
Limiting Disclosure of Sensitive Data in Sequential Releases of

Databases

Erez Shmuelia,c, Tamir Tassab,c, Raz Wassersteina, Bracha Shapiraa, Lior Rokacha

aDeutsche Telekom Laboratories and the Department of Information Systems Engineering, Ben-Gurion
University of the Negev, Be’er Sheva, Israel

bDivision of Computer Science, The Open University, Ra’anana, Israel
cE. Shmueli and T. Tassa contributed equally to this work.

Abstract

Privacy Preserving Data Publishing (PPDP) is a research field that deals with the develop-
ment of methods to enable publishing of data while minimizing distortion, for maintaining
usability on one hand, and respecting privacy on the other hand. Sequential release is a
scenario of data publishing where multiple releases of the same underlying table are pub-
lished over a period of time. A violation of privacy, in this case, may emerge from any
one of the releases, or as a result of joining information from different releases. Similarly
to [37], our privacy definitions limit the ability of an adversary who combines information
from all releases, to link values of the quasi-identifiers to sensitive values. We extend the
framework that was considered in [37] in three ways: We allow a greater number of releases,
we consider the more flexible local recoding model of “cell generalization” (as opposed to
the global recoding model of “cut generalization” in [37]), and we include the case where
records may be added to the underlying table from time to time. Our extension of the
framework requires also to modify the manner in which privacy is evaluated. We show
that while [37] based their privacy evaluation on the notion of the Match Join between the
releases, it is no longer suitable for the extended framework considered here. We define
more restrictive types of join between the published releases (the Full Match Join and the
Kernel Match Join) that are more suitable for privacy evaluation in this context. We then
present a top-down algorithm for anonymizing sequential releases in the cell generalization
model, that is based on our modified privacy evaluations. Our theoretical study is followed
by experimentation that demonstrates a staggering improvement in terms of utility due to
the adoption of the cell generalization model, and exemplifies the correction in the privacy
evaluation as offered by using the Full or Kernel Match Joins instead of the Match Join.

Keywords: Privacy Preserving Data Publishing, Sequential Release, Continuous Data
Publishing, Multipartite Graphs, Matching

Preprint submitted to Elsevier February 4, 2012

1. Introduction

Vast amount of information of all types is collected daily about people by governments,
corporations and individuals. The information is collected, for example, when users register
to or use online applications, receive health related services, use their mobile phones, uti-
lize search engines, or perform common daily activities. As a result, there is an enormous
quantity of privately-owned records that describe individuals’ finances, interests, activities,
and demographics. These records often include sensitive data and may violate the privacy
of the users if published. In today’s global network of organizational connections, the grow-
ing demand to disseminate and share this information is motivated by various academic,
commercial and other benefits. This information is becoming a very important resource
for many systems and corporations that may analyze the data in order to enhance and
improve their services and performance. One common practice for publishing such data
without violating privacy is applying regulations, policies and guiding principles for the
use of the data. Such regulations usually entail data distortion for the sake of anonymizing
the data. This approach is problematic since, on one hand, data leakage (intentional or
unintentional) can still occur, and, on the other hand, the data may become unusable after
distortion.

The recent developing research field of Privacy Preserving Data Publishing (PPDP) is
targeting this challenge. It aims at developing techniques that enable publishing data while
minimizing distortion for maintaining usability on one hand, and ensuring that privacy is
preserved on the other hand. (The reader is referred to the recent survey [12] for further
details.)

A closely related research area is Privacy Preserving Data Mining (PPDM) that was
initiated in 2000 by [2]. For detailed surveys about PPDM see [1, 36]. PPDM algorithms
aim at anonymizing data towards its release for specific data mining goals, so that distortion
is minimized, on one hand, and privacy is preserved on the other hand. The developed
algorithms are tailored to the relevant data mining goals. For example, if the data needs to
be used for learning a classifier, the corresponding PPDM algorithm will aim at achieving
anonymization while incurring a minimal loss of accuracy in the resulting classifier. In
PPDP, on the other hand, the purposes of the data release are unknown and it is needed
to anonymize the data using utility measures that are not targeted to specific data mining
tasks.

PPDP basically assumes [7] that the candidate table to be published includes four
types of attributes: explicit identifiers — attributes that uniquely identify an individual
(e.g. S.S.N.); quasi-identifiers — attributes that do not offer unique identification but their
combination might yield unique identification by means of linking attacks (e.g., zipcode,
age, gender); sensitive data — personal attributes of private nature, such as health condi-
tion or financial data; and other attributes that are non-sensitive, on one hand, and cannot
be used for identification on the other hand. (We refer hereinafter to the latter type of
attributes as non-identifiers.) The usual practice in PPDP is to remove the identifiers and
to generalize the quasi-identifiers in order to protect the sensitive data of individuals from
being revealed. Generalization replaces a value with a subset of values of the relevant at-

2

tribute, typically a parent value in a taxonomy (a hierarchical generalization tree) of that
attribute. In such practices, the sensitive data is usually retained intact in order to allow
meaningful data mining on the anonymized data.

In the past years, several models were suggested for maintaining privacy when dissem-
inating data. Most approaches evolved from the basic model of k-anonymity [34]. Algo-
rithms for k-anonymization include those of [22, 32, 33] that are designed for obtaining
minimum distortion, and [5, 14, 18] that are intended for classification. Variations and
alternatives of k-anonymity were also studied. For example, [24] proposed the model of
`-diversity to address attacks that are based on lack of diversity in the sensitive data; t-
closeness [9, 23] was suggested in order to maintain the distribution of the sensitive data;
[31] proposed a privacy model similar to t-closeness called average privacy risk; [39, 38]
proposed to limit the confidence of inferring a sensitive property for a group of individuals;
and [45] proposed the notion of personalized anonymity.

Early models, such as k-anonymity or `-diversity, referred to a scenario in which a single
release is considered to be published. In practical applications, however, data publishing
is more complicated and may involve several releases. This may occur, for example, when
new information becomes available or when various parts of the data are published to
different data recipients. A violation of privacy, in this case, may emerge from any one of
the releases, or as a result of joining information from different releases. Several scenarios
of publishing multiple releases are identified in [12]:

(1) Multiple Release Publishing [47, 20, 4, 11]: Several releases (views) of the same under-
lying table are published at one time.

(2) Sequential Release Publishing [37]: Different projections of a given table on different
subsets of attributes are released in a sequential manner. For example, an organization
makes a new release when new attributes become available, releases a separate view for
each data sharing purpose (such as classifying a different target variable) [14, 18, 40],
or makes separate releases for personally-identifiable data (e.g., names) and sensitive
data (e.g., DNA sequences) [25]. The goal in such scenarios is to anonymize the new
release so that its combination with all previous releases would be anonymous.

(3) Continuous Data Publishing [6, 8, 13, 30, 43, 46]: Several releases of the same under-
lying table are published over a period of time, where in between releases, records are
inserted to or deleted from the table.

In the two last scenarios, several releases of partial views of the same basic table are
published in a sequential manner. Releases that were already published cannot be modified.
The goal is to anonymize the next release so that the combination of information from all
releases does not lead to a privacy breach. In the sequential release scenario, the set of
records (rows) is fixed, while the set of attributes (columns) changes from one release to
another; in continuous data publishing, the set of attributes is fixed while the set of records
is dynamic. In this study we consider a combination of the two scenarios. Most of the

3

study is devoted to the sequential release scenario, that was studied so far only in [37]. We
then extend the discussion to include cases in which records may be added to the table.

As in [37], we consider two privacy goals: k-linkability and k-diversity. k-Linkability
mandates that even if an adversary combines information from all releases of the underlying
table, he would not be able to link any selection of values of the quasi-identifiers to less than
k distinct values of the sensitive attribute. k-Diversity demands that such an adversary
would not be able to link any selection of values of the quasi-identifiers with any sensitive
value with probability greater than 1/k.1 Given a desired linkability or diversity level, k,
the problem of anonymizing sequential release is as follows: Assume that the data holder
has previously published several releases of the table, where each release is a generalized
view of the table. The data holder wishes to issue a new release. The goal is to find the
most “useful” generalized release, bearing in mind that previous releases that were already
published can no longer be modified, so that the required level of privacy is still respected.
We illustrate these ideas in the following example.

Example 1.1. Consider the table and its corresponding two releases that are given in
Table 1. The table has two quasi-identifiers, age and gender, and one sensitive attribute,
disease. Clearly, each of the two releases, on its own, satisfies 2-linkability, as well as
2-diversity; indeed, each release enables to link any specific value of the quasi-identifiers to
exactly two sensitive values with equal probabilities. For instance, if an adversary wishes
to find sensitive information about Alice, a female of age 30, then the first release would
allow him to infer that she has either flu or angina, while the second release would allow
him to infer that she has either hepatitis or angina. However, the sequential release that
consists of those two releases satisfies only 1-linkability/diversity since if the adversary is
exposed to both releases, he may combine the information that is disclosed by each of them
and find that Alice has angina. Therefore, in order to retain 2-linkability/diversity, the
second release would have to be further generalized.

age gender disease

20 male measles
20 female hepatitis
30 male flu
30 female angina

age disease

20 measles
20 hepatitis
30 flu
30 angina

gender disease

male measles
female hepatitis
male flu
female angina

Table 1: A table (left) and two corresponding releases (middle and right)

2

Two näıve solutions exist for this scenario [33, 34]: (1) Anonymizing the underlying table
once and then publishing releases based on the anonymized table; and (2) Generalizing each

1Our terminology differs from that of [37]: We used “linkability” instead of “anonymity, since k-
anonymity is a notion of privacy that is oblivious of the sensitive values; we used “diversity” instead
of “linkability” since that is the more accepted term [24].

4

new release based on previous releases by guaranteeing that each value in the new release
is not more specialized than the same value as published in previous releases. However,
both of these solutions imply excessive generalizations that increase the information loss
and hence reduce the utility of the releases unnecessarily (see [37]).

[37] provided a formal definition of the sequential release privacy problem and developed
a Top-Down Specialization Algorithm for Anonymizing Sequential Releases (TDS4ASR).
Their work concentrated on the case in which only one previous release was published, and
the data holder wishes to publish a second release of the same table while maintaining
the desired level of linkability. The algorithm generalizes the second release so that the
required privacy goal is met. [37] considered a generalization model which is called “cut
generalization”. In that model, every attribute has a corresponding taxonomy and the
generalization of any given attribute in any release is a global recoding generalization that
corresponds to a cut in the graph representation of the taxonomy tree. Herein, we extend
the framework that was considered in [37] in three ways: We allow a greater number of
releases, we consider the more flexible local recoding model of “cell generalization”, in
which each cell may be generalized independently, and we allow adding records to the
underlying table in between releases. We show that, owing to its flexible local nature, cell
generalization implies smaller information losses and hence it offers substantially better
utility results than cut generalization.2

The above described extension of the framework requires also to modify the manner
in which the level of privacy (linkability or diversity) is evaluated. In [37], the authors
based their evaluation on the notion of the Match Join (MJ). We show that when using
cell generalization, or when the number of releases is greater than two, the MJ is no longer
suitable for such evaluation. We define a more restrictive type of join between the published
releases, which we call the Full Match Join (FMJ), and show that the privacy level must
be evaluated based on that join. Specifically, when using the MJ (rather than the FMJ)
in order to assess the level of privacy that is delivered by the sequential release, one may
be led to excessive (namely, too optimistic) estimates. Switching from the MJ to the FMJ
provides the required remedy.

Unfortunately, computing the FMJ for more than two releases is an NP-Hard problem,
as we prove later on. We therefore define an intermediate type of join, called the Kernel
Match Join (KMJ), and prove that basing the evaluation on it, rather than on the MJ,
provides better approximation of the actual level of privacy. The KMJ, as opposed to the
FMJ, can be computed in polynomial time.

Our theoretical study is followed by extensive experimentation. We tested our algo-
rithm, which is designed to evaluate privacy based on the FMJ (in the case of two releases)

2Standard data mining tools cannot be applied directly on tables that were generalized using local recod-
ing, since such tables, as opposed to tables that were generalized using global recoding, include intersecting
subsets of values. The recent study [21] discusses that issue and proposes a way for preprocessing such
tables for data mining purposes. It is also shown there that the lower information losses that characterize
local recoding generalizations yield more accurate data mining results.

5

or KMJ (for more than two releases) and achieving the required level of privacy using the
cell generalization model, on several large datasets. Our experiments demonstrate the cor-
rected level of linkability or diversity as measured by our modified evaluations, as well as
a staggering improvement in terms of utility due to the adoption of the cell generalization
model.

The paper is organized as follows: Section 2 provides basic definitions. In Section
3 we define the three types of joins, discuss their properties and present algorithms for
their computation. In Section 4 we define the notions of k-linkability and k-diversity and
the corresponding privacy problem in sequential releases. Then, we describe in Section
5 an algorithm for computing sequential releases that comply with either k-linkability or
k-diversity while minimizing the information loss. In Section 6 we extend our discussion
to include dynamically changing tables to which new records may be added from time to
time. Section 7 portrays the experimental evaluation and its results. Finally, we conclude
in Section 8 and describe some future research directions.

2. Basic Definitions

2.1. Releases of a table and their graph representation

In this section we define the basic notions of a release and a sequential release of a given
database table. For convenience, we include in Section 9.1 in the Appendix a table that
summarizes the main notations that we introduce here and in the next section.

Let A1, . . . , AM be M attributes and T = {S1, . . . , SN} be a table of N records in
A1 × · · · × AM . Here, Am, 1 ≤ m ≤ M , denotes the m-th attribute as well as the domain
in which it takes values. Hence, the n-th record in T is Sn = (Sn(1), . . . , Sn(M)) and
Sn(m) ∈ Am, 1 ≤ m ≤ M . We shall assume that the quasi-identifiers are A1, . . . , At,
the non-identifiers are At+1, . . . , AM−1, and the sensitive attribute is AM . (We make the
common assumption of a single sensitive attribute; the generalization to scenarios with
more sensitive attributes dictates itself.)

For each 1 ≤ m ≤ M , we let Am denote a collection of subsets of Am that covers the
entire set Am. A generalization of the table T is a table of the form T = {S1, . . . , SN}
where the n-th generalized record in T is Sn = (Sn(1), . . . , S(M)) ∈ A1 × · · · × AM and,
in addition, the following inclusion holds: For all 1 ≤ n ≤ N and 1 ≤ m ≤ M , the subset
Sn(m) ⊆ Am, which is one of the subsets in the corresponding collection of subsets Am,
includes the original element Sn(m).

A sequential release of T is a sequence T1, . . . , TR of releases of T , where each release Tr,
1 ≤ r ≤ R, is a generalized view of T . (The generalization schemes, namely, the collections
A1, . . . , AM of permissible subsets, may be different for different releases.) Typically in
sequential releases, every release contains a different subset of the attributes, as dictated
by the purposes of the release. If Ir ⊂ [M] := {1, . . . ,M} denotes the subset of attribute
indices that appear in the r-th release, and {Sr1 , . . . , SrN} are the generalized records in
Tr, 1 ≤ r ≤ R, then for every attribute index m ∈ [M] \ Ir, the m-th column in Tr is
suppressed; namely, Srn(m) = ∗ for all 1 ≤ n ≤ N and m ∈ [M] \ Ir.

6

Example 2.1. Assume that T is the table given in Table 2 which consists of N = 4
records and M = 4 attributes — age, zipcode, occupation, and disease. Here, there
are t = 3 quasi-identifiers (being the first three attributes) and one sensitive value. A1, for
example, denotes here the age attribute as well as the domain in which it takes values (say,
A1 = {0, 1, 2, . . . , 120}). Assume the following generalization rules:

• In the age attribute we allow any generalization in the form of an interval of ages.
Hence, A1 in this case is the set of all intervals of the form [a, b] where a, b ∈ A1 and
b ≥ a.

• In zipcode we allow any generalized zipcode in the form of a prefix (e.g., the exact
zipcode 53120 may be generalized to any of the five prefix zipcodes 5312*, 531**,
53***, 5****, or *****).

• In occupation we allow generalization by suppression only (i.e., either the original
value is retained, or it is totally suppressed). Hence, here A3 = A3 ∪ {A3}; namely,
the generalized subsets can be any of the singleton values in A3 or the entire set
(which corresponds to total suppression).

• In disease we allow no generalization. Namely, A4 = A4.

Then Table 3 exemplifies two possible releases of T . The first one, T1, includes attributes
A1 and A2, while the second, T2, includes attributes A2, A3 and A4.

T age zipcode occupation disease

S1: 30 53120 teacher measles
S2: 30 53425 engineer hepatitis
S3: 35 53890 singer flu
S4: 40 53764 actor angina

Table 2: Basic table T

T1 age zipcode occupation disease

S1
1 : 30 53120 * *

S1
2 : 30 53425 * *

S1
3 : 35 53890 * *

S1
4 : 40 53764 * *

T2 age zipcode occupation disease

S2
1 : * 53120 * measles

S2
2 : * 53*** * hepatitis

S2
3 : * 53890 singer flu

S2
4 : * 53*** actor angina

Table 3: Releases T1 (left) and T2 (right) of T

2

Next, we define the important notion of consistency between records of different releases.

Definition 2.1. Let Tr and Tr′ be two different releases of the same table T . The records
Srn ∈ Tr and Sr

′

n′ ∈ Tr′ are called consistent if Srn(m) ∩ Sr′n′(m) 6= ∅ for all m ∈ [M].

7

S1
1

1S2

1S3

1S4

S2
1

S2
2

S2
3

S2
4

Figure 1: The graph to Example 2.2

Considering the two releases T1 and T2 of the basic table T in Example 2.1, the only
attribute that appears in both releases is A2 (zipcode). Hence, in order to check con-
sistency between records in these two releases, it suffices to concentrate on the values of
that attribute. The record S1

1 , for example, is consistent with S2
1 , S2

2 and S2
4 , but it is not

consistent with S2
3 .

If two records are not consistent, we may infer with certainty that they could not have
originated from the same record in the basic table T . Indeed, if Srn ∈ Tr and Sr

′

n′ ∈ Tr′
did originate from the same record in T , say S1, then for all m ∈ [M] we should have
S1(m) ∈ Srn(m) and S1(m) ∈ Sr′n′(m).

The notion of consistency gives rise to the following definition of the multipartite graph
that corresponds to a given sequential release. Let T1, . . . , TR be R releases of the same table
T , where Tr = {Sr1 , . . . , SrN}, 1 ≤ r ≤ R. Such a sequential release defines a multipartite
consistency graph GT [R] on the set of nodes T [R] = T1 ∪ · · · ∪ TR: An edge connects the
records Srn and Sr

′

n′ if and only if r 6= r′ and the records are consistent.
Among the edges of the graph, some connect records that originate from the same orig-

inal record (such records are obviously consistent) and some connect records that happen
to be consistent even though they did not originate from the same original record. We refer
to the edges of the first kind as horizontal, since if we assume that the order of records in
all releases is retained, those edges are graphically horizontal.

Example 2.2. Consider the basic table T and the two releases T1 and T2 as given in Tables
2 and 3. Then the corresponding graph in that case is given in Figure 1. That graph has
four horizontal edges and six non-horizontal edges. (Some of the non-horizontal edges are
denoted in the figure by solid lines and some are denoted by broken lines; the distinction
between those two types of edges will be clarified later on.) 2

2.2. Models of generalization

We define here two models of generalization that are based on hierarchical generalization
trees (or taxonomies). Let Tm be a taxonomy for attribute Am, 1 ≤ m ≤ M ; namely,

8

Tm is a tree in which each node represents a subset of Am, the leaves are the singleton
subsets, the root is the entire set and the edges describe the inclusions between the subsets.
In the first model, called cell generalization, each entry in the m-th column of T may
be generalized independently to any of the subsets in Tm that includes it (namely, the
collection Am of permissible subsets for generalization is all of Tm). The second model,
called cut generalization, is more restrictive. Its definition is based on the notion of a cut
in a taxonomy.

Definition 2.2. Let A be an attribute and T be a corresponding taxonomy. A cut in T is
any selection of disjoint subsets from T whose union equals A.

Example 2.3. Consider the hierarchical generalization tree in Figure 2 for an attribute of
clothing items. Then [Footwear, Clothes] and [Footwear, Shirts, Pants, Outdoors] are two
cuts in the tree. 2

Clothing

Footwear Clothes

Shoes Boots Sandals Shirts Pants Outdoors

Figure 2: A hierarchical clustering tree (taxonomy)

In the case of cut generalization, the collection of subsets Am for attribute Am in each
release Tr is some cut in the underlying taxonomy Tm. Namely, the collection of subsets
Am may change from one release to another, but they are all cuts in the same taxonomy
Tm.

Note that in the case of cut generalization, all entries of the table T that have the same
value will always be generalized in the same manner in any given release. For example,
if one of the attributes that appears in a given release is age, then all entries with the
value age=27 will always be generalized in the same manner (e.g., will be replaced by
[20-29]). This generalization model is usually called global recoding (e.g. [5, 18, 22, 42]).
In the case of cell generalization, we are flexible to generalize independently each value in
the table’s m-th column with any of the subsets in Tm that contains it. Such a model is
usually called local recoding (e.g. [16, 27, 29, 42]). Local recoding is more flexible than
global recoding, in the sense that the set of all generalizations of a given table in the local
recoding model is a proper superset of the set of all generalizations of the same table in the
global recoding model. Hence, local recoding is a preferable model since it allows achieving
a certain privacy goal with lower costs in terms of information loss.

9

The sensitive attribute is typically not subjected to generalization. It is either included
in a release, and then it appears fully specialized, or it does not, and then it is totally
suppressed. The corresponding taxonomy TM of AM is therefore a trivial taxonomy that
consists of the root, that corresponds to the whole set AM , and the leaves, that correspond
to all singleton values in AM . In releases where AM is included, we apply the trivial
generalization that keeps all values in the leaf level of TM (no generalization), while in
other releases we generalize all values to the root value (total suppression).

3. Match Joins

3.1. The match join and the full match join

In a given sequential release of a table, the records in each release do not appear in
any particular order. An adversary who wishes to link the values of the sensitive attribute
to values of the quasi-identifiers needs first to find which records in the different releases
correspond to the same original record in T .

Definition 3.1. Two records in two different releases, Srn ∈ Tr and Sr
′

n′ ∈ Tr′, are called
siblings if they originated from the same record in T (namely, they are connected by a
horizontal edge).

For each 1 ≤ n ≤ N , we let CH
n denote the set of R records in T1, . . . , TR that originated

from Sn ∈ T . Clearly, as all records in CH
n are siblings, they are all consistent with

each other. Therefore, CH
n is a clique of size R (R-clique hereinafter) in the multipartite

graph G = GT [R]. (We refer to those cliques as horizontal cliques since all edges in them
are horizontal.) Moreover, the collection {CH

1 , . . . , C
H
N } of all such R-cliques is a perfect

matching in G:

Definition 3.2. A collection of N R-cliques in G = GT [R] is called a perfect matching if
those cliques are disjoint and their union covers all of the nodes in G.

In view of the above, an adversary who examines the sequential release T [R] may
construct the multipartite consistency graph G = GT [R] and then, if an edge {Srn, Sr

′

n′} in
that graph is not part of a perfect matching, he may deduce that the records Srn and Sr

′

n′

cannot be siblings. On the other hand, every perfect matching in the graph represents a
possible siblinghood linkage between the records in the sequential release. The adversary
aims at learning the correct siblinghood linkage in the graph (namely, the perfect matching
{CH

1 , . . . , C
H
N }) since then he can make the correct linkage between values of the quasi-

identifiers and values of the sensitive attribute. The goal of the data owner is to hide as
much as possible that linkage. Namely, it is desired to hide the true perfect matching
among a sufficiently large number of other perfect matchings so that the linkage between
values of the quasi-identifiers and the sensitive attribute is obfuscated. Later on we state
that goal more formally.

10

Consider, for example, the table T and releases T1 and T2 of Example 2.1. Each edge
in the graph that is depicted in Figure 1 denotes a relation of consistency between records
of the two releases. Of those edges, only the four horizontal ones connect sibling records.
In that graph there are exactly two perfect matchings:

{S1
1 , S

2
1} , {S1

2 , S
2
2} , {S1

3 , S
2
3} , {S1

4 , S
2
4} , (1)

and
{S1

1 , S
2
1} , {S1

2 , S
2
4} , {S1

3 , S
2
3} , {S1

4 , S
2
2} . (2)

Therefore, an adversary who sees the two releases may deduce that all edges that are not
part in neither of those perfect matchings do not connect sibling records (those edges are
denoted by broken lines in Figure 1). However, he may not determine whether the sibling
of S1

2 is S2
2 or S2

4 .
The above discussion motivates the following definition.

Definition 3.3. Let T1, . . . , TR be R releases of the same table T and let G = GT [R] be the
corresponding multipartite graph on the set of nodes T [R] = T1 ∪ · · · ∪ TR.

(1) An R-clique in G is called admissible if it is included in a perfect matching in G.

(2) The collection of all R-cliques in G is called the Match Join (MJ hereinafter) of
T1, . . . , TR and it is denoted MJ T [R].

(3) The collection of all admissible R-cliques in G is called the Full Match Join (FMJ
hereinafter) of T1, . . . , TR and it is denoted FMJ T [R].

We note that the notion of MJ as we defined in Definition 3.3 is equivalent to the join
notion that was considered in [37].

Going back to Example 2.2 and the corresponding graph in Figure 1,MJ T [2] in this case
is the set of all ten edges in the graph, while FMJ T [2] consists of just the six admissible
edges that are denoted by solid lines.

Comment. Given a multipartite graph, we distinguish between two problems that
relate to perfect matchings in it: (1) counting (or listing) all perfect matchings in that
graph; and (2) computing its FMJ, namely, the subset of all edges in that graph that are
part of any perfect matching. In this paper we are interested in the second problem only.
That problem can be solved in polynomial time in bipartite graphs, but it is NP-hard in
multipartite graphs with three or more parts (see Theorem 3.4). The first problem, on the
other hand, is hard even in bipartite graphs. More specifically, the task of counting the
number of perfect matchings in a bipartite graph is equivalent to the problem of computing
the permanent of a binary matrix. The latter problem is #P-complete in the worst case
as well as in the average case. The reader is referred to [35] for an elaborate discussion on
this problem.

11

The rest of this section is organized as follows: In Section 3.1.1, we discuss the notions
of MJ and FMJ in the case of two releases, R = 2. In Section 3.1.2, we prove that MJ
coincides with FMJ in the special case which was considered in [37], namely, the case of
cut generalization and R = 2 (Corollary 3.3). Then, in Section 3.1.3, we give two examples
where MJ differs from FMJ that illustrate the necessity of the two conditions in Corollary
3.3. The first example is for the case of cut generalization and R = 3; the second example
is for the case of cell generalization and R = 2.

3.1.1. MJ and FMJ for R = 2

When R = 2, an R-clique is just an edge. Hence, MJ is the set of all edges while FMJ
is the subset of edges that are included in a perfect matching in the bipartite graph. Such
edges were called matches in [15]. We shall adopt this term here in the following manner:

Definition 3.4. Let Gr,r′ denote the bipartite graph that is obtained by restricting G to the
subset of nodes Tr ∪ Tr′, where 1 ≤ r < r′ ≤ R. An edge e = {Srn, Sr

′

n′} is called a match if
it is an admissible 2-clique in Gr,r′; namely, it is included in a perfect matching in Gr,r′.

In [35] a polynomial-time algorithm for detecting all matches in a bipartite graph was
presented. It uses Tarjan algorithm for finding the strongly connected components in a
related directed graph. It runs in linear time with respect to the number of nodes and
number of edges in the bipartite graph. Therefore, the problem of computing the FMJ has
an efficient solution when R = 2. Computing the FMJ when R > 2 is discussed in Section
3.2.

3.1.2. The case of cut generalization

Definition 3.5. Let α and β be two values in the hierarchical generalization tree of Am.
Then α and β are on the same generalization path, denoted α ↑ β, if α = β or one of them
is an ancestor of the other.

Definition 3.6. The complete bipartite graph Kd,d is the bipartite graph where the set of
nodes is U = U1 ∪ U2, |U1| = |U2| = d, and every node in U1 is connected to every node
in U2. A bipartite graph is called decomposable if each of its connected components is a
complete bipartite graph.

The graph in Figure 3 is decomposable since it has two connected components, which
are K3,3 and K2,2.

12

Figure 3: A decomposable bipartite graph

Our main result in that regard is the following theorem, whose proof is postponed to
the Appendix (see Section 9.2 there).

Theorem 3.1. In the case of cut generalization, Gr,r′ is decomposable for all 1 ≤ r < r′ ≤
R.

Clearly, every edge in a decomposable bipartite graph is part of some perfect matching.
Hence, an immediate consequence of Theorem 3.1 is as follows.

Corollary 3.2. In the case of cut generalization, all edges are matches.

From Corollary 3.2 we arrive at the following conclusion.

Corollary 3.3. If R = 2, then in the case of cut generalization MJ=FMJ.

3.1.3. MJ 6= FMJ

Here we give two examples where MJ differs from FMJ. Example 3.1 is for the case of
cut generalization and R = 3; hence, that example illustrates the necessity of the condition
R = 2 in Corollary 3.3. Example 3.2 is for the case of cell generalization and R = 2; hence,
it illustrates the necessity of the assumption about cut generalization in Corollary 3.3.

Example 3.1. Let A1 = {a, b}, A2 = {x, y} and A3 = {1, 2} be three attributes and
consider the table T and the corresponding releases T1, T2, T3 as given in Table 4. Note
that those releases comply with the cut generalization model (in which the taxonomies are
of height 2). The corresponding tripartite graph is depicted in Figure 4.

13

T T1 T2 T3

(a, x, 1) (a, x, ∗) (∗, x, 1) (a, ∗, 1)
(b, x, 2) (b, x, ∗) (∗, x, 2) (b, ∗, 2)
(a, y, 2) (a, y, ∗) (∗, y, 2) (a, ∗, 2)

Table 4: A table T and corresponding three releases obtained by cut generalizations

S1
1

S1
2

S1
3

S2
1

S2
2

S2
3

S3
1

S3
2

S3
3

Figure 4: The graph to Example 3.1

That graph has only one perfect matching that consists of the three horizontal 3-cliques.
Hence,

FMJ T [3] = {{S1
1 , S

2
1 , S

3
1} , {S1

2 , S
2
2 , S

3
2} , {S1

3 , S
2
3 , S

3
3}} . (3)

However, as the graph contains one more (non-admissible) clique — {S1
1 , S

2
2 , S

3
3}, we have

MJ T [3] = {{S1
1 , S

2
1 , S

3
1} , {S1

2 , S
2
2 , S

3
2} , {S1

3 , S
2
3 , S

3
3} , {S1

1 , S
2
2 , S

3
3}} . (4)

2

Example 3.2. Let A1 = {a, b, c}, A2 = {x, y, z} and A3 = {1, 2, 3} be three attributes
and consider the table T and the corresponding releases T1, T2 as given in Table 5. Because
of the way in which the A2 attribute is generalized in T2, this sequential release complies
with the cell (rather than cut) generalization model (with taxonomies of height 2). The
corresponding bipartite graph is depicted in Figure 5.

T T1 T2

(a, x, 1) (a, x, ∗) (∗, ∗, 1)
(b, y, 2) (b, y, ∗) (∗, y, 2)
(c, z, 3) (c, z, ∗) (∗, z, 3)

Table 5: A table T and corresponding two releases obtained by cell generalizations

14

S1
1

S1
2

S1
3

S2
1

S2
2

S2
3

Figure 5: The graph to Example 3.2

Here,
FMJ T [2] = {{S1

1 , S
2
1} , {S1

2 , S
2
2} , {S1

3 , S
2
3}} . (5)

However, as the graph contains two more (non-admissible) 2-cliques, we have

MJ T [2] = {{S1
1 , S

2
1} , {S1

2 , S
2
2} , {S1

3 , S
2
3} , {S1

2 , S
2
1} , {S1

3 , S
2
1}} . (6)

2

3.2. The kernel match join

Here we define another type of join — the kernel match join. The motivation for this
definition is computational. Computing the MJ is easy, as we show in Section 3.3. However,
the situation with the FMJ is different. While it may be computed efficiently when R = 2,
using the algorithm given in [35], it is hard to compute it when R > 2:

Theorem 3.4. Computing the Full Match Join FMJ T [R], for any constant R > 2, is
NP-hard.

The proof of Theorem 3.4 is given in the Appendix in Section 9.3. The kernel match
join that we define here is an intermediate join that we use instead of the FMJ; as shown
in Section 3.3, it can be computed in polynomial time.

Definition 3.7. A subgraph G′T [R] of G = GT [R] is called rich if every edge in it is a match

in G′T [R], and it also belongs to some R-clique in G′T [R]. The kernel of G, denoted K(G),
is the maximal rich subgraph of G.

Theorem 3.5. There exists at least one rich subgraph of G. The kernel of G is the union
of all rich subgraphs of G.

Proof. The subgraph that consists of all N
(
R
2

)
horizontal edges is clearly rich. If G′

and G′′ are both rich then so is their union. Hence, the union of all rich subgraphs is the
maximal rich subgraph, namely, the kernel. 2

Definition 3.8. Let T1, . . . , TR be R releases of the same table T and let G = GT [R] be the
corresponding multipartite graph on the set of nodes T [R] = T1∪· · ·∪TR. The collection of
all R-cliques in the kernel K(G) of G is called the Kernel Match Join (KMJ hereinafter)
of T1, . . . , TR and it is denoted KMJ T [R].

15

Example 3.3. Consider the sequential release in Example 3.1 and the corresponding tri-
partite graph in Figure 4. The three edges e1 := {S1

2 , S
2
1}, e2 := {S1

3 , S
3
1}, and e3 := {S2

3 , S
3
2}

cannot be in the kernel since they are not part of any 3-clique. After removing them, we
are left with a tripartite graph that includes, apart from the horizontal edges, three more
edges, i.e., the three edges in the 3-clique {S1

1 , S
2
2 , S

3
3}. Each of those three edges cannot

be in the kernel either since they are no longer matches in the graph that is obtained after
removing e1, e2, e3. (For example, the edge {S1

1 , S
2
2} is not a match since the correspond-

ing bipartite graph, G1,2, has only one perfect matching, consisting of the three horizontal
edges.) After removing these edges too, we are left with a subgraph that consists of just
the three horizontal 3-cliques. Since that subgraph is rich, it is the kernel.

The three joins that we defined form a chain in the following sense:

Theorem 3.6. FMJ T [R] is a subset of KMJ T [R], while KMJ T [R] is a proper subset of
MJ T [R].

Proof. The first inclusion is obvious since FMJ T [R] is clearly rich; indeed, as FMJ T [R]

is the union of all perfect matchings in the R-partite graph, every edge in FMJ T [R] is part
of some R-clique and it is also a match in FMJ T [R]. Also the second inclusion is clear
since every edge in KMJ T [R] is part of some R-clique andMJ T [R] includes all R-cliques.
It remains only to demonstrate the proper inclusion of the kernel within the match join.
This is demonstrated by Examples 3.1 and 3.3. The KMJ in this case equals the FMJ,
which is given in Eq. (3), and it differs from the MJ, which is given in Eq. (4). 2

The definition of the KMJ implies that when R = 2 it coincides with the FMJ. On the
other hand, when R > 2, there are cases in which the KMJ is a proper superset of the
FMJ, assuming that P 6= NP, as implied by Theorem 3.4 and the polynomial procedure to
compute the KMJ that we describe in the next section.

3.3. Computing the MJ and KMJ

3.3.1. The MJ

Assume that we already have MJ T [R−1] — the MJ on the first R − 1 releases. Then
MJ T [R] may be computed by the straightforward Algorithm 1 which examines the possi-
bility of expanding each of the cliques in MJ T [R−1] by each of the records in TR.

The runtime of Algorithm 1 is Θ(|MJ T [R−1]| ·NR). Since the size of MJ T [R−1] is at
most NR−1, we get a theoretical runtime bound of O(RNR). It is impossible to improve
upon this theoretical bound since if all releases are totally suppressed then the resulting
(R−1)-partite graph would be the complete graph and then |MJ T [R−1]| = NR−1. However,
in practice, the (R− 1)-partite is far from being complete. For example, if R = 3 then the
MJ on the first two releases is just the set of edges in that bipartite graph. The number of
edges in such graphs is typically O(kN), which is much smaller than the theoretical bound
of O(N2). (That fact was validated experimentally by us, and it was also validated in a
similar setting that was studied in [35].) Having said that, Algorithm 1 and the subsequent
algorithms that we present below are applicable for relatively small values of R. In order

16

Algorithm 1 Updating the MJ
Input: T1, . . . , TR, MJ T [R−1].
Output: MJ T [R].

1: Set MJ T [R] = ∅.
2: for all 1 ≤ n ≤ N do
3: for all C = {S1

n1
, . . . , SR−1

nR−1
} ∈ MJ T [R−1] do

4: If {Srnr
, SRn } is an edge in GT [R] for all 1 ≤ r ≤ R− 1, add {S1

n1
, . . . , SR−1

nR−1
, SRn } to

MJ T [R].
5: end for
6: end for
7: Output MJ T [R].

to apply them for large values of R, it might be necessary to consider relaxed versions of
those algorithms; for example, algorithms that partition the database into smaller parts
and then work on each part separately, or randomizations of those algorithms.

3.3.2. The KMJ

We begin by describing a process that generates for a given graph G its kernel. Then,
we describe a process for finding the kernel of G = GT [R] given that we already have the
kernel of GT [R−1].

Define the following non-increasing sequence of subgraphs of G:

• K0(G) = G.

• Given Kj(G), j ≥ 0, we define Kj+1(G) in two steps.

(i) First, we remove from Kj(G) all edges that are not matches and get an interim
graph denoted Kj+1/2(G); this is done by invoking the algorithm for detecting
all matches in a bipartite graph on each of the bipartite subgraphs of Kj(G), as
described in Section 3.

(ii) Then we remove all edges in Kj+1/2(G) that are not part of any R-clique in
Kj+1/2(G) and obtain Kj+1(G). In other words, we retain only the edges that
are part of some R-clique, namely, the edges that appear in the MJ of the graph
Kj+1/2(G). That computation can be carried out by applying Algorithm 1 on
Kj+1/2(G).

The computation of this sequence of graphs is repeated until a steady state, Kj0(G), is
found (namely, a graph Kj0(G) where all edges are matches).

Theorem 3.7. Consider the chain of non-increasing subgraphs G = K0(G), K1(G), K2(G), . . .
as defined above. Let j0 be the first index for which Kj0+1(G) = Kj0(G). Then Kj0(G) is

17

the kernel K(G). For fixed values of R, the time complexity of this algorithm is polynomial
in the size of G.

Proof. Assume that Kj+1(G) 6= Kj(G). Then the number of edges in Kj+1(G) is
strictly smaller than that in Kj(G). Hence, the process must stop after no more than
|E| − N

(
R
2

)
steps (where |E| denotes the number of edges in G), since in every iteration

at least one edge was removed and it is clear that none of the N
(
R
2

)
horizontal edges will

be ever removed. Since the computation of Kj+1(G) from Kj(G) consists of two stages,
each of which is polynomial, then the overall time complexity is also polynomial. Next,
we prove that Kj0(G) = K(G) by induction on j0. Clearly, if j0 = 0 then K0(G), which
equals G, must be the kernel, since all edges in the graph are matches and also belong to
some R-clique. Assume next that j0 > 0. Clearly, all edges in K0(G) \ K1/2(G) cannot
be in the kernel of K0(G) since they are not matches. Hence, the kernel of K0(G) must
be included in K1/2(G). This implies that K(K0(G)) = K(K1/2(G)). By the same token,
all edges in K1/2(G) \K1(G) cannot be in the kernel of K1/2(G) since they are not part of
any R-clique. Hence, the kernel of K1/2(G) must be included in K1(G). This implies that
K(K0(G)) = K(K1(G)). Finally, by the induction hypothesis on K1(G), we conclude that
Kj0(G) = K(K1(G)) = K(K0(G)) = K(G). 2

Next, we discuss the sequential computation of the kernel and the KMJ. To that end,
we begin with the following observation.

Definition 3.9. Let H = (V,E) be a graph where V is the set of nodes and E is the set
of edges. Let V ′ ⊂ V be a subset of the nodes. Then the restriction of H to V ′ is the graph
H ′ = (V ′, E ′) where E ′ consists of all edges in E that connect two nodes in V ′.

Lemma 3.8. Let KR−1 be the kernel of GT [R−1] (the multipartite graph of the first R − 1
releases), and KR be the kernel of GT [R]. Then the restriction of KR to T [R − 1] is a
subgraph of KR−1.

Stated differently, Lemma 3.8 says that if we take any R-clique from KR, say C =
{S1

n1
, S2

n2
, . . . , SRnR

} and remove from it the node in TR, we shall get a clique C ′ = {S1
n1
, S2

n2
, . . . , SR−1

nR−1
}

that belongs to the kernel KR−1 of GT [R−1]. As an illustrating example, consider the tri-
partite graph in Figure 4. Its kernel, K3, consists of the (nine) horizontal edges. When we
restrict it to T [2] = T1 ∪ T2 we get only three edges — {S1

1 , S
2
1}, {S1

2 , S
2
2} and {S1

3 , S
2
3}.

Those edges are included in K2, the kernel of the restriction of the original graph to T [2],
which includes, in addition, also the two edges {S1

1 , S
2
2} and {S1

2 , S
2
1}.

Proof. It is easy to see that the restriction of KR to T [R − 1] is a rich subgraph of
GT [R−1]. Therefore, it is included in the kernel KR−1 of GT [R−1]. 2

Using the observation in Lemma 3.8 we may compute the kernel in a sequential manner
using Algorithm 2. The input to that algorithm is KR−1, the kernel of GT [R−1], and it
outputs KR, the kernel of GT [R].

18

Algorithm 2 Updating the kernel
Input: T1, . . . , TR, KR−1.
Output: KR.

1: Set KR = KR−1.
2: Add to KR all edges between a node in T [R− 1] = T1 ∪ · · · ∪ TR−1 and a node in TR.
3: while KR has edges that are not matches do
4: Remove all edges that are not matches.
5: Remove all edges that are not part of any R-clique.
6: end while

4. The privacy problem in sequential releases

Recall that among the attributes A1, . . . , AM of the table T , there are quasi-identifiers,
A1, . . . , At, and a sensitive attribute AM . As in [37], the goal is to limit the ability of the
adversary to infer links between quasi-identifier values and sensitive values. Specifically, the
adversary may use the sequential release in order to deduce that in records Ri ∈ T where
(Ri(1), . . . , Ri(t)) = (a1, . . . , at), for some quasi-identifier tuple of values (a1, . . . , at) ∈
A1 × · · · ×At, the sensitive value Ri(M) must belong to some subset, S(a1, . . . , at), of the
sensitive domain AM . If, for every selection of (a1, . . . , at) ∈ A1 × · · · ×At that appears in
T , the corresponding subset S(a1, . . . , at) of sensitive values to which it can be linked is of
size at least k, we say that the sequential release satisfies k-linkability. A stronger type of
inference would allow the adversary to attach probabilities to each of the sensitive values
in S(a1, . . . , at). If, for every selection of (a1, . . . , at) ∈ A1 × · · · × At that appears in T ,
the probabilities of all sensitive values in S(a1, . . . , at) are at most 1/k, we say that the
sequential release satisfies k-diversity. We proceed to define these notions formally.

First, we define for every quasi-identifier tuple the set of cliques that are consistent with
it.

Definition 4.1. Let T1, . . . , TR be R releases of the same table T , and let JT [R] be a
collection of R-cliques in the corresponding multipartite graph GT [R]. Fix a selection of
quasi-identifier values, say (a1, . . . , at) ∈ A1 × · · · × At. Then the projection of JT [R] onto
(a1, . . . , at), denoted 〈JT [R]|(a1, . . . , at)〉, is the collection of all R-cliques {S1

n1
, . . . , SRnR

} ∈
JT [R] for which am ∈ Srnr

(m), for all 1 ≤ m ≤ t and 1 ≤ r ≤ R.

In other words, given a quasi-identifier tuple (a1, . . . , at) (in the sense of specifying a
specific value for each of the t quasi-identifiers), the projection 〈JT [R]|(a1, . . . , at)〉 is the
set of all R-cliques in JT [R] that are consistent with that tuple.

Example 4.1. Consider a table with two quasi-identifiers — A1=age and A2=gender,
and the sensitive attribute A3=disease. Let T1 be a release that includes A1 + A2, T2 be
a release that includes A1 +A3, and T3 be a release that includes A2 +A3. (Namely, R = 3
in this case.) Assume that JT [R] includes the following two R-cliques:

19

C1 = { S1
1 = ([30-40],male,*) , S2

1 = ([30-35],*,flu) , S3
1 = (*,*,flu) }

C2 = { S1
2 =([40-50],male,*) , S2

2 = (*,*,angina) , S3
2 = (*,male,angina) }

Then C1 is in 〈JT [R]|(a1 = 31, a2 = male)〉 (because each of the 3 nodes in C1 could be a
generalization of (a1 = 31, a2 = male)) while C2 is not. 2

Next, we define for every quasi-identifier tuple the set of sensitive values that may
be linked to it. For any R-clique C, we denote by s(C) its sensitive value. Recall that
the sensitive attribute is not subjected to generalization. Hence, in any given release, it
either appears fully specialized, or it is totally suppressed. If at least one of the releases so
far included the sensitive attribute then s(C) will be a specific sensitive value, otherwise
s(C) = ∗. Then, if (a1, . . . , at) is a quasi-identifier tuple that appears in T , we denote by

S(a1, . . . , at) := {s(C) : C ∈ 〈JT [R]|(a1, . . . , at)〉}

the multiset3 of all sensitive values that can be linked to (a1, . . . , at) through some clique
in 〈JT [R]|(a1, . . . , at)〉.

Finally, for any multiset A, we denote by γ(A) the number of distinct values in A, and by
δ(A) the inverse of the maximal relative frequency in A. For example, if A = {a, a, a, b, b, c}
then γ(A) = 3 (because A has 3 distinct values) and δ(A) = 2 (because the relative
frequency of a in A is maximal and it equals 1/2).

We are now ready to define formally the notions of k-linkability and k-diversity:

Definition 4.2. The sequential release T [R] satisfies [JT [R], k]-linkability (resp. diversity)
with respect to a quasi-identifier tuple (a1, . . . , at) that appears in T if:

(a) M /∈ Ir for all 1 ≤ r ≤ R (namely, the sensitive attribute was suppressed in all R
releases in T [R]); or

(b) γ(S(a1, . . . , at)) ≥ k (resp. δ(S(a1, . . . , at)) ≥ k).
The sequential release T [R] = T1∪· · ·∪TR satisfies [JT [R], k]-linkability (resp. diversity)

if it satisfies [JT [R], k]-linkability (resp. diversity) with respect to every tuple (a1, . . . , at) ∈
A1 × · · · × At that appears in T .

Example 4.2. Consider the same setting as in Example 4.1. Let us fix the tuple (a1 =
31, a2 = male). In order to evaluate the linkability and diversity levels provided by the
FMJ for this tuple, we have to find all 3-cliques in FMJ T [3] that are consistent with the
above tuple (a1, a2). Assume that there are four such 3-cliques in FMJ T [3]; namely,

〈FMJ T [3]|(a1 = 31, a2 = male)〉 = {C1, C2, C3, C4}

and

3Recall that a multiset is a set where values may appear with repetitions.

20

C1 = { S1
1 = ([30-40],male,*) , S2

1 = ([30-35],*,flu) , S3
1 = (*,*,flu) }

C2 = { S1
1 =([30-40],male,*) , S2

2 = (*,*,angina) , S3
2 = (*,male,angina) }

C3 = { S1
3 = (31,*,*) , S2

1 = ([30-35],*,flu) , S3
1 = (*,*,flu) }

C4 = { S1
3 = (31,*,*) , S2

2 = (*,*,measles) , S3
2 = (*,male,measles) }

We see that s(C1) = s(C3) = flu, s(C2) = angina, and s(C4) = measles. Hence, the mul-
tiset of sensitive values that may be linked to (a1 = 31, a2 = male) through FMJ T [3] is
S(a1, a2) = {flu,angina,flu,measles}. Since γ(S(a1, a2)) = 3, T [3] satisfies [FMJ T [3], 3]-
linkability with respect to (a1 = 31, a2 = male). As δ(S(a1, a2)) = 2, T [3] satisfies
[FMJ T [3], 2]-diversity with respect to (a1 = 31, a2 = male). 2

Those notions give rise to the following privacy problem in sequential releases: Let T be
a given table, and assume that we have already published R−1 releases of T and that those
releases satisfy [JT [R−1], k]-linkability/diversity, for a given parameter k and a join JT [R−1]

(that could be the MJ, KMJ, or FMJ). It is now needed to publish an R-th release of T on
some subset of the attributes. It is needed to publish such an R-th release, for which the
join JT [R] still satisfies the same level of linkability/diversity, while the information loss is
minimized. In the next section we describe an algorithm for that purpose.

Comment. All syntactic anonymization models (like k-anonymity, `-diversity, or t-
closeness) rely upon the the random worlds model [3]. According to that model, all tables
with specific quasi-identifier values that are consistent with the published anonymized table
are equally likely. In [19], Kifer showed that it is possible to extract from `-diverse tables
linkage probabilities between quasi-identifier tuples and sensitive values that are greater
than 1/`. He suggested the deFinetti attack that uses the anonymized table in order to
learn a classifier that, given the quasi-identifier tuple of an individual in the underlying
population, is able to predict the corresponding sensitive value with probability greater
than the intended 1/` bound.

A natural question that arises in this context is whether the inference of a general
behavior of the population in order to draw belief probabilities on individuals in that
population constitutes a breach of privacy. To answer this question positively, the success
of the attack when launched against tuples that are part of the table should be significantly
higher than its success against tuples that were not part of the table. Such a comparison
is yet to be performed.

The deFinetti attack and its implications were studied recently by Cormode [10]. He
found that the accuracy of inference of sensitive attributes, by means of the deFinetti
attack, for differentially private data and `-diverse data can be quite similar, even though
differential privacy does not assume the random worlds model. We believe that this finding
supports our claim that using general trends to infer about individuals cannot constitute
a privacy breach. We agree with Cormode’s conclusion [10, Section 3.3] that “rejecting all
syntactic anonymizations because the deFinetti attack exists is erroneous”.

21

5. Achieving privacy in sequential releases

5.1. Overview

As in [37], our approach is top-down. We start with a release TR in which all non-
sensitive attributes, A1, . . . , AM−1, are suppressed. We then start specializing the values of
those attributes which are included in the new release TR, while attempting to maximize
the utility gain, as long as such specializations do not violate the required level of linkability.
The differences between our approach and that of [37] are as follows:

• While [37] can evaluate the level of privacy only with respect to the MJ, we can
evaluate it also with respect to the FMJ (in case R = 2) or with respect to the
KMJ. As we demonstrate in Section 7, evaluating the privacy level with respect to
the MJ might lead to wrong conclusions regarding the level of privacy that is actually
provided by the sequential release; those evaluations should be made with respect to
the FMJ, or with respect to the KMJ (which, by Theorem 3.6, is closer to the FMJ
than MJ).

• We work in the much more flexible setting of cell generalization (rather than cut
generalization). The differences in the quality of the outputs, as we demonstrate in
Section 7, are staggering.

5.2. Measures of information loss

When generalizing table entries for the sake of privacy preservation, one must introduce
a measure of information loss. Such a measure enables us to quantify the amount of
information that is lost by generalization and to choose a generalization that achieves the
underlying privacy goal with as small as possible information loss.

Many measures of information loss were used in the literature (see [17, Section 3] for
a survey of such measures). We shall use here two of the more frequently used ones —
the Loss Metric (LM) measure [18, 28] and the Entropy Measure (EM) [16]. Assume that
the original table cell Sn(m) was generalized to Sn(m), where the latter is a subset of
the attribute domain Am, 1 ≤ m ≤ M , 1 ≤ n ≤ N . Then both measures associate an
information loss with that generalization and then the overall information loss is the sum
of those losses over all NM cells in the table.

The information loss that the LM measure associates with each table cell is a number
between 0 (no generalization at all) and 1 (total suppression) that is proportional to the size
of the generalized subset in that cell. More precisely, if the table’s m-th attribute has |Am|
possible values, then the LM information loss in the cell Sn(m) is (|Sn(m)|−1)/(|Am|−1).

The EM measure assumes that the general distribution in T of each of the attributes
Am, 1 ≤ m ≤ M , is known. Then, if a cell in the m-th attribute was generalized to a
subset Sn(m) ⊆ Am, the uncertainty regarding the exact value of Sn(m) that was in that
cell originally may be quantified by the corresponding conditional probability. Specifically,

22

if Sn(m) = {b1, . . . , bL} and p` is the probability of b` in Am, 1 ≤ ` ≤ L, then the
corresponding conditional entropy is

H(Sn(m)) := −
L∑
`=1

q` log2 q` , where q` =
p`

p1 + · · ·+ pL
, 1 ≤ ` ≤ L .

5.3. The top-down algorithm

Our algorithm is given in Algorithm 3. It consists of two stages.

Stage 1: Cut specialization. The first stage in Algorithm 3 acts similarly to the algo-
rithm of [37]. For each of the attributes, Am, 1 ≤ m ≤ M , the algorithm maintains
and updates a cut Cm = {Bm

1 , . . . , B
m
Qm
} in the corresponding taxonomy Tm; namely, Bm

q ,
1 ≤ q ≤ Qm, are subsets (nodes) in Tm that are disjoint and their union equals Am. Given
such cuts, the corresponding generalization is that in which every value of Am that belongs
to the subset Bm

q , for some 1 ≤ q ≤ Qm, is replaced by that subset.
The initial cuts in each of the non-sensitive attributes, A1, . . . , AM−1, is Cm = {Am}

(Step 8). In other words, the initial cut in those attributes is the trivial cut that includes
just the root of the taxonomy (which describes the entire set of values, Am). Such cuts
induce a total suppression of the corresponding attributes. As for the sensitive attribute
(Steps 3-7), if it is included in the new release, we set Cm = Am; namely, Cm is the cut which
consists of all leaves in the taxonomy, which induces total specialization of that attribute
(no generalization). If, on the other hand, the sensitive attribute is not included in the new
release, we suppress it by setting Cm = {Am}.

Then, in each step, the algorithm scans all cuts that correspond to attributes that appear
in the new release, and within each of those cuts it scans all subsets Bm

q , 1 ≤ q ≤ Qm.
It checks whether it is possible to split the corresponding subset Bm

q to its immediate
descendants in Tm without violating the necessary privacy constraint. (The algorithm
skips attributes that do not appear in the new release since they should remain totally
suppressed. It also skips the sensitive attribute: If it is not included in the new release
then it should remain totally suppressed; otherwise, it is already fully specialized.) Among
all split operations that are possible at that time, the algorithm selects the split that
maximizes the following information-gain-privacy-loss ratio:

ρ :=
ILB − ILA
PLB − PLA

; (7)

here, ILB is the information loss before the split and ILA is the information loss after
the split, and PLB and PLA are the privacy levels before and after the split. This loop
continues until the algorithm reaches a stage in which all subsets in all cuts are either leaves
(namely, they cannot be further specialized) or they cannot be split without violating the
required privacy constraint (be it k-linkability or k-diversity).

The algorithm maintains a set Θ that holds the union of nodes from all cuts that
participate in the above described specialization process. Initially, all cuts consist of the
roots of the relevant taxonomies (Step 8). The main loop of this stage (Steps 9-22) scans

23

Algorithm 3 A Top-Down Algorithm for Anonymizing Sequential Releases

Input: Generalized releases T1, . . . , TR−1, a list of attribute indices IR ⊆ [M] to be included
in TR, a privacy requirement, and an information loss metric.
Output: A generalized release TR such that the sequential release T1, . . . , TR satisfies the
privacy requirement.

1: Stage 1 (cut specialization):
2: Suppress all non-sensitive attributes in TR.
3: if M ∈ IR then
4: Leave AM in its original form in TR.
5: else
6: Suppress AM .
7: end if
8: Set Θ ← {Am : m ∈ IR ∩ [M − 1]}.
9: for all θ ∈ Θ do

10: if θ can be specialized without violating the privacy requirement then
11: Calculate the information-gain-privacy-loss ratio in case we choose to specialize θ.
12: else
13: Remove θ from Θ.
14: end if
15: end for
16: if Θ = ∅ then
17: Go to Step 23.
18: end if
19: Choose θ from Θ for which the information-gain-privacy-loss ratio is maximal.
20: Specialize all entries in TR that have the value θ.
21: Replace θ in Θ with its immediate descendants in its taxonomy.
22: Go to Step 9.

23: Stage 2 (cell specialization):
24: Set Scells ← {(n,m) : m ∈ IR ∩ [M − 1], 1 ≤ n ≤ N, SRn (m) is not a leaf in Tm}.
25: Split Scells randomly into buckets of size bucket size.
26: Let b1, . . . , bp be a random ordering of those buckets.
27: for 1 ≤ i ≤ p do
28: if all cells in bi can be specialized without violating the privacy requirement then
29: Specialize all cells in TR that belong to bi.
30: end if
31: end for
32: if bucket size > 1 then
33: Decrease bucket size and go to Step 24.
34: else
35: Return TR.
36: end if

24

all nodes θ in the set Θ. For each such node, it checks whether it can be specialized
without violating the required privacy constraint. If it can, the algorithm computes the
information-gain-privacy-loss ratio ρ, Eq. (7), in case that specialization would take place
(Steps 10-11), otherwise it removes that node from Θ so that it will not be checked again
(Steps 12-13). If at the end of that loop Θ is empty, then there are no nodes in any of the
taxonomies that could be further specialized, whence we proceed to Stage 2 (Steps 16-18).
Otherwise, we choose the node that can be specialized and yields the maximal information-
gain-privacy-loss ratio ρ, we specialize it and update Θ accordingly (Steps 19-21). (In Step
21, if the immediate descendants of the selected node θ are leaves of the corresponding
taxonomy, we do not place them in Θ in lieu of their father node θ since leaves can not
be candidates for further specialization.) We then return to Step 9 for another iteration of
specialization.

The output of this stage is a cut generalization. Our algorithm then proceeds to the
next stage in which it performs cell specialization.

Stage 2: Cell specialization. We first describe an idealized version of this stage of the
algorithm. Then, we proceed to describe a relaxed version of that stage, which has signifi-
cantly reduced runtimes.

In each iteration in this stage, the idealized algorithm scans all cells that are still not
totally specialized. For each such cell, it checks whether replacing it with the immediate
descendant in the taxonomy which generalizes the corresponding exact value maintains
the privacy constraint. Then, the algorithm selects the legitimate specialization operation
that yields the maximal information-gain-privacy-loss ratio ρ. The loop continues until
it reaches a stage in which all possible cell specializations result in violating the privacy
constraint.

For the sake of illustration: Assume that one of the attributes describes clothing items
and that the corresponding taxonomy is as in Figure 2. If one of T ’s cells includes the
value “sandals” and it is generalized in TR to “clothing”, the algorithm will check whether
specializing “clothing” to “footwear” is allowed by the privacy constraint. If it is, then that
cell would be a candidate for specialization. The cell that will be selected for specialization
is the one that yields the greatest information-gain-privacy-loss ratio.

The runtime of the above described greedy cell specialization procedure is not appealing.
Hence, Algorithm 3 utilizes a bucketing strategy that greatly reduces the runtimes, while
still yielding generalized tables with low information losses. In Step 24, we place in Scells
all cells in the relevant attributes that do not contain leaf nodes (as such can not be further
specialized). We split those cells into buckets of size bucket size (Step 25). Then, we
perform a loop over all buckets in a random order (Steps 26-31). For each bucket, we check
whether we can simultaneously specialize all cells in that bucket. If so, then we specialize
all of them. After we finish testing all buckets, and specializing the buckets that could be
specialized, we reduce the bucket size (Steps 32-33) and return to Step 24; there, all cells
that are currently not leaf nodes are reallocated again to buckets. The process continues
down to the point of testing the specialization of singleton buckets. (We omit the technical
details of how we select the initial bucket size and how we reduce it.)

25

Checking for privacy violation. The algorithm checks the privacy conditions in Steps 10
and 28. We ran Algorithm 3 with the [JT [R], k]-linkability and [JT [R], k]-diversity privacy
conditions, with all three join notions — FMJ (when R = 2), KMJ, and MJ. In order to
check those privacy conditions, we ran the algorithms described in Section 3 for computing
and updating the relevant join. Then, after calculating that join, we verified the required
privacy condition according to Definition 4.2.

Before concluding this section we note that since Algorithm 3 uses randomness (see
Steps 25 and 26), minimality attacks [41] are ineffective against it.

6. Dynamically changing tables

So far we concentrated on the case where the underlying table is static, in the sense
that its set of records is fixed. Namely, while our discussion thus far included cases where
new attributes (columns) are added to T , it did not include the case where new records
(rows) are added. Herein we extend our discussion to include also dynamics of the latter
type.

Assume that after publishing R releases, T1, . . . , TR, of T = {S1, . . . , SN}, a set of new
N ′ − N records, SN+1, . . . , SN ′ is added to T . There are two approaches in which our
algorithm may be extended to handle such additions of records.

The separative approach suggests to apply our algorithm, starting from the (R + 1)-
th release, separately on the original set of N records and on the new set of N ′ − N
records. Namely, we view the addition of the new N ′−N records as the starting point of a
new sequential release over those records only. That means that we perform two separate
computations: A computation of the anonymization of the old N records for the (R+1)-th
release, independently of the new addition of N ′ − N records; and a computation of the
anonymization of the new N ′ − N records as if it is their first release, regardless of the
old records. In doing so, we make sure that each of those sequential releases respects the
required privacy constraint.

We illustrate that approach in Figure 6. The first three releases T1, T2, T3 include the
anonymization of only five records. In release T4, a new set of two records is added, and then
in release T6 additional three records are added. Such a scenario triggers three parallel and
independent sequential releases: A sequential release of the first five records, that consists
in this example of six releases, T1 through T6; a sequential release of the next two records,
that consists of T4, T5, T6, and a third sequential release over the last three records, that
starts in T6.

The combined sequential release respects the required privacy constraint, because even
if we had told the adversary which N ′−N generalized records in Tr, r ≥ R+ 1, correspond
to the newly added records, he would have not been able to make inferences that violate
the required privacy constraint. In the example illustrated in Figure 6, even if we told
the adversary how to correctly separate the second and the third release, and the privacy
constraint is, say, `-diversity, he would still be unable to link quasi-identifier tuples to
sensitive values with probability greater than 1/`. However, by considering each set of

26

records separately, we might make excessive generalizations that would result in higher
information losses. Namely, by mixing the old and new records, we could achieve similar
privacy goals with less generalizations, since we could use the quasi-identifier-proximity
between old and new records in order to avoid unnecessary generalizations. This is the
idea that underlies our second suggested approach.

The unifying approach considers all records together. In that approach, once the table T
is augmented by the new records Sn = (Sn(1), . . . , Sn(M)), N < n ≤ N ′, we augment each
of the existing releases, T1, . . . , TR, with the corresponding suppression of those records.
Namely, we add to Tr, 1 ≤ r ≤ R, the following N ′ −N generalized records,

Srn = (∗, . . . , ∗, Sn(M)) , N < n ≤ N ′ .

Then, we proceed to compute the next releases on the unified set of records just as we did
previously.

The unifying approach is illustrated in Figure 7. The first three releases, T1, T2, T3,
consist of five records only. In the subsequent release, T4, two new records were added.
In order to compute the generalization of that release, we augment at that point the first
three releases with two corresponding suppressed records; those are denoted in Figure 7
by ∗6 (standing for a record in which all quasi-identifiers are suppressed, and the sensitive
value equals the sensitive value of the newly added record S6) and ∗7. Then, when three
new records are introduced in T6 (S8, S9, S10) we augment all preceding releases, T1 through
T5, with the corresponding suppressed records ∗8, ∗9, ∗10 and then proceed to compute the
appropriate generalization of T6, such that the entire sequential release would respect the
required privacy constraint.

Like previous studies that dealt with dynamically changing tables, e.g. [8, 46], we too
assume that the set of newly added records complies with the required privacy constraint,
in the following sense. Let A := {Sn(M) : N < n ≤ N ′} be the multiset of sensitive values
in the new records. If the privacy constraint is k-linkability (every quasi-identifier tuple
must be linkable to no less than k distinct sensitive values), we should have γ(A) ≥ k (recall
that γ(·) was defined in Section 4); if, however, the privacy constraint is k-diversity (every
quasi-identifier tuple must be linkable to any sensitive value with probability at most 1/k)
then we should have δ(A) ≥ k. Such an assumption is inevitable. Indeed, an adversary
who targets an individual that was part of that set of records can compare the sensitive
values in releases before and after that set of records was added to T and then extract the
multiset A of sensitive values of the newly added records. If γ(A) < k or δ(A) < k, he may
draw inferences about his target individual that violate the required privacy constraint.

We conclude this section by a brief overview of recent studies that dealt with anonymiza-
tion of dynamically changing tables. Byun et al. [8] focused, like us, on the case of adding
records only. They considered anonymizations that respect `-diversity in the sense of en-
suring that each quasi-identifier tuple can be linked to at least ` distinct sensitive values,
regardless of the linkage probabilities. Also [13] and [30] dealt with the case of record
additions; the privacy measure which was applied there was that of k-linkability rather

27

1

4

1S
4

2S
4

3S
4

4S
4

5S
4

6S
4

7S

6

1S
6

2S
6

3S
6

4S
6

5S
6

6S
6

7S
6

8S
6

9S
6

10S

4T3T 6T

* 6

* 7

* 8

* 9

* 10

1

1S
1

2S
1

3S
1

4S
1

5S

1T 2T 5T

2

1S
2

2S
2

3S
2

4S
2

5S

3

1S
3

2S
3

3S
3

4S
3

5S

5

1S
5

2S
5

3S
5

4S
5

5S
5

6S
5

7S

4

1S
4

2S
4

3S
4

4S
4

5S
4

6S
4

7S

6

1S
6

2S
6

3S
6

4S
6

5S
6

6S
6

7S
6

8S
6

9S
6

10S

4T3T
6T

1

1S
1

2S
1

3S
1

4S
1

5S

1T 2T 5T
2

1S
2

2S
2

3S
2

4S
2

5S

3

1S
3

2S
3

3S
3

4S
3

5S

5

1S
5

2S
5

3S
5

4S
5

5S
5

6S
5

7S
* 6

* 7

* 8

* 9

* 10

* 6

* 7

* 8

* 9

* 10

* 8

* 9

* 10

* 8

* 9

* 10

Figure 6: Illustrating the dynamic setting — the separative approach

1

4

1S
4

2S
4

3S
4

4S
4

5S
4

6S
4

7S

6

1S
6

2S
6

3S
6

4S
6

5S
6

6S
6

7S
6

8S
6

9S
6

10S

4T3T 6T

* 6

* 7

* 8

* 9

* 10

1

1S
1

2S
1

3S
1

4S
1

5S

1T 2T 5T

2

1S
2

2S
2

3S
2

4S
2

5S

3

1S
3

2S
3

3S
3

4S
3

5S

5

1S
5

2S
5

3S
5

4S
5

5S
5

6S
5

7S

4

1S
4

2S
4

3S
4

4S
4

5S
4

6S
4

7S

6

1S
6

2S
6

3S
6

4S
6

5S
6

6S
6

7S
6

8S
6

9S
6

10S

4T3T
6T

1

1S
1

2S
1

3S
1

4S
1

5S

1T 2T 5T
2

1S
2

2S
2

3S
2

4S
2

5S

3

1S
3

2S
3

3S
3

4S
3

5S

5

1S
5

2S
5

3S
5

4S
5

5S
5

6S
5

7S
* 6

* 7

* 8

* 9

* 10

* 6

* 7

* 8

* 9

* 10

* 8

* 9

* 10

* 8

* 9

* 10

Figure 7: Illustrating the dynamic setting — the unifying approach

than `-diversity. Xiao and Tao [46] were the first to include in their discussion the case
of deletion of records. That case is harder, due to a phenomenon that was called in [46]
critical absence. For example, if the table T had only one individual with some sensitive
value, and that record was removed at some point, subsequent releases of T would not
include that sensitive value. If the adversary knows when that individual was removed
from the table, he may be able to infer that individual’s sensitive value. That problem was
addressed in [46] by introducing counterfeit records so that the multiset of sensitive values
in the dynamic table will never narrow down. Xiao and Tao assumed that records remain
unchanged during their lifespan in the sequential release. The subsequent studies [6, 43]
considered the case where records can be updated between releases. The extension of our
algorithms to the case of record deletions or updates is left as future research.

We note that all of the above mentioned studies, as opposed to ours, share two limiting
features:

(1) They utilized methods of homogeneous anonymization. As shown theoretically and ex-
perimentally in [15, 35, 44], non-homogeneous anonymization offers significantly smaller
information losses and enable more accurate data mining [21]. Our algorithms, in con-
trast to those in the above mentioned studies, adhere to the non-homogeneous frame-
work since we do not limit ourselves to generalizations in which each release consists
of blocks of “homogeneous” records. (Algorithm TDS4ASR of [37] also adheres to
non-homogeneous anonymization.)

28

(2) Those studies assumed that all releases include all quasi-identifiers. Such an assumption
represents an extreme (sometimes unnecessarily) case in which all releases contain the
full linkage between all quasi-identifiers. However, typically in sequential releases, each
release will be tailored for a different purpose and thus include a different subset of
the quasi-identifiers. Hence, it is possible that none of the releases will include a
full linkage between all quasi-identifiers and the adversary would face a puzzle-like
challenge to correctly identify the links between the record “pieces” as they appear
in the different releases. Our algorithms (and TDS4ASR of [37]) take advantage of
that in order to reduce the information loss. Another support for the advantage in
anonymizing separate projections of the table, instead of anonymizing the entire table,
at can be found in [26]. It is shown there that partitioning the underlying table into
several projections, such that the set of projections satisfies k-anonymity, results in
better utility than anonymizing the entire table.

In addition to the above limitations, the m-invariance solution that was suggested in
[46] has the following limitations (while our solution does not):

(1) It considers tables with only three types of attributes rather than four — it does not
consider attributes that are non-sensitive on one hand, but cannot serve as identifiers
on the other hand (i.e. attributes At+1, . . . , AM−1, see Section 2.1). Examples for such
attributes in health information may include blood type, dietary information, or known
allergies. It can be shown that m-invariance breaks, or may even totally collapse, in
the presence of such attributes.

(2) It is limited to providing diversity only for integer values of the diversity parameter,
what limits its applicability only to tables with a rich sensitive attribute. Specifically,
it requires creating blocks of m identical generalized records having m distinct sensitive
values. It is impossible to achieve that goal, for any m > 1, with databases having
skew binary sensitive attributes (such as the well known Adult database that has a
binary sensitive attribute, with a roughly 75%-25% split). It is also impossible to
achieve m-invariance for other tables with a richer sensitive alphabet and a low general
diversity.

7. Experimental evaluation

7.1. Experimental setup

Our experiments were conducted on two datasets:

• Census4. That dataset has 500,000 records consisting of 7 quasi-identifiers (age,
gender, education level, marital status, race, work class, country) and one
sensitive attribute. We created two-level taxonomies for the attributes gender and

4http://www.ipums.org

29

race (namely, in those attributes we applied only suppressions), three-level tax-
onomies for the attributes education level, marital status and country, and
four-level taxonomies for the attributes age and work class. The sensitive attribute
in this dataset has 50 distinct values and its overall diversity (namely, the inverse of
the maximal relative frequency) is 13.27.

• Adult from the UCI Machine Learning Repository5. That dataset was extracted
from the US Census Bureau Data Extraction System. It holds demographic in-
formation of a small sample of US population with 14 quasi-identifiers such as age,
education level, marital status, and native country and contains 32,561 records.
We adopted the taxonomies in [37] for this dataset. Since its sensitive attribute is too
narrow (binary), we used one of the quasi-identifiers, occupation, as the sensitive
attribute in our experiments. It has 15 distinct values and its overall diversity is 7.86.

All experiments were conducted on an Intel Core i7 CPU 2.67 GHz personal computer with
4 GB of RAM, running Windows 7 Enterprise edition.

The bulk of our experiments were conducted on static tables with the k-linkability
privacy requirement. We then repeated some of the experiments with the k-diversity privacy
requirement instead. Finally, we conducted experiments with dynamic tables.

We begin with a detailed description of our evaluation using static tables and the k-
linkability privacy requirement. Our evaluation consisted of six sets of experiments. In the
first set of experiments we ran our algorithm on different databases and releases: Two of
the four experiments in this set were on sequential releases of the Census dataset (with
100,000 records) and the other two experiments were on sequential releases of the Adult
dataset. In the second set of experiments we tested several values of k (the linkability level).
In the third set we tested several values of N (the number of records in the database). In
the fourth set we compared different information loss metrics. Finally, in the fifth and
sixth sets we applied our algorithm on a sequential release of R = 3 and R = 4 releases,
respectively. (In the preceding experiment sets there were R = 2 releases.)

Each experiment consisted of three stages:

(1) In the first stage, we found the best cut generalization that satisfied [KMJ T [R], k]-
linkability for the required linkability level k. (That stage represents, in fact, the
application of the TDS4ASR algorithm [37].)

(2) In the second stage, we further specialized the cells in order to arrive at a cell gen-
eralization that satisfied the same privacy constraint. The goal of this stage was to
demonstrate that the cell generalization model allows achieving a certain privacy goal
with significantly smaller losses of information.

(3) In the third stage, we further specialized the cells in order to get [MJ T [R], k]-linkability,
instead of [KMJ T [R], k]-linkability. Since MJ is a superset of the KMJ (Theorem 3.6),

5http://mlearn.ics.uci.edu/MLSummary.html

30

aiming at achieving a certain level of linkability with respect to the MJ instead of the
KMJ allows making more specializations. The goal of this stage was to demonstrate
the difference between the evaluation of the privacy condition with respect to the MJ
and the KMJ (see Test (b) below).

In each of those stages we evaluated the information loss in the last release (TR) and the
execution runtime.

In addition to those three stages, we conducted two additional tests in each of the
experiments:

• Test (a). In order to illustrate the disadvantage of the cut generalization from a differ-
ent angle, we tested the cut generalization that we got in the first stage, when using
some value of the linkability level k as the guiding privacy constraint, and checked
what is the actual linkability level that the resulting generalization satisfied. We
found out that the actual level of linkability was usually much higher than the in-
tended level of linkability. That result illustrates the rigidity of the cut generalization
model, as opposed to the flexibility of the cell generalization model.

• Test (b). In order to illustrate the breach of privacy in wake of using the MJ rather
than the KMJ, in the case of cell generalization or in case R > 2, we took the gener-
alization that we obtained in the third stage (which satisfied [MJ T [R], k]-linkability)
and evaluated the level k of [KMJ T [R], k]-linkability that it satisfied (that is — the
level of linkability with respect to the KMJ). As implied by Theorem 3.6, the level
of linkability when tested with respect to the KMJ could be smaller than the level
of linkability when tested with respect to the MJ. The purpose of this test was to
demonstrate the difference between those two levels and, consequently, why using the
MJ to verify linkability should be avoided in such cases.

Table 6 summarizes the details of the six experiment sets. For example, in the second
experiment of the first set (configuration Census-2), the dataset was Census with 100,000
records. The first release T1 included the attributes gender, race, country and education

level, while T2 included gender, race, marital status and the sensitive attribute. The
privacy goal was to obtain 5-linkability (with respect to the KMJ in the first two stages
and then with respect to the MJ in the third stage). The guiding utility measure was the
LM measure of information loss.

We repeated all experiments with the k-diversity privacy requirement instead of the
k-linkability one. The results were consistent with the ones obtained with the linkability
requirement. We report herein the results of those repeated experiments only for experi-
ments sets 2 and 3 in Table 6. In experiment set 3, the targeted diversity level was k = 5
(similarly to the linkability level in that experiment set). However, in experiment set 2, the
sequence of diversity levels that we used was k = 4, 6, 8, 10 (instead of k = 5, 10, 15, 20, 25
as the linkability levels in that experiment set). Recall that for any multiset A, its diversity,
which we denoted δ(A) (see Section 4), is bounded from above by the number of distinct
values in it, γ(A). Since the sensitive attribute in Census has 50 distinct values, but its

31

Experiment Set ConfigurationDataset N k Inf.Loss T1 T2 T3 T4

1. Different
sequential releases

Census-1 Census100,000 5 LM Age,Edu Age,Sen
Census-2 Census100,000 5 LM Gen,Rac,Cou,EduGen,Rac,Marsta,Sen
Adult-1 Adult 32,561 5 LM Age,Edu Age,Occ
Adult-2 Adult 32,561 5 LM Gen,Rac,Cou,EduGen,Rac,Marsta,Occ

2. Different values
of required k

k=5 Census100,000 5 LM Age,Edu Age,Sen
k=10 Census100,00010 LM Age,Edu Age,Sen
k=15 Census100,00015 LM Age,Edu Age,Sen
k=20 Census100,00020 LM Age,Edu Age,Sen
k=25 Census100,00025 LM Age,Edu Age,Sen

3. Different Ns

N=100,000 Census100,000 5 LM Age,Edu Age,Sen
N=200,000 Census200,000 5 LM Age,Edu Age,Sen
N=300,000 Census300,000 5 LM Age,Edu Age,Sen
N=400,000 Census400,000 5 LM Age,Edu Age,Sen
N=500,000 Census500,000 5 LM Age,Edu Age,Sen

4. Different Inf.
Loss Metrics

LM Census100,000 5 LM Age,Edu Age,Sen
EM Census100,000 5 EM Age,Edu Age,Sen

5. Three Releases R=3 Census100,000 5 LM Age,Gen Gen,Sen Age,Sen
6. Four Releases R=4 Census100,000 5 LM Age,Gen Age,Sen Age,Gen,MarstaGen,Sen

Table 6: Summary of experiments.

overall diversity is only 13.27, it is possible to achieve for that dataset k-linkability with k
up to 50, but k-diversity with k only up to 13.27.

Finally, we conducted experiments with dynamic tables. We took the basic configuration
Census-1 (see Table 6), and then examined scenarios where T1 has N = 100, 000 records
and T2 has additional N ′−N records. We examined five values of N ′: From N ′ = 105, 000
(reflecting an increase of 5% in the number of records with respect to the first release) up
to N ′ = 200, 000 (reflecting an increase of 100%). We compared the performance of the
two algorithms that were described in Section 6: The one that considers separately the two
sets of records (old and new), and the other one that operates on the unified set of records.
The goal was to show that the latter yields lower information losses. We repeated the test
with a dynamic sequential release that consisted of R = 3 releases.

7.2. Results

The first experiment set compared four different configurations of sequential releases
(two from the Census dataset and two from the Adult dataset). The information loss
results of that set of experiments are given in Figure 8. For example, in the second con-
figuration, the best cut generalization that satisfied 5-linkability was the one in which all
entries of the attribute race had to be totally suppressed (whence, the LM information
loss, which is the sum of information losses over all cells in the table, see Section 5.2, is
100000). When allowing cell generalization we were able to achieve 5-linkability with an
overall LM information loss of 20 (i.e., an improvement factor of 5000). Then, when we
relaxed our linkability testing and verified it with respect to the MJ rather than the FMJ,
we were able to reduce the information loss from 20 to 16.

Table 7 includes the results of the two additional tests that we described in Section 7.1
(see Tests (a) and (b) there). In the first test (Test (a)) we checked the actual linkability
level that is obtained by the cut generalization. For example, in the second configuration
(Census-2), even though we aimed at achieving 5-linkability, the usage of cut generalization

32

Census-1 Census-2 Adult-1 Adult-2

CUT 253.44 100000.00 32561.00 6913.08

CELL (1 - FMJ) 0.98 20.00 5.00 9.67

CELL (2 - MJ) 0.66 16.00 5.00 7.67

0.10

1.00

10.00

100.00

1000.00

10000.00

100000.00

LM

Figure 8: Experiment Set 1, information losses (linkability)

resulted in an extreme overshoot, since the generalization actually satisfies 43-linkability.
In the second test (Test (b)) we took the generalization that we obtained in the third
stage (which satisfied [MJ T [2], 5]-linkability) and evaluated the level k of [KMJ T [2], k]-
linkability that it satisfied. In the second configuration, for example, even though we were
aiming for k = 5, the achieved linkability level is actually k = 1.

Generalization Census-1 Census-2 Adult-1 Adult-2
Cut (Test (a)) 5 43 15 10

Cell (2-MJ) (Test (b)) 3 1 5 2

Table 7: Experiment Set 1, actual linkability level in generalizations that targeted 5-linkability

The second experiment compared five different values of the required linkability level:
k = 5, 10, 15, 20, 25. The results are given in Figure 9 and Table 8. We see that the
improvement in the utility, due to adopting the cell generalization model, decreases with
k but it remains significant (Figure 9). Here too, we see a significant overshoot in the
linkability level when using the rigid cut generalization model. Also, evaluation of linkability
that is based on the MJ completely misses the actual linkability level; for example, even
though we aimed at a linkability level of k = 25, the actual level of linkability that we got
was only k = 3.

Generalization k = 5 k = 10 k = 15 k = 20 k = 25
Cut (Test (a)) 5 38 38 38 38

Cell (2-MJ)(Test (b)) 3 3 3 3 3

Table 8: Experiment Set 2, actual linkability levels compared to the targeted ones

We repeated the experiment with k-diversity instead of k-linkability, with the following
diversity levels: k = 4, 6, 8, 10. The results were consistent with the linkability results, see
Figure 10 and Table 9.

33

k=5 k=10 k=15 k=20 k=25

CUT 253.44 352.38 352.38 352.38 352.38

CELL (1 - FMJ) 0.98 3.11 5.25 7.21 9.26

CELL (2 - MJ) 0.66 2.70 4.75 6.80 8.85

0.10

1.00

10.00

100.00

1000.00

LM

Figure 9: Experiment Set 2, different levels of linkability

k=4 k=6 k=8 k=10

CUT 352.38 4489.00 4753.35 10838.02

CELL (1 - FMJ) 1.89 13.28 79.53 198.90

CELL (2 - MJ) 1.48 12.11 77.35 194.31

1.00

10.00

100.00

1000.00

10000.00

100000.00

LM

Figure 10: Experiment Set 2, different levels of diversity

Generalization k = 4 k = 6 k = 8 k = 10
Cut (Test (a)) 5.8 7.17 8.74 10.71

Cell (2-MJ)(Test (b)) 2 2 5.2 2

Table 9: Experiment Set 2, actual diversity levels compared to the targeted ones

The third experiment compared databases of different sizes. Its results are given in
Figure 11 and Table 10. We see that the improvement in the utility, due to adopting
the cell generalization model, increases with N (Figure 11). As for the overshoot in the
linkability level, due to the rigidity of the cut generalization model, it too increases with
N (Table 10).

Generalization N = 100000 N = 200000 N = 300000 N = 400000 N = 500000

Cut (Test (a)) 5 9 11 12 15
Cell (2-MJ) (Test (b)) 3 1 1 1 1

Table 10: Experiment Set 3, actual linkability level in generalizations that targeted 5-linkability

34

N=100,000 N=200,000 N=300,000 N=400,000 N=500,000

CUT 253.44 246.56 244.59 248.93 250.10

CELL (1 - FMJ) 0.98 0.82 0.55 0.41 0.33

CELL (2 - MJ) 0.66 0.66 0.44 0.33 0.26

0.10

1.00

10.00

100.00

1000.00

LM

Figure 11: Experiment Set 3, different database sizes (linkability)

The results when the privacy goal was 5-diversity rather than 5-linkability are shown
in Figure 12 and Table 11.

N=100,000 N=200,000 N=300,000 N=400,000 N=500,000

CUT 352.38 688.28 1026.23 1387.21 1739.34

CELL (1 - FMJ) 2.79 3.11 5.82 6.15 10.00

CELL (2 - MJ) 2.38 2.38 4.10 5.82 9.02

1.00

10.00

100.00

1000.00

10000.00

LM

Figure 12: Experiment Set 3, different database sizes (diversity)

Generalization N = 100000 N = 200000 N = 300000 N = 400000 N = 500000

Cut (Test (a)) 5.8 5.94 5.75 5.71 5.64
Cell (2-MJ) (Test (b)) 2 1 1 1 1

Table 11: Experiment Set 3, actual diversity level in generalizations that targeted 5-diversity

The fourth experiment compared two information loss metrics — the LM and the EM.
The goal of that experiment was to verify that the pattern which emerges from our exper-
iments is independent of the information loss metric. In all of our experiments with the
EM we got the same pattern as in the experiments with the LM that were reported in the
previous experiment sets. In Figure 13 and Table 12 we give the results for one of those
configurations.

35

LM EM

CUT 253.44 2467.73

CELL (1 - FMJ) 0.98 9.58

CELL (2 - MJ) 0.66 6.38

0.10

1.00

10.00

100.00

1000.00

10000.00

In
fo

rm
at

io
n

 L
o

ss

Figure 13: Experiment Set 4, different information loss metrics

Generalization LM EM
Cut (Test (a)) 5 5

Cell (2-MJ) (Test (b)) 3 3

Table 12: Experiment Set 4, actual linkability level in generalizations that were targeted at 5-linkability

In the fifth experiment we examined our algorithm in the case of R = 3 releases. When
R = 2, the FMJ coincides with the KMJ and, therefore, it may be evaluated efficiently;
however, when R ≥ 3 we cannot compute the FMJ and, hence, we compute the KMJ in-
stead. The resulting information losses are shown in Figure 14; here too, cell generalization
allows significantly smaller information losses than cut generalization. Table 13 shows the
results of Tests (a) and (b); as can be seen, using the MJ rather than the KMJ leads to a
breach of privacy.

R=3

CUT (KMJ) 2648.00

CELL (1 - KMJ) 393.00

CELL (2 - MJ) 311.00

1.00

10.00

100.00

1000.00

10000.00

LM

Figure 14: Experiment Set 5, three releases

In the sixth experiment we examined our algorithm in the case of R = 4 releases. The
resulting information losses are shown in Figure 15 and the results of Tests (a) and (b) are
shown in Table 14. As can be seen, the information losses in later releases (R = 3 and

36

Generalization Actual k
Cut (Test (a)) 5

Cell (2-MJ) (Test (b)) 1

Table 13: Experiment Set 5, actual linkability in generalizations that were targeted at 5-linkability

R = 4) are higher than those in the second release, since the generalization of those releases
is restricted by the previous releases.

R=4

CUT (KMJ) 100000.00

CELL (1 - KMJ) 400.00

CELL (2 - MJ) 300.00

1.00

10.00

100.00

1000.00

10000.00

100000.00

LM

Figure 15: Experiment Set 6, four releases

Generalization Actual k
Cut (Test (a)) 6

Cell (2-MJ) (Test (b)) 1

Table 14: Experiment Set 6, actual linkability in generalizations that were targeted at 5-linkability

In addition to the above described tests, we also checked the actual linkability level
in the cell generalizations that we got in each experiment. In all of those experiments,
the actual linkability level was equal to the targeted linkability level. Hence, while in
cut generalization the actual linkability level was usually higher (and sometimes even much
higher) than the targeted one, it is not the case when using cell generalization. We obtained
similar findings also with regard to the diversity, in the experiments where the privacy goal
was k-diversity.

Table 15 summarizes the execution runtimes for the different experiments; the runtime
is indicated in seconds, apart from the last two entries that are indicated in hours. (We
show runtimes for the experiments in which we used the linkability as the privacy goal;
the runtimes in the experiments where the underlying privacy goal was the diversity are
similar.) As expected, the runtime increases linearly with N . The dependence of the
runtime on k appears to be sub-linear (in this experiment, the runtime grows roughly like
Θ(k0.6)). The runtime grows fast with the number of releases, R, and hence it is practical,
in its present form, only for small values of R.

37

Experiment Set Configuration Runtime

1. Different sequential releases

Census-1 52s
Census-2 115s
Adult-1 29s
Adult-2 41s

2. Different values of required k

k=5 52s
k=10 80s
k=15 115s
k=20 121s
k=25 144s

3. Different Ns

N=100,000 52s
N=200,000 103s
N=300,000 179s
N=400,000 225s
N=500,000 302s

4. Different Information Loss Metrics
LM 52s
EM 43s

5. Three Releases R=3 3.1h
6. Four Releases R=4 24.8h

Table 15: Execution runtimes.

In the last set of experiments, we considered the scenario of a dynamic table. As ex-
plained earlier, we took the basic configuration Census-1 (see Table 6), and then examined
scenarios where T1 has N = 100, 000 records and T2 has additional N ′−N records. Figure
16(a) shows the LM information losses in T2 for five values of N ′ as achieved by the two
algorithms described in Section 6 — the separative one that considers separately the two
sets of records (AlgSep in the figure) and the unifying one that operates on the unified set
of records (AlgUni). As expected, the latter issues significantly smaller information losses
than the former, and the improvement is slightly larger when the number of new records
is smaller, since then AlgSep is more restricted in generalizing the new set of records.

It is interesting to compare the information losses of AlgUni, as reported in Figure
16(a), to those in the third experiment set (Figure 11), which relates to similar static
configurations. Comparing the total information loss of 1.64 in the dynamic case with
N ′ = 105, 000 to the total information loss of 0.98 in the static case with N = 100, 000,
and the information loss of 1.31 in the dynamic setting with N ′ = 200, 000 to 0.82 in
the corresponding static setting, we see that the information loss in the static setting are
somewhat smaller (since in that setting the data owner has all records upfront and he
may then perform better generalization decisions). However, the differences are very small,
especially when we compare the information losses to those when using cut generalization
in the static setting (see Figure 11) which were around 250.

In addition, we considered the case of dynamic table over three releases, T1, T2, T3.

38

Those releases consisted of N = 100, 000, N ′ = 110, 000, and N ′′ = 120, 000 records from
Census. T1 included attributes age and gender, T2 included gender and sensitive, and
T3 included age and sensitive. Figure 16(b) shows the LM information losses in T3 as
achieved by the separative and the unifying algorithms. Like in our previous experiments
with R > 2 in the static setting, here too the information losses in T3 are higher than those
in T2.

N'=105,000 N'=110,000 N'=125,000 N'=150,000 N'=200,000

AlgSep 2.95 2.95 2.70 2.37 2.29

AlgUni 1.64 1.64 1.64 1.31 1.31

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

LM

(a) Two releases

N''=120,000

AlgSep 1068.00

AlgUni 262.00

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

LM

(b) Three releases

Figure 16: Dynamical tables

8. Conclusions

In this study we proposed a method for anonymizing sequential releases of databases
in the sense of limiting the disclosure of sensitive data by the value of the quasi-identifiers.
The proposed method allows any number of releases and the flexible local recoding model
of “cell generalization”. It also allows dynamics in the underlying database in the form
of adding records to it. The experimental evaluation showed that cell generalization offers
substantially better utility results than cut generalization, and targets much better the
required level of privacy, as opposed to cut generalization. We also showed that privacy
must be evaluated using the FMJ (in the case of 2 releases) or the KMJ (in the case of
more than 2 releases) and must not be evaluated using the MJ. While switching from MJ
to KMJ or FMJ has a significant effect on privacy, our experiments indicate that it has a
small effect on the information loss. Possible future research directions are as follows:

(1) Our algorithm, like the one in [37], is a top-down algorithm. As shown in [17], bottom-
up algorithms, or sequential clustering, achieve significantly better results than top-
down algorithms. We intend to look for a practical bottom-up or sequential clustering
algorithm that could be used and implemented efficiently in this context.

39

(2) In this study we concentrated on either static databases or dynamic databases to which
records may only be added. In some cases, though, records may be also deleted or
updated in between releases. Such a setting is more intricate due to a phenomenon that
was called in [46] critical absence. For example, if the table T had only one individual
with some sensitive value, and his record was removed at some point, subsequent
releases of T would not include that sensitive value. If the adversary knows when
that individual was removed from the table (since he knows, for example, when that
individual was discharged from the hospital), he may be able to infer his sensitive
value. That problem was addressed in [46] by introducing counterfeit tuples so that
the multiset of sensitive values in the dynamic table will never narrow down. The
extension of our algorithms to that case is left as future research.

(3) The underlying database T may be split horizontally or vertically between several data
holders. We intend to devise a distributed protocol for implementing the algorithm that
we presented here. To the best of our knowledge, all of previous studies of anonymizing
distributed databases concentrated on the case of a single release.

References

[1] Aggarwal, C. and Yu, P. 2008. Privacy-preserving data mining: models and algo-
rithms. Springer-Verlag New York Inc.

[2] Agrawal, R. and Srikant, R. 2000. Privacy-preserving data mining. In Proceedings
of the 2000 ACM SIGMOD International Conference on Management of Data (SIGMOD
’00). 439–450.

[3] Bacchus, F., Grove, A. J., Koller, D., and Halpern, J. Y. 1992. From statis-
tics to beliefs. In Proceedings of the 10th National Conference on Artificial Intelligence
(AAAI ’92). 602–608.

[4] Barak, B., Chaudhuri, K., Dwork, C., Kale, S., McSherry, F., and Talwar,
K. 2007. Privacy, accuracy, and consistency too: a holistic solution to contingency table
release. In Proceedings of the 26th ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems (PODS ’07). 273–282.

[5] Bayardo, R. and Agrawal, R. 2005. Data privacy through optimal k-
anonymization. In Proceedings of the 21st International Conference on Data Engineering
(ICDE ’05). 217–228.

[6] Bu, Y., Fu, A., Wong, R., Chen, L., and Li, J. 2008. Privacy preserving serial
data publishing by role composition. Proceedings of the 34th international conference on
Very Large Data Bases (VLDB ’08), 845–856.

40

[7] Burnett, L., Barlow-Stewart, K., Proos, A., and Aizenberg, H. 2003. The
GeneTrustee: a universal identification system that ensures privacy and confidentiality
for human genetic databases. Journal of Law and Medicine 10, 4, 506–513.

[8] Byun, J.-W., Sohn, Y., Bertino, E., and Li, N. 2006. Secure anonymization for
incremental datasets. In Secure Data Management. 48–63.

[9] Cao, J., Karras, P., Kalnis, P., and Tan, K. 2011. Sabre: a sensitive attribute
bucketization and redistribution framework for t-closeness. The VLDB Journal 20, 1,
59–81.

[10] Cormode, G. 2011. Personal privacy vs population privacy: learning to attack
anonymization. In Proceedings of the 17th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD ’11). 1253–1261.

[11] Dwork, C. Differential privacy. In Proceedings of the 33rd International Colloquium
on Automata, Languages and Programming (ICALP ’06). 1–12.

[12] Fung, B., Wang, K., Chen, R., and Yu, P. 2010. Privacy-preserving data pub-
lishing: a survey of recent developments. ACM Computing Surveys (CSUR) 42, 4, 1–53.

[13] Fung, B., Wang, K., Fu, A., and Pei, J. 2008. Anonymity for continuous data
publishing. In Proceedings of the 11th international conference on Extending Database
Technology: advances in database technology (EDBT ’08). ACM, 264–275.

[14] Fung, B., Wang, K., and Yu, P. 2005. Top-down specialization for information
and privacy preservation. In Proceedings of the 21st International Conference on Data
Engineering (ICDE ’05). IEEE, 205–216.

[15] Gionis, A., Mazza, A., and Tassa, T. 2008. k-Anonymization revisited. In Pro-
ceedings of the 24th International Conference on Data Engineering (ICDE ’08). 744–753.

[16] Gionis, A. and Tassa, T. 2009. k-Anonymization with minimal loss of information.
IEEE Transactions on Knowledge and Data Engineering 21, 206–219.

[17] Goldberger, J. and Tassa, T. 2010. Efficient anonymizations with enhanced
utility. Transactions on Data Privacy 3, 149–175.

[18] Iyengar, V. 2002. Transforming data to satisfy privacy constraints. In Proceedings
of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD ’02). 279–288.

[19] Kifer, D. 2009. Attacks on privacy and definetti’s theorem. In Proceedings of the 2009
SIGMOD International Conference on Management of Data (SIGMOD ’09). 127–138.

41

[20] Kifer, D. and Gehrke, J. Injecting utility into anonymized datasets. In Proceedings
of the 2006 ACM SIGMOD International Conference on Management of Data (SIGMOD
’06). 217–228.

[21] Last, M., Tassa, T., and Zhmudyak, A. Improving accuracy of classification
models induced from anonymized datasets. Submitted .

[22] LeFevre, K., DeWitt, D., and Ramakrishnan, R. 2005. Incognito: efficient
full-domain k-anonymity. In Proceedings of the 2005 ACM SIGMOD International Con-
ference on Management of data (SIGMOD ’05). 49–60.

[23] Li, N., Li, T., and Venkatasubramanian, S. 2010. Closeness: A new privacy mea-
sure for data publishing. IEEE Transactions on Knowledge and Data Engineering 22, 7,
943–956.

[24] Machanavajjhala, A., Gehrke, J., Kifer, D., and Venkitasubramaniam,
M. 2006. l-Diversity: privacy beyond k-anonymity. In Proceedings of the 22nd Interna-
tional Conference on Data Engineering (ICDE ’06). 24.

[25] Malin, B. and Sweeney, L. 2004. How (not) to protect genomic data privacy
in a distributed network: using trail re-identification to evaluate and design anonymity
protection systems. Journal of Biomedical Informatics 37, 3, 179–192.

[26] Matatov, N., Rokach, L., and Maimon, O. 2010. Privacy-preserving data min-
ing: a feature set partitioning approach. Information Sciences 180, 14, 2696–2720.

[27] Meyerson, A. and Williams, R. 2004. On the complexity of optimal k-anonymity.
In Proceedings of the 23rd ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems (PODS ’04). 223–228.

[28] Nergiz, M. and Clifton, C. 2007. Thoughts on k-anonymization. Data and
Knowledge Engineering 63, 3, 622–645.

[29] Park, H. and Shim, K. 2007. Approximate algorithms for k-anonymity. In Pro-
ceedings of the 2007 ACM SIGMOD International Conference on Management of Data
(SIGMOD ’07). 67–78.

[30] Pei, J., Xu, J., Wang, Z., 0009, W. W., and Wang, K. 2007. Maintaining
k-anonymity against incremental updates. In Proceedings of the 19th International Con-
ference on Scientific and Statistical Database Management (SSDBM 2007). 5.

[31] Rebollo-Monedero, D., Forne, J., and Domingo-Ferrer, J. 2010. From t-
closeness-like privacy to postrandomization via information theory. IEEE Transactions
on Knowledge and Data Engineering 22, 11, 1623–1636.

[32] Samarati, P. 2001. Protecting respondent’s privacy in microdata release. IEEE
Transactions on Knowledge and Data Engineering 13, 1010–1027.

42

[33] Samarati, P. and Sweeney, L. 1998. Generalizing data to provide anonymity when
disclosing information. In Proceedings of the 17th ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems (PODS ’98). 188.

[34] Sweeney, L. 2002. k-Anonymity: A model for protecting privacy. International
Journal on Uncertainty, Fuzziness and Knowledge-based Systems 10, 5, 557–570.

[35] Tassa, T., Mazza, A., and Gionis, A. 2012. k-Concealment: an alternative model
of k-type anonymity. Transactions on Data Privacy .

[36] Wang, J., Luo, Y., Zhao, Y., and Le, J. 2009. A survey on privacy preserving
data mining. In Proceedings of the 1st International Workshop on Database Technology
and Applications (DBTA ’09). 111–114.

[37] Wang, K. and Fung, B. 2006. Anonymizing sequential release. In Proceedings of
the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD ’06). 414–423.

[38] Wang, K., Fung, B., and Yu, P. 2007. Handicapping attacker’s confidence: an
alternative to k-anonymization. Knowledge and Information Systems 11, 3, 345–368.

[39] Wang, K., Fung, B. C. M., and Yu, P. S. 2005. Template-based privacy preserva-
tion in classification problems. In Proceedings of the 4th IEEE International Conference
on Data Mining (ICDM ’05). 466–473.

[40] Wang, K., Yu, P. S., and Chakraborty, S. 2004. Bottom-up generalization: a
data mining solution to privacy protection. In Proceedings of the 4th IEEE International
Conference on Data Mining (ICDM ’04). 249–256.

[41] Wong, R., Fu, A., Wang, K., and Pei, J. 2007. Minimality attack in privacy
preserving data publishing. In Proceedings of the 33rd International Conference on Very
Large Data Bases (VLDB ’07). 543–554.

[42] Wong, R., Li, J., Fu, A., and Wang, K. 2006. (α, k)-anonymity: An enhanced k-
anonymity model for privacy preserving data publishing. In Proceedings of the 12th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD
’06). 754–759.

[43] Wong, R. C.-W., Fu, A. W.-C., Liu, J., Wang, K., and Xu, Y. 2010. Global
privacy guarantee in serial data publishing. In Proceedings of the 26th IEEE International
Conference on Data Engineering (ICDE ’10). 956–959.

[44] Wong, W. K., Mamoulis, N., and Cheung, D. W.-L. 2010. Non-homogeneous
generalization in privacy preserving data publishing. In Proceedings of the 2010 interna-
tional conference on Management of Data (SIGMOD ’10). 747–758.

43

[45] Xiao, X. and Tao, Y. Anatomy: simple and effective privacy preservation. In
Proceedings of the 32nd International Conference on Very Large Data Bases (VLDB
’06). 139–150.

[46] Xiao, X. and Tao, Y. M-invariance: towards privacy preserving re-publication of
dynamic datasets. In Proceedings of the 2007 ACM SIGMOD international conference
on Management of Data (SIGMOD ’07). 689–700.

[47] Yao, C., Wang, X., and Jajodia, S. 2005. Checking for k-anonymity violation by
views. In Proceedings of the 31st International Conference on Very Large Data Bases
(VLDB ’05). 910–921.

44

9. Appendix

9.1. Summary of notations

Notation Meaning
A1, . . . , AM The M attributes of the table, as well as the attribute domains
A1, . . . , At The quasi-identifier attributes
At+1, . . . , AM−1 The non-identifier attributes
AM The sensitive attribute
Am The collection of subsets of Am that could be used for generalization, 1 ≤ m ≤M
T The underlying table
Sn The n-th record in T , 1 ≤ n ≤ N
Sn(m) The m-th entry in Sn, 1 ≤ m ≤M
Tr The r-th release of T , 1 ≤ r ≤ R
Ir The set of indices of all attributes that are included in Tr

Sr
n The n-th record in Tr, 1 ≤ n ≤ N

Sr
n(m) The m-th entry in Sr

n, 1 ≤ m ≤M
T [R] The union of all records in all releases, T [R] = T1 ∪ · · · ∪ TR

GT [R] The multipartite consistency graph on T [R]
CH

n The n-th R-clique in GT [R] that consists of the generalized images of Sn in T1, . . . , TR

MJ T [R] The Match Join (MJ) in GT [R]

FMJ T [R] The Full Match Join (FMJ) in GT [R]

KMJ T [R] The Kernel Match Join (KMJ) in GT [R]

Table 16: Notation table

9.2. Proof of Theorem 3.1

Lemma 9.1. In the case of cut generalization, if {Srn, Sr
′

n′} is an edge in G = GT [R], then
{Srn′ , Sr

′
n } is an edge too.

Proof. Assume, for the sake of simplicity, that r = n = 1 and r′ = n′ = 2. Let X ⊆ [M]
be the subset of indices off all attributes that appear in both T1 and T2. Since {S1

1 , S
2
2}

is an edge in G, then S1
1(m) ↑ S2

2(m) for all m ∈ X. In order to prove that {S1
2 , S

2
1} is

an edge too, we need to show that S1
2(m) ↑ S2

1(m) for all m ∈ X. There are two cases to
consider:

Case 1: In the m-th attribute S2
1(m) = S2

2(m). As S1
2 and S2

2 are siblings, we know
that S1

2(m) ↑ S2
2(m). Therefore S1

2(m) ↑ S2
1(m).

Case 2: In the m-th attribute S2
1(m)∩S2

2(m) = ∅. In that case, as S1
1(m) is on the same

generalization path with both S2
1(m) and S2

2(m), it must be an ancestor of both of them.
Now, S1

2(m) either equals S1
1(m) or they are disjoint. They could not be disjoint since that

would contradict the fact that S1
2(m) ↑ S2

2(m). Hence, S1
1(m) = S1

2(m). Therefore, S1
2(m)

is an ancestor of S2
1(m), namely S1

2(m) ↑ S2
1(m). 2

Proof of Theorem 3.1. Assume, without loss of generality, that r = 1 and r′ = 2. Assume
that S1

1 ∈ T1 is connected by an edge to exactly t nodes in T2, say W := {S2
1 , . . . , S

2
t }. We

shall prove three claims:

45

(1) Every node S1
i , 1 ≤ i ≤ t, is connected to each of the nodes in W .

(2) Every node S1
i , 1 ≤ i ≤ t, is not connected to any of the nodes in T2 outside W .

(3) Every node S1
i , t+ 1 ≤ i ≤ N , is not connected to any of the nodes in W .

Those three claims imply that the restriction of G to T1 ∪ T2 has the complete bipartite
graph on the first t nodes in T1 and T2 as one of its connected components. The proof may
be thus completed by an inductive argument.

We begin by proving the first claim. If t = 1 the claim is trivial so we assume that t ≥ 2.
We shall show that S1

2 must be connected to all nodes in W . Clearly, S1
2 is connected to

S2
2 (by a horizontal edge) and also to S2

1 (as implied by Lemma 9.1).It remains to prove
that it must be connected also to S2

i for 3 ≤ i ≤ t.
Fix m ∈ X, where X ⊆ [M] is the subset of indices of all attributes that appear in both

T1 and T2. Then
S1

1(m) ↑ S2
2(m) , (8)

S1
1(m) ↑ S2

i (m) , (9)

S1
2(m) ↑ S2

2(m) , (10)

and we wish to prove that also
S1

2(m) ↑ S2
i (m) . (11)

Eq. (8) implies that either S1
1(m) ⊆ S2

2(m) or S1
1(m) ⊃ S2

2(m). Let us consider first the
case where S1

1(m) ⊆ S2
2(m). The subsets S2

2(m) and S2
i (m) are either equal or disjoint.

They could not be disjoint since that would contradict Eq. (9). Hence, S2
2(m) = S2

i (m).
Consequently, Eq. (11) follows from Eq. (10). Next, consider the case where S1

1(m) ⊃
S2

2(m). In that case we conclude, in view of Eq. (10) and the fact that S1
1(m) and S1

2(m)
are either equal or disjoint, that S1

1(m) = S1
2(m). Hence, Eq. (11) follows from Eq. (9).

The second claim follows immediately. If, say, S1
i for some 1 ≤ i ≤ t, would have been

connected to a node outside W , then by arguing along the same lines as in the first claim,
also S1

1 would have to be connected to such a node, in contradiction to our assumption
that W includes all neighbors of S1

1 in T2.
As for the third claim, assume, towards contradiction, that S1

j , for j > t, is connected
to S2

i ∈ W . Then, by Lemma 9.1, we should have that S1
i is connected to S2

j , thus
contradicting the second claim. 2

9.3. Proof of Theorem 3.4

We shall prove Theorem 3.4 by showing a reduction from the problem of R-dimensional
matching. In that problem, one is given an R-partite graph and it is needed to decide
whether it has a perfect matching. That problem is known to be NP-complete for R > 2
(it appears in Karp’s list of 21 NP-complete problems).

The proof consists of two stages. In Lemma 9.2 we show that the R-partite graphs GT [R]

that correspond to sequential releases have no special structure, apart from the fact that

46

they have at least one perfect matching (the one that consists of all horizontal cliques).
Then, in Lemma 9.3, we prove that the problem of computing the FMJ in such graphs is
NP-hard.

Lemma 9.2. Let G be an R-partite graph, where each of its parts consists of N nodes. If
G has at least one perfect matching, there exists a table T and a corresponding sequential
release T [R] = T1 ∪ · · · ∪ TR for which G is the consistency graph.

Proof. Let us denote the nodes of G by V = {vrn : 1 ≤ n ≤ N , 1 ≤ r ≤ R}.
Assume, without loss of generality, that the perfect matching in G consists of the cliques
Cn = {v1

n, v
2
n, . . . , v

R
n }, 1 ≤ n ≤ N . Given such a graph G = (V,E), we proceed to define

the corresponding table and sequential release.
The table T consists of N rows and M :=

(
R
2

)
N columns, and its entries are given by

Sn(m) = n for all 1 ≤ n ≤ N , 1 ≤ m ≤ M . In order to define the various releases, we
need to introduce an alternative indexing for the columns of the table. Letting Ω denote
the following domain of triplets,

Ω = {(r1, r2, n1) : 1 ≤ r1 ≤ R , r1 + 1 ≤ r2 ≤ R , 1 ≤ n1 ≤ N} ,

it is clear that there is a one-to-one mapping between [M] = {1, . . . ,M} and Ω. Given
m ∈ [M] we let (r1(m), r2(m), n1(m)) denote its unique image in Ω under that mapping.

The n-th record in release Tr is denoted Srn; we describe its content, Srn(m), 1 ≤ m ≤M ,
using the alternative triplet indexing:

Srn(m) =


n r1(m) = r
A(r1(m), r, n) r2(m) = r, n1(m) = n
* r2(m) = r, n1(m) 6= n
* otherwise ,

where * denotes a totally suppressed entry and A(r1, r, n) is the set of indices ν of all
neighbors of vrn from among {vr1ν : 1 ≤ ν ≤ N}.

First, we claim that the above described releases comply with the model of cell gener-
alization by taxonomies. The domain of each of theM attributes is [N] := {1, 2, . . . , N} and
the generalized values in them-th attribute are taken from the set {1, . . . , N,A(r1(m), r2(m), n1(m)), [N]},
which is a taxonomy for the set [N].

We leave it for the reader to verify that the records Sr1n1
and Sr2n2

are consistent if and
only if the nodes vr1n1

and vr2n2
are connected in G. That completes the proof. 2

Example 9.1. Consider the bipartite graph given in Fig. 17. The table T and the two
releases T1 and T2 that correspond to it, as described in the proof of Lemma 9.2, are given
in Table 17.

47

v1
1

v1
2

v1
3

v1
4

v2
1

v2
2

3
2v

v2
4

Figure 17: The graph to Example 9.1

T A1 A2 A3 A4

S1: 1 1 1 1
S2: 2 2 2 2
S3: 3 3 3 3
S4: 4 4 4 4

T1 A1 A2 A3 A4

S1
1 : 1 1 1 1

S1
2 : 2 2 2 2

S1
3 : 3 3 3 3

S1
4 : 4 4 4 4

T2 A1 A2 A3 A4

S2
1 : {1,4} * * *

S2
2 : * {1,2} * *

S2
3 : * * {2,3,4} *

S2
4 : * * * {4}

Table 17: Table T (left), release T1 (middle) and release T2 (right)

2

Lemma 9.3. The following problem is NP-complete for any constant R > 2: Given an
R-partite graph G that has at least one perfect matching, and any R-clique in G, decide
whether that clique is admissible (in the sense that there exists a perfect matching in G that
contains it).

Proof. Assume the existence of an oracleO that can decide in polynomial time the problem
that is described in the lemma. We will use that oracle in order to solve in polynomial time
the NP-complete problem of R-dimensional matching.

Let G = (V,E) be an arbitrary R-partite graph with node set V = {vrn : 1 ≤ n ≤
N , 1 ≤ r ≤ R}. Define G0 = (V,E0) where

E0 = E
⋃

H , H := {{vr1n , vr2n } : 1 ≤ r1 < r2 ≤ R, 1 ≤ n ≤ N} .

Namely, G0 contains all edges of G and, in addition, it has all horizontal edges. Let us
color all edges in E in black and all edges in H \E in red. Clearly, G0 is a graph that has
at least one perfect matching, which is given by the edges in H. The original graph G, on
the other hand, has a perfect matching if and only if G0 has an all-black perfect matching
(that is, a perfect matching that does not involve any red edges).

48

Next, we will pick a red edge e = {u, v} from G0. Assume that we can decide in
polynomial time whether G1 = (V,E1 := E0 \ {e}) still has a perfect matching. Then, if
the answer is NO, it means that the red edge e is essential for each of the perfect matchings
in G0, whence the original graph G does not have a perfect matching. If, on the other
hand, the answer is YES, then G1 is a graph that has at least one perfect matching, and,
in addition, it has an all-black perfect matching if and only if G has a perfect matching.
Therefore, we may repeat the above described procedure with G1. Namely, we shall pick
a red edge e′ from G1 and decide (by the assumed procedure that is yet to be described)
whether G2 = (V,E2 := E1 \ {e′}) still has a perfect matching.

This process may end in one of two ways. Either we shall get in one of the iterations a
negative answer, indicating that G has no perfect matching; or we shall reach a graph Gk,
for k = |H \ E|, that has no more red edges. That graph, which must have at least one
perfect matching, is the original graph G. Hence, either way, we shall arrive at the sought-
after decision regarding the original graph G. As the number of red edges is polynomial,
the number of iterations of the above described procedure is polynomial in N .

It remains to show that if Gi = (V,Ei) is any graph in the above described sequence
and e = {u, v} ∈ Ei is a red edge in it, we can decide in polynomial time whether Gi+1 =
(V,Ei+1 := Ei \ {e}) still has a perfect matching. To that end, we compute two sets: The
set Ce that consists of all admissible R-cliques in Gi that contain the edge e; and the set
Cv that consists of all admissible R-cliques in Gi that contain the node v. We can compute
those sets in polynomial time using the assumed oracle O since the number of R-cliques in
the graph is polynomial. Note that Ce ⊆ Cv. There are two cases to consider:

• If Cv \ Ce = ∅ then all perfect matchings in Gi must contain the edge e (since every
perfect matching must include the node v); hence, in that case we conclude that Gi+1

does not have a perfect matching.

• If Cv \ Ce 6= ∅ then there exists an admissible R-clique that contains the node v but
not the edge e; the perfect matching in Gi that contains that clique does not include
the edge e. Such a perfect matching is therefore also a perfect matching in Gi+1.

The proof is thus complete. 2

49

