
The Open University of Israel

Department of Mathematics and Computer Science

Cyber-Attacks Discovery via Analysis of DNS

Project report submitted as partial fulfillment of the requirements

Towards M.Sc. degree in Computer Science

The Open University of Israel

Computer Science Division

By

Eyal Paz

Prepared under the supervision of Prof. Ehud Gudes

January 2020

2

Table of Content

Table of Content ... 2

List of Figures .. 4

List of Tables ... 5

Abstract ... 6

1. Introduction .. 7

2. Project Description.. 8

2.1 Project Goals ... 8

2.2 Project Importance ... 8

3. Implementation .. 9

3.1 Development Workspace.. 9

3.1.1 Operating System ... 9

3.1.2 Development Languages and Frameworks .. 9

3.1.3 Source Control ... 11

3.2 Architecture .. 11

3.2.1 Data Collection ... 11

3.2.2 Data Enrichment .. 14

3.2.3 Training Models ... 17

3.2.4 Operational Phase .. 19

3.3 Domain Classifiers ... 21

3.3.1 Social Network Analysis over Domain-IP Relationships 21

3.3.2 Machine Learning Blacklisting at Time-of-Registration 25

3.3.3 Predictive Blacklisting .. 30

4. Experiment .. 34

3

4.1 Data Cleaning .. 34

4.2 Data Separation .. 35

4.3 Evaluation ... 36

5. Project Configurations and Operation .. 39

5.1 Setup ... 39

5.1.1 Software Components ... 39

5.1.2 Data Source Configurations ... 39

5.1.3 Logging ... 40

5.2 Running the Backend .. 40

5.3 Running the Frontend ... 42

5.4 Frontend Operation .. 42

5.4.1 Domain Reputation .. 42

5.4.2 Explore Dataset .. 44

5.4.3 Data Schema .. 44

5.4.4 Train Model .. 45

6. Summary and Conclusions .. 46

References .. 47

Appendix A – Example of Benign Domains Classification Result 48

Appendix B – Example of Malicious Domains Classification Result 49

4

List of Figures

Figure 1 – on the left box are the top 15 rows of Alexa ranking feed and on the right box

Cisco Umbrella ranking feed on both snapshots were taken on 17-Dec-2019 12

Figure 2 - DataSource class diagram ... 14

Figure 3 – Initial data collection flow .. 16

Figure 4 - Model class diagram ... 18

Figure 5 - Training flow ... 19

Figure 6 - domains table SQL CREATE query ... 20

Figure 7 - Operational system flow ... 21

Figure 8 - A topology-based flow model for computing domain reputation [1]

architecture ... 22

Figure 9 - Append enriched domain record to the graph function 23

Figure 10 - Ego graph with radius 3 of edition.cnn.com ... 24

Figure 11 - SNA model prediction process .. 25

Figure 12 - A high-level overview of PREDATOR [3] architecture..................................... 26

Figure 13: Proactive Malicious Domain Name Discovery System [4] architecture 31

Figure 14 – on the left word statistics of the word “free”, and on the right word statistics

for the word “pay” .. 32

Figure 15 - Markov model domain names generator ... 33

Figure 16 - Creating a blacklist of predicted malicious domains 33

Figure 17 - Classification data separation charts. Blue represents benign sample

probabilities, and red are malicious sample probabilities. ... 35

Figure 18 - ROC Curve using the threshold shown in table 9 ... 37

Figure 19 - ROC of PREDATOR [3] The inlay figure shows the ROC curve under the range

of 0–5% false positives .. 38

Figure 20 - fetch-domains.py manual ... 40

Figure 21 - fetch-domains.py manual ... 41

Figure 22 - model_manager.py manual .. 41

Figure 23 - app.py manual .. 42

5

Figure 24 - "Domain Reputation" screenshot, input box filled with the URL

https://web.whatsapp.com/... 42

Figure 25 - Domain reputation result for the URL https://web.whatsapp.com/ 43

Figure 26 - SNA Ego graph with radius 2 for the domain web.whatsapp.com 43

Figure 27 – “Explore Dataset” screenshot .. 44

Figure 28 – “Data Schema” screenshot .. 44

Figure 29 – “Train Model” screenshot .. 45

Figure 30 - example output of "Train Model" .. 45

List of Tables

Table 1 – Summary of the data sources used on this project .. 13

Table 2 - The enriched record of edition.cnn.com ... 15

Table 3 - a snippet of benign domains taken from the database 19

Table 4 - a snippet of malicious domains taken from the database 20

Table 5: Summary of PREDATOR [3] features, each feature is categorical, continuous or

ordinal. .. 27

Table 6 - Ranking of feature importance in PREDATOR [3] (D for domain profile category,

R for registration history category, and B for batch correlation category). 28

Table 7 - Records from the dataset for building an example model for PayPal phishing

detection ... 29

Table 8 - Decoded features for the records of table 7. .. 29

Table 9 - The selected threshold for the classifiers .. 36

Table 10 - Confusion matrixes of the classifiers’ evolution .. 36

Table 11 - PREDATOR [3] detection rates under a 0.35% false positive rate 38

Table 12 - Classifier detection rate under a 0.35% false positive rate 38

Table 13 - Example of the benign domains classification result 48

Table 14 - Example of the malicious domains classification result 49

6

Abstract

The Domain Name System (DNS) is an essential component of the internet

infrastructure that translates domain names into IP addresses. Threat actors abuse that

system by registering and taking over of thousands of Internet domains every day to

launch cyber-attacks, such as spam, phishing, botnets, and drive-by downloads. The

main solution to counteract this threat is currently reactive blacklisting. Since cyber-

attacks are mainly performed over short periods of time, reactive methods are too slow

and ineffective. As a result, new approaches to early identification of malicious websites

are needed. In the last ten years, many novel papers were published offering a system

that calculates domain reputation for suspected domains that are not listed in a

common black-list list. This project implements three different approaches and

evaluates their effectiveness in detecting malicious domains. The approach that

outperforms the others in the project’s experiments was social network analysis, it

achieved a 60.71% detection rate with a false positive rate of 0.35%.

7

1. Introduction

In current days, information security is an important aspect of any organization's

business. Finding a cyber-attack in an enterprise network is often analogous to finding

the needle in the haystack. Analysis of DNS traffic can be helpful to that end. Providing

high quality, cheap and fast attack detection technique.

Information security usually comes with three price tags, network performance impact,

privacy violation, and false positive alerts. Network performance impact cause due to

deep traffic inspection, privacy violation due to the need to decrypt private encrypted

traffic for inspection, and false positive alerts due to the variance of each network.

Attack discovery by analysis of DNS traffic, reduce the price tag of all three aspects. The

reason for that is because DNS is a very simple plaintext protocol containing short

messages, usually over UDP protocol. Therefore, its analysis is much simpler and faster,

however, its true positive detection would always be a subset of the detection that can

be made by full packet inspection.

This project covers three major techniques of discovering cyber-attacks via analysis of

DNS: passive DNS analysis, domain registration WHOIS record analysis, and predictive

domain names blacklisting. To cover as much ground, each paper selected on this

project has taken not only a different data type input but also a different solution

approach as well: social network analysis, machine learning, and Markov chain model.

The project provides a working system for detecting spam and phishing domains based

on novel academic research.

8

2. Project Description

This section elaborates on the project goals and Importance.

2.1 Project Goals

The project's main goal is to implement three techniques of cyber-attacks discovery via

analysis of DNS data: passive/active DNS analysis, WHOIS domain records analysis, and

purely strings based analysis predictive blacklisting.

a secondary goal is to create a dataset of benign and malicious domains that may be

used in other research projects or to be used as a benchmark for domain classifiers.

another secondary goal is making the classifiers available for anyone for free. That

means that the classifier should be based only on open repositories and not contain a

feature that can be extracted from non-publicly free available data sources.

2.2 Project Importance

There are three key advantages in DNS analysis for cyber-attacks discovery:

1. Relatively cheap, in comparison to other approaches e.g. deep packet inspection

2. DNS is plaintext, avoid problems of encrypted traffic inspection

3. Privacy-preserving, encrypted traffic doesn’t need to be deciphered

There are numerous academic papers offering detection algorithms for cyber-attacks

discovery by DNS analysis. However, none of them offers an open-source

implementation or give access to the dataset they used to evaluate the novel approach.

Therefore, it’s impossible to run a true comparison between the different papers and

approaches. The project implementation could help to achieve this kind of comparison.

By releasing an open-source classifiers implementation, a dataset, and the dataset

creation source code.

9

3. Implementation

This section covers the implementation details of the “Cyber-Attacks Discovery via

Analysis of DNS” project including system components, design, architecture,

frameworks, development workspace, and technologies.

3.1 Development Workspace

This section covers the development’s workspace and technologies used in the project

implementation process.

3.1.1 Operating System

The project was developed and tested on an Ubuntu 18.04 OS. Since all the project

technologies that are mentioned in the next section are cross-platform, it can run on

other OS such as Windows as well.

3.1.2 Development Languages and Frameworks

The project database used for storing the dataset was Postgres SQL. The Database

management was made with “pgAdmin” – a Python Web UI for Postgres SQL.

Redis was used for internal application caching and asynchronous messaging queue.

Redis management was made with “Redis-commander” – a Node Web UI for Redis.

The programming language used in the project was Python. In the algorithm

development phase of the project, “Jupyter Notebook” was used. After the algorithms

were implemented and fine-tuned, I switch to Visual Studio Code for wrapping up the

project.

Other than the standard libraries, it’s worth mentioning the usage of the following open

source packages which saved much work in the implementation process:

 Numpy - the fundamental package for scientific computing with Python. It

contains among other things: a powerful N-dimensional array object, useful

linear algebra, Fourier transform, and random number capabilities.

 Pandas - flexible, and expressive data structures designed to make working with

structured and time series data both easy and intuitive. It aims to be the

fundamental high-level building block for doing practical, real-world data

10

analysis in Python. Additionally, it has the broader goal of becoming the most

powerful and flexible open-source data analysis/manipulation tool available in

any language.

 SQLAlchemy – a Python SQL toolkit and Object Relational Mapper that gives

application developers the full power and flexibility of SQL. SQLAlchemy provides

a full suite of well-known enterprise-level persistence patterns, designed for

efficient and high-performing database access, adapted into a simple and

Pythonic domain language.

 Scikit-Learn – a Python package for machine learning built on top of SciPy and

distributed under the 3-Clause BSD license. Scikit-Learn is compatible to work

with Numpy and Pandas mentioned above packages.

 XGBoost – a Python optimized distributed gradient boosting library designed to

be highly efficient, flexible and portable. It implements machine learning

algorithms under the Gradient Boosting framework. XGBoost provides a parallel

tree boosting (also known as GBDT, GBM) that solve many data science

problems in a fast and accurate way. The same code runs on the major

distributed environment (Hadoop, SGE, MPI) and can solve problems beyond

billions of examples. XGBoost is compatible with Scikit-Learn classifier APIs.

 NetworkX – a Python package for the creation, manipulation, and study of the

structure, dynamics, and functions of complex networks. The SNA classifier is in

this work is built on top of this package.

 Matplotlib – a Python 2D plotting package that produces publication quality

figures in a variety of hardcopy formats and interactive environments across

platforms. Matplotlib can be used in Python scripts, the Python and IPython

shells, the Jupyter notebook, web application servers, and four graphical user

interface toolkits.

 Compound-Word-Splitter – a python natural processing language (NLP) package

that, splits words that are not recognized by dictionary whitelists such as spell

checkers into the largest possible compounds.

11

 Redis (Python package) – The Python interface to the Redis key-value store.

 Pyreverse – a set of utilities to reverse engineering Python code. It uses a

representation of a Python project in a class hierarchy which can be used to

extract any information such as generating UML diagrams. The class diagram

shown in figures 2 and 4 were drawn using Pyreverse

 Pyasn – a Python extension module that enables very fast IP address to

Autonomous System Number (ASN) lookups. Current state and Historical lookups

can be done, based on the MRT/RIB BGP archive used as input.

 Flask – Flask is a lightweight web application framework. It is designed to make

getting started quick and easy, with the ability to scale up to complex

applications

3.1.3 Source Control

During development, the project was hosted on GitHub as a private repository. After

completion, it's now open as an opensource project as a public repository. The project

public repository is https://github.com/eyalsus/domain-classifier.

3.2 Architecture

This section covers the architecture description of data collection, training model and

the system operational phase.

3.2.1 Data Collection

Data for this project was gathered from 4 free origins: Cisco Umbrella 1 Million popular

DNS records and Alexa top 1 Million popular sites were used for benign domain

collection, OpenPhish and PhishTank were used for malicious domains collection. all the

mentioned origin publishes a CSV file which updates at least daily.

Alexa dataset is designed to be an estimate of a website's popularity. As of May 2018,

Alexa claims the ranking is calculated from a combination of daily visitors and pageviews

on a website over a 3-month period.

Cisco Umbrella, formally known as OpenDNS, the dataset is based on the Umbrella

global network of more than 100 Billion DNS queries per day, across 65 million unique

https://github.com/eyalsus/domain-classifier

12

active users, in more than 165 countries. Although the data source is quite different

from Alexa’s, it’s arguably considered to be more accurate as it’s not based on only

HTTP requests from users with browser additions.

Figure 1 shows the clear difference between the feeds. For example, while Netflix owns

10 out of the top 15 domains in the Cisco Umbrella ranking the first entry of a Netflix

domain in Alexa ranking on the same day is at the rank of 22. Another great example are

Microsoft’s Windows updates domains that have 3 out of the top 15 domains in Cisco

Umbrella ranking but get much lower ranks on Alexa ranking.

Figure 1 – on the left box are the top 15 rows of Alexa ranking feed and on the right box Cisco Umbrella ranking feed
on both snapshots were taken on 17-Dec-2019

OpenPhish and PhiskTank dataset are based on community trusted members who share

their threat intelligence of phishing websites. It’s interesting to know that PhishTank

was founded by OpenDNS as a by the community which several years later released the

Cisco Umbrella feed as well. Unlike benign domain sources, the malicious domain

sources contain URLs and not domains. Therefore before adding them to the dataset,

some parsing should be made to extract the domains. Table 1 summarizes the data

sources' characteristics.

13

 Cisco

Umbrella

(OpenDNS)

Alexa OpenPhish PhishTank

Classifica

tion

Benign Benign Malicious Malicious

Update Daily Daily Hourly Hourly

Records

Type

Domain Domain URL URL

License Free Free Free for partial

content, paid

for full feed

access

Free, but

registration

required

Source DNS queries Web page views Community Community

Further

Context

Popularity

rank

Popularity rank Phishing Target

available on a

paid

subscription

Phishing Target

Est. 2016 1996 2014 2006

Feed URL http://s3-us-west-

1.amazonaws.com/u

mbrella-static/top-

1m.csv.zip

http://s3.amazonaws.co

m/alexa-static/top-

1m.csv.zip

https://openphish.com

/feed.txt

http://data.phishtank.com/d

ata/online-valid.csv

Table 1 – Summary of the data sources used on this project

Figure 2 describes the class diagram of the DataSource classes. Notice that there is no

dedicated class for Cisco Umbrella, that is because Cisco Umbrella feed mimics the

conventions laid out by Alexa veteran feed as can be seen in figures 1.

http://s3-us-west-1.amazonaws.com/umbrella-static/top-1m.csv.zip
http://s3-us-west-1.amazonaws.com/umbrella-static/top-1m.csv.zip
http://s3-us-west-1.amazonaws.com/umbrella-static/top-1m.csv.zip
http://s3-us-west-1.amazonaws.com/umbrella-static/top-1m.csv.zip
http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
https://openphish.com/feed.txt
https://openphish.com/feed.txt
http://data.phishtank.com/data/online-valid.csv
http://data.phishtank.com/data/online-valid.csv

14

Figure 2 - DataSource class diagram

3.2.2 Data Enrichment

The data collected from the sources described in the previous section is enriched with

DNS “A” record, DNS “NS” record, Autonomous System (AS) data, and parsed for

processing convenience. DNS “A” record is the IPv4 address of the queried domain, DNS

“NS” record is the nameserver of the queried domain. AS is the upper hierarchy of the IP

address. The record after enrichment contains the following fields:

domain – the input domain

label – ‘0’ if the domain is benign, ‘1’ if the domain is malicious.

timestamp – the timestamp if the first time the data collection encountered the domain.

base_domain – the domain as it appears on the whois registration, for example,

edition.cnn.com base domain is cnn.com.

domain_name – the base domain name without the public suffix, for example,

edition.cnn.com domain name is cnn.

domain_ip – the current domain’s DNS “A” record, IP address of the input domain.

as_number – Autonomous System (AS) number of the domain’s IP address.

as_subnet – the matching subnet of the IP address’s Autonomous System Number

(ASN).

15

as_name – the official name of the ASN owner of the domain IP address.

nameserver – the current base domain DNS “NS” record, nameserver of the base

domain.

ns_base_domain – the base domain of the nameserver.

ns_domain_ip – the current domain’s DNS “A” record, IP address of the nameserver.

ns_as_number – ASN of the nameserver’s IP address.

ns_as_subnet – the matching subnet of the nameserver’s IP address ASN.

ns_as_name – the official name of the nameserver’s IP address ASN owner.

an example of an enriched record is shown in table 2.

Table 2 - The enriched record of edition.cnn.com

The initial data collection phase flow, described in Figure 3, contained the following

steps:

1. Fetch feeds request new data from a concrete data source

2. The data source fetches a feed from domains/URLs from its concrete vendor

16

3. Fetch feeds publish a message with the domain name to the “New URLs”

messaging queue

4. Enrich domain reads messages from the “New URLs” messaging queue.

5. Enrich domain enriches the domain with DNS, IP, ASN and nameservers data the

publish the enriched record to “Enriched Domain” queue.

6. The model manager reads messages from the “Enriched Domain” messaging

queue.

7. Model manager commands the database connector to persist the enriched

records

8. The database connector manages the interaction with the Database and persists

the enriched records in the Database.

Figure 3 – Initial data collection flow

17

3.2.3 Training Models

The collected data is used for training the domain classifier models. Figure 4 describes

the class diagram of the models training phase. The below classes were developed as a

part of this project:

Model – an abstract class which define the Model interface

AggregatorModel – this class employs the composite pattern. It extends the Model class

and contains a list of Model objects.

MLModel – extends Model class. Support all Scikit-Learn classifiers and any other API

complaint package, e.g. XGBClassifier from XGBoost package.

MarkovModel – extends Model class. The class is composed of the opensource

MarkovChain class, and leverage compound-word-splitter NLP package.

SnaModel – extends Model class. The class is composed of the opensource Graph class

from the NetworkX package. Graph class was leveraged to implement the SNA classifier.

MarkovChain – Base on an open-source implementation of Markov Chain, but was

extended to the purpose of this project.

18

Figure 4 - Model class diagram

The training phase flow, described in Figure 5, contained the following steps:

1. Model manager fetches enriched domain records by calling the Database

connector module

2. The database connector fetches the records from the Database

3. The model manager relies on the records to the aggregator model and

commands it the begin the training.

4. The aggregator model trains the models it currently contains.

5. The model is serialized and saved to disk for persistent storage.

19

Figure 5 - Training flow

3.2.4 Operational Phase

After a significant amount of data was collected in the flow described in section 3.2.1

and the models were trained in the flow described in section 3.2.2 the system is now in

the operational phase. The operational phase integrates both previous flows and

extends them. On top of the enriched records, the model aggregator feeds the DB with

the current models’ verdict. This way the model evaluation is constantly being made

versos the most recent ground-truth dataset. The models’ aggregator is scheduled to

retrain the models daily. Tables 3 and 4 show a snippet of the dataset, a larger part of

the dataset is available on appendix A.

Table 3 - a snippet of benign domains taken from the database

domain label timestamp domain_ip as_number nameserver snamodel train_date

netice.az 0 12/17/19 10:09 AM 104.27.149.152 13335 gina.ns.cloudflare.com 0.331968 12/17/19 10:47 AM

iqtds.com 0 12/17/19 10:09 AM 93.174.95.2 202425 ns1.reg.ru 0.47648 12/17/19 10:47 AM

orissimo.it 0 12/17/19 10:09 AM 104.20.5.243 13335 jule.ns.cloudflare.com 0.255366 12/17/19 10:47 AM

mutisite.com 0 12/17/19 10:09 AM 104.31.72.253 13335 adrian.ns.cloudflare.com 0.311023 12/17/19 10:47 AM

otoy.com 0 12/17/19 10:09 AM 104.20.40.12 13335 bart.ns.cloudflare.com 0.247716 12/17/19 10:47 AM

20

Table 4 - a snippet of malicious domains taken from the database

The complete database table contains more fields than shown in tables 3-4, the table

definition is shown in figure 6.

Figure 6 - domains table SQL CREATE query

The operational system phase flow, described in Figure 7, contained the following steps:

Steps 1-6 are the same as described in the data collection section 3.2.1 and figure 3.

7. The model manager relies on the records to the aggregator model if the model is

obsolete it commands it would first start training a new model.

8. The aggregator model trains the models it currently contains and asks for the

models’ verdict, or just gets the models’ verdicts if their train date is ok.

domain label timestamp domain_ip as_number nameserver snamodel train_date

taarefeahlalbaitam.com 1 12/17/19 9:55 AM 160.153.137.163 26496 ns24.domaincontrol.com 0.786192 12/17/19 8:47 AM

www.britishairportcars.co.uk 1 12/17/19 9:55 AM 35.237.67.68 15169 ns2.360expose.com 0.635082 12/17/19 8:47 AM

www.manavvikassanstha.com 1 12/17/19 9:11 AM 69.175.87.74 32475 ns111.webhostingworld.net 0.694392 12/17/19 8:47 AM

silvanoyjairo.webcindario.com 1 12/17/19 9:11 AM 5.57.226.202 29119 ns-cloud-d3.googledomains.com 0.813255 12/17/19 8:47 AM

secure.runescape.com-ms.xyz 1 12/17/19 9:11 AM 23.254.225.128 54290 ns28.domaincontrol.com 0.800725 12/17/19 8:47 AM

21

9. The model is serialized and saved to disk for persistent storage.

10. The model manager commands the database connector to persist the enriched

records. The enriched records now contain the current classifiers' verdict as well.

11. The database connector manages the interaction with the Database and persists

the enriched records in the Database.

Figure 7 - Operational system flow

3.3 Domain Classifiers

This section covers the algorithm used in the domain classifier model implementation.

3.3.1 Social Network Analysis over Domain-IP Relationships

The SNA classifier was inspired by the paper “a Topology Based Flow Model for

Computing Domain Reputation” [1]. The paper relies on the Domain-IP relationships

which were proven to be useful for calculating domain reputation scores by the Notos

system [2]. However, instead of using a machine learning classifier, it uses an interesting

approach based on social network analysis (SNA) algorithm, commonly used for

computing trust in social networks and virtual communities. The goal of the flow

algorithm is to assign domains with reputation scores given an initial list of domains

with a known reputation, good or bad.

3.3.1.1 Train – Graph Construction

In [1] the flow algorithm training contains four steps, as shown in figure 8:

22

 Graph construction - Create the topology graph, assign weights and represent as

an adjacency matrix

 Vector - Create the initial vector used for propagation

 Iterative reputation flow - Use the vector and the matrix as input to the flow

algorithm

 Final - output final reputation scores

Figure 8 - A topology-based flow model for computing domain reputation [1] architecture

Unlike the original paper, I found it to be more useful to work on a graph data structure

than on an adjacency matrix. That is because an adjacency matrix is less intuitive and

less efficient from a performance point-of-view. Another difference from the original

paper is the entities I used on the graph. I leverage all the enriched data described in the

“Data Enrichment” section. Adding the “NS” DNS records and ASN data, while the

original paper used only “A” records. This results with differences in the meaning of

edges as is explained next.

Figure 9 shows the functions involved in the training phase which construct the graph.

“train” is the model interface function. For every record in the given input dataset, it

calls “_append_row_to_graph” which append a single enriched domain record to the

graph. Notice that the record contains the ground truth label as well. Other than the

label domain, 0 for benign and 1 for malicious, all the of the other nodes get the initial

23

value of 0.5. Lines 7-15 are adding the nodes to the graph, lines 17-25 are adding the

edges between the nodes that were previously added. This means that edges represent

different types of connections, not only domain-IP connections such as IP-AS domain-

Subnet, AS name-AS number and more as listed in Figure 9. INITIAIL_VALUE is the

default value for the non-labeled nodes. In the experiments described in section 4, the

INITIAIL_VALUE was set to 0.5.

Figure 9 - Append enriched domain record to the graph function

Figure 10 shows the visualization of a trained graph. When we add the unlabeled

enriched node “edition.cnn.com”, additional nodes and edges are created: green nodes

are labeled as benign, red are labeled as malicious and brown nodes are unlabeled. As

expected most of the neighbors of “edition.cnn.com” are benign or unlabeled. The only

red node in the graph is a subdomain of a freemium hosting service. Freemium hosting

24

is a service that offers free basic web services deployment and a paid fully-suite

package. In this case, codeanywhere.com is a freemium service that was abused for

malicious purposes.

Figure 10 - Ego graph with radius 3 of edition.cnn.com

3.3.1.2 Predict – Graph Iterations

Figure 10 shows the functions involved in the predict phase. “predict” is the model

interface function. In line 2 It creates a copy of the previously constructed graph. In Line

3 it appends the given records (X) to the graph copy. Line 4 class calls “_stable_graph”

that is defined in figure 10 as well. “_stable_graph” is the phase where the reputation of

each node cascades to its neighbors. On the worse case, each iteration may cause

O(|G.nodes|) updates on the graph. That is why its wise to limit the amount of the

25

iterations. My analysis shows that 5 iterations are enough, [1] reached a similar

conclusion on their implementation. In each iteration every node score is set to be the

average between its current score and the average score of its neighbors, see the

“_update_node” function in figure 11.

Figure 11 - SNA model prediction process

3.3.2 Machine Learning Blacklisting at Time-of-Registration

WHOIS record is the data describing the registration of the domain such as registration

date, last modified date, expiration date, registrant contact information, registrar

contact information and nameserver domains. Once the domain has been registered,

the relevant registry is the owner of the WHOIS database record. WHOIS-based

reputation approach advantage is that it could be the first line of defense in detecting

new malicious domains and that it enables following threat actors reusing domain

registration information. Its drawback is that WHOIS information is often anonymized or

only partly available as each registry information is not standard for WHOIS record

26

completeness. In this section, I describe an implementation based on the domain

reputation System called PREDATOR, described in the paper “Proactive Recognition and

Elimination of Domain Abuse at Time-Of-Registration” [3].

PREDATOR is a system aimed to achieve early detection of malicious domains by using

only WHOIS records as input. The paper contains a description of the feature

engineering process resulting in 22 features types. The features can help distinguish

abusive domain registration behavior characteristics from legitimate registration

behavior characteristics. These features are fed into a state-of-the-art supervised

learning algorithm.

3.3.2.1 Train – Nameserver Features

PREDATOR system architecture shown in figure 12 is very similar to the one used in this

project which includes a training mode and an operation mode.

Figure 12 - A high-level overview of PREDATOR [3] architecture

Table 5 shows the 22 types of features used by PREDATOR. These features are divided

into three groups: domain profile features, registration history features, and batch

correlation features. Unfortunately, the data on registration history features and batch

correlation features is not publicly available. Therefore, this project focus on domain

profile features only.

27

Table 5: Summary of PREDATOR [3] features, each feature is categorical, continuous or ordinal.

Table 6 shows the PREDATOR feature importance. From the table, we can see that the

focus on domain profile features is reasonable since the top 6 features out of the 22 and

the top 7 out of the top 8 are domain profile features. The features I selected to

implement in the project are:

 Authoritative nameservers (ranked #1), to increase the detection rate the base

domain of the nameserver was used the feature.

 IP addresses of nameservers (ranked #3)

 ASes of nameserver IP addresses (ranked #5)

The project doesn’t contain the following features that were presented in PREDATOR:

 Trigrams in the domain name (ranked #2) cause a massive increase in the

number of features and led the classifier to be slow, heavy and tend for

overfitting.

28

 Registrar (ranked #4), this feature can be extracted only from a premium paid

feed. which conflicts with one of the project’s secondary goals to the classifiers

to be based on free and open repositories only.

 Daily hour of registration & Weekday of registration (ranked #6 and #8)

This data simply not publicly available in any form.

Table 6 - Ranking of feature importance in PREDATOR [3] (D for domain profile category, R for registration history
category, and B for batch correlation category).

29

The selected features are categorial, therefore they are translated into binary features

since binary features are more common for training Machine Learning models. Table 7

shows an example of categorical features the model decodes into binary features.

Table 7 - Records from the dataset for building an example model for PayPal phishing detection

For the 18 records shown in table 7, there is a limit of 18 * 3 = 54 decode features. Table

8 continues the example in table 7. It shows the decoding result which ended with 11

ns_base_domain feature, 14 ns_as_subnet features, and 13 ns_as_name features. Total

of 38 features. The greater the dataset, the lower is the ratio between the maximal

amount of decoded features and the resulted amount. That is due to the repeatedness

of the features.

Table 8 - Decoded features for the records of table 7.

For the phishing domain paypalaccounttologinaccountsummarmay.com the feature

vector would be “ns_base_domain_ ispvds.com”, “ns_as_subnet_94.250.248.0/23”, and

“ns_as_name_THEFIRST-AS, RU” set to 1. The other features would be set to 0.

30

3.3.2.2 Predict – Scikit-Learn Complaint

The MLModel class is compatible with the Scikit-Learn interface. In the project

experiments section, I’ll elaborate on the tested models and the results.

3.3.3 Predictive Blacklisting

Predictive blacklisting approach leverage existing knowledge of malicious domains to

predict malicious domain names that are likely to be used for malicious purposes. The

approach advantage that it could be the first line of defense in detecting new malicious

domains. It is based on the empirical fact that threat actors reusing domain name

template strings with minor edits. Its drawbacks are that is counts on threat actors’ lack

of imagination in picking phishing domain names and that most of its output is

redundant since most of the domains it generates are never in use. The paper Proactive

discovery of phishing related domain names [4] describes such a system. The paper

describes a system that generates a blacklist of domains by using a Markov chain model

and relevant lexical features extracted from a semantic splitter. Domain-specific

knowledge added from semantic tools.

3.3.3.1 Train – Markov Chain

The proactive malicious domain name discovery training contains six steps, as shown in

figure 13:

1. Information gathering – collect top-level domain (TLD) from the public suffix list

and malicious domains as input for the proactive model

2. Name decomposition – break down the main domain name and TLD

3. Word splitter – break down main domain name into words

4. Model – run the statistical analysis and predict potential malicious domains list

5. Domain checker – filter benign domains before adding to a blacklist

6. Blacklist – publish a blacklist of potential malicious domains

31

Figure 13: Proactive Malicious Domain Name Discovery System [4] architecture

In this project, the name decomposition was done with Compound-Word-Splitter

python package. After the name decomposition phase words statistics are gathered.

Figure 14 shows an example of words statistics gathering for the word “free” and the

word “pay”. In the case of the word “free”, the next transition in the Markov chain

would be any one of the words in the “transitions” counter. Since all the following

words have the same amount of apparencies following the word “free”, they would get

the same probability for the next phase: 1/11 = 0.090909. In the case of the word “pay,”

the next transition in the Markov chain would be any one of the words in the

“transitions” counter. Since all the following words but the word “problems” have the

same amount of apparencies following the word “free”, they would get the same

probability for the next phase: 1/13 = 0.076923 and the word “problems” which

appeared twice, it’s probability would be 2/13 = 0.153846.

32

Figure 14 – on the left word statistics of the word “free”, and on the right word statistics for the word “pay”

The decision to end the domain name, i.e. not to continue with another transition, is

made using the “sentence_length” field in the “word statistics” data structure as shown

in figure 14, lines 9-14 left and lines 8-13 right. The stop criteria is based on the

sentence words length statistics of the last word in the generated domain name. The

stop criteria is shown in line 12 in figure 15.

33

Figure 15 - Markov model domain names generator

Figure 16 shows the algorithm that creates the blacklist of predicted malicious domain

names. For every word in the “word statistics” data structure described in figure 13, the

algorithm generates up to 100 predicted malicious domain names. If the algorithm spots

that the generated domains repeat more than 10 times, it continues to the next word.

Figure 16 - Creating a blacklist of predicted malicious domains

3.3.3.2 Predict

The predict function is trivial, it just checks if the domain name appears in the predicted

domain name set that was created using the algorithm shown in figure 16.

34

4. Experiment

This section covers the process of the experiments: data cleaning, threshold selection,

and classifier result evaluation.

4.1 Data Cleaning

In the early stages of the experiment, an anomaly popped up. Many phishing domains

were hosted as a subdomain of popular hosting websites such as 000webhostapp.com,

azurewebsites.net, duckdns.org, no-ip.com, no-ip.org, wixsite.com. The mentioned

domains offer a freemium hosting service. Threat actor takes advantage of these

freemium services for their malicious purpose. In order to avoid causing confusion to

the classifiers, malicious domains hosted on the mentioned hosting providers were

removed from the train and test set. It reduced 32% of the dataset. That is not a great

loss since these domains could not be analyzed by the classifier developed in this project

anyway since the top domain is always benign.

In the middle of the experiments, I notice a shark increase in the detection rate of the

ML models and a decline in the SNA model. The reason for that was many domain

records had not IP, nameserver, and ASN data. It was caused due to a networking failure

that I didn’t handle properly. I fix the code and removed the empty domain record from

the dataset.

35

4.2 Data Separation

To decide which threshold every classifier should have I’ve visualized all the classifiers’

verdicts into the charts seen in figure 17.

Figure 17 - Classification data separation charts. Blue represents benign sample probabilities, and red are malicious
sample probabilities.

The classifiers' threshold selection is an important part of the experiment. The optimal

threshold is the one that conducts a perfect separation between the classes. In our case

the separation between benign and malicious domains. Since in real life the optimal

threshold is not perfect, we’ll select a threshold that maximizes true positives and at

cost of minimal false positives. In figure 17 we can see the places the red line is high

then the blue line. For the Markov model, the threshold is a Boolean threshold, but

unfortunately in the experiment, it had more false positives in any threshold. The

selected thresholds are listed in table 9.

36

Table 9 - The selected threshold for the classifiers

4.3 Evaluation

After the classifiers' decision threshold was set its possible to translate the classifiers’

probabilities results into verdicts. The evaluation was made on data collected between

17-Dec-2019 and 23-Dec-2019. In that time period, 20,640 labeled domain samples

were collected. 18,148 labeled as benign and 2,222 labeled as malicious. Table 10 shows

a clear advantage of the SNA classifier which produces a detection rate of 83.89% at the

price of 1.09% false positive rate.

Table 10 - Confusion matrixes of the classifiers’ evolution

The ROC curve shown in figure 18, confirms the SNA model out-perform the other

classifier on any given threshold. You can see its line always above the Logistic

Regression and XGBoost classifier. It’s also interesting to see that the simplistic Logistic

Model Threshold

SNA 0.67

XGBoost 0.93

Logistic Regression 0.95

Markov 1

37

Regression algorithm out-perform the state-of-the-art machine learning algorithm

XGBoost.

Figure 18 - ROC Curve using the threshold shown in table 9

The PREDATOR [3] system baseline its evaluation of on a given FPR of 0.35%. For the

results to be comparable with each other, I did the same. PREDATOR results are shown

in Table 11, the project results are shown in Table 12. The results show that the SNA

model reaches a similar detection rate to PREDATOR. That is without optimization

tuning of the training and testing window size as done in PREDATOR paper. In the

experiment the SNA model was rebuilt every 2 hours, that is possible since the graph

construction takes less than a minute. PREDATOR paper doesn’t specify how much time

it takes to train the model, but I guess it’s much more than a minute.

38

Table 11 - PREDATOR [3] detection rates under a 0.35% false positive rate

Table 12 - Classifier detection rate under a 0.35% false positive rate

Figure 19 shows the ROC curve of PREDATOR. When comparing to the ROC of the SNA

model shown in figure 18, it's clearly shown that the SNA ROC curve compensates better

for a more tolerance FPR. For example, when considering an FPR of 1% the SNA model

obtains 82.81% TPR, when according to figure 19 PREDATOR obtains less than 80%.

Figure 19 - ROC of PREDATOR [3] The inlay figure shows the ROC curve under the range of 0–5% false positives

Model TPR

SNA 60.71%

XGBoost 5.40%

Logistic Regression 7.56%

Markov 0.00%

39

5. Project Configurations and Operation

This section explains how to configure the project environment, data sources,

technologies and how to operate the project.

5.1 Setup

This section explains the project preliminary requirements before running it.

5.1.1 Software Components

The project requires Python 3.6 or newer to install it download go to

https://www.python.org/downloads/

Once Python is installed on the machine, you’ll need to install the external Python

package that is in use in this project. To install the packages all you need is to run the

following command on the project directory shell: pip install -r requirements.txt

The project's persistent storage is PostgreSQL, however, it can be easily ported to

another database technology. To install PostgreSQL download it from

https://www.postgresql.org/download/ and following the installation instruction.

The project global cache and messaging queue mechanized is Redis. To install Redis

download it from https://redis.io/download and following the installation instruction.

5.1.2 Data Source Configurations

As mentioned in the data collection section, to harvest malicious URLs from PhishTank

you’ll need an API key. You can get it for free on the following registration URL:

https://www.phishtank.com/register.php. The API Key should be stored in the operating

system environment variable PHISHTANK_APIKEY.

The ASN enrichment is done with the pyasn python package. It requires downloading

the freely available MRT/RIB BGP archives. The download and installation process is

explained on the pyasn GitHub page: https://github.com/hadiasghari/pyasn. The ASN

database file path should be stored on the operating system environment variable

ASN_DB_PATH. The ASN database is changing on a daily basis, thanks to pyasn it's easy

to update it.

https://www.python.org/downloads/
https://www.postgresql.org/download/
https://redis.io/download
https://www.phishtank.com/register.php
https://github.com/hadiasghari/pyasn

40

5.1.3 Logging

Logging in the project is made with the Python built-in logging package. The desired log

directory location should be stored on the operating system environment variable

LOG_DIR_PATH.

5.2 Running the Backend

The project has three Python files with the main function: fetch-feeds.py,

enrich_domain.py, and model_managaer.py.

fetch-feeds.py is the python script that fetches the domain and URL feed from the data

sources mentioned in the data collection section (3.2.1). After fetching the feed, it

transmits the domains to the new URLs channel. In figure 20 you can see its manual.

Figure 20 - fetch-domains.py manual

enrich_domain.py is the python script that listens to new URLs channel and enriches the

domains which IP, nameserver and ASN data. In figure 21 you can see its manual.

41

Figure 21 - fetch-domains.py manual

model_manager.py is a python script that listens to enriched domains channel. It runs

the classifiers on the enriched dataset and commits the domain record with the

classifier results to the database. In figure 22 you can see the script manual.

Figure 22 - model_manager.py manual

42

5.3 Running the Frontend

The project frontend is written in Python as well. The backend of the frontend is on the

file app.py and its frontend is on templates directory. figure 23 shows app.py manual.

Figure 23 - app.py manual

5.4 Frontend Operation

This section explains how to operate the frontend web user interface.

5.4.1 Domain Reputation

The default screen is “Domain Reputation”. In this web page, a user can input a URL

address and the URL’s domain reputation score would be calculated. Figure 24 shows

the screen.

Figure 24 - "Domain Reputation" screenshot, input box filled with the URL https://web.whatsapp.com/.

https://web.whatsapp.com/

43

Figure 25 shows the upper screen output for the URL https://web.whatsapp.com/. the

output includes 3 sections: input URL and extracted domain, the results of the raw

classifier, and the features extracted.

Figure 25 - Domain reputation result for the URL https://web.whatsapp.com/

Figure 26 shows the bottom part of the screen, it presents an explanation of the SNA

classifier verdict. It colors green for benign domains, brown for unknown and red for

malicious domains. The edges between the nodes are constructed by the algorithm

described in figure 9 from the SNA domain classifier train section (3.3.1.1).

Figure 26 - SNA Ego graph with radius 2 for the domain web.whatsapp.com

https://web.whatsapp.com/
https://web.whatsapp.com/

44

5.4.2 Explore Dataset

“Explore Dataset” allows the user to browse the operational database. Each page shows

50 records, sorted by database insertion date on descending order. Figure 27 shows an

output example.

Figure 27 – “Explore Dataset” screenshot

5.4.3 Data Schema

“Data Schema” page allows the user to see the current database schema. Figure 28

shows a screenshot.

Figure 28 – “Data Schema” screenshot

45

5.4.4 Train Model

The “Train Model” page allows the user to train a model on the dataset with a custom

amount of benign and malicious samples. Figure 29 shows an example with possible

input and figure 30 shows the expected output for the same input.

Figure 29 – “Train Model” screenshot

Figure 30 - example output of "Train Model"

46

6. Summary and Conclusions

“Average uptime of phishing attacks is around 2 days and the median uptime is only 12

hours. Due to this very short lifetime, reactive blacklisting is too slow to effectively

protect users from phishing” [4]. This quote condenses the importance of this work. The

phishing use-case is extraordinary from that perspective that it lives for a very short

time. Therefore, a proactive approach is a clear requirement for detected threats.

The experiments described in section 4 demonstrate it's not practical to guess the

domain names to be registered. A more realistic approach would be the consistently

learn the internet domains’ neighborhood e.g. IP, network, ASN, nameservers, etc. while

doing so, constantly calculating each node's reputation. The SNA approach was proven

to be very successful reaching a detection rate of 83.89% under a 1.09% false positive

rate and 60.71% under a 0.35% false positive rate.

In spite of the fact, it reached a lower detection rate then PREDATOR [3] 70% detection

rate given the same FPR it’s a big achievement. That is because of PREDATOR leverage

propriety dataset which is very expensive and takes a great deal of resources the

manage. When all the classifiers developed in this project all rely only on open source

data sources, and all the setup and software components described in section 5 ran on

my consumer laptop. Unlike the SNA model, PREDATOR had many optimizations on the

training window as shown in Table 8, where the true positive vary in the range of 58%-

70%. Very close to the results of this project. Moreover, the SNA model obtains even

better results than PREDATOR when considering high acceptable FPR.

a ground for future work can be to optimize the project models or create a meta-

classifier that would combine the machine learning classifiers with the SNA classifier. I

assume that any of the two would push the result higher than 70%.

47

References

[1] Mishsky, I., Gal-Oz, N., & Gudes, E. (2015, July). A topology based flow model for
computing domain reputation. In proceedings of IFIP Annual Conference on Data and
Applications Security and Privacy (pp. 277-292). Springer, Cham.

[2] Antonakakis, M., Perdisci, R., Dagon, D., Lee, W., & Feamster, N. (2010, August).
Building a Dynamic Reputation System for DNS. In proceedings of USENIX security
symposium (pp. 273-290).

[3] Hao, S., Kantchelian, A., Miller, B., Paxson, V., & Feamster, N. (2016, October).
PREDATOR: Proactive Recognition and Elimination of Domain Abuse at Time-Of-
Registration. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security (pp. 1568-1579). ACM.

[4] Marchal, S., François, J., & Engel, T. (2012, September). Proactive discovery of
phishing related domain names. In proceedings of International Workshop on Recent
Advances in Intrusion Detection (pp. 190-209). Springer Berlin Heidelberg.

48

Appendix A – Example of Benign Domains Classification Result

Table 13 - Example of the benign domains classification result

domain label markovmodel snamodel mlmodel_xgbclassifier mlmodel_logisticregression
datastax.com 0 0 0.226520838 0.316150874 0.152330989

omgt3.com 0 0 0.189093661 0.169931561 0.047668929

cs-gateway.cloudapp.net 0 0 0.322173269 0.563195884 0.684618425

gradientt.net 0 0 0.463472091 0.550923884 0.670320183

ipv4-c027-was001-ix.1.oca.nflxvideo.net 0 0 0.21272263 0.232552424 0.049469577

ipv4-c027-vie001-ix.1.oca.nflxvideo.net 0 0 0.21272263 0.232552424 0.049469577

api.pushe.co 0 0 0.281074716 0.2509543 0.21622384

staging.eab.com 0 0 0.197167281 0.169931561 0.064750098

vd89.mycdn.me 0 0 0.306614434 0.550923884 0.476344038

api.appmetadata.sonymobile.com 0 0 0.216388157 0.169931561 0.088441005

jtvnw.net.cdn.cloudflare.net 0 0 0.411164173 0.550923884 0.459039409

l-agent.me 0 0 0.23688687 0.169931561 0.111537037

voranda-com.videoplayerhub.com 0 0 0.404994776 0.686842501 0.728991617

fagc2-1.fna.fbcdn.net 0 0 0.415023677 0.550923884 0.634409399

cbg-app.huawei.com 0 0 0.418792725 0.550923884 0.634409399

games.geo.hosted.espn.com 0 0 0.175047154 0.169931561 0.055194319

a.smrpm.com 0 0 0.209472007 0.149449095 0.078687902

vm.mycdn.me 0 0 0.294466595 0.550923884 0.476344038

mi.walgreens.com 0 0 0.280749755 0.550923884 0.634409399

click.online.costco.com 0 0 0.27286589 0.550923884 0.415952511

ncp-gw-sports.media.yahoo.com 0 0 0.32728766 0.550923884 0.343913431

s-usc1c-nss-271.firebaseio.com 0 0 0.475002479 0.771687508 0.811051469

b-cc-usea2-01-skype.cloudapp.net 0 0 0.401720014 0.563195884 0.632344189

moog-r.cybereason.net 0 0 0.18984955 0.169931561 0.051635809

keepersecurity.eu 0 0 0.173302626 0.169931561 0.057422657

link.btsvcemail.web.plus.espn.com 0 0 0.240467698 0.169931561 0.076755594

4a7b.srvng.xyz 0 0 0.314793999 0.550923884 0.354402003

s.potu.xyz 0 0 0.276672872 0.252700031 0.222190731

bs.iotleg.com 0 0 0.39703371 0.550923884 0.454590448

watsonfantasyfootball.espn.com 0 0 0.33173583 0.169931561 0.406751832

ksn.kaspersky-labs.com 0 0 0.322465091 0.550923884 0.131008276

twitter.test-app.link 0 0 0.136624822 0.169931561 0.071314612

firebat-25-aftmm-80612.na.api.amazonvideo.com 0 0 0.163135335 0.169931561 0.054666001

instagram.fada2-1.fna.fbcdn.net 0 0 0.238939728 0.550923884 0.634409399

ios-dradis.prod.ftl.netflix.com 0 0 0.205720331 0.169931561 0.072832645

worldlifestyle.com 0 0 0.179128595 0.169931561 0.067055462

distoryrussion.info 0 0 0.360868693 0.169931561 0.467892617

failover.zingmp3.vn 0 0 0.305419921 0.550923884 0.634409399

dcs-live.apis.anvato.net 0 0 0.474100612 0.771687508 0.813777926

6xq.com 0 0 0.269454461 0.550923884 0.179828246

ssp20.pushprofit.net 0 0 0.444729318 0.550923884 0.644571404

fortnite-vod.akamaized.net 0 0 0.189559638 0.149449095 0.048604802

theplayerstribune.com 0 0 0.44605861 0.771687508 0.811051469

firebat-22-aftt-80612.na.api.amazonvideo.com 0 0 0.17087245 0.169931561 0.054666001

hellosubscription.com 0 0 0.227703619 0.252700031 0.222190731

tuttoabruzzo.it 0 0 0.256244965 0.252700031 0.222190731

thezeezstore.com 0 0 0 0.550923884 0.634409399

rollingstone.it 0 0 0.216495485 0.169931561 0.102422666

ostetrichebrescia.it 0 0 0.300974774 0.550923884 0.603844674

mcdiscount.it 0 0 0.180040542 0.169931561 0.074450285

ixnayproductions.it 0 0 0.525489227 0.550923884 0.719478509

group-training-online.com 0 0 0.403898387 0.550923884 0.397083532

golfdom.com 0 0 0.445113739 0.686842501 0.754540184

god-games.com 0 0 0.151028405 0.550923884 0.634409399

festivalvillevesuviane.it 0 0 0.276672872 0.252700031 0.222190731

cpialegnano.edu.it 0 0 0.558343563 0.550923884 0.719478509

bartoccini.it 0 0 0.320357722 0.550923884 0.597082597

avvenire.it 0 0 0.283390057 0.550923884 0.634409399

autodirect24.com 0 0 0.151028405 0.550923884 0.634409399

49

Appendix B – Example of Malicious Domains Classification Result

Table 14 - Example of the malicious domains classification result

domain label markovmodel snamodel mlmodel_xgbclassifier mlmodel_logisticregression

sucursalpersonas.webcindario.com 1 0 0.796174347 0.767927349 0.839229963

inovini.com.br 1 0 0.467555451 0.231854886 0.043818797

www.safetyrd.xyz 1 0 0.77215759 0.551020205 0.808002645

bcpzonasegurabeta-viazbcp.com 1 0 0.778606534 0.551020205 0.873353206

a0375741.xsph.ru 1 0 0.852613547 0.627774358 0.969546869

ofertanatalina.store 1 0 1 0.551020205 0.634721932

salonesfloridautamau.com 1 0 0.76400821 0.659377694 0.949861811

suppottserverteem.me 1 0 0.778583459 0.546465456 0.530266455

testsite.rebellegion.com 1 0 0.865211624 0.659377694 0.9712616

newmodelschool.org 1 0 0.823689977 0.659377694 0.797259055

treestorian.com 1 0 0.812772986 0.659377694 0.969237394

allegro.media 1 0 0.734999 0.659377694 0.730388271

www.bahianita.com 1 0 0.77275519 0.747400105 0.8972025

itokenitau.app 1 0 0.746970047 0.659377694 0.927180626

lakossagi.belepes.hu.skyorbittrading.com 1 0 0.875097843 0.835533679 0.986925721

www.cervezasorigen.com 1 0 0.819356295 0.659377694 0.943309722

zoyarentalmedan.com 1 0 0.824559586 0.659377694 0.913062758

multilinks.nuirtefrede.cf 1 0 0.727393534 0.747400105 0.938667243

com-bmnfkppxaa.kofc3035.org 1 0 0.809575422 0.659377694 0.797259055

www.biesseacquari.com 1 0 0.734852564 0.659377694 0.973747056

khabare2020.3dfine.com 1 0 0.693979597 0.659377694 0.934570398

instituto2005.org 1 0 0.715733205 0.659377694 0.836323606

musicaparadormir.com.br 1 0 0.835225028 0.931306899 0.992262058

golfcartbatteries.us 1 0 0.857410764 0.931306899 0.990207552

taxi-ubk.ru 1 0 0.805560159 0.659377694 0.928988732

www.ppl-vell.cf 1 0 0.843323766 0.645707488 0.921666627

updateappleidaccount.bykvijwrk.com 1 0 0.78289885 0.772657335 0.839408296

www.handirestaurant.com 1 0 0.781488571 0.931306899 0.989753181

lnstagrambusinesssupport.com 1 0 1 0.659377694 0.797259055

remmancuaphuonganh.com 1 0 0.773146062 0.659377694 0.89781287

bnpparibas-mabanque.rockdelinj.com 1 0 0.784542077 0.659377694 0.963511607

mail.whistlers4hire.com 1 0 0.868753865 0.931306899 0.995028705

www.aburs.ir 1 0 0.702447716 0.659377694 0.797259055

netflipagaments.jdevcloud.com 1 0 0.880460997 0.659377694 0.972724647

fishingnewengland.com 1 0 0.756281993 0.761465013 0.884034019

emed-depot.com 1 0 0.846803284 0.659377694 0.931799398

instagram-helpconfirm.com 1 0 0.713726136 0.773697495 0.979131129

www.worldfoodinter.com 1 0 0.749305534 0.659377694 0.887738544

built4integrity.com 1 0 0.778649699 0.761465013 0.82446988

p3plvcpnl318847.prod.phx3.secureserver.net 1 0 0.45888942 0.068464793 0.052148412

hotelcafewoud.nl 1 0 0.691529884 0.659377694 0.797259055

sherakatmarket.ir 1 0 0.721791128 0.659377694 0.80804959

vote-brexit-2020.000webhostapp.com 1 0 0.782118224 0.748818517 0.969490774

411admin.co.za 1 0 0.820172375 0.659377694 0.918700319

ebay-url.com 1 0 0.802228824 0.761465013 0.910422798

winningruby.xyz 1 0 0.78911332 0.659377694 0.961590002

kb-healthcare.com 1 0 0.885574899 0.835533679 0.986925721

castromonitoramento.com.br 1 0 0.782211813 0.931306899 0.990492108

proudcall.xyz 1 0 0.85564481 0.835533679 0.986925721

www.takilafa.com.br 1 0 0.718666955 0.659377694 0.839433614

hiersungoodresearchchemicals.com 1 0 0.795987122 0.659377694 0.934356295

unsidiomas.com.br 1 0 0.387215944 0.659377694 0.876065757

www.royalvenetian.ca 1 0 0.820633723 0.659377694 0.961765926

ecogarden.by 1 0 0.806796433 0.659377694 0.839812414

myy-proim11.com 1 0 0.85294465 0.659377694 0.960827071

mobi.facebook.com-m-ovimgntrwy.lesbiangirlssex.com1 0 0.709968438 0.761465013 0.92294318

printernovin.com 1 0 0.702817494 0.659377694 0.92870676

endowmentoracle.co.kr 1 0 0.755798052 0.761465013 0.823123373

hagi-pl.com 1 0 0.784130246 0.659377694 0.898211511

