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Abstract 

The Domain Name System (DNS) is an essential component of the internet 

infrastructure that translates domain names into IP addresses. Threat actors abuse that 

system by registering and taking over of thousands of Internet domains every day to 

launch cyber-attacks, such as spam, phishing, botnets, and drive-by downloads. The 

main solution to counteract this threat is currently reactive blacklisting.  Since cyber-

attacks are mainly performed over short periods of time, reactive methods are too slow 

and ineffective. As a result, new approaches to early identification of malicious websites 

are needed. In the last ten years, many novel papers were published offering a system 

that calculates domain reputation for suspected domains that are not listed in a 

common black-list list.  This project implements three different approaches and 

evaluates their effectiveness in detecting malicious domains. The approach that 

outperforms the others in the project’s experiments was social network analysis, it 

achieved a 60.71% detection rate with a false positive rate of 0.35%. 
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1. Introduction 

In current days, information security is an important aspect of any organization's 

business. Finding a cyber-attack in an enterprise network is often analogous to finding 

the needle in the haystack. Analysis of DNS traffic can be helpful to that end. Providing 

high quality, cheap and fast attack detection technique. 

Information security usually comes with three price tags, network performance impact, 

privacy violation, and false positive alerts.  Network performance impact cause due to 

deep traffic inspection, privacy violation due to the need to decrypt private encrypted 

traffic for inspection, and false positive alerts due to the variance of each network. 

Attack discovery by analysis of DNS traffic, reduce the price tag of all three aspects. The 

reason for that is because DNS is a very simple plaintext protocol containing short 

messages, usually over UDP protocol. Therefore, its analysis is much simpler and faster, 

however, its true positive detection would always be a subset of the detection that can 

be made by full packet inspection. 

This project covers three major techniques of discovering cyber-attacks via analysis of 

DNS: passive DNS analysis, domain registration WHOIS record analysis, and predictive 

domain names blacklisting. To cover as much ground, each paper selected on this 

project has taken not only a different data type input but also a different solution 

approach as well: social network analysis, machine learning, and Markov chain model. 

The project provides a working system for detecting spam and phishing domains based 

on novel academic research. 
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2. Project Description 

This section elaborates on the project goals and Importance. 

2.1 Project Goals 

The project's main goal is to implement three techniques of cyber-attacks discovery via 

analysis of DNS data: passive/active DNS analysis, WHOIS domain records analysis, and 

purely strings based analysis predictive blacklisting. 

a secondary goal is to create a dataset of benign and malicious domains that may be 

used in other research projects or to be used as a benchmark for domain classifiers. 

another secondary goal is making the classifiers available for anyone for free. That 

means that the classifier should be based only on open repositories and not contain a 

feature that can be extracted from non-publicly free available data sources.  

2.2 Project Importance 

There are three key advantages in DNS analysis for cyber-attacks discovery: 

1. Relatively cheap, in comparison to other approaches e.g. deep packet inspection 

2. DNS is plaintext, avoid problems of encrypted traffic inspection 

3. Privacy-preserving, encrypted traffic doesn’t need to be deciphered 

There are numerous academic papers offering detection algorithms for cyber-attacks 

discovery by DNS analysis. However, none of them offers an open-source 

implementation or give access to the dataset they used to evaluate the novel approach. 

Therefore, it’s impossible to run a true comparison between the different papers and 

approaches. The project implementation could help to achieve this kind of comparison. 

By releasing an open-source classifiers implementation, a dataset, and the dataset 

creation source code.  
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3. Implementation 

This section covers the implementation details of the “Cyber-Attacks Discovery via 

Analysis of DNS” project including system components, design, architecture, 

frameworks, development workspace, and technologies. 

3.1 Development Workspace 

This section covers the development’s workspace and technologies used in the project 

implementation process. 

3.1.1 Operating System 

The project was developed and tested on an Ubuntu 18.04 OS. Since all the project 

technologies that are mentioned in the next section are cross-platform, it can run on 

other OS such as Windows as well. 

3.1.2 Development Languages and Frameworks 

The project database used for storing the dataset was Postgres SQL. The Database 

management was made with “pgAdmin” – a Python Web UI for Postgres SQL. 

Redis was used for internal application caching and asynchronous messaging queue. 

Redis management was made with “Redis-commander” – a Node Web UI for Redis. 

The programming language used in the project was Python. In the algorithm 

development phase of the project, “Jupyter Notebook” was used. After the algorithms 

were implemented and fine-tuned, I switch to Visual Studio Code for wrapping up the 

project. 

Other than the standard libraries, it’s worth mentioning the usage of the following open 

source packages which saved much work in the implementation process: 

 Numpy - the fundamental package for scientific computing with Python. It 

contains among other things: a powerful N-dimensional array object, useful 

linear algebra, Fourier transform, and random number capabilities. 

 Pandas - flexible, and expressive data structures designed to make working with 

structured and time series data both easy and intuitive. It aims to be the 

fundamental high-level building block for doing practical, real-world data 
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analysis in Python. Additionally, it has the broader goal of becoming the most 

powerful and flexible open-source data analysis/manipulation tool available in 

any language. 

  SQLAlchemy – a Python SQL toolkit and Object Relational Mapper that gives 

application developers the full power and flexibility of SQL. SQLAlchemy provides 

a full suite of well-known enterprise-level persistence patterns, designed for 

efficient and high-performing database access, adapted into a simple and 

Pythonic domain language. 

 Scikit-Learn – a Python package for machine learning built on top of SciPy and 

distributed under the 3-Clause BSD license. Scikit-Learn is compatible to work 

with Numpy and Pandas mentioned above packages. 

 XGBoost – a Python optimized distributed gradient boosting library designed to 

be highly efficient, flexible and portable. It implements machine learning 

algorithms under the Gradient Boosting framework. XGBoost provides a parallel 

tree boosting (also known as GBDT, GBM) that solve many data science 

problems in a fast and accurate way. The same code runs on the major 

distributed environment (Hadoop, SGE, MPI) and can solve problems beyond 

billions of examples. XGBoost is compatible with Scikit-Learn classifier APIs. 

 NetworkX – a Python package for the creation, manipulation, and study of the 

structure, dynamics, and functions of complex networks. The SNA classifier is in 

this work is built on top of this package.  

 Matplotlib – a Python 2D plotting package that produces publication quality 

figures in a variety of hardcopy formats and interactive environments across 

platforms. Matplotlib can be used in Python scripts, the Python and IPython 

shells, the Jupyter notebook, web application servers, and four graphical user 

interface toolkits. 

 Compound-Word-Splitter – a python natural processing language (NLP) package 

that, splits words that are not recognized by dictionary whitelists such as spell 

checkers into the largest possible compounds. 
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 Redis (Python package) – The Python interface to the Redis key-value store. 

 Pyreverse – a set of utilities to reverse engineering Python code. It uses a 

representation of a Python project in a class hierarchy which can be used to 

extract any information such as generating UML diagrams. The class diagram 

shown in figures 2 and 4 were drawn using Pyreverse 

 Pyasn – a Python extension module that enables very fast IP address to 

Autonomous System Number (ASN) lookups. Current state and Historical lookups 

can be done, based on the MRT/RIB BGP archive used as input. 

 Flask – Flask is a lightweight web application framework. It is designed to make 

getting started quick and easy, with the ability to scale up to complex 

applications 

3.1.3 Source Control 

During development, the project was hosted on GitHub as a private repository. After 

completion, it's now open as an opensource project as a public repository. The project 

public repository is https://github.com/eyalsus/domain-classifier. 

3.2 Architecture 

This section covers the architecture description of data collection, training model and 

the system operational phase.  

3.2.1 Data Collection 

Data for this project was gathered from 4 free origins: Cisco Umbrella 1 Million popular 

DNS records and Alexa top 1 Million popular sites were used for benign domain 

collection, OpenPhish and PhishTank were used for malicious domains collection. all the 

mentioned origin publishes a CSV file which updates at least daily. 

Alexa dataset is designed to be an estimate of a website's popularity. As of May 2018, 

Alexa claims the ranking is calculated from a combination of daily visitors and pageviews 

on a website over a 3-month period. 

Cisco Umbrella, formally known as OpenDNS, the dataset is based on the Umbrella 

global network of more than 100 Billion DNS queries per day, across 65 million unique 

https://github.com/eyalsus/domain-classifier
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active users, in more than 165 countries. Although the data source is quite different 

from Alexa’s, it’s arguably considered to be more accurate as it’s not based on only 

HTTP requests from users with browser additions. 

Figure 1 shows the clear difference between the feeds. For example, while Netflix owns 

10 out of the top 15 domains in the Cisco Umbrella ranking the first entry of a Netflix 

domain in Alexa ranking on the same day is at the rank of 22. Another great example are 

Microsoft’s Windows updates domains that have 3 out of the top 15 domains in Cisco 

Umbrella ranking but get much lower ranks on Alexa ranking. 

 

Figure 1 – on the left box are the top 15 rows of Alexa ranking feed and on the right box Cisco Umbrella ranking feed 
on both snapshots were taken on 17-Dec-2019 

OpenPhish and PhiskTank dataset are based on community trusted members who share 

their threat intelligence of phishing websites. It’s interesting to know that PhishTank 

was founded by OpenDNS as a by the community which several years later released the 

Cisco Umbrella feed as well. Unlike benign domain sources, the malicious domain 

sources contain URLs and not domains. Therefore before adding them to the dataset, 

some parsing should be made to extract the domains. Table 1 summarizes the data 

sources' characteristics. 
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                                                                                                                                      Cisco 

Umbrella 

(OpenDNS) 

Alexa OpenPhish PhishTank 

Classifica

tion 

Benign Benign Malicious Malicious 

Update Daily Daily Hourly Hourly 

Records 

Type 

Domain Domain URL URL 

License Free Free Free for partial 

content, paid 

for full feed 

access 

Free, but 

registration 

required 

Source DNS queries Web page views Community Community 

Further 

Context 

Popularity 

rank 

Popularity rank Phishing Target 

available on a 

paid 

subscription 

Phishing Target 

Est. 2016 1996 2014 2006  

Feed URL http://s3-us-west-

1.amazonaws.com/u

mbrella-static/top-

1m.csv.zip 

http://s3.amazonaws.co

m/alexa-static/top-

1m.csv.zip 

 

https://openphish.com

/feed.txt 

 

http://data.phishtank.com/d

ata/online-valid.csv 

 

Table 1 – Summary of the data sources used on this project 

Figure 2 describes the class diagram of the DataSource classes. Notice that there is no 

dedicated class for Cisco Umbrella, that is because Cisco Umbrella feed mimics the 

conventions laid out by Alexa veteran feed as can be seen in figures 1. 

http://s3-us-west-1.amazonaws.com/umbrella-static/top-1m.csv.zip
http://s3-us-west-1.amazonaws.com/umbrella-static/top-1m.csv.zip
http://s3-us-west-1.amazonaws.com/umbrella-static/top-1m.csv.zip
http://s3-us-west-1.amazonaws.com/umbrella-static/top-1m.csv.zip
http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
https://openphish.com/feed.txt
https://openphish.com/feed.txt
http://data.phishtank.com/data/online-valid.csv
http://data.phishtank.com/data/online-valid.csv
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Figure 2 - DataSource class diagram 

3.2.2 Data Enrichment 

The data collected from the sources described in the previous section is enriched with 

DNS “A” record, DNS “NS” record, Autonomous System (AS) data, and parsed for 

processing convenience. DNS “A” record is the IPv4 address of the queried domain, DNS 

“NS” record is the nameserver of the queried domain. AS is the upper hierarchy of the IP 

address. The record after enrichment contains the following fields: 

domain – the input domain 

label – ‘0’ if the domain is benign, ‘1’ if the domain is malicious. 

timestamp – the timestamp if the first time the data collection encountered the domain. 

base_domain – the domain as it appears on the whois registration, for example, 

edition.cnn.com base domain is cnn.com. 

domain_name – the base domain name without the public suffix, for example, 

edition.cnn.com domain name is cnn. 

domain_ip – the current domain’s DNS “A” record, IP address of the input domain. 

as_number – Autonomous System (AS) number of the domain’s IP address. 

as_subnet – the matching subnet of the IP address’s Autonomous System Number 

(ASN). 
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as_name – the official name of the ASN owner of the domain IP address. 

nameserver – the current base domain DNS “NS” record, nameserver of the base 

domain. 

ns_base_domain – the base domain of the nameserver. 

ns_domain_ip – the current domain’s DNS “A” record, IP address of the nameserver. 

ns_as_number – ASN of the nameserver’s IP address. 

ns_as_subnet – the matching subnet of the nameserver’s IP address ASN. 

ns_as_name – the official name of the nameserver’s IP address ASN owner. 

an example of an enriched record is shown in table 2. 

 

Table 2 - The enriched record of edition.cnn.com 

The initial data collection phase flow, described in Figure 3, contained the following 

steps: 

1. Fetch feeds request new data from a concrete data source 

2. The data source fetches a feed from domains/URLs from its concrete vendor 
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3. Fetch feeds publish a message with the domain name to the “New URLs” 

messaging queue  

4. Enrich domain reads messages from the “New URLs” messaging queue. 

5. Enrich domain enriches the domain with DNS, IP, ASN and nameservers data the 

publish the enriched record to “Enriched Domain” queue. 

6. The model manager reads messages from the “Enriched Domain” messaging 

queue.  

7. Model manager commands the database connector to persist the enriched 

records 

8. The database connector manages the interaction with the Database and persists 

the enriched records in the Database. 

 

Figure 3 – Initial data collection flow 

  



17 
 

3.2.3 Training Models 

The collected data is used for training the domain classifier models. Figure 4 describes 

the class diagram of the models training phase. The below classes were developed as a 

part of this project: 

Model – an abstract class which define the Model interface 

AggregatorModel – this class employs the composite pattern. It extends the Model class 

and contains a list of Model objects. 

MLModel – extends Model class. Support all Scikit-Learn classifiers and any other API 

complaint package, e.g. XGBClassifier from XGBoost package. 

MarkovModel – extends Model class. The class is composed of the opensource 

MarkovChain class, and leverage compound-word-splitter NLP package. 

SnaModel – extends Model class. The class is composed of the opensource Graph class 

from the NetworkX package. Graph class was leveraged to implement the SNA classifier. 

MarkovChain – Base on an open-source implementation of Markov Chain, but was 

extended to the purpose of this project. 
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Figure 4 - Model class diagram 

The training phase flow, described in Figure 5, contained the following steps: 

1. Model manager fetches enriched domain records by calling the Database 

connector module 

2. The database connector fetches the records from the Database 

3. The model manager relies on the records to the aggregator model and 

commands it the begin the training. 

4. The aggregator model trains the models it currently contains. 

5. The model is serialized and saved to disk for persistent storage. 
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Figure 5 - Training flow 

3.2.4 Operational Phase 

After a significant amount of data was collected in the flow described in section 3.2.1 

and the models were trained in the flow described in section 3.2.2 the system is now in 

the operational phase. The operational phase integrates both previous flows and 

extends them. On top of the enriched records, the model aggregator feeds the DB with 

the current models’ verdict. This way the model evaluation is constantly being made 

versos the most recent ground-truth dataset. The models’ aggregator is scheduled to 

retrain the models daily. Tables 3 and 4 show a snippet of the dataset, a larger part of 

the dataset is available on appendix A. 

 

Table 3 - a snippet of benign domains taken from the database 

domain label timestamp domain_ip as_number nameserver snamodel train_date

netice.az 0 12/17/19 10:09 AM 104.27.149.152 13335 gina.ns.cloudflare.com 0.331968 12/17/19 10:47 AM

iqtds.com 0 12/17/19 10:09 AM 93.174.95.2 202425 ns1.reg.ru 0.47648 12/17/19 10:47 AM

orissimo.it 0 12/17/19 10:09 AM 104.20.5.243 13335 jule.ns.cloudflare.com 0.255366 12/17/19 10:47 AM

mutisite.com 0 12/17/19 10:09 AM 104.31.72.253 13335 adrian.ns.cloudflare.com 0.311023 12/17/19 10:47 AM

otoy.com 0 12/17/19 10:09 AM 104.20.40.12 13335 bart.ns.cloudflare.com 0.247716 12/17/19 10:47 AM
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Table 4 - a snippet of malicious domains taken from the database 

The complete database table contains more fields than shown in tables 3-4, the table 

definition is shown in figure 6. 

 

Figure 6 - domains table SQL CREATE query 

The operational system phase flow, described in Figure 7, contained the following steps: 

Steps 1-6 are the same as described in the data collection section 3.2.1 and figure 3.  

7. The model manager relies on the records to the aggregator model if the model is 

obsolete it commands it would first start training a new model.  

8. The aggregator model trains the models it currently contains and asks for the 

models’ verdict, or just gets the models’ verdicts if their train date is ok. 

domain label timestamp domain_ip as_number nameserver snamodel train_date

taarefeahlalbaitam.com 1 12/17/19 9:55 AM 160.153.137.163 26496 ns24.domaincontrol.com 0.786192 12/17/19 8:47 AM

www.britishairportcars.co.uk 1 12/17/19 9:55 AM 35.237.67.68 15169 ns2.360expose.com 0.635082 12/17/19 8:47 AM

www.manavvikassanstha.com 1 12/17/19 9:11 AM 69.175.87.74 32475 ns111.webhostingworld.net 0.694392 12/17/19 8:47 AM

silvanoyjairo.webcindario.com 1 12/17/19 9:11 AM 5.57.226.202 29119 ns-cloud-d3.googledomains.com 0.813255 12/17/19 8:47 AM

secure.runescape.com-ms.xyz 1 12/17/19 9:11 AM 23.254.225.128 54290 ns28.domaincontrol.com 0.800725 12/17/19 8:47 AM
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9. The model is serialized and saved to disk for persistent storage. 

10. The model manager commands the database connector to persist the enriched 

records. The enriched records now contain the current classifiers' verdict as well. 

11. The database connector manages the interaction with the Database and persists 

the enriched records in the Database. 

 

Figure 7 - Operational system flow 

3.3 Domain Classifiers 

This section covers the algorithm used in the domain classifier model implementation. 

3.3.1 Social Network Analysis over Domain-IP Relationships 

The SNA classifier was inspired by the paper “a Topology Based Flow Model for 

Computing Domain Reputation” [1]. The paper relies on the Domain-IP relationships 

which were proven to be useful for calculating domain reputation scores by the Notos 

system [2]. However, instead of using a machine learning classifier, it uses an interesting 

approach based on social network analysis (SNA) algorithm, commonly used for 

computing trust in social networks and virtual communities. The goal of the flow 

algorithm is to assign domains with reputation scores given an initial list of domains 

with a known reputation, good or bad. 

3.3.1.1 Train – Graph Construction 

In [1] the flow algorithm training contains four steps, as shown in figure 8: 



22 
 

 Graph construction - Create the topology graph, assign weights and represent as 

an adjacency matrix 

 Vector - Create the initial vector used for propagation 

 Iterative reputation flow - Use the vector and the matrix as input to the flow 

algorithm 

 Final - output final reputation scores 

 

Figure 8 - A topology-based flow model for computing domain reputation [1] architecture 

Unlike the original paper, I found it to be more useful to work on a graph data structure 

than on an adjacency matrix. That is because an adjacency matrix is less intuitive and 

less efficient from a performance point-of-view. Another difference from the original 

paper is the entities I used on the graph. I leverage all the enriched data described in the 

“Data Enrichment” section. Adding the “NS” DNS records and ASN data, while the 

original paper used only “A” records. This results with differences in the meaning of 

edges as is explained next. 

Figure 9 shows the functions involved in the training phase which construct the graph. 

“train” is the model interface function. For every record in the given input dataset, it 

calls “_append_row_to_graph” which append a single enriched domain record to the 

graph.  Notice that the record contains the ground truth label as well. Other than the 

label domain, 0 for benign and 1 for malicious, all the of the other nodes get the initial 
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value of 0.5. Lines 7-15 are adding the nodes to the graph, lines 17-25 are adding the 

edges between the nodes that were previously added. This means that edges represent 

different types of connections, not only domain-IP connections such as IP-AS domain-

Subnet, AS name-AS number and more as listed in Figure 9. INITIAIL_VALUE is the 

default value for the non-labeled nodes. In the experiments described in section 4, the 

INITIAIL_VALUE was set to 0.5. 

 

Figure 9 - Append enriched domain record to the graph function 

Figure 10 shows the visualization of a trained graph. When we add the unlabeled 

enriched node “edition.cnn.com”, additional nodes and edges are created: green nodes 

are labeled as benign, red are labeled as malicious and brown nodes are unlabeled. As 

expected most of the neighbors of “edition.cnn.com” are benign or unlabeled. The only 

red node in the graph is a subdomain of a freemium hosting service. Freemium hosting 
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is a service that offers free basic web services deployment and a paid fully-suite 

package. In this case, codeanywhere.com is a freemium service that was abused for 

malicious purposes. 

 

Figure 10 - Ego graph with radius 3 of edition.cnn.com 

3.3.1.2 Predict – Graph Iterations 

Figure 10 shows the functions involved in the predict phase. “predict” is the model 

interface function. In line 2 It creates a copy of the previously constructed graph. In Line 

3 it appends the given records (X) to the graph copy. Line 4 class calls “_stable_graph” 

that is defined in figure 10 as well. “_stable_graph” is the phase where the reputation of 

each node cascades to its neighbors. On the worse case, each iteration may cause 

O(|G.nodes|) updates on the graph. That is why its wise to limit the amount of the 
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iterations. My analysis shows that 5 iterations are enough, [1] reached a similar 

conclusion on their implementation. In each iteration every node score is set to be the 

average between its current score and the average score of its neighbors, see the 

“_update_node” function in figure 11. 

 

 

Figure 11 - SNA model prediction process 

3.3.2 Machine Learning Blacklisting at Time-of-Registration 

WHOIS record is the data describing the registration of the domain such as registration 

date, last modified date, expiration date, registrant contact information, registrar 

contact information and nameserver domains.  Once the domain has been registered, 

the relevant registry is the owner of the WHOIS database record. WHOIS-based 

reputation approach advantage is that it could be the first line of defense in detecting 

new malicious domains and that it enables following threat actors reusing domain 

registration information. Its drawback is that WHOIS information is often anonymized or 

only partly available as each registry information is not standard for WHOIS record 
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completeness. In this section, I describe an implementation based on the domain 

reputation System called PREDATOR, described in the paper “Proactive Recognition and 

Elimination of Domain Abuse at Time-Of-Registration” [3]. 

PREDATOR is a system aimed to achieve early detection of malicious domains by using 

only WHOIS records as input. The paper contains a description of the feature 

engineering process resulting in 22 features types. The features can help distinguish 

abusive domain registration behavior characteristics from legitimate registration 

behavior characteristics. These features are fed into a state-of-the-art supervised 

learning algorithm. 

3.3.2.1 Train – Nameserver Features 

PREDATOR system architecture shown in figure 12 is very similar to the one used in this 

project which includes a training mode and an operation mode.    

 

Figure 12 - A high-level overview of PREDATOR [3] architecture 

Table 5 shows the 22 types of features used by PREDATOR. These features are divided 

into three groups: domain profile features, registration history features, and batch 

correlation features. Unfortunately, the data on registration history features and batch 

correlation features is not publicly available. Therefore, this project focus on domain 

profile features only. 
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Table 5: Summary of PREDATOR [3] features, each feature is categorical, continuous or ordinal. 

Table 6 shows the PREDATOR feature importance. From the table, we can see that the 

focus on domain profile features is reasonable since the top 6 features out of the 22 and 

the top 7 out of the top 8 are domain profile features. The features I selected to 

implement in the project are: 

 Authoritative nameservers (ranked #1), to increase the detection rate the base 

domain of the nameserver was used the feature. 

 IP addresses of nameservers (ranked #3) 

 ASes of nameserver IP addresses (ranked #5) 

The project doesn’t contain the following features that were presented in PREDATOR: 

 Trigrams in the domain name (ranked #2) cause a massive increase in the 

number of features and led the classifier to be slow, heavy and tend for 

overfitting. 
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 Registrar (ranked #4), this feature can be extracted only from a premium paid 

feed. which conflicts with one of the project’s secondary goals to the classifiers 

to be based on free and open repositories only. 

 Daily hour of registration & Weekday of registration (ranked #6 and #8) 

This data simply not publicly available in any form. 

 

Table 6 - Ranking of feature importance in PREDATOR [3] (D for domain profile category, R for registration history 
category, and B for batch correlation category). 
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The selected features are categorial, therefore they are translated into binary features 

since binary features are more common for training Machine Learning models.  Table 7 

shows an example of categorical features the model decodes into binary features. 

 

Table 7 - Records from the dataset for building an example model for PayPal phishing detection 

For the 18 records shown in table 7, there is a limit of 18 * 3 = 54 decode features. Table 

8 continues the example in table 7. It shows the decoding result which ended with 11 

ns_base_domain feature, 14 ns_as_subnet features, and 13 ns_as_name features. Total 

of 38 features. The greater the dataset, the lower is the ratio between the maximal 

amount of decoded features and the resulted amount. That is due to the repeatedness 

of the features. 

 

Table 8 - Decoded features for the records of table 7. 

For the phishing domain paypalaccounttologinaccountsummarmay.com the feature 

vector would be “ns_base_domain_ ispvds.com”, “ns_as_subnet_94.250.248.0/23”, and 

“ns_as_name_THEFIRST-AS, RU” set to 1. The other features would be set to 0. 
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3.3.2.2 Predict – Scikit-Learn Complaint 

The MLModel class is compatible with the Scikit-Learn interface. In the project 

experiments section, I’ll elaborate on the tested models and the results. 

3.3.3 Predictive Blacklisting 

Predictive blacklisting approach leverage existing knowledge of malicious domains to 

predict malicious domain names that are likely to be used for malicious purposes. The 

approach advantage that it could be the first line of defense in detecting new malicious 

domains. It is based on the empirical fact that threat actors reusing domain name 

template strings with minor edits. Its drawbacks are that is counts on threat actors’ lack 

of imagination in picking phishing domain names and that most of its output is 

redundant since most of the domains it generates are never in use. The paper Proactive 

discovery of phishing related domain names [4] describes such a system. The paper 

describes a system that generates a blacklist of domains by using a Markov chain model 

and relevant lexical features extracted from a semantic splitter. Domain-specific 

knowledge added from semantic tools. 

3.3.3.1 Train – Markov Chain 

The proactive malicious domain name discovery training contains six steps, as shown in 

figure 13: 

1. Information gathering – collect top-level domain (TLD) from the public suffix list 

and malicious domains as input for the proactive model 

2. Name decomposition – break down the main domain name and TLD 

3. Word splitter – break down main domain name into words 

4. Model – run the statistical analysis and predict potential malicious domains list 

5. Domain checker – filter benign domains before adding to a blacklist 

6. Blacklist – publish a blacklist of potential malicious domains 
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Figure 13: Proactive Malicious Domain Name Discovery System [4] architecture 

In this project, the name decomposition was done with Compound-Word-Splitter 

python package. After the name decomposition phase words statistics are gathered. 

Figure 14 shows an example of words statistics gathering for the word “free” and the 

word “pay”. In the case of the word “free”, the next transition in the Markov chain 

would be any one of the words in the “transitions” counter. Since all the following 

words have the same amount of apparencies following the word “free”, they would get 

the same probability for the next phase: 1/11 = 0.090909. In the case of the word “pay,” 

the next transition in the Markov chain would be any one of the words in the 

“transitions” counter. Since all the following words but the word “problems” have the 

same amount of apparencies following the word “free”, they would get the same 

probability for the next phase: 1/13 = 0.076923 and the word “problems” which 

appeared twice, it’s probability would be 2/13 = 0.153846. 
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Figure 14 – on the left word statistics of the word “free”, and on the right word statistics for the word “pay” 

The decision to end the domain name, i.e. not to continue with another transition, is 

made using the “sentence_length” field in the “word statistics” data structure as shown 

in figure 14, lines 9-14 left and lines 8-13 right. The stop criteria is based on the 

sentence words length statistics of the last word in the generated domain name. The 

stop criteria is shown in line 12 in figure 15. 
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Figure 15 - Markov model domain names generator 

Figure 16 shows the algorithm that creates the blacklist of predicted malicious domain 

names. For every word in the “word statistics” data structure described in figure 13, the 

algorithm generates up to 100 predicted malicious domain names. If the algorithm spots 

that the generated domains repeat more than 10 times, it continues to the next word. 

 

Figure 16 - Creating a blacklist of predicted malicious domains 

3.3.3.2 Predict   

The predict function is trivial, it just checks if the domain name appears in the predicted 

domain name set that was created using the algorithm shown in figure 16. 
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4. Experiment 

This section covers the process of the experiments: data cleaning, threshold selection, 

and classifier result evaluation. 

4.1 Data Cleaning 

In the early stages of the experiment, an anomaly popped up. Many phishing domains 

were hosted as a subdomain of popular hosting websites such as 000webhostapp.com, 

azurewebsites.net, duckdns.org, no-ip.com, no-ip.org, wixsite.com. The mentioned 

domains offer a freemium hosting service. Threat actor takes advantage of these 

freemium services for their malicious purpose. In order to avoid causing confusion to 

the classifiers, malicious domains hosted on the mentioned hosting providers were 

removed from the train and test set. It reduced 32% of the dataset. That is not a great 

loss since these domains could not be analyzed by the classifier developed in this project 

anyway since the top domain is always benign. 

In the middle of the experiments, I notice a shark increase in the detection rate of the 

ML models and a decline in the SNA model. The reason for that was many domain 

records had not IP, nameserver, and ASN data. It was caused due to a networking failure 

that I didn’t handle properly. I fix the code and removed the empty domain record from 

the dataset. 
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4.2 Data Separation 

To decide which threshold every classifier should have I’ve visualized all the classifiers’ 

verdicts into the charts seen in figure 17. 

 

Figure 17 - Classification data separation charts. Blue represents benign sample probabilities, and red are malicious 
sample probabilities. 

The classifiers' threshold selection is an important part of the experiment. The optimal 

threshold is the one that conducts a perfect separation between the classes. In our case 

the separation between benign and malicious domains. Since in real life the optimal 

threshold is not perfect, we’ll select a threshold that maximizes true positives and at 

cost of minimal false positives. In figure 17 we can see the places the red line is high 

then the blue line. For the Markov model, the threshold is a Boolean threshold, but 

unfortunately in the experiment, it had more false positives in any threshold. The 

selected thresholds are listed in table 9.  
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Table 9 - The selected threshold for the classifiers 

4.3 Evaluation 

After the classifiers' decision threshold was set its possible to translate the classifiers’ 

probabilities results into verdicts. The evaluation was made on data collected between 

17-Dec-2019 and 23-Dec-2019. In that time period, 20,640 labeled domain samples 

were collected. 18,148 labeled as benign and 2,222 labeled as malicious. Table 10 shows 

a clear advantage of the SNA classifier which produces a detection rate of 83.89% at the 

price of 1.09% false positive rate.  

 

Table 10 - Confusion matrixes of the classifiers’ evolution 

The ROC curve shown in figure 18, confirms the SNA model out-perform the other 

classifier on any given threshold. You can see its line always above the Logistic 

Regression and XGBoost classifier. It’s also interesting to see that the simplistic Logistic 

Model Threshold

SNA 0.67

XGBoost 0.93

Logistic Regression 0.95

Markov 1
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Regression algorithm out-perform the state-of-the-art machine learning algorithm 

XGBoost. 

 

Figure 18 - ROC Curve using the threshold shown in table 9  

The PREDATOR [3] system baseline its evaluation of on a given FPR of 0.35%. For the 

results to be comparable with each other, I did the same. PREDATOR results are shown 

in Table 11,  the project results are shown in Table 12. The results show that the SNA 

model reaches a similar detection rate to PREDATOR. That is without optimization 

tuning of the training and testing window size as done in PREDATOR paper. In the 

experiment the SNA model was rebuilt every 2 hours, that is possible since the graph 

construction takes less than a minute. PREDATOR paper doesn’t specify how much time 

it takes to train the model, but I guess it’s much more than a minute. 
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Table 11 - PREDATOR [3] detection rates under a 0.35% false positive rate 

 

Table 12 - Classifier detection rate under a 0.35% false positive rate 

Figure 19 shows the ROC curve of PREDATOR. When comparing to the ROC of the SNA 

model shown in figure 18, it's clearly shown that the SNA ROC curve compensates better 

for a more tolerance FPR. For example, when considering an FPR of 1% the SNA model 

obtains 82.81% TPR, when according to figure 19 PREDATOR obtains less than 80%. 

 

Figure 19 - ROC of PREDATOR [3] The inlay figure shows the ROC curve under the range of 0–5% false positives 

Model TPR

SNA 60.71%

XGBoost 5.40%

Logistic Regression 7.56%

Markov 0.00%
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5. Project Configurations and Operation 

This section explains how to configure the project environment, data sources, 

technologies and how to operate the project. 

5.1 Setup 

This section explains the project preliminary requirements before running it. 

5.1.1 Software Components 

The project requires Python 3.6 or newer to install it download go to 

https://www.python.org/downloads/ 

Once Python is installed on the machine, you’ll need to install the external Python 

package that is in use in this project. To install the packages all you need is to run the 

following command on the project directory shell: pip install -r requirements.txt 

The project's persistent storage is PostgreSQL, however, it can be easily ported to 

another database technology. To install PostgreSQL download it from 

https://www.postgresql.org/download/ and following the installation instruction. 

The project global cache and messaging queue mechanized is Redis. To install Redis 

download it from https://redis.io/download and following the installation instruction. 

5.1.2 Data Source Configurations 

As mentioned in the data collection section, to harvest malicious URLs from PhishTank 

you’ll need an API key. You can get it for free on the following registration URL: 

https://www.phishtank.com/register.php. The API Key should be stored in the operating 

system environment variable PHISHTANK_APIKEY. 

The ASN enrichment is done with the pyasn python package. It requires downloading 

the freely available MRT/RIB BGP archives. The download and installation process is 

explained on the pyasn GitHub page: https://github.com/hadiasghari/pyasn. The ASN 

database file path should be stored on the operating system environment variable 

ASN_DB_PATH. The ASN database is changing on a daily basis, thanks to pyasn it's easy 

to update it. 

https://www.python.org/downloads/
https://www.postgresql.org/download/
https://redis.io/download
https://www.phishtank.com/register.php
https://github.com/hadiasghari/pyasn
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5.1.3 Logging 

Logging in the project is made with the Python built-in logging package. The desired log 

directory location should be stored on the operating system environment variable 

LOG_DIR_PATH. 

5.2 Running the Backend 

The project has three Python files with the main function: fetch-feeds.py, 

enrich_domain.py, and model_managaer.py. 

fetch-feeds.py is the python script that fetches the domain and URL feed from the data 

sources mentioned in the data collection section (3.2.1). After fetching the feed, it 

transmits the domains to the new URLs channel. In figure 20 you can see its manual. 

 

Figure 20 - fetch-domains.py manual 

 

enrich_domain.py is the python script that listens to new URLs channel and enriches the 

domains which IP, nameserver and ASN data. In figure 21 you can see its manual. 
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Figure 21 - fetch-domains.py manual 

model_manager.py is a python script that listens to enriched domains channel. It runs 

the classifiers on the enriched dataset and commits the domain record with the 

classifier results to the database. In figure 22 you can see the script manual. 

 

Figure 22 - model_manager.py manual 
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5.3 Running the Frontend  

The project frontend is written in Python as well. The backend of the frontend is on the 

file app.py and its frontend is on templates directory. figure 23 shows app.py manual. 

 

Figure 23 - app.py manual 

5.4 Frontend Operation 

This section explains how to operate the frontend web user interface.  

5.4.1 Domain Reputation 

The default screen is “Domain Reputation”. In this web page, a user can input a URL 

address and the URL’s domain reputation score would be calculated. Figure 24 shows 

the screen. 

 

 

Figure 24 - "Domain Reputation" screenshot, input box filled with the URL https://web.whatsapp.com/. 

https://web.whatsapp.com/


43 
 

Figure 25 shows the upper screen output for the URL https://web.whatsapp.com/. the 

output includes 3 sections: input URL and extracted domain, the results of the raw 

classifier, and the features extracted.

 

Figure 25 - Domain reputation result for the URL https://web.whatsapp.com/ 

Figure 26 shows the bottom part of the screen, it presents an explanation of the SNA 

classifier verdict. It colors green for benign domains, brown for unknown and red for 

malicious domains. The edges between the nodes are constructed by the algorithm 

described in figure 9 from the SNA domain classifier train section (3.3.1.1). 

 

Figure 26 - SNA Ego graph with radius 2 for the domain web.whatsapp.com  

https://web.whatsapp.com/
https://web.whatsapp.com/
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5.4.2 Explore Dataset  

“Explore Dataset” allows the user to browse the operational database. Each page shows 

50 records, sorted by database insertion date on descending order. Figure 27 shows an 

output example. 

 

Figure 27 – “Explore Dataset” screenshot 

5.4.3 Data Schema 

“Data Schema” page allows the user to see the current database schema. Figure 28 

shows a screenshot.  

 

Figure 28 – “Data Schema” screenshot 
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5.4.4 Train Model 

The “Train Model” page allows the user to train a model on the dataset with a custom 

amount of benign and malicious samples. Figure 29 shows an example with possible 

input and figure 30 shows the expected output for the same input. 

 

 

Figure 29 – “Train Model” screenshot 

 

 

Figure 30 - example output of "Train Model" 
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6. Summary and Conclusions 

“Average uptime of phishing attacks is around 2 days and the median uptime is only 12 

hours. Due to this very short lifetime, reactive blacklisting is too slow to effectively 

protect users from phishing” [4]. This quote condenses the importance of this work. The 

phishing use-case is extraordinary from that perspective that it lives for a very short 

time. Therefore, a proactive approach is a clear requirement for detected threats. 

The experiments described in section 4 demonstrate it's not practical to guess the 

domain names to be registered. A more realistic approach would be the consistently 

learn the internet domains’ neighborhood e.g. IP, network, ASN, nameservers, etc. while 

doing so, constantly calculating each node's reputation. The SNA approach was proven 

to be very successful reaching a detection rate of 83.89% under a 1.09% false positive 

rate and 60.71% under a 0.35% false positive rate. 

In spite of the fact, it reached a lower detection rate then PREDATOR [3] 70% detection 

rate given the same FPR it’s a big achievement. That is because of PREDATOR leverage 

propriety dataset which is very expensive and takes a great deal of resources the 

manage. When all the classifiers developed in this project all rely only on open source 

data sources, and all the setup and software components described in section 5 ran on 

my consumer laptop. Unlike the SNA model, PREDATOR had many optimizations on the 

training window as shown in Table 8, where the true positive vary in the range of 58%-

70%. Very close to the results of this project. Moreover, the SNA model obtains even 

better results than PREDATOR when considering high acceptable FPR. 

a ground for future work can be to optimize the project models or create a meta-

classifier that would combine the machine learning classifiers with the SNA classifier. I 

assume that any of the two would push the result higher than 70%. 
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Appendix A – Example of Benign Domains Classification Result 

 

 

Table 13 - Example of the benign domains classification result 

  

domain label markovmodel snamodel mlmodel_xgbclassifier mlmodel_logisticregression
datastax.com 0 0 0.226520838 0.316150874 0.152330989

omgt3.com 0 0 0.189093661 0.169931561 0.047668929

cs-gateway.cloudapp.net 0 0 0.322173269 0.563195884 0.684618425

gradientt.net 0 0 0.463472091 0.550923884 0.670320183

ipv4-c027-was001-ix.1.oca.nflxvideo.net 0 0 0.21272263 0.232552424 0.049469577

ipv4-c027-vie001-ix.1.oca.nflxvideo.net 0 0 0.21272263 0.232552424 0.049469577

api.pushe.co 0 0 0.281074716 0.2509543 0.21622384

staging.eab.com 0 0 0.197167281 0.169931561 0.064750098

vd89.mycdn.me 0 0 0.306614434 0.550923884 0.476344038

api.appmetadata.sonymobile.com 0 0 0.216388157 0.169931561 0.088441005

jtvnw.net.cdn.cloudflare.net 0 0 0.411164173 0.550923884 0.459039409

l-agent.me 0 0 0.23688687 0.169931561 0.111537037

voranda-com.videoplayerhub.com 0 0 0.404994776 0.686842501 0.728991617

fagc2-1.fna.fbcdn.net 0 0 0.415023677 0.550923884 0.634409399

cbg-app.huawei.com 0 0 0.418792725 0.550923884 0.634409399

games.geo.hosted.espn.com 0 0 0.175047154 0.169931561 0.055194319

a.smrpm.com 0 0 0.209472007 0.149449095 0.078687902

vm.mycdn.me 0 0 0.294466595 0.550923884 0.476344038

mi.walgreens.com 0 0 0.280749755 0.550923884 0.634409399

click.online.costco.com 0 0 0.27286589 0.550923884 0.415952511

ncp-gw-sports.media.yahoo.com 0 0 0.32728766 0.550923884 0.343913431

s-usc1c-nss-271.firebaseio.com 0 0 0.475002479 0.771687508 0.811051469

b-cc-usea2-01-skype.cloudapp.net 0 0 0.401720014 0.563195884 0.632344189

moog-r.cybereason.net 0 0 0.18984955 0.169931561 0.051635809

keepersecurity.eu 0 0 0.173302626 0.169931561 0.057422657

link.btsvcemail.web.plus.espn.com 0 0 0.240467698 0.169931561 0.076755594

4a7b.srvng.xyz 0 0 0.314793999 0.550923884 0.354402003

s.potu.xyz 0 0 0.276672872 0.252700031 0.222190731

bs.iotleg.com 0 0 0.39703371 0.550923884 0.454590448

watsonfantasyfootball.espn.com 0 0 0.33173583 0.169931561 0.406751832

ksn.kaspersky-labs.com 0 0 0.322465091 0.550923884 0.131008276

twitter.test-app.link 0 0 0.136624822 0.169931561 0.071314612

firebat-25-aftmm-80612.na.api.amazonvideo.com 0 0 0.163135335 0.169931561 0.054666001

instagram.fada2-1.fna.fbcdn.net 0 0 0.238939728 0.550923884 0.634409399

ios-dradis.prod.ftl.netflix.com 0 0 0.205720331 0.169931561 0.072832645

worldlifestyle.com 0 0 0.179128595 0.169931561 0.067055462

distoryrussion.info 0 0 0.360868693 0.169931561 0.467892617

failover.zingmp3.vn 0 0 0.305419921 0.550923884 0.634409399

dcs-live.apis.anvato.net 0 0 0.474100612 0.771687508 0.813777926

6xq.com 0 0 0.269454461 0.550923884 0.179828246

ssp20.pushprofit.net 0 0 0.444729318 0.550923884 0.644571404

fortnite-vod.akamaized.net 0 0 0.189559638 0.149449095 0.048604802

theplayerstribune.com 0 0 0.44605861 0.771687508 0.811051469

firebat-22-aftt-80612.na.api.amazonvideo.com 0 0 0.17087245 0.169931561 0.054666001

hellosubscription.com 0 0 0.227703619 0.252700031 0.222190731

tuttoabruzzo.it 0 0 0.256244965 0.252700031 0.222190731

thezeezstore.com 0 0 0 0.550923884 0.634409399

rollingstone.it 0 0 0.216495485 0.169931561 0.102422666

ostetrichebrescia.it 0 0 0.300974774 0.550923884 0.603844674

mcdiscount.it 0 0 0.180040542 0.169931561 0.074450285

ixnayproductions.it 0 0 0.525489227 0.550923884 0.719478509

group-training-online.com 0 0 0.403898387 0.550923884 0.397083532

golfdom.com 0 0 0.445113739 0.686842501 0.754540184

god-games.com 0 0 0.151028405 0.550923884 0.634409399

festivalvillevesuviane.it 0 0 0.276672872 0.252700031 0.222190731

cpialegnano.edu.it 0 0 0.558343563 0.550923884 0.719478509

bartoccini.it 0 0 0.320357722 0.550923884 0.597082597

avvenire.it 0 0 0.283390057 0.550923884 0.634409399

autodirect24.com 0 0 0.151028405 0.550923884 0.634409399
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Appendix B – Example of Malicious Domains Classification Result 

 

 

Table 14 - Example of the malicious domains classification result 

 

domain label markovmodel snamodel mlmodel_xgbclassifier mlmodel_logisticregression

sucursalpersonas.webcindario.com 1 0 0.796174347 0.767927349 0.839229963

inovini.com.br 1 0 0.467555451 0.231854886 0.043818797

www.safetyrd.xyz 1 0 0.77215759 0.551020205 0.808002645

bcpzonasegurabeta-viazbcp.com 1 0 0.778606534 0.551020205 0.873353206

a0375741.xsph.ru 1 0 0.852613547 0.627774358 0.969546869

ofertanatalina.store 1 0 1 0.551020205 0.634721932

salonesfloridautamau.com 1 0 0.76400821 0.659377694 0.949861811

suppottserverteem.me 1 0 0.778583459 0.546465456 0.530266455

testsite.rebellegion.com 1 0 0.865211624 0.659377694 0.9712616

newmodelschool.org 1 0 0.823689977 0.659377694 0.797259055

treestorian.com 1 0 0.812772986 0.659377694 0.969237394

allegro.media 1 0 0.734999 0.659377694 0.730388271

www.bahianita.com 1 0 0.77275519 0.747400105 0.8972025

itokenitau.app 1 0 0.746970047 0.659377694 0.927180626

lakossagi.belepes.hu.skyorbittrading.com 1 0 0.875097843 0.835533679 0.986925721

www.cervezasorigen.com 1 0 0.819356295 0.659377694 0.943309722

zoyarentalmedan.com 1 0 0.824559586 0.659377694 0.913062758

multilinks.nuirtefrede.cf 1 0 0.727393534 0.747400105 0.938667243

com-bmnfkppxaa.kofc3035.org 1 0 0.809575422 0.659377694 0.797259055

www.biesseacquari.com 1 0 0.734852564 0.659377694 0.973747056

khabare2020.3dfine.com 1 0 0.693979597 0.659377694 0.934570398

instituto2005.org 1 0 0.715733205 0.659377694 0.836323606

musicaparadormir.com.br 1 0 0.835225028 0.931306899 0.992262058

golfcartbatteries.us 1 0 0.857410764 0.931306899 0.990207552

taxi-ubk.ru 1 0 0.805560159 0.659377694 0.928988732

www.ppl-vell.cf 1 0 0.843323766 0.645707488 0.921666627

updateappleidaccount.bykvijwrk.com 1 0 0.78289885 0.772657335 0.839408296

www.handirestaurant.com 1 0 0.781488571 0.931306899 0.989753181

lnstagrambusinesssupport.com 1 0 1 0.659377694 0.797259055

remmancuaphuonganh.com 1 0 0.773146062 0.659377694 0.89781287

bnpparibas-mabanque.rockdelinj.com 1 0 0.784542077 0.659377694 0.963511607

mail.whistlers4hire.com 1 0 0.868753865 0.931306899 0.995028705

www.aburs.ir 1 0 0.702447716 0.659377694 0.797259055

netflipagaments.jdevcloud.com 1 0 0.880460997 0.659377694 0.972724647

fishingnewengland.com 1 0 0.756281993 0.761465013 0.884034019

emed-depot.com 1 0 0.846803284 0.659377694 0.931799398

instagram-helpconfirm.com 1 0 0.713726136 0.773697495 0.979131129

www.worldfoodinter.com 1 0 0.749305534 0.659377694 0.887738544

built4integrity.com 1 0 0.778649699 0.761465013 0.82446988

p3plvcpnl318847.prod.phx3.secureserver.net 1 0 0.45888942 0.068464793 0.052148412

hotelcafewoud.nl 1 0 0.691529884 0.659377694 0.797259055

sherakatmarket.ir 1 0 0.721791128 0.659377694 0.80804959

vote-brexit-2020.000webhostapp.com 1 0 0.782118224 0.748818517 0.969490774

411admin.co.za 1 0 0.820172375 0.659377694 0.918700319

ebay-url.com 1 0 0.802228824 0.761465013 0.910422798

winningruby.xyz 1 0 0.78911332 0.659377694 0.961590002

kb-healthcare.com 1 0 0.885574899 0.835533679 0.986925721

castromonitoramento.com.br 1 0 0.782211813 0.931306899 0.990492108

proudcall.xyz 1 0 0.85564481 0.835533679 0.986925721

www.takilafa.com.br 1 0 0.718666955 0.659377694 0.839433614

hiersungoodresearchchemicals.com 1 0 0.795987122 0.659377694 0.934356295

unsidiomas.com.br 1 0 0.387215944 0.659377694 0.876065757

www.royalvenetian.ca 1 0 0.820633723 0.659377694 0.961765926

ecogarden.by 1 0 0.806796433 0.659377694 0.839812414

myy-proim11.com 1 0 0.85294465 0.659377694 0.960827071

mobi.facebook.com-m-ovimgntrwy.lesbiangirlssex.com1 0 0.709968438 0.761465013 0.92294318

printernovin.com 1 0 0.702817494 0.659377694 0.92870676

endowmentoracle.co.kr 1 0 0.755798052 0.761465013 0.823123373

hagi-pl.com 1 0 0.784130246 0.659377694 0.898211511


