RELATIONAL-REALIZATIONAL SYNTAX
An Architecture for Learning and Specifying Morphosyntactic Descriptions

Reut Tsarfaty
The Department of Linguistics and Philology
Uppsala University

15th International Lexical Functional Grammar Conference
June 20, 2010
Statistical Parsing
Statistical Parsing

“John likes Mary”
Statistical Parsing

“John likes Mary”
Statistical Parsing

S
 NP-SBJ VP-PRD
 PRP likes NP-OBJ
 "John" "likes" PRP
 "Mary"
Analysis By Generation

S
 NP-SBJ
 NP-SBJ
 PRP
 PRP
 "John"
 VP-PRD
 NP-OBJ
 PRP
 PRP
 "Mary"
 VP-PRD
 VB
 VB
 NP-OBJ
 "likes"
Constituency-Based Statistical Parsing for English

```
S
  | NP-SBJ  VP-PRD
  |   |   
  PRP VB ADJP
  | “This” | “is” ADJ
  |        | “easy”

Model Study F-Score

Treebank Charniak 1996 75
Grammar

Head-Driven Collins 1997 88.6

Discriminative Reranking Collins 2000 89.7

Discriminative Reranking Johnson & Charniak 2005 91.0

Self-Training McClosky 2006 92.1

CRF-CFG Finkel et al 2008 90.7

State-Splits Petrov et al 2007 90.1

Forest Reranking Liang Huang 2008 91.7
```
Statistical Parsing from a Typological Perspective

And what about this?

And this?

And? ...

<table>
<thead>
<tr>
<th>Language</th>
<th>Parser</th>
<th>F-Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>German</td>
<td>Rafferty & Manning 2008</td>
<td>79.2</td>
</tr>
<tr>
<td>Czech</td>
<td>Collins et al. 1999</td>
<td>79.3</td>
</tr>
<tr>
<td>Arabic</td>
<td>Maamouri, Bies & Kulick 2008</td>
<td>78.1</td>
</tr>
<tr>
<td>Hebrew</td>
<td>Tsarfaty & Sima’an 2007</td>
<td>74.4</td>
</tr>
</tbody>
</table>
The Data

Typological Dimensions of Variation

Morphological Synthesis/Fusion
(Sapir 1921, Greenberg 1954)

Basic Word-Order Typology
(Greenberg 1966, Mithun 1992)

Nonconfigurationality
(Hale 1983, Austin and Bresnan 1996)
Modern Hebrew

A Semitic Language

SVO

Highly Synthetic

‘Less-Configurational’
Modern Hebrew

Word-Order

(1) a. dani natan et hamatana ledina
 Dani gave ACC the-present to-Dina
 “Dani gave the present to Dina” (SVO)

 b. et hamatana natan dani ledina
 ACC the-present gave Dani to-Dina
 “Dani gave the present to Dina” (OVS)

 c. natan dani et hamatana ledina
 gave Dani ACC the-present to-Dina
 “Dani gave the present to Dina” (VSO)

 d. ledina natan dani et hamatana
 to-dina gave Dani ACC the-present
 “Dani gave the present to Dina” (VSO)
Argument Marking in Modern Hebrew

Case-Assigning Prepositions

(2) a. dani natan et hamatana ledina
 Dani gave ACC DEF-present DAT-Dina

 b. et hamatana natan dani ledina
 ACC DEF-present gave Dani DAT-Dina

 c. natan dani et hamatana ledina
 gave Dani ACC DEF-present DAT-Dina

 d. ledina natan dani et hamatana
 DAT-dina gave Dani ACC DEF-present
Argument Marking in Modern Hebrew

Differential Object-Marking

(3) a. dani natan et hamatana ledina
 Dani gave ACC DEF-present to-Dina

 b. et hamatana natan dani ledina
 ACC DEF-present gave Dani to-Dina

 c. natan dani et hamatana ledina
 gave Dani ACC DEF-present to-Dina

 d. ledina natan dani et hamatana
 to-dina gave Dani ACC DEF-present
Argument Marking in Modern Hebrew

Feature Spreading (Danon, 2007)

(4) a. dani natan [et matnat yom hahuledet] ledina
 Dani gave [ACC present day DEF-birth] to-Dina

 b. [et matnat yom hahuledet] natan dani ledina
 [ACC present day DEF-birth] gave Dani to-Dina

 c. natan dani [et matnat yom hahuledet] ledina
 gave Dani [ACC present day DEF-birth] to-Dina

 d. ledina natan dani [et matnat yom hahuledet]
 to-dina gave Dani [ACC present day DEF-birth]
Argument Marking in Modern Hebrew

Agreement

(5)
 a. dani natan et hamatana ledina
 Dani.MS gave.3MS ACC DEF-present DAT-Dina
 b. et hamatana natan dani ledina
 ACC DEF-present gave.3MS Dani.MS DAT-Dina
 c. natan dani et hamatana ledina
gave.MS Dani.3MS ACC DEF-present DAT-Dina
 d. ledina natan dani et hamatana
 DAT-dina gave.3MS Dani.MS ACC DEF-present
Pro-Drop and Clitics

(6) a. ani natati et hamatanot ledina
 I.1S gave.1S ACC DEF-presents.3FP DAT-Dina
 “I gave the presents to Dina”

 b. natati et hamatana ledina
 gave.1S ACC DEF-presents.3FP DAT-Dina
 “I gave the presents to Dina”

 c. natatihen ledina
 gave.1S ACC.3FP DAT-Dina
 “I gave them to Dina”
The Data

Recap:

CONFIGURATIONAL ———— NONCONFIGURATIONAL
1:1 ————————————————— many : many
Vietnamese > English > Hebrew > Warlpiri

Require:

An architecture to model many-to-many correspondence
The Hypothesis
The Hypothesis

Morphological Exponence

- Simple (1:1)
- Cumulative (many:1)
- Distributed/Extended (1:many)
The Hypothesis

Morphological Exponence: Properties \leadsto Words

- Simple (1:1)
- Cumulative (many:1)
- Distributed/Extended (1:many)

Morphosyntactic Exponence: Relations \leadsto Configurations

- Simple (e.g., SBJ \leadsto nominative)
- Cumulative (e.g., SBJ, PRD, OBJ \leadsto clitics)
- Distributed/Extended (e.g., OBJ \leadsto feature-spreading)
Reminder: Modeling Principles for Morphology

LEXICAL vs. INFERENTIAL Approaches

- **LEXICAL**: morphemes are primary, properties stored in the lexicon
- **INFERENTIAL**: properties are primary, forms are computed

INCREMENTAL vs. REALIZATIONAL Approaches

- **INCREMENTAL**: morphemes/properties are accumulated incrementally ("monotonic" rules)
- **REALIZATIONAL**: property-bundles are pre-condition for rule application ("spell-out" rules)
Inferential-Realizational Morphology

Paradigmatic Organization

<table>
<thead>
<tr>
<th>/EAT/</th>
<th>1Sing</th>
<th>2Sing</th>
<th>3Sing</th>
<th>1Pl</th>
<th>2Pl</th>
<th>3Pl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Past</td>
<td>1SingPast</td>
<td>2SingPast</td>
<td>3SingPast</td>
<td>1PlPast</td>
<td>2PlPast</td>
<td>3PlPast</td>
</tr>
<tr>
<td>Present</td>
<td>1SingPres</td>
<td>2SingPres</td>
<td>3SingPres</td>
<td>1PlPres</td>
<td>2PlPres</td>
<td>3PlPres</td>
</tr>
<tr>
<td>Perfect</td>
<td>1SingPerf</td>
<td>2SingPerf</td>
<td>3SingPerf</td>
<td>1PlPerf</td>
<td>2PlPerf</td>
<td>3PlPerf</td>
</tr>
</tbody>
</table>

Realization Rules

/EAT/ +1SingPast → ‘ate’
/EAT/ +3SingPast → ‘ate’
/EAT/ +1SingPres → ‘eats’
/EAT/ +3SingPres → ‘eat’
The Proposal: Relational-Realizational Syntax

Paradigmatic Organization

<table>
<thead>
<tr>
<th>ARG-ST</th>
<th>S(PRED) FEATS</th>
<th>Affirmative</th>
<th>Interrogative</th>
<th>Imperative</th>
</tr>
</thead>
<tbody>
<tr>
<td>intransitive</td>
<td>S_{affirm}+{SBJ,PRD}</td>
<td>S_{inter}+{SBJ,PRD}</td>
<td>S_{imper}+{SBJ,PRD}</td>
<td></td>
</tr>
<tr>
<td>transitive</td>
<td>S_{affirm}+{SBJ,PRD,OBJ}</td>
<td>S_{inter}+{SBJ,PRD,OBJ}</td>
<td>S_{imper}+{SBJ,PRD,OBJ}</td>
<td></td>
</tr>
<tr>
<td>ditransitive</td>
<td>S_{affirm}+{SBJ,PRD,OBJ,COM}</td>
<td>S_{inter}+{SBJ,PRD,OBJ,COM}</td>
<td>S_{imper}+{SBJ,PRD,OBJ,COM}</td>
<td></td>
</tr>
</tbody>
</table>

Realization Rules

\[
\begin{align*}
S_{\text{affirm}}+\{\text{SBJ,PRD,OBJ,COM}\} & \quad \langle \text{NP}_{\text{nom}} \text{, } \text{NP}_{\text{def,acc}} \text{, } \text{NP}_{\text{dat}} \rangle \\
\langle \text{Dani, natan, et hamatana, ledina} \rangle & \quad \text{Dani gave ACC-the-present to-Dina} \\
\end{align*}
\]

\[
\begin{align*}
S_{\text{affirm}}+\{\text{SBJ,PRD,OBJ,COM}\} & \quad \langle \text{NP}_{\text{def,acc}} \text{, } \text{NP}_{\text{nom}} \text{, } \text{NP}_{\text{dat}} \rangle \\
\langle \text{et hamatana, natan, Dani, ledina} \rangle & \quad \text{ACC-the-present gave Dani to-Dina} \\
\end{align*}
\]
The Realization Rules

Relational-Realizational (RR) Parsing

S

NP-SBJ

NP+Def+Acc-OBJ

PP-COM

dani

natan
gave

etmol

et hamatana

Acc Def-present

ledina
to Dina

yesterday

Acc Def-present
The Realization Rules

Relational-Realizational (RR) Parsing

S

{SBJ, PRD, OBJ, COM}@S

NP

dani
Dani

VB

natan
gave

ADVP

etmol
yesterday

NP_{Def+Acc}

et hamatana
Acc Def-present

PP

ledina
to Dina
The Realization Rules

Relational-Realizational (RR) Parsing

S

{SBJ,PRD,OBJ,COM}@S

SBJ@S

NP
dani
Danni

PRD@S

VB
natan
gave

PRD:OBJ@S

ADVP
etmol
yesterday

OBJ@S

NP+Def+Acc
et hamatana
Acc Def-present

COM@S

PP
ledina
to Dina
The Realization Rules

Relational-Realizational (RR) Parsing

Diagram showing the syntactic structure of a sentence in a specific language, with nodes labeled with parts of speech and other linguistic information.
The Model Parameters

Projection:

\[P \]

\[\{ gr_i \}_{i=1}^n @ P \]

Configuration:

\[\{ gr_i \}_{i=1}^n @ P \]

\[gr_1 @ P \quad gr_1 : gr_2 @ P \quad ... \quad gr_n @ P \]

Realization:

\[gr_1 @ P \quad gr_1 : gr_2 @ P \quad ... \quad gr_n @ P \]

\[C_1 \quad ..C_{1:2}.. \quad C_n \]
The Probabilistic Model

The RR Probabilities:

\[P_{RR}(r) = \]

Projection \[P_p(\{ gr_i \}_{i=1}^n | P) \times \]

Configuration \[P_c(\langle gr_0 : gr_1, g_1, \ldots \rangle | \{ gr_i \}_{i=1}^n, P) \times \]

Realization \[\prod_{i=1}^n P_{r1}(C_i | gr_i, P) \times \]

\[P_{r2}(\langle C_{0_1}, \ldots, C_{0_{m_0}} \rangle | gr_0 : gr_1, P) \times \]

\[\prod_{i=1}^n P_{r2}(\langle C_{i_1}, \ldots, C_{i_{m_i}} \rangle | gr_i : gr_{i+1}, P) \]

The RR Parser:

\[\pi^* = \arg\max_{\pi} P(\pi) = \arg\max_{\pi} \prod_{r \in \pi} P_{RR}(r) \]
Experiments
Experiments

<table>
<thead>
<tr>
<th></th>
<th>CONFIGURATIONAL</th>
<th>RELATIONAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>INCREMENTAL</td>
<td>Head-Driven Parsing</td>
<td>Dependency Parsing</td>
</tr>
<tr>
<td>REALIZATIONAL</td>
<td>Tree Adjoining Grammars</td>
<td>Relational-Realizational</td>
</tr>
</tbody>
</table>

Table: A Taxonomy of Generative Statistical Parsing Frameworks
Application I: Parsing Modern Hebrew

Data
The Modern Hebrew Treebank v2, head annotated. 6500 sentences, 500/5500/500 dev/train/test split

Models
▶ Grammatical Functions: PRD, SBJ, OBJ, COM, CNJ
▶ Morphological Splits: PoS/Def/Acc
▶ Conditioning Context: Horizontal/Vertical

Estimation
Relative Frequency + Simple Unknown Words Smoothing

Parsing
Exhaustive Viterbi Parsing (using BitPar, Schmid 2004)

Evaluation
PARSEVAL (i) Overall, and (ii) Per Category Evaluation
Overall Results

| Precision/Recall (#parameters) | 74.66/74.35 (7385) | 73.52/74.84 (21399) | 76.32/76.51 (13618) |
Overall Results

| Precision/Recall (#parameters) | 74.66/74.35 (7385) | 73.52/74.84 (21399) | 76.32/76.51 (13618) |
Results Per Category

<table>
<thead>
<tr>
<th>Category</th>
<th>First Score</th>
<th>Second Score</th>
<th>Third Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP</td>
<td>77.39 / 74.32</td>
<td>77.94 / 73.75</td>
<td>78.96 / 76.11</td>
</tr>
<tr>
<td>PP</td>
<td>71.78 / 71.14</td>
<td>71.83 / 69.24</td>
<td>74.4 / 72.02</td>
</tr>
<tr>
<td>SBAR</td>
<td>55.73 / 59.71</td>
<td>53.79 / 57.49</td>
<td>57.97 / 61.67</td>
</tr>
<tr>
<td>ADVP</td>
<td>71.37 / 77.01</td>
<td>72.52 / 73.56</td>
<td>73.57 / 77.59</td>
</tr>
<tr>
<td>ADJP</td>
<td>79.37 / 78.96</td>
<td>78.47 / 77.14</td>
<td>78.69 / 78.18</td>
</tr>
<tr>
<td>S</td>
<td>73.25 / 79.07</td>
<td>71.07 / 76.49</td>
<td>72.37 / 78.33</td>
</tr>
<tr>
<td>SQ</td>
<td>36.00 / 32.14</td>
<td>30.77 / 14.29</td>
<td>55.56 / 17.86</td>
</tr>
<tr>
<td>PREDP</td>
<td>36.31 / 39.63</td>
<td>44.74 / 39.63</td>
<td>44.51 / 46.95</td>
</tr>
</tbody>
</table>
Towards Probabilistic Universal Grammar

Basic Word-Order Parameter:
\[P(< \text{configuration} > | \{ \text{SBJ, PRD, OBJ} \}@S) \]

<table>
<thead>
<tr>
<th>Probability</th>
<th>Configuration</th>
<th>tri-</th>
<th>bi-</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2%</td>
<td>OBJ [SUBJ PRD]</td>
<td>OSV</td>
<td>OV</td>
</tr>
<tr>
<td>0.2%</td>
<td>PRD OBJ SBJ [</td>
<td>VOS</td>
<td>VO</td>
</tr>
<tr>
<td>0.2%</td>
<td>[PRD OBJ [SBJ]</td>
<td>VOS</td>
<td>VO</td>
</tr>
<tr>
<td>0.2%</td>
<td>PRD SBJ [OBJ]</td>
<td>VOS</td>
<td>VO</td>
</tr>
<tr>
<td>0.4%</td>
<td>[PRD [SBJ [OBJ]</td>
<td>VOS</td>
<td>VO</td>
</tr>
<tr>
<td>0.6%</td>
<td>OBJ [PRD SBJ]</td>
<td>OVS</td>
<td>OV</td>
</tr>
<tr>
<td>0.8%</td>
<td>OBJ PRD [SBJ]</td>
<td>OVS</td>
<td>OV</td>
</tr>
<tr>
<td>1%</td>
<td>[PRD [SBJ OBJ]</td>
<td>VSO</td>
<td>VO</td>
</tr>
<tr>
<td>1.3%</td>
<td>SBJ [PRD OBJ]</td>
<td>SVO</td>
<td>VO</td>
</tr>
<tr>
<td>1.7%</td>
<td>[PRD OBJ SBJ]</td>
<td>VOS</td>
<td>VO</td>
</tr>
<tr>
<td>1.7%</td>
<td>[SBJ PRD [OBJ]</td>
<td>SVO</td>
<td>VO</td>
</tr>
<tr>
<td>3%</td>
<td>OBJ PRD SBJ [</td>
<td>OVS</td>
<td>OV</td>
</tr>
<tr>
<td>3.7%</td>
<td>[PRD SBJ [OBJ]</td>
<td>VSO</td>
<td>VO</td>
</tr>
<tr>
<td>4.1%</td>
<td>SBJ [PRD [OBJ]</td>
<td>SVO</td>
<td>VO</td>
</tr>
<tr>
<td>6.5%</td>
<td>[SBJ PRD OBJ]</td>
<td>SVO</td>
<td>VO</td>
</tr>
<tr>
<td>10.3%</td>
<td>SBJ [PDR OBJ]</td>
<td>SVO</td>
<td>VO</td>
</tr>
<tr>
<td>12.3%</td>
<td>[PRD SBJ OBJ]</td>
<td>VSO</td>
<td>VO</td>
</tr>
<tr>
<td>15.6%</td>
<td>SBJ PRD [OBJ]</td>
<td>SVO</td>
<td>VO</td>
</tr>
<tr>
<td>35.3%</td>
<td>SBJ PRD OBJ [</td>
<td>SVO</td>
<td>VO</td>
</tr>
</tbody>
</table>
Towards Probabilistic Universal Grammar

Differential Object-Marking Parameter:
\[P(< \text{morphosyntactic representation} > | \text{OBJ}@S) \]

<table>
<thead>
<tr>
<th>Probability</th>
<th>Realization</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.8%</td>
<td>NP.DEF.ACC\langle PRP\rangle@S</td>
</tr>
<tr>
<td>6.5%</td>
<td>NP.DEF.ACC\langle NNT\rangle@S</td>
</tr>
<tr>
<td>6.7%</td>
<td>NP.DEF.ACC\langle NN.DEF\rangle@S</td>
</tr>
<tr>
<td>7.4%</td>
<td>NP.DEF.ACC\langle NNP\rangle@S</td>
</tr>
<tr>
<td>8.8%</td>
<td>NP\langle NNT\rangle@S</td>
</tr>
<tr>
<td>14.7%</td>
<td>NP.DEF.ACC\langle NN\rangle@S</td>
</tr>
<tr>
<td>43.5%</td>
<td>NP.\langle NN\rangle@S</td>
</tr>
</tbody>
</table>
Application II: Towards Computational Typology?

Can we Use the RR parameters to...

- Quantify Intra-Language Variation?
- Quantify Cross-Linguistic Variation?
- Learn Parameters Settings from Data?
- Quantify Nonconfigurationality?
RRRecap

The Relational-Realizational Framework
Specifying and Learning Linguistic Descriptions
- Simple
- Formal
- Robust
- Implementable
- Interpretable
- Explanatory

Syntactic paradigms augmented with realization rules provide a powerful strategy
Special thanks to Ash Asudeh, Mary Dalrymple, Ida Toivonen, Josef van Genabith and LFG.

For more Information
Relational-Realizational Parsing
Reut Tsarfaty, University of Amsterdam
PhD Manuscript, 2010
Thank You!

Questions?
LFG vs. RR

LFG

- Parallel (⇝ Model-Theoretic)
- Form-to-Function
- Hierarchical Feature-Checking
- ‘Lexical’ treatment of morphosyntax

\[\text{LEXICON (LI)} ; \text{c-str} \rightarrow \text{f-str} \rightarrow \text{s-str} \rightarrow \ldots \]

RR

- Integrated (⇝ Generative-Enumerative)
- Function-to-Form
- Local feature-checking
- ‘Realizational’ treatment of morphosyntax

\[\ldots \text{s-str} \rightarrow \text{f-str} \rightarrow \text{c-str} \rightarrow \text{r-str} ; \text{LEXICON (IR)} \]