The Open University of Israel

Department of Mathematics and Computer Science

Cyber-Attacks Discovery via Analysis of DNS

Project report submitted as partial fulfillment of the requirements
Towards M.Sc. degree in Computer Science
The Open University of Israel

Computer Science Division

By

Eyal Paz

Prepared under the supervision of Prof. Ehud Gudes

January 2020



Table of Content

Table Of CONTENT ..o e s s 2
LIST Of FIGUIES «.eveeeeieiieee ettt s e e st e e e st e e e e sabae e e s ssabaeeeessbaeeesnnseneesanns 4
LISt Of TADIES e 5
Y o ] 4 - [ O TP PPTOPRPOROTPRTOPRPO 6
O[] oo [¥Tot i o] o IRU TSP OTP TP 7
R fo][=Tol A D =TYol g1 ] £ o] o TN TP 8
D2 N o oY1= A C o - L3PPSR 8
PV o (o] [=Tel a1 9] e o] o -] ool PR TOTT 8

TR 10T o 1=T 2 =T o = o o SRR 9
3.1 Development WOrKSPaCe.....cuuiii ettt e e e e e e e 9
3.0.0 OPErating SYSt M i e 9
3.1.2 Development Languages and FrameWorks. .........ccueeeiecieeeieiiieesesiieeeeeeiieee e 9
3.1.3 S0UICE CONLIOL ..eeiiiiiiiiiie e s s 11

3.2 ArChITECTUNE ..t 11
3.2.1 Data CollECTION ....eiiiiiieeee et e 11
3.2.2 Data ENFiChMEeNt ....eeiiiiieee e 14
3.2.3 TraiNiNg MOUEIS ...uvveeeeeeee ettt e e e e s e nr e e e e e e e e e e e snnnrees 17
3.2.4 0perational Phase......u et e 19

3.3 DOMAIN ClasSIfIErS ...c..uuiiiiiieiiie e s 21
3.3.1 Social Network Analysis over Domain-IP Relationships .......ccccvvvveereeeeeicnnnneee. 21
3.3.2 Machine Learning Blacklisting at Time-of-Registration.........c.cccccceeerrrennnnnnee. 25
3.3.3 Predictive BIackliStiNg ......ccccuvvieiieee ettt e e 30

O S o =T o 0 1 1= o | 34



4.1 DAta ClEANINE uvveeeieeiiiieiiiiieeeee e eeceeiirree e e e e s eesebrrrereeeeessesastaeaeeeeeseesessssraeseeeeessennnns 34

4.2 Data SePAration ....ceeeeiiiiiiiiiiiiiiiiiiiitttiteteteeeteeeteeeteeeeeeereaeeeeara—————————a—a—a—a—a———a—a—annnana—_ 35
4.3 EVAIUALION .ot 36
5. Project Configurations and Operation.........ccoccveeeecciiee et 39
DL S U e e 39
5.1.1 SOftware COMPONENTS ..occcieiiie et e e e e e s eare e e e e saaeee s 39
5.1.2 Data Source Configurations .......ccueeeieiiieeeeniiiee et sree s 39

oI I oY= - o - S T T T T ST 40

5.2 RUNNING the BACKENd ..ccccieeeee e e e e e e e e 40
5.3 RUNNING the FrONtENd .....coiiiiiieecee et e e e 42
5.4 Frontend OPeration ...ceeee it e e e e e e e e e e e e e e nata e e e e e as 42
SR 3 D Jo ] o - Y[ W AU=T o UL - | o] o H TP 42
5.4.2 EXPlOre DAtaset....ccccccuuiieeeiiiiie ettt ettt e e e s e s st e e e naaeae s 44
5.4.3 Data SChEMA ..ueiiiiiiii e 44
5.4.4Train MOGEI ..o e 45

6. SUMMArY anNd CONCIUSIONS .......eeiiiiiiieee e sttt e e e e e e e et e e e e e e e e s sneeraeneaeaens 46
REFEIENCES ... 47
Appendix A — Example of Benign Domains Classification Result..........ccccoecuveeeiriiieeennnnne. 48
Appendix B — Example of Malicious Domains Classification Result ...........cccccceerennnnneee. 49



List of Figures
Figure 1 — on the left box are the top 15 rows of Alexa ranking feed and on the right box

Cisco Umbrella ranking feed on both snapshots were taken on 17-Dec-2019................ 12
Figure 2 - DataSource class diagram......coocuueeiiiiiieeieiiiee e eriiee e eeieee s e e sree e e s saaeee e 14
Figure 3 — Initial data collection flOW...........ueeeieiiiiieeee e 16
Figure 4 - Model class diagram .......cccuuiieiiiiiiiee it e e e sree e e s saae e e 18
Figure 5 - Training flOW ......eeei it e e e e arae e e s e naeeeeenas 19
Figure 6 - domains table SQL CREATE QUEIY....cccuuitiiiiiiieeeiieeeessciteeeesssveeeesnereeeessnnneessnns 20
Figure 7 - Operational system flOW........ccccuiiiiieiiiie e 21

Figure 8 - A topology-based flow model for computing domain reputation [1]

o] oL Tot (U TP TP OUPPOPPROTR 22
Figure 9 - Append enriched domain record to the graph function .........ccccecevevivriieennnns 23
Figure 10 - Ego graph with radius 3 of edition.cnn.com.........cccoeciieiiiiiiii e, 24
Figure 11 - SNA model prediction ProCess......ii ettt e e e 25
Figure 12 - A high-level overview of PREDATOR [3] architecture......cccccccoeeeecvveveeeeeeeenns 26
Figure 13: Proactive Malicious Domain Name Discovery System [4] architecture........... 31

Figure 14 — on the left word statistics of the word “free”, and on the right word statistics

FOr the WOrd “Pay” oo e e e e e e e e e e e e anrerees 32
Figure 15 - Markov model domain Names ZeNerator......ccccveevecccireeeeeeeeeeeecirreeeeeeeeeenns 33
Figure 16 - Creating a blacklist of predicted malicious domains.......cccccccoeecciiiieieeennnnnnnes 33

Figure 17 - Classification data separation charts. Blue represents benign sample
probabilities, and red are malicious sample probabilities.........ccccovveereeiiiiiciiiiiees 35
Figure 18 - ROC Curve using the threshold shownintable 9.......cccccoveiiiiiiciin s 37
Figure 19 - ROC of PREDATOR [3] The inlay figure shows the ROC curve under the range

Of 0—=5% alS@ POSITIVES. ..eiiiiiiiiieieetee e e s e e s s eaaes 38
Figure 20 - fetch-domains.py ManuUal.......cccveeeeiieiieiiiiiiieeeee e eecarrere e e e e 40
Figure 21 - fetch-domains.py Manual............eeeeiiiiieicciiieeee e e 41
Figure 22 - model_manager.py ManuUal......c.ccceieeeeeiiciiiieeiee et e e e e e 41
Figure 23 - app.py ManUal ..o e e e e e e e e e e e n e e e e e e e e e eanns 42



Figure 24 - "Domain Reputation" screenshot, input box filled with the URL

https://Web.WhatSapp.COMY/.....ccuiiiicieece e et 42
Figure 25 - Domain reputation result for the URL https://web.whatsapp.com/ ............. 43
Figure 26 - SNA Ego graph with radius 2 for the domain web.whatsapp.com................. 43
Figure 27 — “Explore Dataset” screenshot.........ccveeeeiiiieeecciiie e 44
Figure 28 — “Data Schema” sCreenshot .........ccocciiiiiiiiiiie e 44
Figure 29 — “Train Model” SCre@nShOt.........uiiiiiiiiieiciee e 45
Figure 30 - example output of "Train Model" ... e 45
List of Tables

Table 1 — Summary of the data sources used on this project ........cccceecveeeivicieeiincineennns 13
Table 2 - The enriched record of edition.cNN.COM ......c.coiiiiiiiiiiiiiii e, 15
Table 3 - a snippet of benign domains taken from the database......cccccccoevcevveeeeninnnnnie, 19
Table 4 - a snippet of malicious domains taken from the database .........c.cccceveeeiineenns 20

Table 5: Summary of PREDATOR [3] features, each feature is categorical, continuous or

OFAINAL. ittt ettt s ab e e sab e e nt e s areesbaeeea 27
Table 6 - Ranking of feature importance in PREDATOR [3] (D for domain profile category,
R for registration history category, and B for batch correlation category).......cccceeeeeunees 28

Table 7 - Records from the dataset for building an example model for PayPal phishing

(o [=1 =T A [ o [P RP PRSP PROPR 29
Table 8 - Decoded features for the records of table 7. ..o, 29
Table 9 - The selected threshold for the classifiers .........ccocoeiieniiiiniie 36
Table 10 - Confusion matrixes of the classifiers’ evolution........cc.ccccoeceeiniiniiiiieennnen. 36
Table 11 - PREDATOR [3] detection rates under a 0.35% false positive rate................... 38
Table 12 - Classifier detection rate under a 0.35% false positive rate.......ccccceeevvciveeenns 38
Table 13 - Example of the benign domains classification result...........ccccooccciieeenennnnnee. 48
Table 14 - Example of the malicious domains classification result .........cccccovvvveeveeeerinnnnns 49



Abstract
The Domain Name System (DNS) is an essential component of the internet

infrastructure that translates domain names into IP addresses. Threat actors abuse that
system by registering and taking over of thousands of Internet domains every day to
launch cyber-attacks, such as spam, phishing, botnets, and drive-by downloads. The
main solution to counteract this threat is currently reactive blacklisting. Since cyber-
attacks are mainly performed over short periods of time, reactive methods are too slow
and ineffective. As a result, new approaches to early identification of malicious websites
are needed. In the last ten years, many novel papers were published offering a system
that calculates domain reputation for suspected domains that are not listed in a
common black-list list. This project implements three different approaches and
evaluates their effectiveness in detecting malicious domains. The approach that
outperforms the others in the project’s experiments was social network analysis, it

achieved a 60.71% detection rate with a false positive rate of 0.35%.



1. Introduction
In current days, information security is an important aspect of any organization's

business. Finding a cyber-attack in an enterprise network is often analogous to finding
the needle in the haystack. Analysis of DNS traffic can be helpful to that end. Providing

high quality, cheap and fast attack detection technique.

Information security usually comes with three price tags, network performance impact,
privacy violation, and false positive alerts. Network performance impact cause due to
deep traffic inspection, privacy violation due to the need to decrypt private encrypted
traffic for inspection, and false positive alerts due to the variance of each network.
Attack discovery by analysis of DNS traffic, reduce the price tag of all three aspects. The
reason for that is because DNS is a very simple plaintext protocol containing short
messages, usually over UDP protocol. Therefore, its analysis is much simpler and faster,
however, its true positive detection would always be a subset of the detection that can

be made by full packet inspection.

This project covers three major techniques of discovering cyber-attacks via analysis of
DNS: passive DNS analysis, domain registration WHOIS record analysis, and predictive
domain names blacklisting. To cover as much ground, each paper selected on this
project has taken not only a different data type input but also a different solution
approach as well: social network analysis, machine learning, and Markov chain model.
The project provides a working system for detecting spam and phishing domains based

on novel academic research.



2. Project Description

This section elaborates on the project goals and Importance.

2.1 Project Goals
The project's main goal is to implement three techniques of cyber-attacks discovery via

analysis of DNS data: passive/active DNS analysis, WHOIS domain records analysis, and
purely strings based analysis predictive blacklisting.

a secondary goal is to create a dataset of benign and malicious domains that may be
used in other research projects or to be used as a benchmark for domain classifiers.
another secondary goal is making the classifiers available for anyone for free. That
means that the classifier should be based only on open repositories and not contain a
feature that can be extracted from non-publicly free available data sources.

2.2 Project Importance
There are three key advantages in DNS analysis for cyber-attacks discovery:

1. Relatively cheap, in comparison to other approaches e.g. deep packet inspection
2. DNS is plaintext, avoid problems of encrypted traffic inspection

3. Privacy-preserving, encrypted traffic doesn’t need to be deciphered

There are numerous academic papers offering detection algorithms for cyber-attacks
discovery by DNS analysis. However, none of them offers an open-source
implementation or give access to the dataset they used to evaluate the novel approach.
Therefore, it’s impossible to run a true comparison between the different papers and
approaches. The project implementation could help to achieve this kind of comparison.
By releasing an open-source classifiers implementation, a dataset, and the dataset

creation source code.



3. Implementation
This section covers the implementation details of the “Cyber-Attacks Discovery via

Analysis of DNS” project including system components, design, architecture,

frameworks, development workspace, and technologies.

3.1 Development Workspace
This section covers the development’s workspace and technologies used in the project

implementation process.

3.1.1 Operating System
The project was developed and tested on an Ubuntu 18.04 OS. Since all the project

technologies that are mentioned in the next section are cross-platform, it can run on

other OS such as Windows as well.

3.1.2 Development Languages and Frameworks
The project database used for storing the dataset was Postgres SQL. The Database

management was made with “pgAdmin” —a Python Web Ul for Postgres SQL.

Redis was used for internal application caching and asynchronous messaging queue.

Redis management was made with “Redis-commander” —a Node Web Ul for Redis.

The programming language used in the project was Python. In the algorithm
development phase of the project, “Jupyter Notebook” was used. After the algorithms
were implemented and fine-tuned, | switch to Visual Studio Code for wrapping up the

project.

Other than the standard libraries, it’s worth mentioning the usage of the following open

source packages which saved much work in the implementation process:

e Numpy - the fundamental package for scientific computing with Python. It
contains among other things: a powerful N-dimensional array object, useful
linear algebra, Fourier transform, and random number capabilities.

e Pandas - flexible, and expressive data structures designed to make working with
structured and time series data both easy and intuitive. It aims to be the

fundamental high-level building block for doing practical, real-world data

9



analysis in Python. Additionally, it has the broader goal of becoming the most
powerful and flexible open-source data analysis/manipulation tool available in
any language.

SQLAIchemy — a Python SQL toolkit and Object Relational Mapper that gives
application developers the full power and flexibility of SQL. SQLAlchemy provides
a full suite of well-known enterprise-level persistence patterns, designed for
efficient and high-performing database access, adapted into a simple and
Pythonic domain language.

Scikit-Learn — a Python package for machine learning built on top of SciPy and
distributed under the 3-Clause BSD license. Scikit-Learn is compatible to work
with Numpy and Pandas mentioned above packages.

XGBoost — a Python optimized distributed gradient boosting library designed to
be highly efficient, flexible and portable. It implements machine learning
algorithms under the Gradient Boosting framework. XGBoost provides a parallel
tree boosting (also known as GBDT, GBM) that solve many data science
problems in a fast and accurate way. The same code runs on the major
distributed environment (Hadoop, SGE, MPI) and can solve problems beyond
billions of examples. XGBoost is compatible with Scikit-Learn classifier APls.
NetworkX — a Python package for the creation, manipulation, and study of the
structure, dynamics, and functions of complex networks. The SNA classifier is in
this work is built on top of this package.

Matplotlib — a Python 2D plotting package that produces publication quality
figures in a variety of hardcopy formats and interactive environments across
platforms. Matplotlib can be used in Python scripts, the Python and IPython
shells, the Jupyter notebook, web application servers, and four graphical user
interface toolkits.

Compound-Word-Splitter — a python natural processing language (NLP) package
that, splits words that are not recognized by dictionary whitelists such as spell

checkers into the largest possible compounds.

10



e Redis (Python package) — The Python interface to the Redis key-value store.

e Pyreverse — a set of utilities to reverse engineering Python code. It uses a
representation of a Python project in a class hierarchy which can be used to
extract any information such as generating UML diagrams. The class diagram
shown in figures 2 and 4 were drawn using Pyreverse

e Pyasn —a Python extension module that enables very fast IP address to
Autonomous System Number (ASN) lookups. Current state and Historical lookups
can be done, based on the MRT/RIB BGP archive used as input.

e Flask — Flask is a lightweight web application framework. It is designed to make
getting started quick and easy, with the ability to scale up to complex

applications

3.1.3 Source Control
During development, the project was hosted on GitHub as a private repository. After

completion, it's now open as an opensource project as a public repository. The project

public repository is https://github.com/eyalsus/domain-classifier.

3.2 Architecture
This section covers the architecture description of data collection, training model and

the system operational phase.

3.2.1 Data Collection
Data for this project was gathered from 4 free origins: Cisco Umbrella 1 Million popular

DNS records and Alexa top 1 Million popular sites were used for benign domain
collection, OpenPhish and PhishTank were used for malicious domains collection. all the

mentioned origin publishes a CSV file which updates at least daily.

Alexa dataset is designed to be an estimate of a website's popularity. As of May 2018,
Alexa claims the ranking is calculated from a combination of daily visitors and pageviews

on a website over a 3-month period.

Cisco Umbrella, formally known as OpenDNS, the dataset is based on the Umbrella

global network of more than 100 Billion DNS queries per day, across 65 million unique

11


https://github.com/eyalsus/domain-classifier

active users, in more than 165 countries. Although the data source is quite different
from Alexa’s, it’s arguably considered to be more accurate as it’s not based on only

HTTP requests from users with browser additions.

Figure 1 shows the clear difference between the feeds. For example, while Netflix owns
10 out of the top 15 domains in the Cisco Umbrella ranking the first entry of a Netflix
domain in Alexa ranking on the same day is at the rank of 22. Another great example are
Microsoft’s Windows updates domains that have 3 out of the top 15 domains in Cisco

Umbrella ranking but get much lower ranks on Alexa ranking.

1,google.com 1,netflix.com

2, youtube.com 2,api-global.netflix.com
3,tmall.com 3,prod.netflix.com
4,baidu.com 4,push.prod.netflix.com
5,gqg.com 5,ftl.netflix.com

6, sohu.com 6,prod.ftl.netflix.com

7, facebook.com 7,1ichnaea.netflix.com

8, taocbao.com 8,nrdp.prod.ftl.netflix.com
9,login.tmall.com 9,google.com

10, yahoo.com 10, secure.netflix.com

11, jd.com 11, microsoft.com
12,amazon.com 12, nrdp5l-appboot.netflix.com
13,wikipedia.org 13,windowsupdate.com
14,360.cn 14, ctldl.windowsupdate.com
15,sina.com.cn 15,data.microsoft.com

Figure 1 —on the left box are the top 15 rows of Alexa ranking feed and on the right box Cisco Umbrella ranking feed
on both snapshots were taken on 17-Dec-2019

OpenPhish and PhiskTank dataset are based on community trusted members who share
their threat intelligence of phishing websites. It’s interesting to know that PhishTank
was founded by OpenDNS as a by the community which several years later released the
Cisco Umbrella feed as well. Unlike benign domain sources, the malicious domain
sources contain URLs and not domains. Therefore before adding them to the dataset,
some parsing should be made to extract the domains. Table 1 summarizes the data

sources' characteristics.

12



Cisco Alexa OpenPhish PhishTank
Umbrella
(OpenDNS)
Classifica | Benign Benign Malicious Malicious
tion
Update Daily Daily Hourly Hourly
Records | Domain Domain URL URL
Type
License Free Free Free for partial | Free, but
content, paid registration
for full feed required
access
Source DNS queries Web page views | Community Community
Further Popularity Popularity rank | Phishing Target | Phishing Target
Context rank available on a
paid
subscription
Est. 2016 1996 2014 2006
Feed URL http://s3-us-west- http://s3.amazonaws.co | https://openphish.com http://data.phishtank.com/d

1.amazonaws.com/u

m/alexa-static/top-

[feed.txt

mbrella-static/top-

1m.csv.zip

1m.csv.zip

ata/online-valid.csv

Figure 2 describes the class diagram of the DataSource classes. Notice that there is no

Table 1 — Summary of the data sources used on this project

dedicated class for Cisco Umbrella, that is because Cisco Umbrella feed mimics the

conventions laid out by Alexa veteran feed as can be seen in figures 1.

13



http://s3-us-west-1.amazonaws.com/umbrella-static/top-1m.csv.zip
http://s3-us-west-1.amazonaws.com/umbrella-static/top-1m.csv.zip
http://s3-us-west-1.amazonaws.com/umbrella-static/top-1m.csv.zip
http://s3-us-west-1.amazonaws.com/umbrella-static/top-1m.csv.zip
http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
https://openphish.com/feed.txt
https://openphish.com/feed.txt
http://data.phishtank.com/data/online-valid.csv
http://data.phishtank.com/data/online-valid.csv

DataSource

fetch()

get label()
get origin()
get topic()

‘T

AlexaDataSource OpenPhishDataSource PhishTankDataSource

fetch() fetch() fetch()

Figure 2 - DataSource class diagram

3.2.2 Data Enrichment
The data collected from the sources described in the previous section is enriched with

DNS “A” record, DNS “NS” record, Autonomous System (AS) data, and parsed for
processing convenience. DNS “A” record is the IPv4 address of the queried domain, DNS
“NS” record is the nameserver of the queried domain. AS is the upper hierarchy of the IP

address. The record after enrichment contains the following fields:

domain — the input domain

label — ‘0’ if the domain is benign, ‘1’ if the domain is malicious.

timestamp — the timestamp if the first time the data collection encountered the domain.

base_domain —the domain as it appears on the whois registration, for example,

edition.cnn.com base domain is cnn.com.

domain_name — the base domain name without the public suffix, for example,

edition.cnn.com domain name is cnn.

domain_ip —the current domain’s DNS “A” record, IP address of the input domain.
as_number — Autonomous System (AS) number of the domain’s IP address.
as_subnet —the matching subnet of the IP address’s Autonomous System Number

(ASN).

14



as_name —the official name of the ASN owner of the domain IP address.

nameserver — the current base domain DNS “NS” record, nameserver of the base

domain.

ns_base_domain —the base domain of the nameserver.

ns_domain_ip —the current domain’s DNS “A” record, IP address of the nameserver.
ns_as_number — ASN of the nameserver’s IP address.

ns_as_subnet —the matching subnet of the nameserver’s IP address ASN.
ns_as_name — the official name of the nameserver’s IP address ASN owner.

an example of an enriched record is shown in table 2.

domain edition.cnn.com
timestamp 2020-01-13T19:36:02.817160

base domain |cnn.com

domain name (jcon
domain_ip 151.101.65.67
as number ||54113
as subnet 151.101.64.0/22
as_name FASTLY - Fastly. US

nameserver |ns-1030.awsdns-11.couk

ns base domain|awsdns-11.co.uk
ns_domain_ip ([205.251.198.94
ns_as number 16509
ns_as subnet |205.251.198.0/24
ns_as name |AMAZON-02 - Amazon.com. Inc., US

Table 2 - The enriched record of edition.cnn.com
The initial data collection phase flow, described in Figure 3, contained the following

steps:

1. Fetch feeds request new data from a concrete data source

2. The data source fetches a feed from domains/URLs from its concrete vendor

15



Fetch feeds publish a message with the domain name to the “New URLs”
messaging queue

Enrich domain reads messages from the “New URLs” messaging queue.

Enrich domain enriches the domain with DNS, IP, ASN and nameservers data the
publish the enriched record to “Enriched Domain” queue.

The model manager reads messages from the “Enriched Domain” messaging
queue.

Model manager commands the database connector to persist the enriched
records

The database connector manages the interaction with the Database and persists

the enriched records in the Database.

Data R Data
Source 5 | Vendor
b
1
Fetch R | Enrich R | Model
Feeds 3 - 4 | Domains g ! 6 Manager
New URLs Queue Enriched Domain Queue

< "
8

Database

Database Connector

Figure 3 — Initial data collection flow

16



3.2.3 Training Models
The collected data is used for training the domain classifier models. Figure 4 describes

the class diagram of the models training phase. The below classes were developed as a

part of this project:
Model — an abstract class which define the Model interface

AggregatorModel — this class employs the composite pattern. It extends the Model class

and contains a list of Model objects.

MLModel — extends Model class. Support all Scikit-Learn classifiers and any other API

complaint package, e.g. XGBClassifier from XGBoost package.

MarkovModel — extends Model class. The class is composed of the opensource

MarkovChain class, and leverage compound-word-splitter NLP package.

SnaModel — extends Model class. The class is composed of the opensource Graph class

from the NetworkX package. Graph class was leveraged to implement the SNA classifier.

MarkovChain — Base on an open-source implementation of Markov Chain, but was

extended to the purpose of this project.

17



2

Model

logger
train_date

load model(cls, pkl path, logger)

predict(X)
save_model(pkl_path)
set_logger(logger)
train(X, y)

AggragatorModel

MILModel

BN

model list : list

features list : list

predict(X)
save_model(pkl_path)
train(X, y)

features set : set

clf : BaseEstimator

predict(X)
train(X, y)

MarkovModel SnaModel
domain name set : set
predict(X) predict(X)
train(X, y) train(X, y)
Graph
degree
MarkovChain edges
nodes
;f:ia?é:t add edge(u of edge, v of edge)
states clear()

transition_matrix

generate_states(current_state, no)
next_state(current_state)

Figure 4 - Model class diagram

copy(as_view)

get_edge data(u. v, default)
number_of nodes()
remove_edge(u, v)
remove_node(n)
size(weight)
subgraph(nodes)

The training phase flow, described in Figure 5, contained the following steps:

1. Model manager fetches enriched domain records by calling the Database

connector module

2. The database connector fetches the records from the Database

3. The model manager relies on the records to the aggregator model and

commands it the begin the training.

4. The aggregator model trains the models it currently contains.

5. The model is serialized and saved to disk for persistent storage.

18




Markov SNA

Model Model ML Model
4
Model | Aggregator
Manager 3 | Model
1 5

Database 5_?”5.”'13(1
Database 2 Connector raine
Model

Figure 5 - Training flow

3.2.4 Operational Phase

After a significant amount of data was collected in the flow described in section 3.2.1

and the models were trained in the flow described in section 3.2.2 the system is now in

the operational phase. The operational phase integrates both previous flows and

extends them. On top of the enriched records, the model aggregator feeds the DB with

the current models’ verdict. This way the model evaluation is constantly being made

versos the most recent ground-truth dataset. The models’ aggregator is scheduled to

retrain the models daily. Tables 3 and 4 show a snippet of the dataset, a larger part of

the dataset is available on appendix A.

domain label  timestamp domain_ip as_number nameserver snamodel
netice.az 0 12/17/19 10:09 AM 104.27.149.152 13335 gina.ns.cloudflare.com 0.331968
igtds.com 0 12/17/19 10:09 AM 93.174.95.2 202425 nsl.reg.ru 0.47648
orissimo.it 0 12/17/19 10:09 AM 104.20.5.243 13335 jule.ns.cloudflare.com 0.255366
mutisite.com 0 12/17/19 10:09 AM 104.31.72.253 13335 adrian.ns.cloudflare.com 0.311023
otoy.com 0 12/17/19 10:09 AM 104.20.40.12 13335 bart.ns.cloudflare.com 0.247716

Table 3 - a snippet of benign domains taken from the database

19

train_date

12/17/19 10:47 AM
12/17/19 10:47 AM
12/17/19 10:47 AM
12/17/19 10:47 AM
12/17/19 10:47 AM



domain
taarefeahlalbaitam.com
www.britishairportcars.co.uk
www.manawikassanstha.com
silvanoyjairo.webcindario.com

secure.runescape.com-ms.xyz

timestamp domain_ip as_number nameserver snamodel train_date

12/17/19 9:55 AM  160.153.137.163 26496 ns24.domaincontrol.com 0.786192 12/17/19 8:47 AM
12/17/19 9:55 AM  35.237.67.68 15169 ns2.360expose.com 0.635082 12/17/19 8:47 AM
12/17/19 9:11 AM  69.175.87.74 32475 ns111.webhostingworld.net 0.694392 12/17/19 8:47 AM
12/17/19 9:11 AM  5.57.226.202 29119 ns-cloud-d3.googledomains.com 0.813255 12/17/19 8:47 AM
12/17/19 9:11 AM  23.254.225.128 54290 ns28.domaincontrol.com 0.800725 12/17/19 8:47 AM

Table 4 - a snippet of malicious domains taken from the database

The complete database table contains more fields than shown in tables 3-4, the table

definition is shown in figure 6.

CREATE TABLE domains

domain text,

label bigint,

"timestamp" timestamp without time zone,
base_domain text,

domain_name text,

domain_ip text,

as_number text,

as_subnet text,

as_name text,

nameserver text,

ns_base_domain text,

ns_domain_ip text,

ns_as_number text,

ns_as_subnet text,

ns_as_name text,

markovmodel double precision,

snamodel double precision,
mlmodel_xgbclassifier double precision,
mlmodel_logisticregression double precision

Figure 6 - domains table SQL CREATE query

The operational system phase flow, described in Figure 7, contained the following steps:

Steps 1-6 are the same as described in the data collection section 3.2.1 and figure 3.

7. The model manager relies on the records to the aggregator model if the model is

obsolete it commands it would first start training a new model.

8. The aggregator model trains the models it currently contains and asks for the

models’ verdict, or just gets the models’ verdicts if their train date is ok.

20



9. The model is serialized and saved to disk for persistent storage.

10. The model manager commands the database connector to persist the enriched
records. The enriched records now contain the current classifiers' verdict as well.

11. The database connector manages the interaction with the Database and persists

the enriched records in the Database.

523:39 2 V[e)::i?)r I\:Aalc:szr I\ﬂsgltfel ML Model
1 8
Fetch Enrich Model Aggregator
Feeds 3 4 Domains 5 6 Manager 7 Model
New URLs Queue Enriched Domain Queue
10 9

1 Database 5_?:;?::?
Database Connector o
ode

Figure 7 - Operational system flow

3.3 Domain Classifiers
This section covers the algorithm used in the domain classifier model implementation.

3.3.1 Social Network Analysis over Domain-IP Relationships
The SNA classifier was inspired by the paper “a Topology Based Flow Model for

Computing Domain Reputation” [1]. The paper relies on the Domain-IP relationships
which were proven to be useful for calculating domain reputation scores by the Notos
system [2]. However, instead of using a machine learning classifier, it uses an interesting
approach based on social network analysis (SNA) algorithm, commonly used for
computing trust in social networks and virtual communities. The goal of the flow
algorithm is to assign domains with reputation scores given an initial list of domains

with a known reputation, good or bad.

3.3.1.1 Train — Graph Construction
In [1] the flow algorithm training contains four steps, as shown in figure 8:

21



e Graph construction - Create the topology graph, assign weights and represent as
an adjacency matrix

e Vector - Create the initial vector used for propagation

e lterative reputation flow - Use the vector and the matrix as input to the flow
algorithm

e Final - output final reputation scores

IP Data

Graph con-

——
/ struction
\2

Domains

Arecords

Final

Initial
Good
Domains
Initial Bad
Domains

Vector

Figure 8 - A topology-based flow model for computing domain reputation [1] architecture
Unlike the original paper, | found it to be more useful to work on a graph data structure
than on an adjacency matrix. That is because an adjacency matrix is less intuitive and
less efficient from a performance point-of-view. Another difference from the original
paper is the entities | used on the graph. | leverage all the enriched data described in the
“Data Enrichment” section. Adding the “NS” DNS records and ASN data, while the
original paper used only “A” records. This results with differences in the meaning of

edges as is explained next.

Figure 9 shows the functions involved in the training phase which construct the graph.
“train” is the model interface function. For every record in the given input dataset, it
calls “_append_row_to_graph” which append a single enriched domain record to the
graph. Notice that the record contains the ground truth label as well. Other than the

label domain, 0 for benign and 1 for malicious, all the of the other nodes get the initial

22



value of 0.5. Lines 7-15 are adding the nodes to the graph, lines 17-25 are adding the
edges between the nodes that were previously added. This means that edges represent
different types of connections, not only domain-IP connections such as IP-AS domain-
Subnet, AS name-AS number and more as listed in Figure 9. INITIAIL_VALUE is the
default value for the non-labeled nodes. In the experiments described in section 4, the

INITIAIL_VALUE was set to 0.5.

1 def _append row _to_graph(self, row, G):

2 if "label' in row:

3 G.add_node(row[ 'domain'], start=row['label'], current=row['label’])

4 G.add_node(row[ 'domain_ip'], start=zrow['label'], current=row['label'])

5 else:

) G.add_node(row[ 'domain'], start=INITIAL VALUE, current=INITIAL VALUE)

7 G.add_node(row[ 'domain_ip'], start=INITIAL_WALUE, current=INITIAL_VALUE)
8

9 G.add_node(row[ 'as_subnet'], start=INITIAL VALUE, current=INITIAL VALUE)

18 G.add_node(row[ 'as_number'], start=INITIAL VALUE, current=INITIAL VALUE)

11 G.add_node(row[ 'as_name'], start=INITIAL VALUE, current=INITIAL VALUE)

12 G.add_node(row[ 'ns_base_domain'], start=INITIAL_VALUE, current=INITIAL_VALUE)
13 G.add_node(row[ 'ns_as_subnet'], start=INITIAL VALUE, current=INITIAL VALUE)
14 G.add_node(row[ 'ns_as_number'], start=INITIAL_VALUE, current=INITIAL_VALUE)
15 G.add_node(row[ 'ns_as_name'], start=INITIAL VALUE, current=INITIAL VALUE)

16

17 if row[ 'base _domain'] != row['domain']:

18 G.add_node(row[ 'base _domain'], start=INITIAL VALUE, current=INITIAL VALUE)
19 G.add_edge(row[ 'base_domain'], row['domain'])

28

21 G.add_edge(row[ 'domain'], row['domain_ip'])

22 G.add_edge(row[ 'domain_ip'], row['as_subnet'])

23 G.add_edge(row[ 'as_subnet'], row['as_number'])

24 G.add_edge(row[ 'as_number'], row['as_name'])

25

26 G.add_edge(row[ 'base_domain'], row['ns_base_domain'])

27 G.add_edge(row[ 'ns_base domain'], row['ns_as subnet'])

28 G.add_edge(row[ 'ns_as_subnet'], row['ns_as_number'])

29 G.add_edge(row[ 'ns_as_number'], row['ns_as_name'])

Figure 9 - Append enriched domain record to the graph function
Figure 10 shows the visualization of a trained graph. When we add the unlabeled
enriched node “edition.cnn.com”, additional nodes and edges are created: green nodes
are labeled as benign, red are labeled as malicious and brown nodes are unlabeled. As
expected most of the neighbors of “edition.cnn.com” are benign or unlabeled. The only

red node in the graph is a subdomain of a freemium hosting service. Freemium hosting

23



is a service that offers free basic web services deployment and a paid fully-suite

package. In this case, codeanywhere.com is a freemium service that was abused for

malicious purposes.

edrive.com
@evcontent.com’]
\ |
/
| .’eka swoe-jorge-codeanywhere762442 codeanyapp.com
| @05.251.194.0024
{ / { @toopers.com
| / | J
| / | / @niitarytimes.com

S/
radedoubler.com
ay

S _@romo.com

.1wsdns 08 net

@cretaith.com - / —

51.101.2.165

// @51101065

- J LELRE

- _@5i1010239

_@s11012133

__@511011.198

- @5ii01230
- @412

——:51.101_1_5

@ 57707 1160 — — @51.101.1.140

/ AN "t __ @i5ii012114

N\ \\\\\\ ~@i51.101.0.67

N .151 101.2.49
NN \ @501 24
N \ “@i51.101.2217
NN @51.101.1.184

-
/
‘nydoclﬂp}if om y, _
e / o /_,'
Orona\.-_mm/ Qmsn tnn.com /
VA 'a.\ /
@05.251198.0024
‘Ill"l J_.r’
@noonyio /
51.‘-‘? &%
\ .151 LA / 51 101 1205
‘ 51.101.0.204
\ { &« 10\1‘2 194 511012110

51.101.1.67 ™

/ .151101 166 \ "'-.‘

.1511010134 |
.151101153 | \

.151&10155‘ . g ..3 Bjz167

Figure 10 - Ego graph with radius 3 of edition.cnn.com

3.3.1.2 Predict — Graph Iterations
Figure 10 shows the functions involved in the predict phase. “predict” is the model

interface function. In line 2 It creates a copy of the previously constructed graph. In Line

3 it appends the given records (X) to the graph copy. Line 4 class calls “_stable_graph”

that is defined in figure 10 as well. “_stable_graph” is the phase where the reputation of

each node cascades to its neighbors. On the worse case, each iteration may cause

O(|G.nodes|) updates on the graph. That is why its wise to limit the amount of the

24



iterations. My analysis shows that 5 iterations are enough, [1] reached a similar
conclusion on their implementation. In each iteration every node score is set to be the
average between its current score and the average score of its neighbors, see the

“"

_update_node” function in figure 11.

1 def predict(self, X):

2 H = self._G.copy()

3 X.apply(self._append_row_to_graph, args=(H,), axis=1)
4 self._stable_graph(H, iterations=5)

5

6 def _stable_graph(self, graph, iterations=18):

7 for _ in range(iterations):

8 self._graph_iteration(graph)

9

18 def _graph_iteration(self, graph):

11 for node in graph.nodes():

12 self._update_node(graph, node)

13

14  def _update_node(self, graph, node):

15 if graph.degree(node) > ©@:

16 neighbors_current_score = 8

17 for neighbor in graph.neighbors(node):

18 neighbors_current_score += graph.nodes[neighbor]['current’]
19 neighbors_current_avg = \

20 neighbors_current_score / graph.degree(node)
21 graph.nodes[node]['current'] = \

22 8.5 * graph.nodes[node]['current'] + ©.5 * neighbors_current_avg

Figure 11 - SNA model prediction process

3.3.2 Machine Learning Blacklisting at Time-of-Registration
WHOIS record is the data describing the registration of the domain such as registration

date, last modified date, expiration date, registrant contact information, registrar
contact information and nameserver domains. Once the domain has been registered,
the relevant registry is the owner of the WHOIS database record. WHOIS-based
reputation approach advantage is that it could be the first line of defense in detecting
new malicious domains and that it enables following threat actors reusing domain
registration information. Its drawback is that WHOIS information is often anonymized or

only partly available as each registry information is not standard for WHOIS record

25



completeness. In this section, | describe an implementation based on the domain
reputation System called PREDATOR, described in the paper “Proactive Recognition and

Elimination of Domain Abuse at Time-Of-Registration” [3].

PREDATOR is a system aimed to achieve early detection of malicious domains by using
only WHOIS records as input. The paper contains a description of the feature
engineering process resulting in 22 features types. The features can help distinguish
abusive domain registration behavior characteristics from legitimate registration
behavior characteristics. These features are fed into a state-of-the-art supervised

learning algorithm.

3.3.2.1 Train — Nameserver Features
PREDATOR system architecture shown in figure 12 is very similar to the one used in this

project which includes a training mode and an operation mode.

Learning
Module

:
Training mode
.

Feature Extraction Detection

Report

Statistical

Zone Update Classifier

1) Domain profile |
2) Registration history 1
3) Batch carrelation ' :
' |

|

Figure 12 - A high-level overview of PREDATOR [3] architecture
Table 5 shows the 22 types of features used by PREDATOR. These features are divided
into three groups: domain profile features, registration history features, and batch
correlation features. Unfortunately, the data on registration history features and batch
correlation features is not publicly available. Therefore, this project focus on domain

profile features only.

26



Category Feature | Type
Registrar | Categ.
Authoritative nameservers | Categ.
IP addresses of nameservers | Categ.
ASes of nameserver I[P addresses | Categ.
Daily hour of registration | Categ.
Week day of registration | Categ.

Length of registration period | Ord.
Trigrams in domain name | Categ.

Ratio of the longest English word | Cont.
Containing digits | Categ.
Containing “-" | Categ.

Name length | Ord.

Edit distances to known-bad domains | Cont.
Life cycle | Categ.

Registration| Dormancy period for re-registration | Ord.
history Previous registrar | Categ.
Re-registration from same registrar | Categ.
Probability of batch size | Cont.
Brand-new proportion | Cont.

Drop-catch proportion | Cont.

Retread proportion | Cont.

Name cohesiveness | Cont.

Domain
profile

Batch
correlation

Table 5: Summary of PREDATOR [3] features, each feature is categorical, continuous or ordinal.
Table 6 shows the PREDATOR feature importance. From the table, we can see that the
focus on domain profile features is reasonable since the top 6 features out of the 22 and
the top 7 out of the top 8 are domain profile features. The features | selected to

implement in the project are:

e Authoritative nameservers (ranked #1), to increase the detection rate the base
domain of the nameserver was used the feature.
e |P addresses of nameservers (ranked #3)

e ASes of nameserver IP addresses (ranked #5)
The project doesn’t contain the following features that were presented in PREDATOR:

e Trigrams in the domain name (ranked #2) cause a massive increase in the
number of features and led the classifier to be slow, heavy and tend for

overfitting.

27



e Registrar (ranked #4), this feature can be extracted only from a premium paid
feed. which conflicts with one of the project’s secondary goals to the classifiers
to be based on free and open repositories only.

e Daily hour of registration & Weekday of registration (ranked #6 and #8)

This data simply not publicly available in any form.

Score
Ruank | Category | Feature ratio

| D Authoritative nameservers 100.00%
2 D Trigrams in domain name 64.88%
3 D IP addresses of nameservers 62.98%
4 D Registrar 61.28%
5 D ASes of nameserver IP addresses 30.80%
6 D Daily hour of registration 30.30%
7 B Name cohesiveness 28.98%
8 D Weekday of registration 22.58%
9 R Dormancy period for re-registration | 20.58%
10 R Re-registration from same registrar | 19.50%
11 R Life cycle 18.55%
12 D Edit distances to known-bad domains | 17.72%
13 R Previous registrar 16.50%
14 B Brand-new proportion 14.60%
15 B Retread proportion 13.71%
16 B Drop-catch proportion 12.90%
17 D Containing digits 11.25%
18 D Name length 10.71%
19 D Ratio of the longest English word 9.60%:
20 B Probability of batch size 8.66%
21 D Containing “-" 8.02%
22 D Length of registration period 3.34%

Table 6 - Ranking of feature importance in PREDATOR [3] (D for domain profile category, R for registration history
category, and B for batch correlation category).

28



The selected features are categorial, therefore they are translated into binary features
since binary features are more common for training Machine Learning models. Table 7

shows an example of categorical features the model decodes into binary features.

domain ns_base_domain ns_as_subnet ns_as_name label

paypal.com.user-login.secure-id.ref939a.com dendrite.network 45,9.148.0/24 NICEIT, NL 1
paypalaccounttologinaccountsummarmay.com ispvds.com 94.250.248.0/23 THEFIRST-AS, RU 1
paypal-id-signin-customer-center-customer-locale-g-en.c freenom.com 104.155.0.0/19 GOOGLE - Google LLC, US 1
paypal.com.au-dispute50043.gajsiddhiglobal.com speedhost.in 208.91.198.0/23 PUBLIC-DOMAIN-REGISTRY - PDR, US 1
paypal-limitato-conferma.kozow.com dynu.com 45.79.208.0/20 LINODE-AP Linode, LLC, US 1
paypal.co.uk.3uea.icu dnspod.com 119.28.48.0/23 TENCENT-NET-AP-CN Tencent Building, Kejizhongyi Avenue, CN 1
paypal.co.uk.v15m.icu dnspod.com 180.160.0.0/13 CHINANET-SH-AP China Telecom (Group), CN 1
paypal.de-center.buzz cloudflare.com 173.245.59.0/24 CLOUDFLARENET - Cloudflare, Inc., US 1
paypal.co.uk.dii7.icu dnspod.com 59.36.112.0/20 CHINANET-IDC-GD China Telecom (Group), CN 1
paypal-webnative.surge.sh iwantmyname.net  83.169.54.0/23 GODADDY, DE 1
checkout.paypal.com ultradns.net 156.154.65.0/24 ULTRADNS - NeuStar, Inc., US 0
c6.paypal.com.edgekey.net akam.net 95.100.173.0/24 AKAMAI-ASN2, US 0
api-m-edge.glb.paypal.com dynect.net 204.13.250.0/24 DYNDNS - Oracle Corporation, US 0
svcs.paypal.com ultradns.net 156.154.65.0/24 ULTRADNS - NeuStar, Inc., US 0
paypal.me dynect.net 204,13.250.0/24 DYNDNS - Oracle Corporation, US 0
paypal-deutschland.de dynect.net 208.78.70.0/24 DYNDNS - Oracle Corporation, US 0
paypal.com.au ultradns.net 156.154.65.0/24 ULTRADNS - NeuStar, Inc., US [o]
paypal-business.co.uk dynect.net 208.78.70.0/24 DYNDNS - Oracle Corporation, US 0

Table 7 - Records from the dataset for building an example model for PayPal phishing detection

For the 18 records shown in table 7, there is a limit of 18 * 3 = 54 decode features. Table
8 continues the example in table 7. It shows the decoding result which ended with 11
ns_base_domain feature, 14 ns_as_subnet features, and 13 ns_as_name features. Total
of 38 features. The greater the dataset, the lower is the ratio between the maximal
amount of decoded features and the resulted amount. That is due to the repeatedness

of the features.

ns_base_domain
ns_base_domain_akam.net
ns_base_domain_cloudflare.com
ns_base_domain_dendrite.network
ns_base_domain_dnspod.com
ns_base_domain_dynect.net
ns_base_domain_dynu.com
ns_base_domain_freenom.com
ns_base_domain_ispvds.com
ns_base_domain_iwantmyname.net
ns_base_domain_speedhost.in
ns_base_domain_ultradns.net

For the phishing domain paypalaccounttologinaccountsummarmay.com the feature

ns_as_subnet
ns_as_subnet_104.155.0.0/19
ns_as_subnet_119.28.48.0/23
ns_as_subnet_156.154.65.0/24
ns_as_subnet_173.245.59.0/24
ns_as_subnet_180.160.0.0/13
ns_as_subnet_204.13.250.0/24
ns_as_subnet_208.78.70.0/24
ns_as_subnet_208.91.198.0/23
ns_as_subnet_45.79.208.0/20
ns_as_subnet_45.9.148.0/24
ns_as_subnet 59.36.112.0/20
ns_as_subnet 83.169.54.0/23
ns_as_subnet_94.250.248.0/23
ns_as_subnet_95.100.173.0/24

ns_as_name
ns_as_name_AKAMAI-ASN2, US

ns_as_name_CHINANET-IDC-GD China Telecom (Group), CN
ns_as_name_CHINANET-SH-AP China Telecom (Group), CN
ns_as_name_CLOUDFLARENET - Cloudflare, Inc., US
ns_as_name_DYNDNS - Oracle Corporation, US

ns_as_name_GODADDY, DE
ns_as_name_GOOGLE - Google LLC, US

ns_as_name_LINODE-AP Linode, LLC, US

ns_as_name_NICEIT, NL

ns_as_name_PUBLIC-DOMAIN-REGISTRY - PDR, US
ns_as_name_TENCENT-NET-AP-CN Tencent Building, Kejizhongyi Avenue, CN

ns_as _name_THEFIRST-AS, RU
ns_as_name_ULTRADNS - NeuStar, Inc.

Table 8 - Decoded features for the records of table 7.

, US

vector would be “ns_base_domain_ ispvds.com”, “ns_as_subnet_94.250.248.0/23”, and

“ns_as_name_THEFIRST-AS, RU” set to 1. The other features would be set to 0.

29



3.3.2.2 Predict — Scikit-Learn Complaint
The MLModel class is compatible with the Scikit-Learn interface. In the project

experiments section, I'll elaborate on the tested models and the results.

3.3.3 Predictive Blacklisting
Predictive blacklisting approach leverage existing knowledge of malicious domains to

predict malicious domain names that are likely to be used for malicious purposes. The
approach advantage that it could be the first line of defense in detecting new malicious
domains. It is based on the empirical fact that threat actors reusing domain name
template strings with minor edits. Its drawbacks are that is counts on threat actors’ lack
of imagination in picking phishing domain names and that most of its output is
redundant since most of the domains it generates are never in use. The paper Proactive
discovery of phishing related domain names [4] describes such a system. The paper
describes a system that generates a blacklist of domains by using a Markov chain model
and relevant lexical features extracted from a semantic splitter. Domain-specific

knowledge added from semantic tools.

3.3.3.1 Train — Markov Chain
The proactive malicious domain name discovery training contains six steps, as shown in

figure 13:

1. Information gathering — collect top-level domain (TLD) from the public suffix list
and malicious domains as input for the proactive model

Name decomposition — break down the main domain name and TLD

Word splitter — break down main domain name into words

Model — run the statistical analysis and predict potential malicious domains list

Domain checker — filter benign domains before adding to a blacklist

AN A T o

Blacklist — publish a blacklist of potential malicious domains

30



Feature extraction Model

Potential Malicious
=1 - ': Domain List
S g — 2ol ’@ng

Name Word 1

Malicous domains . Name Markov | (4
(blacklists, Decr:lmpomton Splitter Statistics Chains
honeypots, magrgmediasetup,com macro|media|set|up|, |cdm
malware analysis...) (5)
)

macromediasetup.com/dl.exe

Y

DISCO

Blacklist

- <6}
TLD list: -

com, lu, fr, de, org...

SUUUL

Domain checker

Figure 13: Proactive Malicious Domain Name Discovery System [4] architecture

In this project, the name decomposition was done with Compound-Word-Splitter
python package. After the name decomposition phase words statistics are gathered.
Figure 14 shows an example of words statistics gathering for the word “free” and the
word “pay”. In the case of the word “free”, the next transition in the Markov chain
would be any one of the words in the “transitions” counter. Since all the following
words have the same amount of apparencies following the word “free”, they would get
the same probability for the next phase: 1/11 = 0.090909. In the case of the word “pay,”
the next transition in the Markov chain would be any one of the words in the
“transitions” counter. Since all the following words but the word “problems” have the
same amount of apparencies following the word “free”, they would get the same
probability for the next phase: 1/13 = 0.076923 and the word “problems” which
appeared twice, it’s probability would be 2/13 = 0.153846.

31



1
2 'appeareance': 15,
3 "index': Counter({
< e: 8,

5 1: 3,

6 2: 3,

7 3: 1

8 1

9 'sentence_length':

16 2: 4,

11 3: 7,

12 5: 1,

13 4: 3

14 3

15 "transitions': Coun

16 ‘free': 9,

17 "liker': 1,

18 'o': 1,

19 'you': 1,

29 'get': 1,

21 "click': 1,

22 'gift': 1,

23 '1': 1,

24 ‘game': 1,

25 'ia': 1,

26 ‘host': 1,

27 ‘movies': 1

28 })

29}

Counter({

ter({

O 00~ & vl B w M

NN RNMNRNMNNNNREERRBRRRRRR R
W o0 u P WNERER®WONW-NOOU R WNERER®

'appeareance': 17,
"index': Counter({

})J

'sentence_length': Counter({

})J

e: 9,
1: 5,
3: 3

3: 6,

4: 5
2: 5,
5: 1

"transitions':

})

‘pay’: o,

‘problems’:

‘la': 1,
x': 1,
‘certain':
'v': 1,

‘pack': 1,

Counter({

2,

Figure 14 — on the left word statistics of the word “free”, and on the right word statistics for the word “pay”

The decision to end the domain name, i.e. not to continue with another transition, is

made using the “sentence_length” field in the “word statistics” data structure as shown

in figure 14, lines 9-14 left and lines 8-13 right. The stop criteria is based on the

sentence words length statistics of the last word in the generated domain name. The

stop criteria is shown in line 12 in figure 15.

32



1 def _create_random_domain_name(self, model, word_statistics, initial_state):
2 domain_name = None

3 word_list = [initial_state]

4 current_state = initial_state

5 while len(word_statistics[current_state]['transitions']) > @:
6 current_state = model.next_state(current_state)

7 word_list.append(current_state)

8 prob_dict = self._convert_counter_to_probabilities(

9 word_statistics[current_state]['sentence_length'])

10 current_word_sentence_length = np.random.choice(

11 list(prob_dict.keys()), p=list(prob_dict.values()))
12 if current_word_sentence_length <= len(word_list):

13 break

14 if len(word_list) > 1:

15 domain_name = ''.join(word_list)

16 return domain_name

Figure 15 - Markov model domain names generator
Figure 16 shows the algorithm that creates the blacklist of predicted malicious domain
names. For every word in the “word statistics” data structure described in figure 13, the
algorithm generates up to 100 predicted malicious domain names. If the algorithm spots

that the generated domains repeat more than 10 times, it continues to the next word.

1| self.domain_name_set = set()
2| for word in self._states_set:
3 init_set_len = len(self.domain_name_set)
4 for i in range(160):
5 predict_domain_name = self._create_random_domain_name(
6 self._markov_chain, self._word_statistics, word)
7 if predict_domain_name is not None \
8 and predict_domain_name not in domain_name_blacklist \
9 and predict_domain_name not in self.domain_name_set \
18 and len(predict_domain_name) > 5:
11 self.domain_name_set.add(predict_domain_name)
12 elif predict_domain_name is None \
13 or len(self.domain_name_set) + 10 < init_set_len + 1i:
14 break
Figure 16 - Creating a blacklist of predicted malicious domains
3.3.3.2 Predict

The predict function is trivial, it just checks if the domain name appears in the predicted

domain name set that was created using the algorithm shown in figure 16.

33



4. Experiment
This section covers the process of the experiments: data cleaning, threshold selection,

and classifier result evaluation.

4.1 Data Cleaning
In the early stages of the experiment, an anomaly popped up. Many phishing domains

were hosted as a subdomain of popular hosting websites such as 000webhostapp.com,
azurewebsites.net, duckdns.org, no-ip.com, no-ip.org, wixsite.com. The mentioned
domains offer a freemium hosting service. Threat actor takes advantage of these
freemium services for their malicious purpose. In order to avoid causing confusion to
the classifiers, malicious domains hosted on the mentioned hosting providers were
removed from the train and test set. It reduced 32% of the dataset. That is not a great
loss since these domains could not be analyzed by the classifier developed in this project

anyway since the top domain is always benign.

In the middle of the experiments, | notice a shark increase in the detection rate of the
ML models and a decline in the SNA model. The reason for that was many domain
records had not IP, nameserver, and ASN data. It was caused due to a networking failure
that | didn’t handle properly. | fix the code and removed the empty domain record from

the dataset.

34



4.2 Data Separation
To decide which threshold every classifier should have I've visualized all the classifiers’

verdicts into the charts seen in figure 17.

Logistic Regression Classifier Classification Probabilities Social Network Graph Classification Probabilities
10°
107 4
16
E E
R 7
'
10 .
10° 4 10°
0.0 0.2 0.4 0.6 o8 10 0.0 02 04 0.6 08 10
maliciousness probability maliciousness probability
XGBoost Classifier Classification Probabilities Markov Model Classification Probabilities
10° 4
10
10°
10¢
3 i i
i 8
E 2
] 510
Tl
100
' ’ 10" 4
107 10° 4
02 0.4 0.6 08 0.0 0.2 0.4 0.6 0.8 10

mahcieusness probability Fralicisusness probability

Figure 17 - Classification data separation charts. Blue represents benign sample probabilities, and red are malicious
sample probabilities.

The classifiers' threshold selection is an important part of the experiment. The optimal
threshold is the one that conducts a perfect separation between the classes. In our case
the separation between benign and malicious domains. Since in real life the optimal
threshold is not perfect, we'll select a threshold that maximizes true positives and at
cost of minimal false positives. In figure 17 we can see the places the red line is high
then the blue line. For the Markov model, the threshold is a Boolean threshold, but
unfortunately in the experiment, it had more false positives in any threshold. The

selected thresholds are listed in table 9.

35



Model Threshold

SNA 0.67
XGBoost 0.93
Logistic Regression 0.95
Markov 1

Table 9 - The selected threshold for the classifiers

4.3 Evaluation
After the classifiers' decision threshold was set its possible to translate the classifiers’

probabilities results into verdicts. The evaluation was made on data collected between
17-Dec-2019 and 23-Dec-2019. In that time period, 20,640 labeled domain samples
were collected. 18,148 labeled as benign and 2,222 labeled as malicious. Table 10 shows
a clear advantage of the SNA classifier which produces a detection rate of 83.89% at the

price of 1.09% false positive rate.

Logistic Regression

Raw Normalized
Benign Malicious Benign Malicious
Benign 18186 232 98.74% 1.26%
Malicious 1833 389 82.49% 17.51%
XGBoost
Raw Normalized
Benign Malicious Benign Malicious
Benign 18370 48 99.74% 0.26%
Malicious 2111 111 95.00% 5.00%
SNA
Raw Normalized
Benign Malicious Benign Malicious
Benign 18218 200 98.91% 1.09%
Malicious 358 1864 16.11% 83.89%

Table 10 - Confusion matrixes of the classifiers’ evolution
The ROC curve shown in figure 18, confirms the SNA model out-perform the other
classifier on any given threshold. You can see its line always above the Logistic

Regression and XGBoost classifier. It’s also interesting to see that the simplistic Logistic

36



Regression algorithm out-perform the state-of-the-art machine learning algorithm

XGBoost.

Receiver operating characteristic

True Positive Rate

010 J,’ ==+** Logistic Regression Classifier(AUC = 0.8132)
,f’ —— XGBoost Classifier(AUC = 0.7240)
005 71 .- Social Network Graph(AUC = 0.9853)

000 U T T T T T T T T T T L] T T L] T T T T T
0.000050100150200.250300350400450500550600650.700.750800850900.95100105

False Positive Rate

Figure 18 - ROC Curve using the threshold shown in table 9

The PREDATOR [3] system baseline its evaluation of on a given FPR of 0.35%. For the
results to be comparable with each other, | did the same. PREDATOR results are shown
in Table 11, the project results are shown in Table 12. The results show that the SNA
model reaches a similar detection rate to PREDATOR. That is without optimization
tuning of the training and testing window size as done in PREDATOR paper. In the
experiment the SNA model was rebuilt every 2 hours, that is possible since the graph
construction takes less than a minute. PREDATOR paper doesn’t specify how much time

it takes to train the model, but | guess it’'s much more than a minute.

37



Testing

window
Training

g 7 days 35 days 56 days

35 days 70.00% 68.29% 66.81%

21 days 67.10% 64.96% 60.56%

14 days 64.13% 60.51% 58.22%

Table 11 - PREDATOR [3] detection rates under a 0.35% false positive rate

Model TPR

SNA 60.71%
XGBoost 5.40%
Logistic Regression 7.56%
Markov 0.00%

Table 12 - Classifier detection rate under a 0.35% false positive rate
Figure 19 shows the ROC curve of PREDATOR. When comparing to the ROC of the SNA
model shown in figure 18, it's clearly shown that the SNA ROC curve compensates better
for a more tolerance FPR. For example, when considering an FPR of 1% the SNA model

obtains 82.81% TPR, when according to figure 19 PREDATOR obtains less than 80%.

100 T T T T T I l—
90} .
80 .
__ 70 100 ——— |
Q
o 60} 80} - .
>
> 50} 60} ] .
(@]
o
o 40} 40 - §
2
= 30} 20 . |
20} T ,— .
0051152253354455
10} .
0 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
False positive (%)

Figure 19 - ROC of PREDATOR [3] The inlay figure shows the ROC curve under the range of 0-5% false positives

38



5. Project Configurations and Operation
This section explains how to configure the project environment, data sources,

technologies and how to operate the project.

5.1 Setup
This section explains the project preliminary requirements before running it.

5.1.1 Software Components
The project requires Python 3.6 or newer to install it download go to

https://www.python.org/downloads/

Once Python is installed on the machine, you’ll need to install the external Python
package that is in use in this project. To install the packages all you need is to run the

following command on the project directory shell: pip install -r requirements.txt

The project's persistent storage is PostgreSQL, however, it can be easily ported to
another database technology. To install PostgreSQL download it from

https://www.postgresql.org/download/ and following the installation instruction.

The project global cache and messaging queue mechanized is Redis. To install Redis

download it from https://redis.io/download and following the installation instruction.

5.1.2 Data Source Configurations
As mentioned in the data collection section, to harvest malicious URLs from PhishTank

you’ll need an API key. You can get it for free on the following registration URL:

https://www.phishtank.com/register.php. The APl Key should be stored in the operating

system environment variable PHISHTANK_APIKEY.

The ASN enrichment is done with the pyasn python package. It requires downloading
the freely available MRT/RIB BGP archives. The download and installation process is

explained on the pyasn GitHub page: https://github.com/hadiasghari/pyasn. The ASN

database file path should be stored on the operating system environment variable
ASN_DB_PATH. The ASN database is changing on a daily basis, thanks to pyasn it's easy

to update it.

39


https://www.python.org/downloads/
https://www.postgresql.org/download/
https://redis.io/download
https://www.phishtank.com/register.php
https://github.com/hadiasghari/pyasn

5.1.3 Logging
Logging in the project is made with the Python built-in logging package. The desired log
directory location should be stored on the operating system environment variable

LOG_DIR_PATH.

5.2 Running the Backend
The project has three Python files with the main function: fetch-feeds.py,

enrich_domain.py, and model_managaer.py.

fetch-feeds.py is the python script that fetches the domain and URL feed from the data
sources mentioned in the data collection section (3.2.1). After fetching the feed, it

transmits the domains to the new URLs channel. In figure 20 you can see its manual.

usage: fetch_feeds.py [-h] [--infinity] [--sleep SLEEP]

[--data-source DATA_SOURCE] [--redis-host REDIS_HOST]
[--redis-port REDIS_PORT] [--redis-db REDIS_DB]
[--limit LIMIT] [--debug-level DEBUG_LEVEL]

optional arguments:

-h, --help show this help message and exit
--infinity infinte run
--sleep SLEEP sleep seconds, relevant only on infinity mode

--data-source DATA_SOURCE

data source to fetch
--redis-host REDIS_HOST

redis hostname
--redis-port REDIS_PORT

redis port
--redis-db REDIS_DB redis db index
--limit LIMIT publish limit for fetched URLs
--debug-level DEBUG_LEVEL

logging debug level

Figure 20 - fetch-domains.py manual

enrich_domain.py is the python script that listens to new URLs channel and enriches the

domains which IP, nameserver and ASN data. In figure 21 you can see its manual.

40



usage: enrich_domain.py [-h] [--postgresgql-host POSTGRESQL_HOST]
[--postgresql-port POSTGRESQL_PORT]
[--postgresql-username POSTGRESQL_USERMNAME ]
[--postgresql-password POSTGRESQL_PASSWORD]

[--debug-level DEBUG_LEVEL]

optional arguments:
-h, --help show this help message and exit
--postgresql-host POSTGRESQL_HOST
postgresql host
--postgresql-port POSTGRESQL_PORT
postgresql port
--postgresql-username POSTGRESQL_USERNAME
postgresql username
--postgresql-password POSTGRESQL_PASSWORD
postgresgl password
--debug-level DEBUG_LEVEL
logging debug level

Figure 21 - fetch-domains.py manual

model_manager.py is a python script that listens to enriched domains channel. It runs
the classifiers on the enriched dataset and commits the domain record with the

classifier results to the database. In figure 22 you can see the script manual.

usage: model manager.py [-h] [--train] [--listen] [--logger LOGGER]
[--pkl-path PKL _PATH] [--limit LIMIT]
[--retrain RETRAIN]
[--postgresql-host POSTGRESQL_HOST]
[--postgresql-port POSTGRESQL_PORT]
[--postgresql-username POSTGRESQL_USERNAME ]
[--postgresql-password POSTGRESQL_PASSWORD]
[--debug-level DEBUG LEVEL]

optional arguments:

-h, --help show this help message and exit

--train train new models

--listen listen for new enriched domains

--logger LOGGER logger name

--pkl-path PKL_PATH path to pickle to save/load the model file

--limit LIMIT limit records per classification

--retrain RETRAIN model retraining every X hours, @ for no retraining

--postgresgl-host POSTGRESQL_HOST
postgresql host
--postgresgl-port POSTGRESQL PORT
postgresql port
--postgresgl-username POSTGRESQL USERNAME
postgresgl username
--postgresqgl-password POSTGRESQL PASSWORD
postgresql password
--debug-level DEBUG_LEVEL
logging debug lewvel

Figure 22 - model_manager.py manual

41



5.3 Running the Frontend
The project frontend is written in Python as well. The backend of the frontend is on the

file app.py and its frontend is on templates directory. figure 23 shows app.py manual.

-h] [--flask-host FLASK_HOST] [--flask-port FLASK_PORT]
--logger LOGGER] [--pkl-path PKL_PATH] [--limit LIMIT]
--postgresgl-host POSTGRESQL HOST]

--postgresql-port POSTGRESQL_PORT]
--postgresgl-username POSTGRESQL_USERNAME]
--postgresgl-password POSTGRESQL_PASSWORD]
--debug-level DEBUG_LEVEL]

usage: app.py

[
(
[
[
(
[
[

optional arguments:

-h, --help show this help message and exit
--tlask-host FLASK _HOST

flask host
--flask-port FLASK_PORT

ftlask port
--logger LOGGER logger name
--pkl-path PKL_PATH path to pickle to save/load the model file
--limit LIMIT limit records per classification

--postgresgl-host POSTGRESQL _HOST
postgresqgl host
--postgresgl-port POSTGRESQL PORT
postgresgl port
--postgresgl-username POSTGRESQL_USERMAME
postgresgl username
--postgresql-password POSTGRESQL_PASSWORD
postgresql password
--debug-level DEBUG LEVEL
logging debug level

Figure 23 - app.py manual

5.4 Frontend Operation
This section explains how to operate the frontend web user interface.

5.4.1 Domain Reputation
The default screen is “Domain Reputation”. In this web page, a user can input a URL

address and the URL’s domain reputation score would be calculated. Figure 24 shows

the screen.

Train

Explore
Model

Dataset

Data
Schema

Domain
Reputation

https://web whatsapp. com/ Analyze

Figure 24 - "Domain Reputation" screenshot, input box filled with the URL https://web.whatsapp.com/.

42


https://web.whatsapp.com/

Figure 25 shows the upper screen output for the URL https://web.whatsapp.com/. the

output includes 3 sections: input URL and extracted domain, the results of the raw
classifier, and the features extracted.

|L'RL Hhttps ://web.whatsap p.c0111-"|
|D0mainH\\-'eb.whatsapp.com |

|mlmodelilugistic regression ” mlmodel xgb classifier”markm‘ model” snamodel” train date ‘
0.190483 Jo.548883 o J0.388562 [2019-12-30T19:46:54.053659
| timestamp  |2019-12-30T20:15:46.360672
| base_domain Hwhatsapp.com

| domain name Hwhatsapp

domain_ip  |[185.60.216.53

as_number H32934

[185.60.216.0124

| as_submnet
| as_pame

nameserver Ha.ns.whatsapp‘net
|us_base_domain Hwhmsapp.net

| ns_domain_ip |[66.111.48.12
| ns_as_number HIJQJT

| ns_as subnet [66.111.48.0/24

|
|
|
|
|
|
[FACEBOOK - Facebook, Inc., US|
|
|
|
|
|
| ns_as name HWHATSAPP - WhatsApp, US |

Figure 25 - Domain reputation result for the URL https://web.whatsapp.com/

Figure 26 shows the bottom part of the screen, it presents an explanation of the SNA
classifier verdict. It colors green for benign domains, brown for unknown and red for

malicious domains. The edges between the nodes are constructed by the algorithm

described in figure 9 from the SNA domain classifier train section (3.3.1.1)

vhatsapp.net

1\ \\‘\-\.
AN

\‘56_111 48.0/24
™~

"'“.185.60\_?4&0!24

\ vhatsapp.com

/
.35_1 1" _49_0.241

/ |

/ /

‘;.whatsaplb. net

.169.55.6[]_1

veb.whatsapp.com

Figure 26 - SNA Ego graph with radius 2 for the domain web.whatsapp.com

43


https://web.whatsapp.com/
https://web.whatsapp.com/

5.4.2 Explore Dataset
“Explore Dataset” allows the user to browse the operational database. Each page shows

50 records, sorted by database insertion date on descending order. Figure 27 shows an

output example.

@ Eapiors Datact x|+ - 8 x
€ 3 C O oot plore-data a e :

Domain
R i Dataset Schema Madel

Explore || Daia ‘ Lrain I

Previous Page | Next Page

a Tab Gimestamp) base_domain] domain_name| __ domain_ip|as_aumber, as_subner] as_am
. . 2019-12-30 . - - - - IGOOGLE - Google LLC,
g W x wixsite, ¢ & 3524225113 5 35.2 1 -
0 [setingfb19 wixsite.com L [0aen ssosas|vissite.com wixsite 42251130 (15169 400014 70
1 [anonovodeofertasvoucher007-online umbler.net 1 [OLSAZ30 o er et fumbler None None None [None
i - i i [20:05:07.730819 i i 3
2 Jultimapromoanocod293882203-me umbler.net 1 [Ponee1a30 L ber et umbler None None Nooe None
ST 120:05:07 608738 ) i i I
- 5019. 123 N . . INASK-COMM .
3 [przechwycone-zdjecin-fotkieu L[R2 s [prascbwyeone adiecia-fotki eu [pracchwyeone-zdiecia-fotki |194.181.228.10 8308 1941510016 [ ASK-COMMERCIAL
4 |palservehalflife.c L [Pois-1z-30 ervehalflife.co rvehalflife 10.0.0.0 None Noy None
pal.servehalflife.com o 130 pasfservebalilfe.com servehalflife ' Non None INon
2019-12-30 |AS-26496-GO-DADDY-
5 | rakendatagroup. com T S va g S com rakcend 160.153.76.165 26496 |160.153.64.0/19 [COM-LLC -
0 8982 |GoDaddy.com, LLC, US

Figure 27 — “Explore Dataset” screenshot

5.4.3 Data Schema
“Data Schema” page allows the user to see the current database schema. Figure 28

shows a screenshot.

Domain Explore Data Train
Reputation| Dataset Schema Model

column_name data_type
0 |[domain text
1 |label bigint
2 |timestamp timestamp without time zone
3 |base_domain text
4 |domain name text
5 |[domain_ip text
6 |as number text
7 |las_subnet text
8 |las_name text
9 |lnameserver text
10|ns _base domain text
11|[ns_domain_ip text
12|ns as number text
13|[ns_as_subnet text
14|ns as name text
15||markovmodel double precision
16|snamodel double precision
17||mlmodel_xgbelassifier double precision
18|mlmodel logisticregression||double precision
19|[train_date timestamp without time zone

Figure 28 — “Data Schema” screenshot

44



5.4.4 Train Model

The “Train Model” page allows the user to train a model on the dataset with a custom
amount of benign and malicious samples. Figure 29 shows an example with possible

input and figure 30 shows the expected output for the same input.

Domain Explore Data Train
Reputation| Dataset Schema Model
File Name:|[2K2K pkl
Limit: 2000
Start Train
Figure 29 — “Train Model” screenshot
Domain Explore Data Train
Reputation|| Dataset Schema Model

Model was trained on 2000 benign samples and 2000 malicious samples

The model is store on 2K2K.pkl

Figure 30 - example output of "Train Model"

45



6. Summary and Conclusions
“Average uptime of phishing attacks is around 2 days and the median uptime is only 12

hours. Due to this very short lifetime, reactive blacklisting is too slow to effectively
protect users from phishing” [4]. This quote condenses the importance of this work. The
phishing use-case is extraordinary from that perspective that it lives for a very short

time. Therefore, a proactive approach is a clear requirement for detected threats.

The experiments described in section 4 demonstrate it's not practical to guess the
domain names to be registered. A more realistic approach would be the consistently
learn the internet domains’ neighborhood e.g. IP, network, ASN, nameservers, etc. while
doing so, constantly calculating each node's reputation. The SNA approach was proven
to be very successful reaching a detection rate of 83.89% under a 1.09% false positive

rate and 60.71% under a 0.35% false positive rate.

In spite of the fact, it reached a lower detection rate then PREDATOR [3] 70% detection
rate given the same FPR it’s a big achievement. That is because of PREDATOR leverage
propriety dataset which is very expensive and takes a great deal of resources the
manage. When all the classifiers developed in this project all rely only on open source
data sources, and all the setup and software components described in section 5 ran on
my consumer laptop. Unlike the SNA model, PREDATOR had many optimizations on the
training window as shown in Table 8, where the true positive vary in the range of 58%-
70%. Very close to the results of this project. Moreover, the SNA model obtains even

better results than PREDATOR when considering high acceptable FPR.

a ground for future work can be to optimize the project models or create a meta-
classifier that would combine the machine learning classifiers with the SNA classifier. |

assume that any of the two would push the result higher than 70%.

46



References

[1] Mishsky, I., Gal-Oz, N., & Gudes, E. (2015, July). A topology based flow model for
computing domain reputation. In proceedings of IFIP Annual Conference on Data and
Applications Security and Privacy (pp. 277-292). Springer, Cham.

[2] Antonakakis, M., Perdisci, R., Dagon, D., Lee, W., & Feamster, N. (2010, August).
Building a Dynamic Reputation System for DNS. In proceedings of USENIX security
symposium (pp. 273-290).

[3] Hao, S., Kantchelian, A., Miller, B., Paxson, V., & Feamster, N. (2016, October).
PREDATOR: Proactive Recognition and Elimination of Domain Abuse at Time-Of-
Registration. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security (pp. 1568-1579). ACM.

[4] Marchal, S., Francois, J., & Engel, T. (2012, September). Proactive discovery of
phishing related domain names. In proceedings of International Workshop on Recent
Advances in Intrusion Detection (pp. 190-209). Springer Berlin Heidelberg.

47



Appendix A — Example of Benign Domains Classification Result

domain

datastax.com

omgt3.com
cs-gateway.cloudapp.net
gradientt.net
ipv4-c027-was001-ix.1.oca.nflxvideo.net
ipv4-c027-vie001-ix.1.o0ca.nflxvideo.net
api.pushe.co

staging.eab.com

vd89.mycdn.me
api.appmetadata.sonymobile.com
jtvnw.net.cdn.cloudflare.net
l-agent.me
voranda-com.videoplayerhub.com
fagc2-1.fna.fbcdn.net
cbg-app.huawei.com
games.geo.hosted.espn.com
a.smrpm.com

vm.mycdn.me

mi.walgreens.com
click.online.costco.com
ncp-gw-sports.media.yahoo.com
s-usclc-nss-271.firebaseio.com
b-cc-usea2-01-skype.cloudapp.net
moog-r.cybereason.net
keepersecurity.eu
link.btsvcemail.web.plus.espn.com
4a7b.srvng.xyz

s.potu.xyz

bs.iotleg.com
watsonfantasyfootball.espn.com
ksn.kaspersky-labs.com
twitter.test-app.link
firebat-25-aftmm-80612.na.api.amazonvid:
instagram.fada2-1.fna.fbcdn.net
ios-dradis.prod.ftl.netflix.com
worldlifestyle.com
distoryrussion.info
failover.zingmp3.vn
dcs-live.apis.anvato.net

6xg.com

ssp20.pushprofit.net
fortnite-vod.akamaized.net
theplayerstribune.com
firebat-22-aftt-80612.na.api.amazonvideo.
hellosubscription.com
tuttoabruzzo.it

thezeezstore.com

rollingstone.it

ostetrichebrescia.it

mcdiscount.it

ixnayproductions.it
group-training-online.com
golfdom.com

god-games.com
festivalvillevesuviane.it
cpialegnano.edu.it

bartoccini.it

avvenire.it

autodirect24.com

Table 13 - Example of the benign domains classification result

~ [label

¥ markovmodel

O O 0O 0O 0000000000000 00000O000O0000000000O0000000000000O0O00O0OO0O0O0OO0OOo0OOoOOoO

~ |snamodel

OO0 0000000000000 0000000000000000000000000O0000000000O0O0O0O0O0O0O0Oo0Oo

- /mlmodel_xgbclassifier
0.226520838
0.189093661
0.322173269

0.316150874
0.169931561
0.563195884

- mlmodel_logisticregression -
0.152330989
0.047668929
0.684618425

0.463472091 0.550923884 0.670320183
0.21272263 0.232552424 0.049469577
0.21272263 0.232552424 0.049469577

0.281074716 0.2509543 0.21622384

0.197167281 0.169931561 0.064750098

0.306614434 0.550923884 0.476344038

0.216388157 0.169931561 0.088441005

0.411164173 0.550923884 0.459039409
0.23688687 0.169931561 0.111537037

0.404994776 0.686842501 0.728991617

0.415023677 0.550923884 0.634409399

0.418792725 0.550923884 0.634409399

0.175047154
0.209472007

0.169931561
0.149449095

0.055194319
0.078687902

0.294466595 0.550923884 0.476344038
0.280749755 0.550923884 0.634409399
0.27286589 0.550923884 0.415952511
0.32728766 0.550923884 0.343913431
0.475002479 0.771687508 0.811051469
0.401720014 0.563195884 0.632344189
0.18984955 0.169931561 0.051635809

0.173302626
0.240467698
0.314793999
0.276672872

0.39703371

0.33173583
0.322465091
0.136624822
0.163135335
0.238939728
0.205720331
0.179128595
0.360868693
0.305419921
0.474100612
0.269454461
0.444729318
0.189559638

0.44605861

0.17087245
0.227703619
0.256244965

0.216495485
0.300974774
0.180040542
0.525489227
0.403898387
0.445113739
0.151028405
0.276672872
0.558343563
0.320357722
0.283390057
0.151028405

48

0.169931561
0.169931561
0.550923884
0.252700031
0.550923884
0.169931561
0.550923884
0.169931561
0.169931561
0.550923884
0.169931561
0.169931561
0.169931561
0.550923884
0.771687508
0.550923884
0.550923884
0.149449095
0.771687508
0.169931561
0.252700031
0.252700031
0 0.550923884
0.169931561
0.550923884
0.169931561
0.550923884
0.550923884
0.686842501
0.550923884
0.252700031
0.550923884
0.550923884
0.550923884
0.550923884

0.057422657
0.076755594
0.354402003
0.222190731
0.454590448
0.406751832
0.131008276
0.071314612
0.054666001
0.634409399
0.072832645
0.067055462
0.467892617
0.634409399
0.813777926
0.179828246
0.644571404
0.048604802
0.811051469
0.054666001
0.222190731
0.222190731
0.634409399
0.102422666
0.603844674
0.074450285
0.719478509
0.397083532
0.754540184
0.634409399
0.222190731
0.719478509
0.597082597
0.634409399
0.634409399



Appendix B — Example of Malicious Domains Classification Result

domain ~ [label
sucursalpersonas.webcindario.com
inovini.com.br

www.safetyrd.xyz
bcpzonasegurabeta-viazbcp.com
a0375741.xsph.ru
ofertanatalina.store
salonesfloridautamau.com
suppottserverteem.me
testsite.rebellegion.com
newmodelschool.org

treestorian.com

allegro.media

www.bahianita.com

itokenitau.app
lakossagi.belepes.hu.skyorbittrading.c
www.cervezasorigen.com
zoyarentalmedan.com
multilinks.nuirtefrede.cf
com-bmnfkppxaa.kofc3035.org
www.biesseacquari.com
khabare2020.3dfine.com
instituto2005.org
musicaparadormir.com.br
golfcartbatteries.us

taxi-ubk.ru

www.ppl-vell.cf
updateappleidaccount.bykvijwrk.com
www.handirestaurant.com
Instagrambusinesssupport.com
remmancuaphuonganh.com
bnpparibas-mabanque.rockdelinj.com
mail.whistlers4hire.com

www.aburs.ir
netflipagaments.jdevcloud.com
fishingnewengland.com
emed-depot.com
instagram-helpconfirm.com
www.worldfoodinter.com
builtdintegrity.com
p3plvcpni318847.prod.phx3.secureser
hotelcafewoud.nl

sherakatmarket.ir
vote-brexit-2020.000webhostapp.com
411admin.co.za

ebay-url.com

winningruby.xyz

kb-healthcare.com
castromonitoramento.com.br
proudcall.xyz

www.takilafa.com.br
hiersungoodresearchchemicals.com
unsidiomas.com.br
www.royalvenetian.ca

ecogarden.by

myy-proimll.com
mobi.facebook.com-m-ovimgntrwy.les
printernovin.com
endowmentoracle.co.kr

hagi-pl.com

- markovmodel

P R R RPRRPRRPRPRRRPRRPRPPRPRRPRPRRPRRPPEPRPRPRRPRPRRPRREPREPRPRPRRPRPRPRRPREPRPRPRPRPRRPRPRREPRPRPRPRPRRPRRPRREPRPRPRPRPRRPRRERRERRRERRRR

~ |snamodel

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0.796174347
0.467555451
0.77215759
0.778606534
0.852613547
1
0.76400821
0.778583459
0.865211624
0.823689977
0.812772986
0.734999
0.77275519
0.746970047
0.875097843
0.819356295
0.824559586
0.727393534
0.809575422
0.734852564
0.693979597
0.715733205
0.835225028
0.857410764
0.805560159
0.843323766
0.78289885
0.781488571
1
0.773146062
0.784542077
0.868753865
0.702447716
0.880460997
0.756281993
0.846803284
0.713726136
0.749305534
0.778649699
0.45888942
0.691529884
0.721791128
0.782118224
0.820172375
0.802228824
0.78911332
0.885574899
0.782211813
0.85564481
0.718666955
0.795987122
0.387215944
0.820633723
0.806796433
0.85294465
0.709968438
0.702817494
0.755798052
0.784130246

- /mlmodel_xgbclassifier

0.767927349
0.231854886
0.551020205
0.551020205
0.627774358
0.551020205
0.659377694
0.546465456
0.659377694
0.659377694
0.659377694
0.659377694
0.747400105
0.659377694
0.835533679
0.659377694
0.659377694
0.747400105
0.659377694
0.659377694
0.659377694
0.659377694
0.931306899
0.931306899
0.659377694
0.645707488
0.772657335
0.931306899
0.659377694
0.659377694
0.659377694
0.931306899
0.659377694
0.659377694
0.761465013
0.659377694
0.773697495
0.659377694
0.761465013
0.068464793
0.659377694
0.659377694
0.748818517
0.659377694
0.761465013
0.659377694
0.835533679
0.931306899
0.835533679
0.659377694
0.659377694
0.659377694
0.659377694
0.659377694
0.659377694
0.761465013
0.659377694
0.761465013
0.659377694

Table 14 - Example of the malicious domains classification result

49

- mlmodel_logisticregression -

0.839229963
0.043818797
0.808002645
0.873353206
0.969546869
0.634721932
0.949861811
0.530266455
0.9712616
0.797259055
0.969237394
0.730388271
0.8972025
0.927180626
0.986925721
0.943309722
0.913062758
0.938667243
0.797259055
0.973747056
0.934570398
0.836323606
0.992262058
0.990207552
0.928988732
0.921666627
0.839408296
0.989753181
0.797259055
0.89781287
0.963511607
0.995028705
0.797259055
0.972724647
0.884034019
0.931799398
0.979131129
0.887738544
0.82446988
0.052148412
0.797259055
0.80804959
0.969490774
0.918700319
0.910422798
0.961590002
0.986925721
0.990492108
0.986925721
0.839433614
0.934356295
0.876065757
0.961765926
0.839812414
0.960827071
0.92294318
0.92870676
0.823123373
0.898211511



