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Abstract

The performance of classifiers and other data mining models can be significantly enhanced
using the large repositories of digital data collected nowadays by public and private organi-
zations. However, the original records stored in those repositories cannot be released to the
data miners as they frequently contain sensitive information. The emerging field of Privacy
Preserving Data Publishing (PPDP) deals with this important challenge. In this paper, we
present NSVDist (Non-homogeneous generalization with Sensitive Value Distributions) —
a new anonymization algorithm that, given minimal anonymity and diversity parameters
along with an information loss measure, issues corresponding non-homogeneous anonymiza-
tions where the sensitive attribute is published as frequency distributions over the sensitive
domain rather than in the usual form of exact sensitive values. In our experiments with
eight datasets and four different classification algorithms, we show that classifiers induced
from data generalized by NSVDist tend to be more accurate than classifiers induced using
state-of-the-art anonymization algorithms.

Keywords: Privacy Preserving Data Publishing, Privacy Preserving Data Mining,
k-Anonymity, `-Diversity, Non-homogeneous Anonymization, Classification

1. Introduction

A vast amount of information of all types is collected daily about people by governments,
corporations and individuals. As a result, there is an enormous quantity of privately-
owned records that describe individuals’ finances, interests, activities, and demographics.
These records often include sensitive data and may violate the privacy of the users if
published. This information is becoming a very important resource for many systems and
corporations that may enhance and improve their services and performance by inducing
novel and potentially useful data mining models. One common practice for releasing such
confidential data without violating privacy is applying regulations, policies and guiding
principles for the use of the data. Such regulations usually entail data distortion operations
such as generalization or random perturbations. The challenge with this approach is that,
on one hand, data leakage can still occur, and, on the other hand, the data and the resulting
data mining models may become nearly useless after excessive distortion [7].
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The emerging research field of Privacy Preserving Data Publishing (PPDP) is target-
ing this challenge [7]. It aims at developing techniques that enable publishing data while
minimizing distortion for maintaining utility on one hand, and ensuring that privacy is
preserved on the other hand. In this paper we present a new privacy-preserving data pub-
lishing method, which is shown to maintain the predictive utility of supervised classification
algorithms that are trained on the published data. The predictive utility is measured by
the classification accuracy of the induced classification models, when applied to new, pre-
viously unseen data. As we explain in the related work section (Section 2), we assume that
the validation data can be kept in its original non-distorted form.

A closely related research area is Privacy Preserving Data Mining (PPDM) that was
initiated in 2000 by [1]. PPDM algorithms aim at anonymizing data towards its release
for specific data mining goals, so that the data utility is maximized, on one hand, and its
privacy is preserved on the other hand. The developed PPDM algorithms are tailored to
specific data mining tasks and algorithms. For example, if the data needs to be used for
inducing a decision-tree classifier, the corresponding PPDM algorithm will aim at achieving
anonymization while incurring a minimal loss of accuracy in the resulting classifier. In
PPDP, on the other hand, the exact purposes of the data release are unknown and it is
needed to anonymize the data using utility measures that are not targeted to a specific
data mining algorithm.

It is customary to distinguish between four types of attributes in the database table
that needs to be published (see [3]):
• Identifiers — attributes that uniquely identify an individual (e.g. name);
• Quasi-identifiers — publicly-accessible attributes that do not identify a person, but
some combinations of their values might yield unique identification (e.g., gender, age,
and zipcode);
• Sensitive information — attributes of private nature, such as medical or financial data
(in this paper, we follow the common assumption of a single sensitive attribute, which is
identical to the class attribute); and
• Other non-sensitive attributes that, on one hand, cannot be used for identification since
they are unlikely to be accessible to the adversary, and, on the other hand, do not represent
information of sensitive nature. (Those attributes can be ignored in our discussion.)

A common practice in PPDP and PPDM is to remove the identifiers and to generalize or
suppress the quasi-identifiers in order to protect the sensitive data of individuals from being
revealed. Generalization means that the original values of quasi-identifiers are replaced with
less specific values, whereas in case of suppression no values are released at all. The sensitive
data is usually retained unchanged.

In the past years, several models were suggested for maintaining privacy when dissem-
inating data. Most approaches evolved from the basic model of k-anonymity [38]. In that
model, the practice is to remove the identifiers and generalize the quasi-identifiers as de-
scribed above, until each generalized record is indistinguishable from at least k − 1 other
generalized records, when projected on the quasi-identifiers. Consequently, an adversary
who wishes to trace a record of a specific person in the anonymized table, will not be able
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to trace that person’s record to subsets of less than k anonymized records.
As an example, consider the basic table in Table 1(a), having the quasi-identifiers

Age and Zipcode and the sensitive attribute Disease. Table 1(b) is a corresponding 2-
anonymization. (Here “M” is short for “Measles”, “F” is short for “Flu” and so forth.) An
adversary who wishes to trace Eve’s record in it may infer that it is one of the last two
records, but they are equally likely, whence the probability of correct identification is 1/2.
Many algorithms were suggested in the literature for k-anonymization, e.g. [2, 10, 11, 13,
19, 24, 25, 35, 36, 39].

Name Age Zipcode Disease

Alice 30 10055 Measles
Bob 21 10055 Flu

Carol 21 10023 Angina
David 55 10165 Flu
Eve 47 10224 Diabetes

(a) The original table

Age Zipcode Dis.

21-30 100** M
21-30 100** F
21-30 100** A
47-55 10*** F
47-55 10*** D

Age Zipcode Dis.

21-30 10055 M
21 100** F

21-30 100** A
47-55 10*** F
47-55 10*** D

(b) Homogeneous anonymization (c) Non-homogeneous anonymization

Table 1: A table and corresponding anonymizations

The k-anonymity model on its own does not provide a sufficient level of privacy. Its main
weakness is that it does not guarantee sufficient diversity in the sensitive attribute within
each equivalence class (or block) of records that are indistinguishable by their generalized
quasi-identifiers. Namely, even though it guarantees that every record in the anonymized
table is indistinguishable from at least k − 1 others, it is possible that the distribution of
the sensitive values in those records discloses “too much” information. To mitigate this
problem, Machanavajjhala et al. [28] proposed the security measure of `-diversity. That
measure requires that each block of indistinguishable records will have at least ` “well
represented” sensitive values. One of the interpretations of `-diversity [42, 44] requires
that the relative frequency of each of the sensitive values within each block is at most 1/`.
The 2-anonymization in Table 1(b) satisfies also 2-diversity. Other measures limiting the
information leaked by the distribution of the sensitive attribute in each block are t-closeness
[27] and p-sensitivity [40]. A common thread in all those privacy models is that the table
records are first clustered into clusters that are required to satisfy some privacy condition,
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and then all records in a given cluster are replaced with the least generalized record that
generalizes all of them.

Gionis et al. [11, 39] proposed a novel approach that suggests achieving anonymity
without clustering. In their approach, k-anonymity is achieved by generalizing the table
records until each original record can be linked with at least k generalized records, but there
is no requirement that each generalized record will have at least k − 1 other generalized
records that agree with it in their quasi-identifiers. Similarly, `-diversity is achieved by
generalizing the table records to the extent that no original record can be linked to any of
the sensitive values with probability greater than 1/`. They showed that by breaking out
of the clustering paradigm, it is possible to achieve similar levels of anonymity with smaller
information losses. The recent study [43] further explored that idea and suggested the term
non-homogeneous anonymization for such non-cluster based anonymizations. Table 1(c) is
a non-homogeneous 2-anonymization of the original table. It may be verified that even
an adversary who knows the quasi-identifiers of all records in Table 1(a) cannot link any
such record with any of the generalized records in Table 1(c) with probability greater than
1/2. In addition, it can be shown that such an adversary cannot use Table 1(c) to infer
links between any of the records in Table 1(a) with any disease with probability greater
than 1/2. As Table 1(c) involves less data distortion than Table 1(b), non-homogeneous
anonymization can achieve similar privacy goals as homogeneous anonymization with less
information loss.

The studies [11, 39, 43] proposed algorithms for achieving non-homogeneous anonymiza-
tions and demonstrated the advantage that they offer, compared to homogeneous anonymiza-
tion algorithms, in terms of information loss. All studies thus far that considered homo-
geneous or non-homogeneous anonymizations assumed that only the quasi-identifiers are
subjected to generalization, while the sensitive attribute remains unchanged. In this paper,
we extend the non-homogeneous anonymization framework by allowing the generalization
of the sensitive column as well. The generalization is performed in a new way by replacing
the sensitive values with frequency distributions over the sensitive domain. We show empir-
ically that such anonymizations enable to learn more accurate classifiers from anonymized
data.

Originality and contribution. In the first part of this work we describe NSVDist,
a new anonymization algorithm that, given minimal anonymity and diversity parameters
(k and `) along with an information loss measure, issues corresponding non-homogeneous
anonymizations where the sensitive column is published as frequency distributions over the
sensitive domain rather than exact sensitive values, as in the case of customary generaliza-
tions. In the second part, we demonstrate the advantages offered by such anonymizations.
Previous studies [11, 39, 43] have shown that non-homogeneous anonymizations result in
lower information losses than homogeneous anonymizations for the same values of k and
`. Those findings raise the question whether such non-homogeneous anonymizations of
training data tables improve the utility of induced data mining models on new (validation)
data. Focusing on the task of classification, we first explain how to prepare generalized
tables so that they can be processed by standard classification algorithms. Then, we show
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empirically that classifiers that are built using NSVDist tend to be more accurate than clas-
sifiers that are built by state-of-the-art anonymization algorithms. In addition, we show
that the maximum values of the security parameter k that allow induction of meaningful
classification models from the anonymized data are considerably higher with our algorithm
(NSVDist) than with state-of-the-art algorithms of standard anonymization.

Organization of the paper. In Section 2 we review related work on privacy-preserving
data publishing. In Section 3 we present our extended generalization framework based
on the non-homogeneous generalization paradigm. Our algorithm for Non-homogeneous
generalization with Sensitive Value Distribution (NSVDist) is introduced in Section 4. The
proposed generalization methodology is evaluated in Section 5. Section 6 concludes with a
discussion of results and proposed directions for future research.

2. Related work

Fung et al. [8] present a privacy-preserving data publishing method that aims at main-
taining classification utility. The proposed Top-Down Specialization (TDS) algorithm per-
forms an iterative top-down partition of the data taxonomy tree as long as the anonymity
requirement is preserved and at least two distinct sensitive values are involved in the records
containing the specialized domain value. The best specialization is found at each iteration
using the well-known information gain measure. The method is evaluated on the Adult

dataset with C4.5 and Näıve Bayes classifiers.
LeFevre et al. [26] provide a suite of anonymization algorithms that produce a new

anonymous view of the given table for each pre-defined set of workloads, consisting of one
or more specific data mining tasks, as well as selection predicates. Their approach does
not agree with the “non-expert data publisher” assumption [7] according to which many
data owners do not have expertise in data mining and they are interested to publish their
data only once (e.g., on the UCI Repository) for an unrestricted use by the data mining
community rather than for specific data mining tasks.

In [9], the authors propose a k-anonymization solution for classification. The goal is
to find a k-anonymization, not necessarily optimal in the sense of minimizing information
loss, that retains useful information for classification. That study assumes that the data
miner is interested in estimating the testing accuracy on anonymized data, which does not
necessarily represent a typical privacy-preserving data publishing situation.

A privacy model called LKC-privacy for anonymizing high-dimensional data along with
a top-down specialization Privacy-Aware Information Sharing (PAIS) algorithm are pre-
sented in [32]. LKC-privacy upper-bounds the probability of a successful identity link-
age by 1/K and the probability of a successful attribute linkage by C, provided that the
adversary’s prior knowledge is limited to at most L of the quasi-identifier values. (For
example, (α, k)-anonymity [42] is a special case of LKC-privacy where L is the overall
number of quasi-identifiers, K = k, and C = α.) The PAIS algorithm applies homogeneous
anonymization, and it uses two utility measures: The first one (InfoGain) preserves the
maximal information for classification analysis. The second one (the discernibility cost
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measure) aims at minimizing the overall data distortion; it is intended for use when the
data mining task is unknown to the data anonymizer. Their algorithm is evaluated on the
Adult and Blood datasets with the C4.5 classifier.

Mohammed et al. [31] propose a generalization-based anonymization algorithm for
the so-called non-interactive setting. In that setting, which is assumed by most studies,
including ours, the database owner first anonymizes the raw data and then releases the
anonymized version for public use. This setting is different from the interactive one, where
the data miner is allowed to pose aggregate queries to the database. The solution proposed
in [31] first probabilistically generalizes the raw data and then adds noise to guarantee
ε-differential privacy. They showed that data generalized in that manner can be used
effectively to build a specific decision-tree induction algorithm (C4.5).

Kisilevich et al. [21] propose a new method for achieving k-anonymity without the
need for manually producing domain hierarchy trees. Their method, called k-Anonymity
of Classification Trees Using Suppression (kACTUS), identifies attributes that have less
influence on the classification of the data records; those attributes are then suppressed until
the table becomes k-anonymized. Their approach assumes that the data owner is capable
of performing data mining on her/his private data, in order to identify the attributes with
smaller impact on classification; thus, it is inconsistent with the prevailing assumption of
the “non-expert” data publisher who does not have the knowledge needed for running data
mining algorithms.

Iyengar [18] uses a genetic algorithm to find an optimal homogeneous generalization
of a given dataset in terms of two information loss measures: a general loss metric (LM)
and a classification metric (CM). In his evaluation, he also assumes that the data miner is
interested in applying the induced model on the anonymized data, which may be generalized
and published in several releases. His results on the Adult dataset indicated that with the
CM metric there was little increase (up to 1.4%) in the error rate as the privacy requirement
ranged from k = 10 to k = 250. It is noteworthy that our algorithm (NSVDist) exhibited
the same level of accuracy loss only for k = 400.

Rather than using user-defined domain generalization hierarchies, Nergiz and Clifton
[33] present a family of clustering-based generalization algorithms. They argue that anonymiza-
tion quality metrics strongly depend on the intended data mining task, and if that task is
known in advance, the data owner can simply release the appropriate model (e.g., a classi-
fier) instead of risking a privacy breach by publishing anonymized data. According to their
experimental results, no single information loss metric can be used as a reliable predictor
of data mining performance. (In this study we found that NSVDist, which is characterized
by smaller information losses than other anonymization algorithms, does perform better in
terms of classification accuracy.)

Herranz et al. [17] evaluate the utility of several Statistical Disclosure Control (SDC)
methods for constructing accurate classifiers from protected data. The induced models are
used to classify future records that are assumed to be given in their original form, without
any protection. The same assumption is implemented in our work. All anonymization
methods used by [17] are limited to numeric attributes and they do not take into account the
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`-diversity constraint. The results of the experiments in [17] indicate that the performance
remains essentially unchanged for the lower levels of protection, and it degrades slowly as
the level of protection grows.

In view of the real-world data publishing constraints, we did not choose to follow the
paradigm of [8] and [32]. Their approach is to split the published anonymized data into
two parts – the training set (used for model induction) and the testing set (used for model
evaluation). As indicated above, this evaluation approach does not represent a typical
“non-expert data publisher” scenario [7], where the data miners are primarily interested in
applying the model induced from the published data to their own private data, which does
not have to be published or anonymized. Thus, in our research, we have anonymized only
the training set, while the records from the testing set were used for classification in their
original (non-anonymized) form.

We conclude this review of related work by noting that the idea that some attributes
may not be essential for classifying specific database objects goes back to Kryszkiewicz
[22, 23]. The reduct of a database table is defined by Kryszkiewicz as a minimal subset of
attributes required for identifying a given object with certainty. Such subsets of attributes
relate to the notion of quasi-identifiers in privacy-related literature. Kryszkiewicz also
indicates that some objects may be indiscernible with regard to their description in an
incomplete system though they may have different properties in reality. The notion of
k-anonymity is based on the concept of k indiscernible records. In [23], a Rough Sets
algorithm for computing deterministic classification rules from an incomplete information
system is presented. However, Kryszkiewicz does not discuss privacy aspects of incomplete
information systems.

3. Preliminaries

Here we present the terminology and notations that we shall use henceforth. We begin
(Definition 3.1) by defining our novel framework of generalizations. That framework allows
the generalization of the sensitive attribute too (as opposed to standard generalizations
in which only the quasi-identifiers are generalized, while the sensitive values remain un-
changed). In addition, the sensitive attribute is generalized in a new, probabilistic manner,
by replacing each sensitive value with a frequency distribution over the sensitive domain
(and not by a subset of values, as is the case with standard generalizations). Then, we
formally define the closure of a set of records as the least generalized record that generalizes
each of the records in the set, its information loss, and its diversity (Definition 3.2). Finally,
we present our model of non-homogeneous anonymization (Definition 3.3).

Our standard assumption is that the set of possible values of each quasi-identifier is
defined in the database metadata. Let Am, m ∈ [M ], denote the set of possible values
for the mth quasi-identifier, and lest AM+1 be the set of possible sensitive values. Let
T = {R1, . . . , RN} be a table of N records in A1 × · · · × AM+1. We proceed to define our
extended framework of generalizations. In that extended framework, the quasi-identifiers
are generalized in the usual manner; as for the sensitive attribute, it may be generalized
too, but in a different, probabilistic manner.
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Definition 3.1. Assume that:
(a) For all m ∈ [M ] := {1, . . . ,M}, Am is a given collection of subsets of Am;
(b) D(AM+1) is the set of all frequency distributions on AM+1, i.e., all mappings f :

AM+1 → [0, 1] such that
∑

a∈AM+1
f(a) = 1.

Then the generalized record R = (R(1), . . . , R(M), R(M + 1)) ∈ A1× · · · ×AM ×D(AM+1)
generalizes the record R ∈ A1 × · · · × AM × AM+1 (denoted R v R) if:

(c) For all m ∈ [M ], R(m) ∈ R(m), and
(d) R(M+1)(R(M+1)) > 0, i.e., the frequency distribution R(M+1) assigns a positive

frequency to the original sensitive value R(M + 1).

Finally, T = {R1, . . . , RN} ⊂ A1 × · · · × AM × D(AM+1) is a generalization of T =
{R1, . . . , RN} ⊂ A1 × · · · × AM × AM+1 if Rn v Rn for all n ∈ [N ].

Comments.

(i) For each quasi-identifier Am, m ∈ [M ], Am is a user-defined collection of subsets
that are allowed to be used as generalized values. We do not make any assumption
regarding Am, apart for the trivial assumption that every element a ∈ Am has a
subset Sa ∈ Am that contains it. A typical choice for Am in the case of a categorical
attribute is a taxonomy tree of Am. For numeric attributes, Am typically consists
of all intervals. Having said that, our entire discussion herein is independent of the
user’s selection of those collections of subsets.

(ii) The sensitive values may be replaced with frequency distributions that support them,
namely, frequency distributions that assign a positive frequency to the original value,
but may “hide” it amongst other sensitive values. The customary model of general-
izations is a special case of the above defined model, in which all of the frequency
distributions are concentrated in the sensitive value of the original record (namely,
they assign a frequency of 1 to that value, and a zero frequency to all other sensitive
values).

As an example, consider Bob’s record in Table 1(a). It may be generalized to

RBob = ( 21-55 , 10*** , {(Flu,
2

3
), (Angina,

1

3
)} ) . (1)

The last entry in RBob is a frequency distribution over A3 =Disease that associates with
Flu the frequency 2/3 and with Angina the frequency 1/3.

Several measures of information loss were defined and used in the literature thus far.
For example, the Loss Metric measure [18], which is a commonly used one, assigns the
following generalization cost to a given generalized record R:

IL(R) =
1

M

M∑
m=1

|R(m)| − 1

|Am| − 1
. (2)
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Namely, this measure incurs a generalization cost for each quasi-identifier entry in the record
which is proportional to the size of the subset to which it was generalized; in particular,
entries that remain unchanged (namely, |R(m)| = 1) will incur a cost of zero, while entries
that were completely suppressed (|R(m)| = |Am|) will incur a cost of 1. Generalized tables
with smaller values of the LM measure retain more information on the original values of
the quasi-identifiers, whence it is plausible to expect that data mining algorithms trained
on such tables will produce more accurate classification models.

Numeric attributes are expressed and stored to a finite precision. For example, Age

can be specified by whole years, while Weight can be specified in kilograms up to one
decimal digit after the point. Hence, the domain (or range) Am that corresponds to numeric
attributes is also finite (as is the case with categorical attributes). For numeric attributes,
a typical generalized value is an interval. If R(m) is an interval, then |R(m)| denotes the
number of possible values in that interval (regardless of whether all of those values appear
in the data table or not). Practically, both |R(m)| and |Am| can be taken as the lengths of
the corresponding intervals.

Definition 3.2. The closure of a set of records B ⊂ A1×· · ·×AM×AM+1 is the generalized
record B = (B(1), . . . , B(M), B(M + 1)) where:

(a) For all m ∈ [M ], B(m) is the minimal (with respect to inclusion) subset in Am that
includes R(m) for all R ∈ B; and

(b) B(M + 1) is the frequency distribution f : AM+1 → [0, 1] that is defined by

f(a) =
|{R ∈ B : R(M + 1) = a}|

|B|
∀a ∈ AM+1 .

The information loss of B, denoted IL(B), is defined as the information loss of its
closure.

The diversity of B is div(B) =
(
maxB(M + 1)

)−1
(i.e., the inverse of the maximal

frequency in the distribution B(M + 1)).

For example, the generalized record in Eq. (1) is the closure of Bob’s, Carol’s and
David’s records in Table 1(a). Its diversity is 3

2
. The information loss of the set B =

{RBob, RCarol, RDavid} that consists of the second, third and fourth records in Table 1(a), is
the information loss of its closure, namely, of the generalized record RBob in Eq. (1).

Finally, we define the notion of non-homogeneous (k, `)-anonymizations:

Definition 3.3. Let T be a generalization of T in the sense of Definition 3.1. It respects
non-homogeneous k-anonymity if each Rn ∈ T generalizes at least k records from T . It
satisfies the `-diversity constraint if the maximal frequency in each of the frequency distri-
butions Rn(M + 1), n ∈ [N ], is no larger than 1/`. If T is a generalization of T in the
sense of Definition 3.1 that respects non-homogeneous k-anonymity and `-diversity, it is
called a non-homogeneous (k, `)-anonymization.
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Table 2 shows a non-homogeneous (k = 2, ` = 2)-anonymization of Table 1(a) with a
frequency distribution generalization of the sensitive attribute. Indeed, the nth record in
Table 2, 1 ≤ n ≤ 5, is a generalization of the nth record in Table 1(a) and at least one
more record from that table; and all the sensitive distributions include frequencies that are
no larger than 1/2.

Age Zipcode Disease distribution

21-30 10055 {(M, 1
2
), (F, 1

2
)}

21 100** {(F, 1
2
), (A, 1

2
)}

21-30 100** {(A, 1
2
), (M, 1

2
)}

47-55 10*** {(F, 1
2
), (D, 1

2
)}

47-55 10*** {(F, 1
2
), (D, 1

2
)}

Table 2: Non-homogeneous anonymization with sensitive value distributions

The above defined model of generalization is non-homogeneous since it does not require
each generalized record to be identical to at least k − 1 other generalized records, when
projected onto the quasi-identifiers. In that sense, it is similar to previous notions of non-
homogeneous anonymizations [11, 39, 43]. However, the above defined notion differs from
those in [11, 39, 43] by allowing the generalization of the sensitive attribute, and in the
manner in which it defines compliance with the k-anonymity and `-diversity constraints.
In Section 4.5 we discuss the different notions of non-homogeneous anonymizations and
compare between them.

The notion of non-homogeneous (k, `)-anonymization as defined above is also related to
the notion of (α, k)-anonymization [42]. Let T be a standard generalization of T , namely,
a generalization as in Definition 3.1 where all sensitive frequency distributions are con-
centrated in the original sensitive value. Define an equivalence relation between the gen-
eralized records in T where Rn ∼ Rn′ if Rn(m) = Rn′(m) for all m ∈ [M ]. Then T
respects standard (or homogeneous) k-anonymity if each equivalence class in T/∼ is of size
at least k. It respects `-diversity if the relative frequency of each sensitive value within
each equivalence class is no larger than 1/`. Finally, it respects (1/`, k)-anonymity [42] if
it respects homogeneous k-anonymity as well as `-diversity. The above defined notion of
non-homogeneous (k, `)-anonymity differs from (1/`, k)-anonymity in two aspects: (a) It
includes non-homogeneous anonymizations (rather than only homogeneous ones); and (b)
it allows publishing sensitive value distributions in each generalized record, and enforces
`-diversity through those distributions (rather than publishing a single sensitive value for
each record, and then enforcing `-diversity through the sensitive value distribution within
each equivalence class).
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4. An algorithm for Non-homogeneous generalization with Sensitive Value Dis-
tribution (NSVDist)

4.1. The algorithm

Our Non-homogeneous generalization algorithm with Sensitive Value Distribution (NSVDist)
(Algorithm 1) produces for each record Rn ∈ T a corresponding generalized record Rn which
is the closure of Rn and k − 1 additional records in T ; the subset of T that includes Rn

and the additional k − 1 records is denoted Bn. The selection of the k − 1 additional
records in Bn is guided by two rules — one that relates to the generalized quasi-identifiers
and another that relates to the sensitive distribution: (a) Trying to minimize the resulting
information loss IL of Bn; and (b) making sure that the diversity of Bn is at least `. The
selection is carried out in a greedy manner: The k − 1 records that will be used to mask a
given record Rn ∈ T are selected one at a time, where in each stage we select a record that
complies with the diversity constraint and minimizes the resulting information loss due to
generalization. The operation of the algorithm is independent of the choice of information
loss measure. (In our experiments we implemented it with the LM measure, Eq. (2), and
the entropy measure [12].)

To that end, in order to compute the generalization Rn of the record Rn, n ∈ [N ], we
compute a set Bn that includes Rn and additional k − 1 records, so that the diversity of
Bn is at least ` and its information loss is as small as possible (Lines 2-7). The set Bn is
initialized to include only Rn (Line 2). Then we start adding to it one additional record at
a time until its size becomes k (Lines 4-7). In order to verify the diversity constraint, we
maintain a frequency vector F of length |AM+1| (the number of sensitive values) so that
at each stage F (q) equals the number of records in Bn whose sensitive value is the qth
value in AM+1. That vector is initialized in Line 3 for the initial set Bn. In the loop that
implements the greedy selection, we review all records that were not selected yet. We skip
records that cannot be added to Bn without violating the diversity constraint. Specifically,
since Bn will eventually be of size k, it will be `-diverse if and only if it does not contain
more than bk/`c records that have the same sensitive value. Hence, we concentrate only on
records whose sensitive value appears in Bn strictly less than bk/`c times. Among all those
records, we select the one, Ri, whose addition to Bn would yield a set Bn∪{Ri} of minimal
information loss (Line 5). The function that computes the information loss of a given set
of records is described in Algorithm 2. After selecting that record, we add it to Bn and
update the vector F accordingly (Line 6). At the end, when Bn includes Rn and additional
k − 1 records, we set Rn to be the closure of Bn. That computation is also described in
Algorithm 2. (Since Algorithm 2 is a straightforward implementation of Definition 3.2 and
Eq. (2), it is self-explanatory.)

Each generalized record in the output anonymization T is consistent with Rn and at
least k − 1 other records in T . In addition, since none of the sensitive values in AM+1

appears in more than k/` of those k records, the frequency of each sensitive value in each
of the frequency distributions in T is no more than 1/`. Therefore, the output of Algorithm
1 is a (k, `)-anonymization of T .
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Algorithm 1 Non-homogeneous generalization with Sensitive Value Distribution
(NSVDist)

Input: A table T = {R1, . . . , RN}, anonymity parameter k, diversity parameter `.
Output: A non-homogeneous (k, `)-anonymization T = {R1, . . . , RN} with sensitive value

distribution.
1: for all 1 ≤ n ≤ N do
2: Set Bn = {Rn}.
3: Set F (q) = 0 for all q ∈ AM+1 \ {Rn(M + 1)} and F (q) = 1 for q = Rn(M + 1).
4: while |Bn| < k do
5: Among all records Ri ∈ T \ Bn for which F (Ri(M + 1)) < bk/`c, find one that

minimizes IL(Bn ∪ {Ri}). {See Algorithm 2.}
6: Add the selected Ri to Bn and set F (Ri(M + 1)) = F (Ri(M + 1)) + 1.
7: end while
8: Rn = Bn. {See Algorithm 2.}
9: end for

10: Return T = {R1, . . . , RN}.

4.2. Information loss

In our first set of experiments, we compared the information loss in non-homogeneous
(k, `)-anonymizations, as issued by the NSVDist algorithm, to the information loss in cor-
responding (k, `)-anonymizations, as issued by leading homogeneous anonymization algo-
rithms. To that end, we used the single-dimensional Mondrian algorithm [25] and the
sequential anonymization algorithm [13] (SeqA)1. We conducted this set of experiments
on three datasets from the UCI Machine Learning Repository [6] — Adult, CMC, and
Mammographic. (Our experimental setup is described in more detail in Section 5.2.) Fig-
ure 1 shows the average information losses, as measured by the LM measure, in the output
anonymizations of NSVDist, SeqA, and Mondrian on these three datasets, for various values
of k and two values of the diversity parameter `. (Specifically, we measured the information
loss in each of the generalized records in the output anonymization, using Eq. (2), and then
divided by the number of records.) As can be seen, non-homogeneous anonymizations yield
information losses that are considerably smaller than homogeneous anonymizations. We
repeated the experiments with the entropy measure of [12], instead of the LM; the results
were consistent with those shown in Figure 1 for the LM measure.

Thus, our research hypothesis is that data mining algorithms trained on tables anonymized
by NSVDist would produce more useful (e.g, more accurate) classification models. This

1We used here and later on a modified version of the sequential anonymization algorithm. While the
original algorithm in [13] began with a random partition of the dataset records, and then sequentially
improved that partition until reaching a local optimum, we began with the partition that was issued by
the single-dimensional Mondrian algorithm. This modified version performed better than the original
sequential algorithm.
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Figure 1: Loss Measure as a function of k
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Algorithm 2 Computing the closure and information loss of a set of records

Input: A set B = {S1, . . . , SH} of H records from T = {R1, . . . , RN}.
Output: The closure B = (B(1), . . . , B(M), B(M + 1)) and information loss IL(B) of B

(Definition 3.2)
1: IL(B) = 0.
2: for all 1 ≤ m ≤M do
3: Set B(m) to be the minimal subset in Am that includes Sh(m) for all 1 ≤ h ≤ H.

4: IL(B) = IL(B) + |B(m)|−1
|Am|−1

5: end for
6: IL(B) = IL(B)/M
7: F = (0, . . . , 0) {A vector of length s := |AM+1|, the number of sensitive values.}
8: for all 1 ≤ h ≤ H do
9: a = Sh(M + 1)

10: F (a) = F (a) + 1/H
11: end for
12: B(M + 1) = F
13: Return IL(B) and B = (B(1), . . . , B(M), B(M + 1)).

hypothesis is examined in Section 5.

4.3. Computational complexity

The computational complexity of NSVDist is O(kN2M), since the number of candidate
records that needs to be checked in Step 5 is O(N), and those searches are repeated k − 1
times for each of the N records; the linear dependence on M is due to the computation of
the information loss. In case the table is too large to allow such a runtime, we may first
apply on T a small number of steps of a top-down clustering algorithm that is guided by
the information loss similarity measure; such a preprocessing step will split the N table
records into smaller clusters of records that are close with respect to the information loss
measure. After doing so, we may proceed to apply NSVDist within each cluster separately.
One natural choice for such a top-down clustering algorithm is the Mondrian algorithm
[25]. Splitting the table to p clusters that have similar number of records will reduce the
runtime by a factor of p to O(pk(N/p)2M) = O(kN2M/p).

4.4. Privacy

NSVDist produces (k, `)-anonymizations that provide the same level of privacy as do
homogeneous k-anonymizations that are `-diverse. Both types of anonymization link each
target record with a multiset2 of sensitive values. In both cases, that multiset contains the
true sensitive value of the target record together with the sensitive values of at least k − 1
additional records. For example, the generalized record RBob in Eq. (1) is a generalization

2A multiset is a set with possibly repeating elements.
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of Bob’s record in Table 1(a). It is the closure of Bob’s, Carol’s and David’s records. The
frequency distribution in the sensitive column is equivalent to the multiset of sensitive
values {Flu,Flu,Angina} which holds the sensitive value of Bob as well as those of Carol
and David. If, on the other hand, we consider the homogeneous anonymization of Table
1(a) in Table 1(b), it links Bob’s record to the multiset {Measles,Flu,Angina}, that holds
the sensitive values of Alice, Bob, and Carol.

Both non-homogeneous (k, `)-anonymizations and homogeneous k-anonymizations that
are `-diverse require that none of the sensitive values in those multisets appear in frequency
that is greater than 1/`. Assume that an adversary will attempt to gain knowledge on the
sensitive values of some of the individuals behind the masking values in the multiset of his
target record, in order to learn more information on the sensitive value of his target record.
Adopting that strategy, he will be able to infer the sensitive value of his target record with
certainty once he gains knowledge of the sensitive values of all individuals whose sensitive
value differs from that of his target record. By `-diversity, there are at least dk(1 − `−1)e
such individuals. Hence, the combination of the k-anonymity and `-diversity conditions
imply the same lower bound on the number of individuals for which the adversary needs
to learn the sensitive information in both anonymization models.

4.5. Comparison to other non-homogeneous anonymization algorithms

Non-homogeneous anonymization was introduced in [11] and then further explored in
[39] and [43]. Both studies presented algorithms for computing non-homogeneous anonymized
views and compared their performance against homogeneous anonymization algorithms in
terms of general purpose information loss measures; the former study used the LM measure,
Eq. (2), and the entropy measure of [12], while the latter used only the LM measure.

Gionis et al. [11, 39] concentrated on achieving a privacy goal that “simulates” k-
anonymity. One algorithm presented there computed a non-homogeneous anonymization
T of T that has the following property: Every record R ∈ T is consistent with at least k
generalized records in T and, on the other hand, every generalized record in T is consistent
with at least k records in T . The two tables T and T induce a bipartite graph in which
an edge connects R ∈ T with R ∈ T if and only if R v R. Hence, stated otherwise,
the output of that algorithm is a non-homogeneous anonymization T of T for which the
degrees of all nodes in the resulting bipartite graph are at least k. It was argued there that
such anonymizations provide in practice anonymity that is comparable to k-anonymity.
However, if the adversary is assumed to know all quasi-identifiers of all records in T , he
may be able to reproduce the entire bipartite graph and then ignore edges that are not part
of a perfect matching, since such edges cannot stand for true links between records and
their generalized image. By doing so, the effective degrees of nodes may become smaller
than k. Their second algorithm addresses that privacy breach by making sure that each
node R ∈ T has at least k nodes R ∈ T that are connected to R by an edge which is
included in a perfect matching.

That work did not consider `-diversity. Hence, such non-homogeneous anonymizations
may leak sensitive information in the same way that k-anonymizations that do not respect
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`-diversity might.
The algorithm proposed by Wong et al. [43] rectifies that problem. It starts by applying

a top-down clustering algorithm in order to split the records into clusters such that the
diversity within each cluster is at least `, on one hand, and the records within each cluster
are “close” in terms of the underlying information loss measure, on the other hand. The
rest of the algorithm proceeds within each cluster independently. Their algorithm, like
NSVDist, generates for each record Rn ∈ T a generalized view Rn that is the closure of
Rn and a number of other records (` − 1 other records in their algorithm). Then, they
attach to Rn one of the sensitive values that belong to one of the original records that were
generalized by it. The selection of that sensitive value is made at random so that even an
adversary who knows all quasi-identifiers in T and also knows the anonymization algorithm
cannot link any sensitive value to any record in T with probability greater than 1/`.

We identify two limitations of this approach. The first one relates to privacy: The
algorithm of [43] outputs anonymizations that are `-diverse only; however, as we proceed to
explain, `-diversity must be enforced on top of k-anonymity, in order to get (k, `)-anonymity
(Definition 3.3), since it is insufficient by itself. The diversity of any anonymization of a
table is bounded by the diversity of the entire table, and the latter is bounded by the number
of possible sensitive values. Therefore, if the table has a sensitive attribute with a small
number of possible values, all of its anonymizations will respect `-diversity with ` that does
not exceed that number. For example, in the case of a binary sensitive attribute, one can
aim at achieving `-diverse anonymizations with ` ≤ 2 only. In such a case, if one imposes
only `-diversity, the blocks of indistinguishable records could be of size 2. Such small blocks
do not provide enough privacy for the individuals in them, because if an adversary may be
able to learn the sensitive value of one of those individuals, he may infer that of the other
one as well. If, on the other hand, we demand that such `-diverse anonymizations are also
k-anonymous, for some larger value of k, then the adversary would have to find out the
sensitive values of at least k/2 individuals before he would be able to infer the sensitive
value of his target individual. Indeed, NSVDist is designed to achieve (k, `)-anonymizations
in order to achieve such enhanced security. (As mentioned in Section 2, LKC-privacy [32]
and (α, k)-anonymity [42] also combine the k-anonymity and `-diversity conditions, but
within the framework of homogeneous anonymizations.)

The second limitation of the algorithm of [43] is that it can work only with integer values
of `. Restricting the diversity parameter ` to integer values limits the applicability of the
algorithm. For example, in the Adult dataset from the UCI Machine Learning Repository
[6], which frequently serves as a benchmark dataset in this context, the sensitive value is
binary and the global diversity is 1.33 (namely, the more frequent sensitive value has a
frequency of 1/1.33 ≈ 0.752 in the table). In such cases, it is impossible to apply the
algorithm of [43] with ` > 1; indeed, the algorithm starts with ordering all table records so
that each ` consecutive records have ` different sensitive values, and such an ordering does
not exist for the Adult dataset for any integer ` > 1. Similar problems will also occur with
richer sensitive attribute domains where the global diversity is low. In contrast, NSVDist
enforces diversity in a way that can be applied with any real value of `.
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To summarize, NSVDist enhances the algorithms of [11, 39, 43] by offering non-homogeneous
anonymizations that are both k-anonymous and `-diverse (Definition 3.3); in addition, it
enhances the algorithm of [43] by allowing non-integer values of `. These enhancements of
the anonymization framework have been enabled by allowing the sensitive attributes to be
generalized to sensitive value distributions rather than exact values.

5. Evaluation

5.1. Evaluation methodology

We evaluated the proposed anonymization methodology on several benchmark datasets
using different classification algorithms. For each dataset and each classification algorithm,
we carried out an evaluation procedure that consisted of the following steps:

(1) If the dataset had no available training-test partition, we applied on it the 10-fold
cross-validation using the Split Data operator in the RapidMiner software (version
5.1.001) [30]. In our work, the training set is used to generate the published anonymized
data that may be accessible by anyone to induce a classification model; the test set,
on the other hand, represents data that is unknown at the time of performing the
anonymization, and it is available only to the user of the classification model.

(2) We performed (k, `)-anonymizations of the training set, for various settings of k and
`, using four algorithms: The sequential anonymization algorithm of [13], the single-
dimensional Mondrian algorithm [25], the privacy-aware information sharing algorithm
(PAIS) of [32] and NSVDist (see Section 4.1).

(3) For every setting of k and `, we trained a classifier on each of the four resulting
anonymized tables, using different classification algorithms. We then computed the
classifier’s predictive performance on the test records.

(4) In addition, we computed the accuracy of a classifier based on the majority rule, i.e., a
classifier which assigns the majority class in the training set to each record in the test
set. Such a classifier provides the maximum possible level of privacy, since instead of
publishing the database it only publishes the majority class of the sensitive attribute.
We also computed the accuracy of a classifier that was trained on the original training
records (without applying anonymization of any kind); this corresponds to setting
k = ` = 1. Those two classifiers served as baselines in the comparison.

The standard classification algorithms cannot be applied directly on generalized tables
since they contain non-specific values such as numeric intervals or subsets of nominal values.
Hence, it is needed first to convert the anonymized tables into tables with specific values
and only then to apply the classification algorithm on those non-generalized tables. We
converted the anonymized tables into non-generalized ones by means of sampling. Assume
that R = (R(1), . . . , R(M), R(M + 1)) is a generalized record in an anonymized table that
was produced by one of the anonymization algorithms. For all quasi-identifier attributes
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m ∈ [M ], R(m) is a value from Am, namely, it is a subset of the mth quasi-identifier
domain Am. As for the sensitive attribute R(M + 1), it is published as a distribution over
the sensitive attribute domain AM+1. (In tables produced by the standard homogeneous
anonymization algorithms, namely, the sequential anonymization, the Mondrian, and the
PAIS algorithms, the sensitive value may be viewed as a deterministic distribution since
these algorithms keep the sensitive values unchanged.) Then, we sample from R a specific
record R = (R(1), . . . , R(M), R(M + 1)) ∈ A1× · · ·×AM ×AM+1 in the following manner:

• For all m ∈ [M ], R(m) is one of the values in the subset R(m) ⊆ Am, drawn from
the distribution of the values in the subset R(m) in the entire training set. (Those
distributions can be published.) Specifically, if R(m) is a subset that includes q values
from Am, and their frequencies in the training set are f1, . . . , fq, then we select the
ith value with probability fi/

∑q
j=1 fj.

• R(M + 1) is a value in AM+1 that is drawn at random, where Prob(R(M + 1) = a) =
R(M + 1)(a) for all a ∈ AM+1.

For each of the anonymization algorithms, we repeated the sampling procedure p = 10
times in order to induce p models with each classifier. We report the average accuracy
over those p independent samples and over the 10 training-test partitions of the 10-fold
cross-validation methodology. Namely, the reported average accuracy is over 10p = 100
classifiers.

The results presented here are for anonymizations that were issued by NSVDist, Mon-
drian, and the sequential anonymization algorithms, when they used the LM information
loss measure. Anonymizations that were computed by those algorithms using the entropy
information loss measure exhibited very similar behavior. As for the PAIS algorithm, it
uses the InfoGain utility measure, which is designed for maximizing classification accuracy.

5.2. Experimental setup

We conducted our experiments on eight datasets from the UCI Machine Learning Repos-
itory [6]. Table 3 provides information on the number of records in each dataset (indicating
in the parentheses the number of records removed due to a missing attribute value or a
missing label), the number and the list of statistically relevant quasi-identifiers, and the
global diversity. Out of the eight datasets that we used for our evaluation, only the Adult

dataset has a given training-test partition; hence, in that dataset we did not apply the
10-fold cross validation methodology and, consequently, the accuracy values reported for
that dataset are an average over the p independent samples.

The statistically relevant quasi-identifiers were detected by applying on each dataset
the Weka software (version 3.68) [14] operator ”CfsSubsetEval” with ”BestFirst” search
method for attribute selection. This method, which is based on greedy hill-climbing and
backtracking search, chooses a subset of attributes having the highest predictive value,
along with a low degree of redundancy among them.

As for the global diversity, it equals the inverse of the maximal frequency of a sensitive
value in the whole dataset. For example, a diversity of 1.94 in the Mammographic Mass
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dataset indicates that the most frequent sensitive value appears in 51.54% of the records.
In each dataset, the diversity of a given generalization cannot exceed the global diversity.

Dataset Records Quasi-identifiers Diversity
Abalone 4177 (0) 5: sex, diameter, height, viscera

weight, shell weights
6.06

Adult 45222 (3620) 14: age, work class, final weight, edu-
cation, education num, marital status,
occupation, relationship, race, sex, cap-
ital gain, capital loss, hours per week,
native country

1.33

Breast Cancer

Wisconsin

(Original)

683 (16) 6: ct, uocsi, uocsh, bn, bc, nn 1.54

Contraceptive

Method Choice

1473 (0) 3: wife age, wife edu, num children 2.34

Ecoli 336 (0) 6: seq, mcg, gvh, lip, alm1, alm2 2.35
Mammographic

Mass

830 (131) 5: bi rads assessment, age, shape, mar-
gin, density

1.94

Page Blocks

Classification

5473 (0) 6: height, eccen, p black, p and,
mean tr, wb trans

1.11

Yeast 1484 (0) 4: seq, alm, erl, pox 3.21

Table 3: Datasets

For the Adult dataset, we used the taxonomy trees that were suggested by Mohammed
et. al [32]. In all other datasets, we built artificial taxonomy trees for all attributes using
the following automatic procedure. We sorted the set S of possible values in the attribute
alphabetically, and then constructed a tree of height dlog5 |S|e, where each node has at most
5 children. In such a tree, the root represents the entire set S, the leaves are all singleton
values, and each intermediate node represents the union of the subsets represented by its
children. The obtained trees are available from the authors upon request.

In each dataset, we used several k values, starting from k = 1 (which corresponds to
the non-generalized training dataset) and then continuing with larger values of k until we
reached total suppression with most anonymization algorithms. We also tested two values
of the diversity parameter `: ` = 1 and ` = 1+(`g−1)/3, where `g is the global diversity of
the entire dataset as reported in Table 3. We repeated our experiments with four popular
classification algorithms — W-J48 (based on C4.5 [34]), Näıve Bayes [15], W-JRip [4], and
SVM [16] using the Weka software (version 3.68) [14].
• For W-J48 we used the following default settings: use unpruned tree (U)=false;

Confidence threshold for pruning (C)=0.25; minimum number of instances per leaf (M)=2;
use reduced error pruning (R)=false; number of folds for reduced error pruning(N)=3; use
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binary splits only (B)=false; do not perform subtree raising (S)=false; do not clean up after
the tree has been built (L)=false; Laplace smoothing for predicted probabilities (A)=false;
seed for random data shuffling (Q)=1.
• For Näıve Bayes (Kernel) we used the following settings: use Laplace correction to

prevent high influence of zero probabilities = true; the kernel density estimation mode =
full; the method to set the kernel bandwidth = heuristic; use a kernel density function grid
in model application = false.
• For W-JRip we used the following default settings: The number of folds for reduced

error pruning(F )=3; one fold is used as the pruning set; the minimal weights of instances
within a split (N)=2.0; the number of runs of optimizations (O)=2; turn on the debug mode
(D)=false; the seed of randomization (S)=1; not check the error rate ≥ 0.5 in stopping
criteria (E)=false; not use pruning (P )=false.
• For SVM we used the following default settings: SVM for classification=C-SVC;

the type of the kernel functions=rbf; the parameter gamma=0; the cost parameter C=0;
the cache size in Megabyte=80; the tolerance of termination criterion (ε)=0.001; use the
shrinking heuristics=true; calculate confidence values=false; select the class with the high-
est confidence in the multiclass setting=true.

Regarding the anonymization algorithms, we have implemented all algorithms, except
for PAIS. The software for the latter algorithm was provided to us by Dr. Benjamin C. M.
Fung.3

5.3. Experimental results

Figures 2—4 herein, and Figures B.7—B.11 in Appendix B, show the trade-off between
the anonymity level k of the training data and the testing accuracy of the four evaluated
classifiers, in each of the eight datasets. The left column of plots in each figure show the
classifier accuracy when the training data was anonymized with the diversity parameter
` = 1 (namely, in anonymizations with a trivial diversity constraint), while the right column
of plots show the results with a higher diversity parameter, as explained earlier. Each plot
in each of those figures includes four curves, representing the sequential anonymization
algorithm (SeqA), the Mondrian algorithm, the privacy-aware information sharing algo-
rithm (PAIS), and the NSVDist algorithm. In addition, each plot includes two reference
baselines — the classification accuracy based on the majority rule and the accuracy of a
classifier that was trained on the original data records. Each point on every curve repre-
sents the average over 10 independent samples (of a specific table from the anonymized
table with generalized values) and over 10 training-test partitions, whenever the dataset
had no training-test partition.

Table 4 provides another succinct look at the results of the above described series of

3The PAIS algorithm assumes that the database has two different attributes — class attribute and
sensitive attribute. Since in our datasets the sensitive attribute is identical to the class attribute (as
assumed by most anonymization algorithms), we created, for the sake of PAIS, a new class attribute that
coincides with the sensitive attribute.
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Figure 2: Classification performance using anonymized data (Adult)

21



45

55

65

75

85

0 50 100 150 200 250 300

A
cc

u
ra

cy
 (

%
) 

k 

Mammographic: W-J48 (div=1.0) 

45

55

65

75

85

0 50 100 150 200 250 300

A
cc

u
ra

cy
 (

%
) 

k 

Mammographic: W-J48 (div=1.31) 

45

55

65

75

85

0 50 100 150 200 250 300

A
cc

u
ra

cy
 (

%
) 

k 

Mammographic: NBC (div=1.0) 

45

55

65

75

85

0 50 100 150 200 250 300

A
cc

u
ra

cy
 (

%
) 

k 

Mammographic: NBC (div=1.31) 

45

55

65

75

85

95

0 50 100 150 200 250 300

A
cc

u
ra

cy
 (

%
) 

k 

Mammographic: W-JRip (div=1.0) 

45

55

65

75

85

95

0 50 100 150 200 250 300

A
cc

u
ra

cy
 (

%
) 

k 

Mammographic: W-JRip (div=1.31) 

45

55

65

75

85

0 50 100 150 200 250 300

A
cc

u
ra

cy
 (

%
) 

k 

Mammographic: SVM (div=1.0) 

45

55

65

75

85

0 50 100 150 200 250 300

A
cc

u
ra

cy
 (

%
) 

k 

Mammographic: SVM (div=1.31) 

SeqANSVDist PAIS Mondrian MajorityOriginal

Figure 3: Classification performance using anonymized data (Mammographic)
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Figure 4: Classification performance using anonymized data (CMC)
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NSVDist PAIS SeqA Mondrian NSVDist PAIS SeqA Mondrian

Abalone 19.20 13.69 13.92 13.87 19.24 13.69 13.78 13.59 16.50 20.25

Adult 82.20 81.11 74.87 75.07 82.00 81.04 76.47 76.44 74.69 85.35

Breast Cancer 91.13 84.63 82.44 82.72 83.49 84.76 68.25 68.34 65.01 95.16

CMC 50.08 44.13 43.18 43.97 48.58 43.87 43.74 43.88 42.70 54.31

Ecoli 61.65 42.06 42.06 42.06 51.24 42.06 41.97 42.06 42.56 78.53

Mammographic 78.65 77.14 76.92 77.01 77.84 76.77 49.58 49.47 51.45 82.29

Page Blocks 91.14 90.24 89.76 89.72 91.45 90.47 89.76 89.74 89.77 97.06

Yeast 39.06 30.85 30.96 31.01 38.97 31.03 30.86 31.10 31.20 41.11

Majority Original
div=1.0 div>1.0

Dataset

NSVDist PAIS SeqA Mondrian NSVDist PAIS SeqA Mondrian

Abalone 22.07 19.35 19.30 18.88 22.11 19.48 19.56 19.31 16.50 25.23

Adult 83.20 78.41 76.46 75.67 81.20 78.71 75.42 75.43 74.69 83.38

Breast Cancer 95.85 86.12 85.63 85.12 86.44 86.37 69.96 72.18 65.01 96.48

CMC 49.41 43.20 43.37 44.08 49.90 44.29 43.46 43.71 42.70 54.17

Ecoli 62.06 39.94 37.74 37.97 59.09 38.38 38.82 39.56 42.56 80.66

Mammographic 80.36 77.78 77.18 77.48 78.86 77.27 51.73 51.42 51.45 82.17

Page Blocks 86.65 81.90 67.16 68.84 81.99 79.30 69.70 72.73 89.77 94.41

Yeast 38.98 29.43 29.36 30.20 38.86 29.03 29.76 29.39 31.20 38.88

Majority OriginalDataset
div=1.0 div>1.0

NSVDist PAIS SeqA Mondrian NSVDist PAIS SeqA Mondrian

Abalone 17.90 16.49 16.52 16.57 17.91 16.49 16.55 16.52 16.50 18.60

Adult 82.20 81.40 75.17 75.21 82.00 81.40 76.46 76.44 74.69 83.52

Breast Cancer 92.56 84.21 81.79 82.53 88.34 84.34 68.04 67.72 65.01 94.58

CMC 46.71 42.17 42.16 42.52 46.53 42.21 42.20 42.10 42.70 54.04

Ecoli 52.06 41.74 41.15 41.29 48.62 41.59 42.00 41.53 42.56 78.00

Mammographic 78.33 76.94 76.67 76.83 77.67 76.61 51.05 53.25 51.45 83.61

Page Blocks 91.37 90.54 89.69 89.67 91.57 90.59 89.71 89.69 89.77 96.91

Yeast 32.66 30.98 31.01 31.01 32.24 31.00 31.06 31.01 31.20 39.69

Majority OriginalDataset
div=1.0 div>1.0

NSVDist PAIS SeqA Mondrian NSVDist PAIS SeqA Mondrian

Abalone 22.71 19.29 19.26 19.31 22.37 19.26 19.31 19.28 16.50 23.25

Adult 80.66 79.55 75.33 75.32 80.46 79.46 75.33 75.32 74.69 81.60

Breast Cancer 95.04 66.78 65.13 65.93 65.04 67.21 58.51 58.24 65.01 96.34

CMC 49.02 41.54 41.59 41.09 49.02 41.11 41.44 41.35 42.70 53.90

Ecoli 37.29 34.44 33.82 33.41 36.06 34.12 33.97 35.18 42.56 85.43

Mammographic 78.78 74.88 74.40 75.37 76.43 75.11 49.69 49.16 51.45 79.76

Page Blocks 89.72 89.76 89.74 89.75 89.74 89.75 89.74 89.75 89.77 92.05

Yeast 29.66 27.59 27.20 27.72 29.00 26.89 27.43 27.60 31.20 93.20

Dataset
div=1.0 div>1.0

Majority Original

Table 4: Accuracy at k = 50: W-J48 (top), Näıve Bayes, W-JRip, and SVM (bottom)
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experiments. Each of the four tables in it reports the results for one of the four classification
algorithms — W-J48, Näıve Bayes, W-JRip, and SVM. In each table, there are eight rows
corresponding to the eight data sets, and ten columns: four columns that show the accuracy
of a classifier that was trained on the anonymized training data with a representative
anonymity parameter k = 50 and diversity ` = 1 (one column for each of the anonymization
algorithms); the next four columns give the accuracy when the diversity parameter was set
to a higher value, as we explained earlier; and the last two columns give the two baseline
values. In each row, the best value among the results with ` = 1 (the first group of four
columns) is highlighted and so is the best value among the results with ` > 1 (the second
group of four columns).

As can be seen in Table 4, the classifier that was trained on NSVDist-anonymized data
was almost always the most accurate one. There were only 4 exceptions (out of 64 times)
in which the PAIS-based classifier was better than the NSVDist-based classifier. Recall
that PAIS is an anonymization algorithm that is targeted towards maximizing the utility
for classification, while NSVDist is not targeted towards a specific data mining task.

Figure 2 shows the results with the Adult dataset. Here, for all values of k and `,
the NSVDist-classifier was more accurate than the other three classifiers; PAIS was almost
always the second best. While the accuracy of the sequential- and Mondrian-based classi-
fiers collapsed to the majority baseline for k ≥ 200 and that of the PAIS-based classifier
for k ≥ 300, the NSVDist-based classifier continued to produce meaningful accuracy up to
k = 800 (we show here the results only up to k = 500). Hence, NSVDist-anonymizations
can double and even triple the level of anonymity, compared to the other algorithms, and
still provide better utility. Similar behavior occurs with the Mammographic (Figure 3) and
CMC datasets (Figure 4), but here the collapse of the NSVDist-classifier to the majority
baseline occurs for smaller values of k, since those datasets are smaller than Adult.

In summary, almost all models based on NSVDist were more accurate than the models
based on SeqA, Mondrian, or PAIS, especially for higher values of k.

We have tested the statistical significance of our results using the evaluation method-
ology recommended by [5]. First, we applied the non-parametric Friedman test to the null
hypothesis that all anonymization algorithms (including the baseline majority rule clas-
sifier) provide the same classification accuracy across different values of k. Contrary to
the standard Friedman test, which ranks different classification algorithms across different
datasets, we have ranked different anonymization methods across different values of k. We
have sorted the accuracy results in ascending order before ranking them so that the best
method is the one with the highest average rank. Based on the p-values shown in Table 5
for each dataset, classification algorithm, and two different values of `, the null hypothesis
can be rejected at the level of 0.05 and higher for all examined cases, implying that the
method of anonymization does have an impact on the classification accuracy of the model
induced from generalized data. The average rankings of each anonymization method in
every dataset are shown in Tables 7 and 8 for ` equal to one and ` greater than one,
respectively.

Following the rejection of the null hypothesis by the Friedman test, we proceeded with
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the post-hoc Bonferroni-Dunn test to compare the NSVDist-based classifier to the best clas-
sifier from among the other four classifiers (the ones that correspond to the three remaining
anonymization methods and the baseline majority classifier). This test was also repeated
for each dataset, classification algorithm, and two different values of `. Each p-value shown
in Table 6 refers to the difference between NSVDist and the best of the remaining four
anonymization methods (the one with the highest rank). Thus, it shows the largest value
of p for each case. Obviously, when NSVDist outperforms the best of the other methods, it
outperforms the remaining methods as well. The advantage of the NSVDist-based classifier
over all other classifiers was found statistically significant (at the level of 0.05 and higher)
in 31 cases out of 64. In additional 23 cases, it also provided the best performance, but the
difference vs. the second best classifier was not significant statistically. Only in 10 cases, a
different classifier significantly outperformed the NSVDist-classifier. However, from among
those 10 cases, the winning classifier in 7 cases was the baseline majority classifier, and
not one of the classifiers that were based on other anonymization algorithms. It is note-
worthy that if we ignore the baseline majority classifier, the number of significant NSVDist
‘wins’ goes up to 41, whereas the number of its ‘losses’ goes down to 3 only. The detailed
p-values of the post-hoc test comparing each one of the four alternative anonymization
methods to NSVDist are shown in Tables 9 and 10 for ` equal to one and ` greater than
one, respectively.

W-J48 NBC W-JRip SVM W-J48 NBC W-JRip SVM

Abalone 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Adult 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Breast Cancer 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

CMC 0.00 0.00 0.03 0.02 0.00 0.00 0.01 0.01

Ecoli 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00

Mammographic 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Page Blocks 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00

Yeast 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00

div>1.0div=1.0
Dataset

Table 5: Friedman Test: p-values

In our final set of experiments we compared the performance of NSVDist, in terms of
classification accuracy, to that of the non-homogeneous anonymization algorithm (NHAA)
of Wong et al. [43]. We selected the Abalone dataset since the global diversity of that
dataset was the highest among all datasets (see Table 3), and that enabled us to conduct
experiments with several values of the diversity `. (Recall that unlike NSVDist, NHAA
is limited to integer values of ` only). While NSVDist, as well as SeqA and Mondrian,
can impose a conjunction of conditions — `-diversity and k-anonymity with k ≥ `, NHAA
is guided solely by a diversity constraint; i.e, it can issue tables that are `-diverse (and,
consequently, are also k-anonymized with k = `). Hence, in the experiment set reported in
Figure 5, where we compare NSVDist, NHAA and the Mondrian, we used in all experiments
k = `.
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W-J48 NBC W-JRip SVM W-J48 NBC W-JRip SVM

Abalone 0.02 0.19 0.00 0.02 0.04 0.15 0.01 0.04

Adult 0.05 0.03 0.07 0.04 0.04 0.02 0.07 0.02

Breast Cancer 0.05 0.01 0.07 0.05 0.88 0.67 0.28 0.44

CMC 0.04 0.03 0.01 0.03 0.03 0.03 0.08 0.04

Ecoli 0.05 0.05 0.02 0.88 0.16 0.09 0.20 0.99

Mammographic 0.01 0.00 0.01 0.01 0.19 0.05 0.28 0.12

Page Blocks 0.12 0.91 0.12 1.00 0.12 0.88 0.12 1.00

Yeast 0.12 0.03 0.31 0.88 0.12 0.06 0.37 0.88

Dataset
div=1.0 div>1.0

Table 6: Bonferroni-Dunn test: p-values

Table 7: Average ranking of each method (div = 1.0)

Table 8: Average ranking of each method (div > 1.0)

The top plot in Figure 5 shows the LM information loss in the three algorithms for all
values of k = ` > 1 that the NHAA algorithm can accept for this dataset (k = ` = 2, 3, 4, 5).
NSVDist constantly yielded much lower information losses. The next four plots in Figure
5 show the accuracy of the corresponding classifiers. The NSVDist-trained classifier is
always better than the other two. While the advantage of NSVDist over NHAA is not
always significant, it should be noted that it does not suffer from the above mentioned
limitations of the NHAA algorithm. (See a discussion of those limitations in Section 4.5).

5.4. Discussion

NSVDist produces anonymizations in which every single generalized record allows to
link a given individual to a frequency distribution over the sensitive domain, where all
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Figure 5: Comparison with the non-homogeneous anonymization algorithm (NHAA) of [43]
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Table 9: Post-hoc test of each method (div = 1.0): p-values

Table 10: Post-hoc test of each method (div > 1.0): p-values

sensitive values have frequency no larger than 1/`. Hence, any single generalized record
enables an adversary to learn the sensitive value of his target individual with probability at
most 1/`. However, a large collection of generalized records reveals more information than
a single generalized record, since the adversary can use that collection to learn a classifier
and then deduce his target individual’s sensitive data with probability higher than the
intended 1/`. For example, Figure 3 shows that the anonymization of Mammographic

records using ` = 1.31 — an anonymization that aims at upper bounding the sensitive
inference probability by 1/` = 76.3% — enables to infer a classifier whose sensitive inference
success probability may be as high as 80%.

A closely related finding was reported by Kifer in [20]. He showed that it is possible to
extract from `-diverse tables belief probabilities greater than 1/` by means of the so-called
deFinetti attack. That attack uses the anonymized table in order to learn a classifier that,
given the quasi-identifier record of an individual in the underlying population, is able to
predict the corresponding sensitive value with probability greater than the intended 1/`
bound.

The question that arises from both our study and Kifer’s is as follows: assume that an
adversary uses the anonymized data in order to learn a classifier and, subsequently, achieves
belief probabilities regarding the sensitive data of individuals that are higher than the
intended bounds. Does that constitute a privacy breach? Stated differently, the question is

29



whether the inference of private sensitive data about specific individuals from the general
behavior of the population, can be regarded as a privacy breach.

To answer this question positively, the success of the attack when launched against
records that are part of the original table T (which was generalized, published and then
used to learn a classification model) must be shown to be significantly higher than its
success against records that are not part of that table. Figure 6 shows the accuracy of
the Näıve Bayes classifier that was induced from an anonymization of the Mammographic

dataset with ` = 1.5 and various values of k. It shows the accuracy of that classifier over the
original (non-generalized) training data records (i.e., the records of T ) that were given to
NSVDist as input, compared with its accuracy on the non-generalized testing data records.
As can be seen clearly, the two curves almost coincide. We have obtained very similar
results for the other anonymized datasets and the other classifiers as well. Namely, even
though we published data on Alice, Bob, and Carol, the above described “classifier attack”
presents a similar level of risk for them, as well as for David, Elaine, and Frank who were
not included in the original table T that was used to generate the published anonymized
data and, subsequently, to learn the classification model. Hence, such an “attack” cannot
be regarded as a breach of privacy. It can only be regarded as a successful learning of the
behavior of the general population, which is the raison d’être of any data publishing.
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Figure 6: Classification performance: Original training and testing data

6. Conclusions

In this paper we presented a new privacy-preserving data publishing algorithm called
NSVDist (Non-homogeneous generalization with Sensitive Value Distributions). That al-
gorithm is based on non-homogeneous anonymization of the quasi-identifiers, coupled with
the generalization of the sensitive values into frequency distributions. Since that algorithm
is characterized by smaller information losses than leading anonymization algorithms, our
research hypothesis was that the proposed algorithm allows the data owner to release the
data in a more secure form (represented by a higher value of k) while expecting the data
miner to induce accurate classification models from the published data. Our experimental
results confirm that hypothesis in most cases. Those findings suggest that the framework
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of non-homogeneous anonymizations, which allows lower information losses, might be more
adequate for data mining purposes than homogeneous anonymizations.

Directions for future research include the following:
(a) Experimentation with additional data mining algorithms such as clustering or asso-

ciation rules.
(b) In this paper, we studied the simplest case of a single sensitive attribute, which is

also a classification attribute. The proposed approach to non-homogeneous anonymization
can be extended to more general cases like disjoint or partially overlapping sets of several
sensitive and classification attributes.

(c) Extending the NSVDist algorithm for the case of a sequential release of data at-
tributes [29, 37, 41]. In the sequential release scenario, several releases of the same table
are published over a period of time, where each release contains a different set of the table
attributes, as dictated by the purposes of the release. The goal is to protect the private
information from adversaries who examine the entire sequential release.
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Appendix A. Approximation guarantee of Algorithm 1.

Algorithm 1 replaces each record Rn ∈ T with a generalized record Rn which is the
closure of Rn and additional k − 1 records from T . The k − 1 additional records are
selected so that the resulting information loss is as small as possible and the diversity
requirement is respected. One possible approach towards carrying out that computation
is to scan, for each record Rn ∈ T , all

(
N−1
k−1

)
possible selections of k − 1 masking records

and then choose those k − 1 records that yield a closure with sufficient diversity and
minimal information loss. However, that approach is impractical since its overall runtime
is O(Nk). The approach implemented in Algorithm 1 offers a practical alternative. We show
below that under two reasonable assumptions on the information loss measure, Algorithm 1
outputs an anonymization in which the information loss approximates the minimal possible
one to within a multiplicative factor of k−1. We proceed to state and prove this theoretical
result.

Definition. A measure of information loss IL(·) is monotone if IL(R) ≤ IL(R
′
)

whenever R v R
′

(namely, if further generalizations cannot decrease the information loss).
The measure IL(·) is sub-additive if for any two subsets of records B1, B2 ⊂ A1×· · ·×AM+1

that have a nonempty intersection, IL(B1 ∪B2) ≤ IL(B1) + IL(B2).

Theorem. Let T = {R1, . . . , RN} be the (k, `)-anonymization of T as issued by Al-

gorithm 1 and let T
′

= {R′1, . . . , R
′
N} be a non-homogeneous (k, `)-anonymization with

sensitive value distributions in which the information loss is minimal. Assume that the in-
formation loss measure IL is monotone and sub-additive. Then IL(Rn) ≤ (k− 1) · IL(R

′
n)

for all n ∈ [N ].

Proof. For a fixed n ∈ [N ], let Ri1 , . . . , Rik−1
be the records that were selected by

Algorithm 1 in order to compute Rn as the closure of {Rn, Ri1 , . . . , Rik−1
}. The indices

of those records denote the order in which they were selected; i.e., Rij is the record that
was selected in the jth application of Step 5 of the algorithm for the seed record Rn.
T
′
= {R′1, . . . , R

′
N} is a (k, `)-anonymization of T for which the information loss is minimal.

By the k-anonymity property, R
′
n is consistent with Rn and k− 1 other records. We claim,

and prove later, that there exists an ordering of those k− 1 records, say Ri′1
, . . . , Ri′k−1

, for
which the following inequality holds,

IL({Rn, Ri1 , . . . , Rij−1
, Rij}) ≤

IL({Rn, Ri1 , . . . , Rij−1
, Ri′j
}) . (A.1)

Since, by sub-additivity,

IL({Rn, Ri1 , . . . , Rij−1
, Ri′j
}) ≤

IL({Rn, Ri1 , . . . , Rij−1
}) + IL({Rn, Ri′j

}) , (A.2)
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we conclude, by (A.1) and (A.2), that

IL({Rn, Ri1 , . . . , Rij−1
, Rij}) ≤

IL({Rn, Ri1 , . . . , Rij−1
}) + IL({Rn, Ri′j

}) . (A.3)

Applying inequality (A.3) repeatedly for j = k − 1 down to j = 1 we infer that

IL({Rn, Ri1 , . . . , Rik−1
}) ≤

k−1∑
j=1

IL({Rn, Ri′j
}) . (A.4)

Monotonicity implies that for all 1 ≤ j ≤ k − 1

IL({Rn, Ri′j
}) ≤ IL({Rn, Ri′1

, . . . , Ri′k−1
}) . (A.5)

Hence, by (A.4) and (A.5),

IL({Rn, Ri1 , . . . , Rik−1
}) ≤

(k − 1) · IL({Rn, Ri′1
, . . . , Ri′k−1

}) . (A.6)

Since the left hand side in (A.6) equals IL(Rn) while the right hand side equals (k − 1) ·
IL(R

′
n), we conclude that IL(Rn) ≤ (k − 1) · IL(R

′
n).

We now turn to prove inequality (A.1). Let A = {Ri1 , . . . , Rik−1
} be the set of k − 1

records that were selected in Step 5 of the algorithm in order to generate the generalization
Rn of Rn. Let A′ be the set of k − 1 records with which R

′
n (the generalization of Rn in

the (k, `)-anonymization T
′

with minimal information loss) is consistent. We proceed to
induce an ordering of A′ in the following manner:

(I) Records in A′ that appear also in A will get the same index as they have in A. For
example, if a record in A′ equals the third record in A, i.e. Ri3 , we shall denote it
Ri′3

. Records of that type will be called records of type I.

(II) Let B and B′ be the subsets of records of A and A′ that are not of type I. If there
exists in B′ a record with a sensitive value that appears also in a record in B, we
assign the former the same index as the latter. For example, if a record in B′ has
the same sensitive value as Ri4 ∈ B, we shall denote it by Ri′4

. Records of that type
will be called records of type II.

(III) Assume that all records of type II were identified and indexed. All remaining records
in A′ will be called records of type III. We assign them the remaining indices from
i′1, . . . , i

′
k−1 that were not assigned so far, in an arbitrary manner.
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To illustrate the process, assume that k = 6 and that for R1 we have

A = {(R7, a), (R20, b), (R3, a), (R9, c), (R5, b)} .

Namely, when applying Algorithm 1 on R1, the selected records were R7 (whose sensitive
value is a), then R20 (with sensitive value b) and so forth. Assume further that

A′ = {(R3, a), (R7, a), (R8, c), (R15, c), (R24, d)} .

The ordering of the records in A′ is done as follows: First, we place R7 in the first place
and R3 in the third place, in accord with their position in A. Out of the remaining records,
R8 has a sensitive value that appears in the remaining records in A; so we place it in the
fourth position (since the fourth record in A has the same sensitive value of c). We are
left with R15 and R24, which we place in the remaining positions — second and fifth. The
resulting order is

A′ = {(R7, a), (R15, d), (R3, a), (R8, c), (R24, e)} .

Here, R3 and R7 are records of type I, R8 is of type II, and R15 and R24 are of type III.
We claim that with this ordering, Ri′j

was a legitimate candidate in the stage where
Rij was selected, 1 ≤ j ≤ k − 1. Since the algorithm selected Rij over Ri′j

, we infer that

inequality (A.1) must hold. Indeed, if Ri′j
is of type I, inequality (A.1) holds in a trivial

manner. If Ri′j
is of type II, then it must have been a legitimate record to select, since the

record Rij that was selected eventually has the same sensitive value. Also if Ri′j
is of type

III then it was a legitimate candidate at the stage when Rij was selected (since any record
with a sensitive value that still does not appear in an `-diverse set can be added to that set
without violating the `-diversity condition). Hence, inequality (A.1) holds and the proof is
thus complete. 2
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Appendix B. Experiments with Additional Datasets
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Figure B.7: Classification performance using anonymized data (Abalone)
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Figure B.8: Classification performance using anonymized data (Breast Cancer)
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Figure B.9: Classification performance using anonymized data (Ecoli)
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Figure B.10: Classification performance using anonymized data (Page Blocks)
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Figure B.11: Classification performance using anonymized data (Yeast)
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