7.4 is correct. Choose F' =0, f = f.;; and
r = rey, where fo; and re; are defined as follows.

Let rey: 2V %2V — Z, be a biset function such that 7 (A) = maz,ea vev—ar(uv)
if bd(A) C W and r;(A) = 0 otherwise.

95



Let fu:: 2V x 2V — Z be a biset function such that fo;(A) = re(A) —
|bd(A)|.

It is easy to see that the r we chose satisfies the first condition (removing
one vertex from A’ only increases the choices of r(uv)). We need to show that
f is positively skew bisupermodular. This was already proven by Fleisher el
al (see [24]). This clearly brings us a (O(1), O(1)b(v)) approximation for the
Elem-SNDP problem.

Now, we wish to prove Theorem 7.4. We prove the theorem by giving an
iterative algorithm that fulfills the theorem requirements. First, we present

the linear program relaxation of the problem L Pyy,q;.:

minimize Z w(e)z(e)

subjectto  x(0p(A)) > f(A) VA: f(A)>0
x(dp(v)) < b(v) Yo e X
0<z(e) <1 Vee B

Where f is an integer-valued biset function and the set X C V is a subset of
the vertices that have degree bounds and b: X — R are the degree bounds
on the vertices in X.

Where G, r, F'; X and b are the Degree-bounded Residual Cover param-
eters.

Now we need to prove that this algorithm terminates and provides a
feasible cover of f. In order to prove this, we first have to consider the

following theorem:

Theorem 7.5. Consider an iteration of Undir-algo. Let G' = (V, E’) be
the residual subgraph at the beginning of this iteration. Let F' be the set of
edges selected in the previous iterations. Let X' be the set of vertices that
have degree bounds, and let v': X' — R be the degree bounds on X' at the
beginning of this iteration. Let f': 2V x 2V — Z be the function satisfying
f'(A)=r(A)—|A — Al —|dpur (A)| for each biset A. If x is a basic solution
to LPynair for the input (G, f', X', V'), one of the following holds:

1. There is an edge e € E" such that z(e) =0
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Algorithm 9 Undir-Algo - Algorithm for the Degree-bounded Residual

Cover

. B« E_F;

F' « 0

X'+ X;

b'(v) < b(v) for each v € X;

while £’ is non-empty do
Let f: 2V x 2V — Z be defined as f/'(A) = r(A) — A" — A| — |6pur (A)]
for each biset A.

7. Compute an optimal basic solution to LPpy,g; for the input (G' =

(Vvv EI)? fl7 X/a b,)

8:  If there is an edge e € E’ such that z(e) =0 then ' + E' —¢

9:  If there is an edge e = wv € E’ such that x(e) > 1/3 then

10: F'« F'Ue.

11: E' < E' —e.

12: If w € X’ then 0'(u) < b'(u) — z(e)

13: If v € X' then b/ (v) < V' (v) — z(e)

14:  Else

15: Let v € X’ be a vertex such that |dg/(v)| < |0p(v)] + 3b(v) + 5
16: X'« X' —w.

17: end while
18: Return F".
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2. There is an edge e € E' such that x(e) > 1/3
3. There is a vertex v € X' such that |6g (v)| < |0p(v)] + 3b(v) + 5

The proof of Theorem 7.5 is very long and complex and therefore beyond
the scope of this work. The proof can be found in [2]. Assuming that theorem
is correct, it is easy to see that the algorithm terminates. In addition, since
only edges that have z(e) > 1/3 are part of the solution, the weight of the
solution is at most 3OPT. Now we want to prove the upper bound of the

degree of each vertex in the solution.

Lemma 7.6. Consider an iteration of Undir-algo. Let F' be the set of edges
selected in the previous iterations, let X' be the set of vertices that have degree
bounds, and let b/ : X' — R be the degree bounds on X' at the beginning of the
iteration. For each vertex v € X', we have |6p (v)| < 3(b(v) — b'(v)), where

b(v) is the initial degree bound on v.

The proof of the lemma as it can be found in [2]. Combining the lemma

with Theorem 7.5 we get:

Theorem 7.6. Let F' be the solution constructed by Undir-algo. The set F”
satisfies the following:

1. [6p(A)| > f(A) for each biset A.
2. The total weight of F' is at most 30PT.
3. For each vertex v we have |0p(v)| < |0F(v)| 4+ 6b(v) + 5

Theorem 7.6 directly leads to Theorem 7.4. Now we get our desired proof.

Now let us return to the result of Theorem 7.4. We already saw that it
implies an (O(1), O(1)b(v)) approximation for the Elem-SNDP. From this we
get the following result:

Theorem 7.7. There is a polynomial time (3,3b(v) + 5) approximation for
the Degree-bounded Elem-SNDP problem in undirected graphs.
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7.2.2 Further Analysis of the SNDP Problems

Now let us consider problem on directed graphs, so let G = (V, E) be an
undirected graph with weights w(e) on edges, in-degree bound b~ (v) and

out-degree bounds b*(v) on the vertices.

Problem 7.10. Degree-bounded Rooted k-QOutconnectivity: In the
Degree-bounded Rooted k-Outconnectivity problem, we are given a root ver-
tex r and the goal is to select a minimum-weight subgraph H of G such that,
for each vertex v € V. —r, there are k internally vertex disjoint paths in H
from r to v and, for each vertexv € V, [0, (v)| < b~ (v) and |6};(v)] < bF(v).

Let us consider the Directed Degree-bounded Residual Cover problem:

Problem 7.11. Given a function f: 2V x 2V — 7Z satisfying f(A) = r(A) —
|bd(A)| — [07(A)| for each biset A, where r is a biset function and F C E
is a set of edges. The goal of the problem is to select a minimum weight
set F' C E — F of edges such that |65, (A)| > f(A) for each biset A, and
107 (v)] < b~ (v) and |64, (v)| < b (v) for each vertex v

In order to get an approximation for the problem we use the following

theorem:

Theorem 7.8. Consider an instance of the Directed Degree-bounded Resid-
ual Cover problem in which the function f satisfies f(A) = r(A) — |bd(A)| —
107(A)|, where r is an integer-valued biset function and F C E is a set of
edges. Let OPT be the weight of an optimal solution for the instance. Sup-
pose that r and f satisfy the following conditions:

1. For each biset (A, A") and each vertexv € A'— A, we have r((A, A")) <
r((A, A" —v)).

2. The function f is positively skew bisupermodular.

Then there is a polynomial time iterated rounding algorithm that selects a set
F' C E — F of edges such that w(F') < 30PT, |0 (v)] < 3b~(v) +5 and
105 (v)] < |05 (v)] + 60T (v) + 3 for each vertez v.
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The proof for the theorem is similar to the proof of Theorem 7.4. Nat-
urally, we see that the Directed Degree-bounded residual Cover achieves an
(0(1),0(1)b(v),O(1)b*(v)) approximation.

Let us examine Theorem 7.8 over the Rooted k-Qutconnectivity problem
(Problem 7.10). Let r be defined as r = r,. where r,.: 2V x 2V — Z, is a
biset function such that r..(A) =kif A#Qand r eV — A’ and r..(A) =0
otherwise. Let f be defined as f,.: 2V x 2V — Z is a biset function such
that f..(A) = r.(A) — |bd(A)|. 1, fulfills the first requirement while f,.
is a positively intersecting bisupermodular (see [25]). As a corollary from

Theorem 7.8 we get the following:

Corollary 7.1. There is a polynomial time (3,3b~ (v) + 5,6b%(v) + 3) ap-
prozimation for the Degree bounded Rooted k-Outconnectivity problem in

directed graphs.

Now that we have a solution for the Degree bounded Rooted k-Outconnectivity
problem, we can easily find a solution to the Degree bounded Rooted k-
Connectivity problem. We will do that by finding a simple reduction from
the Degree bounded Rooted k-Connectivity problem to the Degree bounded
Rooted k-Outconnectivity problem. First step of the reduction is changing
the undirected graph into a directed graph. This is easily done by changing
each undirected edge into two directed edges. The same applies to the bound
requirements (each in and out requirements are equal to the bound require-
ment of the original edge). The weights are also applied in similar way. Now,
it is possible to see that using the previous corollary we have an approxima-
tion for the new problem. This results in a solution with weight twice as big
as the weight of the Degree bounded Rooted k-Connectivity problem. So we
get:

Theorem 7.9. There is a polynomial time (9,9b(v) + 8) approximation for
the Degree bounded Rooted k-Connectivity problem in undirected graphs.

Our next step is to explore the Degree Bounded k-Connected Subgraph
problem. In this part we don’t provide the entire process that results in the

approximation. Instead, we touch the key elements of the proof.
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First, let us define ry, and fs,: Let rg,: 2V x2Y — Z, be a biset function
such that r5,(A) =k if A# () and A" # V, and ry;(A) = 0 otherwise.

Let fo,: 2¥ x 2V — Z be a biset function such that fs,(A) = re,(A) —
|bd(A)].

Consider an instance of the problem in which the number of nodes is
at least k3. Let F* be an optimal solution for the problem and let OPT
be the weight of the solution. Our first step is to pick an arbitrary set
R, with k vertices. It is possible to create an instance of the Rooted k-
Outconnectivity problem using the given instance. When we consider this
new instance, an algorithm by Frank and Tardos [26] and Corollary 7.1 we
can find a solution Fy for the Rooted k-Outconnectivity. Let F| be the set of
undirected edges corresponding to Fy. We get that w(F]) < w(Fy) < 60PT
and 0 (v) < 0 (v)+04, (v) < 9b(v)+8. The second step is similar to the first
with one difference. We choose our new set Ry using an approach developed
by Cheriyan and Vegh [27]. Again, we define an instantiation of the Rooted
k-Qutconnectivity problem. Using the Corollary 7.1 we again construct a
solution Fy. Let F} be the set of undirected edges corresponding to F». Once
again we get w(F3) < w(Fy) < 60PT and 0 (v) < g, (v) + 05 (v) < 9b(v) +
8. Now, let us look at the function g(A) = 74(A) — [bd(A)| — [drur;(A)].
The set F* — (F] U F}) covers g. The Cheriyan and Vegh approach makes
sure that we choose R, in a way that g is positively skew bisupermodular.
It is easy to see that for each biset (A, A’) and each vertex v € A" — A
Tsg((A, A7) < 1gy((A, A" — {v})). So now we get that ry, and g satisfy the
two conditions of Theorem 7.4. We choose F' = FIUF}, f = gand r = r,, and
we get a cover Fj of g from Theorem 7.4. We can see that the weight of F} is
at most 3O PT and [0g;(v)| < [0p7umy(v)|+3b(v) +5 < 2(9b(v) +8) +6b(v) +5.
The final solution to the k-Connected problem is F' = F] U F; U Fy. From all

the above it is possible to prove that:

Theorem 7.10. There is a polynomial time (15, 42b(v) + 37) approximation
for the Degree-bounded k-Connected Subgraph problem in undirected graphs

with at least k* nodes.

61



8 Constrained Optimization Problems

In this chapter we examine constrained optimization problems such as the

vertex cover problem. This section is based on chapter 11 of [1].

8.1 Vertex Cover

Recall the vertex cover problem:

Problem 8.1. Given a graph G = (V, E) and a cost function ¢ on vertices,
the goal in the vertex cover problem is to find a set of vertices with minimum
cost which covers every edge, i.e. for every edge at least one endpoint is in

the vertex cover.

In previous chapters we handled the vertex cover problem in bipartite
graphs. In general graphs the vertex cover is NP-hard. In this section we
prove a 2-approximation for the problem based on Nemhauser and Trotter
[20]. Later we explore the partial vertex cover problem.

8.1.1 Linear Programming Relaxation

We have already seen the LP,. in previous section.

minitmize E Cy Ty

veV
subject to  x, +x, > 1 Ve ={u,v} € E
T, >0 YoeV

The following is a theorem by Nemhauser and Trotter [20]:

Theorem 8.1. Let x be an extreme optimal solution to LP,.. Then x, €
{0,%,1} for each v € V.

’ 20

We prove this theorem later. For now, we use it without proof. The

following theorem derives from Theorem 8.1:
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Theorem 8.2. There exists a 2-approximation algorithm for the vertex cover

problem.

Proof. Assume z is the optimal extreme point solution to LP,.. Let look at

the vertex cover constructed by choosing each vertex v such that x, = % or

x, = 1. From Theorem 8.1 we get that the cover we chose is feasible and it
costs two times as much as the fractional solution x. O]
8.1.2 Characterization of Extreme Point Solutions

We again use the characterization we have seen before.

Definition 8.1. For a set W C V let x(W) denote the characteristic vector
in RIVI: the vector has an 1 corresponding to each vertex V.€ W, and 0

otherwise.

Lemma 8.1. Given any extreme point x to LP,. with x, > 0 for eachv € V,
there exists F C E such that

1. xy+x, =1 for each e = {u,v} € F.
2. The vectors in {x({u,v}) : {u,v} € F} are linearly independent.

3. V| =|F|.

8.1.3 Iterative Algorithm

Algorithm 10 Iterative Vertex Cover Algorithm

R @;

Find an optimal extreme point solution x to LP,..

while F # () do
(a) For all vertices v € V with z, = 1 include v € W and remove v
from G.
(b) For all vertices v € V with z, = 0, remove v from G.

6:  (c) For all vertices v € V with z, = 3, include v € W and remove v

from G.

7. end while
8: Return W.

L

ot
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8.1.4 Correctness and Performance

Now we go back to Theorem 8.1. By proving this theorem we also prove the

correctness of the algorithm.

Proof. In the first step of the loop (step (a) line 4), we remove all vertices
with z, = 1. After this step any vertex left with x, = 0 is isolated. So we
remove each vertex with x, = 0. The following is applied to each connected
component of the graph that is left: From Lemma 8.1 we know that there
is a subset F' of edges with linearly independent tight constraints and that
|F| = |V]| (and therefore F' contains a cycle. Let us denote this cycle by
C'. This cycle must be an odd cycle (otherwise the characteristic vectors in
{x({u,v} : {u,v} € E(C)} are linearly dependent). So the unique solution
to these equations is z, = 1/2 for each v € C. Since z, +x, = 1, this implies

that 2, = 1/2. So all vertices in C' have z,, = 5. Proving Theorem 8.1. [

8.2 Partial Vertex Cover

In this section we extend our 2-approximation algorithm to the partial vertex

cover problem.

Problem 8.2. Given a graph G = (V, E) and a cost function ¢ on vertices
and a bound L, the partial vertex cover problem is to find a set of vertices

with minimum cost which covers at least L edges.

The partial vertex cover problem is NP-hard since it generalizes the vertex
cover problem when L = |E|. We provide a 2-approximation algorithm based

on iterative rounding of a natural linear programming relaxation.

8.2.1 Linear Programming Relaxation

We define a pruning step as performing a guess for the costliest vertex in
the optimal solution. The pruned graph is the graph in which we remove all
vertices with cost more than costliest we have guessed.

Since there are no more than n = |V| possible costliest vertices, it is

possible to find the cheapest solution in polynomial time using pruning.
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The following linear program LP,,. is the linear program for the pruned
instance. Let z, denote the existence of v in the solution and let ¥y, denote

the existence of e € E in the partial vertex cover.

minimaize E Co Ty

veV

subject to Zwv > Ye Vee I
vee
D ye=1L
eck
0<x, <1 YveV
0<y.<1 Veec F

As we proceed with the iterative algorithm, we will work with a graph
where edges could be of size one only. For example, when we have a variable
with x, = 0, we will remove v from all edges containing v. Such edges will
contain only one vertex but not two vertices.

8.2.2 Characterization of Extreme Point Solutions

We give a simple characterization of the extreme point solutions based on

the Rank Lemma.

Lemma 8.2. Given any extreme point x to LP,,. with 0 < x, <1 for all
veVand 0 <y, <1 foralle € E, there exists a subset F' C E of edges
such that:

1. Y ce®y =Y for each e € F.

2. The constraints in {d_, ., Ty = Ye : € € F}U{D  cpyo = L} are linearly

independent.

3. |F|+1=|V|+|E|.

8.2.3 Iterative Algorithm
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Algorithm 11 Iterative Partial Vertex Cover Algorithm
1 W+ @;
2: while E # () do
3:  (a) Find an optimal extreme point solution (x,y) to LP,.. If there
is an edge e € E with y. = 0, then remove e from G. If there is a
vertex v € V with x, = 0, then remove v from G and from all edges
containing it, i.e, e — e\ {v} for all e € E.
4: (b) If there is a vertex v € V with @, > 3, then include v € W and
remove v and all the edges incident at v from G. Update L « L— [{e :
v E e}
5. (c) If G contains a single vertex v, then include v € W and remove v
and all the edges incident at v from G. Update L <— L — [{e : v € e}|.
end while
: Return W.

N

8.2.4 Correctness and Performance Guarantee

First, we want to show that the algorithm terminates:

Lemma 8.3. Let G be a graph with |V(G)| > 2. Then at least one of the
following must hold:

1. There exists a vertex v with x, € {0,1}.
2. There exists an edge e with y. = 0.
3. There exists an edge e with y. = 1 and therefore x,, = % for some v € e.

Proof. By contradiction, we assume that the lemma is not correct. This
means that 0 < z, < 1 for all v € V and 0 < y. < 1 for all edges. From
Lemma 8.2 we know that there is a subset I’ such that |F|+1 = |E|+|V|. So
|F| <|E| and therefore |V'| < 1. This is false. So the contradiction fails. [

Now that we know that the algorithm terminates we need to show that
the algorithm provides a 2-approximation algorithm for the correct guess of
the costliest vertex.

In the second step of the loop we pick a vertex with z, > % Ify =1
then z, > % for some v € e as |e] < 2. We can see using simple induction

that when we pick the vertices with x, > % we pay a cost of maximum twice
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the optimal fractional solution. The last vertex picked (step c) has a cost
that is no more than the cost of the costliest vertex. Since the LP value of
the costliest vertex was set to 1 in the preprocessing step, the cost of the
last vertex picked is also charged to the LP solution. Therefore we get a

2-approximation for the partial vertex cover problem.
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9 Conclusions

In this paper we described using a number of examples how to use the it-
erative method. We examined the vertex cover, minimum spanning tree,
matching, minimum cost arborescence, and the survivable network design
problems. For each problem we found the corresponding linear program
relaxation. We investigated the linear program and were able to prove a
number of theorems regarding the extreme point solutions of each linear pro-
gram. Once this was done we showed the iterative algorithm and proved
its correctness. For some problems we only found a good approximation
algorithm.

This work only touches some of the problems that can be attacked by
the iterative rounding method. It is believed that the iterative methods can
be used for more general classes of problems. Many other problems can be
(and are being) explored using iterative algorithms. There are a number of
books and articles that expand the iterative method. It is possible to find
early usage of the iterative relaxation method in the proof of a discrepancy
theorem by Beck and Fiala [17] and the approximation algorithm for the bin
packing problem by Karmarkar and Karp [16]. Again we refer to Jain [15] for
the first explicit usage of the iterative rounding method in an approximation
algorithm. The reader is referred to [1] or [21] and [22] for further study.
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