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Abstract

The need to share data often conflicts with privacy preservation. Data ob-
fuscation attempts to overcome this conflict by modifying the original data
while optimizing both privacy and utility measures. In this paper we in-
troduce the concept of Constrained Obfuscation Problems (COPs) which
formulate the task of obfuscating data stored in relational databases. The
main idea behind COPs is that many obfuscation scenarios can be modeled
as a data generation process which is constrained by a predefined set of rules.
We demonstrate the flexibility of the COP definition by modeling several dif-
ferent obfuscation scenarios: Production Data Obfuscation for Application
Testing (PDOAT), anonymization of relational data, and anonymization of
social networks. We then suggest a general approach for solving COPs by
reducing them into a set of Constrained Satisfaction Problems (CSPs). Such
reduction enables the employment of the well-studied CSP framework in or-
der to solve a wide range of complex rules. Some of the resulting CSPs may
contain a large number of variables, which may make them intractable. In
order to overcome such intractability issues, we present two useful heuristics
that decompose such large CSPs into smaller tractable sub-CSPs. We also
show how the well-known `-diversity privacy measure can be incorporated
into the COP framework in order to evaluate the privacy level of COP solu-
tions. Finally, we evaluate the new method in terms of privacy, utility and
execution time.
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1. Introduction

Organizations are increasingly required to share data for different pur-
poses, e.g., for data mining, market researching and testing. In many cases
this data contains sensitive private information which should not be exposed
to unauthorized users. Data obfuscation attempts to overcome the conflict
between the need to share data and the requirement to preserve privacy [5].
In a general obfuscation scenario, the data holder modifies the original data
before publishing it in order to preserve privacy. At the same time, the
obfuscation process must also preserve the utility of the data, which may
be compromised due to those modifications. Thus, obfuscation methods at-
tempt to modify the original data while optimizing both privacy and utility
measures. The difficulty of this task highly depends on the inherent trade-off
between the required levels of privacy and utility: higher levels of privacy
usually require more modifications to the original data and those typically
imply reduced utility.

In this paper we introduce the concept of Constrained Obfuscation Prob-
lems (COPs) which formulate the task of obfuscating data stored in relational
databases, subject to some obfuscation constraints. The main idea behind
COPs is simple though flexible as explained next. In relational databases,
privacy and/or utility requirements can usually be represented by rules de-
fined over subsets of attributes. Therefore their obfuscation can be seen as
generating new data that comply with those predefined rules (or constraints).
We demonstrate the flexibility and generality of the COP definition by mod-
eling several different obfuscation scenarios:

• Production Data Obfuscation for Application Testing (PDOAT).
Testing is a cardinal stage in the life-cycle of every information system.
Testing cannot be performed without data which is usually stored in
databases. Clearly, the simplest way to provide this data to a test en-
vironment is to copy it from the production environment. However,
production data often contains private information which should not
be exposed in a non-privileged test environment (such as an external,
sometimes even foreign, testing group). Thus, the production data
must be obfuscated before it is copied to the test environment so that
private information is masked from the end-user (i.e. the tester). How-
ever, the task of obfuscating production data is non-trivial since it must
also preserve certain characteristics (rules) of the original production
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data in order for the obfuscated data to be useful for testing. Failing
to do so may compromise the effectiveness of the testing process. In
PDOAT, the goal is to preserve utility, by satisfying all rules, while
maximizing the obtained privacy level.

• Anonymization of relational data. Data mining is a common sce-
nario in which data needs to be published. In many cases, such data
includes private information about individuals which must not be dis-
closed. If individuals can be uniquely identified in the data then their
private information may be disclosed. In order to avoid such identifica-
tion in published data, uniquely identifying attributes like names and
social security numbers are usually removed. However, this does not en-
sure the privacy of individuals in the data, since some of the remaining
attributes, known as quasi-identifiers, may be used to link the published
data with an external repository, and thus allow re-identification [44].
Several models were proposed in the literature as counter-measures for
such linking attacks. The most basic one is k-anonymity [44, 45]. In
that model, the quasi-identifiers are generalized so that each combina-
tion of quasi-identifier values appears at least k times in the relation.
In this way, each tuple is indistinguishable from at least k−1 other tu-
ples with respect to the quasi-identifiers, and thus privacy is preserved
to some extent. The stronger model of `-diversity was proposed as an
enhancement to k-anonymity [38]. In that model it is required that
each group of indistinguishable tuples has at least ` well represented
sensitive values, in the sense that no sensitive value appears in more
than 1/` of those tuples. Both of these models define the required level
of privacy; the goal is to find an anonymization which complies with
the required privacy condition and maximizes utility (in the sense that
it minimizes information loss due to generalizations).

• Anonymization of social networks. Social networks are structures
that describe a set of individuals and the relations between them. So-
cial networks appear in many scenarios and they are of interest to
researchers from disciplines such as sociology, psychology, or epidemi-
ology. However, the data in such networks cannot be released as is,
since it might contain sensitive information. A näıve anonymization of
the network, in the sense of removing identifying attributes like names
or social security numbers from the data, is insufficient, as shown in
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[4]. Therefore, it is needed to anonymize the data prior to its publi-
cation in order to address the need to respect the privacy of the in-
dividuals whose sensitive information is included in the data. Many
models of anonymity were proposed in the literature in recent years,
e.g. [9, 10, 16, 29, 37, 46, 54, 60, 61]. Each of those models can be
described as a COP. In Section 3 we discuss one of the first models
that were proposed in this context — k-degree anonymity [37]. In that
model, the goal is to make a minimal number of changes to the edge
set in the graph, typically by adding edges, so that the graph becomes
k-degree anonymous in the sense that for any vertex in the graph there
exist at least k−1 other vertices having the same degree as that vertex.

After introducing and demonstrating the concept of COPs, we suggest
a generic approach for solving a given COP by reducing it to a set of Con-
strained Satisfaction Problems (CSPs). This approach was first introduced
in our previous work [59]. Following the formal definition in [43], a CSP
is defined by a set of variables, {x1, x2, . . . , xn} and a set of constraints,
{c1, c2, . . . , cm}. Each variable xi has a non-empty domain Di of possible
values. Each constraint ci involves some subset of the variables and specifies
the allowable combinations of values for that subset. A solution to the CSP
is an assignment {x1 = v1, x2 = v2, . . . , xn = vn} of values to all variables
that does not violate any constraint. (Such an assignment is called complete
and consistent). Briefly, our reduction represents the database cells as CSP
variables and translates the COP rules into CSP constraints on these vari-
ables. Harnessing the power of the well-established CSP framework allows
our approach to cope with a wide variety of CSP constraints (and conse-
quently obfuscation rules) that are supported by this framework. However,
this reduction from COPs into CSPs may produce CSPs with a staggering
number of variables and constraints which may raise intractability issues. In
order to deal with such issues, we suggest two useful heuristics — Incremen-
tal Generation (IG) and Local Modification (LM). The LM heuristic starts
with a preliminary solution and then it iteratively applies local modifications
to its values. The IG heuristic, on the other hand, arranges the variables in
an ordered sequence of subsets of variables, and then it assigns values to each
subset of variables in its turn, where each assignment is based on variables
that were already assigned values in a previous round.

Next, we show how the well-known `-diversity privacy measure [38] can
be incorporated into the COP framework in order to evaluate the privacy
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level of COP solutions. The usual assumption in Privacy Preserving Data
Publishing is that the original relation includes four types of attributes [12]:
(a) explicit identifiers (ID) — attributes that uniquely identify an individ-
ual (e.g. S.S.N.); (b) quasi-identifiers (QID) — attributes that do not offer
unique identification but their combination might yield unique identification
by means of linking attacks (e.g., zipcode, age, gender); (c) sensitive data
(S) — personal attributes of private nature, such as health condition or finan-
cial data; and (d) other attributes (O) — attributes that are non-sensitive,
on one hand, and cannot be used for identification on the other hand. A COP
solution respects `-diversity if an adversary is unable to link any individual
with any sensitive value with confidence greater than 1/`.

Finally, we empirically evaluate our method in three of the aforemen-
tioned scenarios. In the PDOAT scenario, we compare the two heuristics
LM and IG. We show that IG better preserves privacy than LM , how-
ever, as opposed to LM , it does not guarantee that a solution will always be
found. Moreover, we show that a minor variation of LM benefits from the
advantages of the two heuristics. We show that despite the fact that CSP is
NP-hard in general, our heuristics allow the solving process to complete in
a reasonable time even for large input relations; in addition, we show that
concurrency can be used to reduce the execution time even further. In con-
trast, when our heuristics were not used, the standard CHOCO CSP solver
was unable to complete its execution even for much smaller relations.

In the k-anonymity scenario, the results of the evaluation show that the
new generic method can achieve much better utility than a dedicated method
for k-anonymization (Mondrian). In some of the experiments, the utility in
the output of our method was two orders of magnitude better than the utility
in the output of Mondrian. This staggering improvement in terms of utility
is coupled with larger runtimes. However, in all experiments the runtime of
our method was feasible. In addition, since anonymization is a process that
is executed on tables that contain data that was accumulated during very
long periods of time (months and even years), and its output is intended
for research and analysis, the execution time of the process is less important
than the utility of the output. Hence, a method that runs in few minutes or
hours but issues outputs with high utility is preferable over a method that
runs in few seconds but issues outputs with much smaller utility.

The results in the `-diversity scenario were similar. The new method
achieves much better utility than the dedicated Mondrian algorithm, at the
price of higher yet feasible runtimes.
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Our contributions can be summarized as follows:

(1) We introduce the COP concept which constitutes a general framework
for modeling and analyzing many obfuscation scenarios. To the best of
our knowledge, this is the first time that such a framework is proposed.
We demonstrate the generality of the COP definition by modeling several
obfuscation problems.

(2) We propose an approach for solving any COP by reducing it into a set
of CSPs. This allows us to harness the power of the well-studied CSP
framework and support a wide variety of complicated COP rules.

(3) We suggest two useful heuristics, namely Incremental Generation (IG)
and Local Modification (LM), in order to deal with intractability issues
that may arise from this approach.

(4) We show how the well-known `-diversity privacy measure can be incor-
porated into the COP framework in order to evaluate the privacy level
of COP solutions.

The two main advantages of the proposed COP framework over existing
obfuscation methods are the following:

• Existing obfuscation methods are either confined to a certain appli-
cation domain and their applicability is thus limited, or are general
but incapable of handling complicated rules. (See a detailed discussion
of existing obfuscation methods in Section 2.) In contrast, the COP
framework is both general and capable of solving a wide range of com-
plex rules. This allows our method to be used even in cases where a
dedicated algorithm does not exist (e.g., PDOAT). In cases where a
dedicated algorithm does exist (e.g., k-anonymity or `-diversity), our
method may even achieve better results than those of the dedicated
algorithm, as we demonstrate in our evaluation (Section 6).

• In contrast to existing obfuscation methods, the COP framework allows
us to focus on the required result in terms of privacy and utility, and
not on the details of an algorithm to achieve it. This is equivalent to the
difference between declarative programming and imperative program-
ming: Imperative programming languages (e.g., Java) let the program-
mer specify the steps that are required in order to solve a particular
task. On the other hand, declarative programming languages (e.g.,
SQL) follow a completely different approach in which the programmer
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focuses on providing the “what”, leaving the “how” up to interpreta-
tion. Moreover, privacy problems are usually formalized by specify-
ing the constraints with which the output must adhere to. Hence, a
declarative approach that is based on “what” the output should be like
seems more natural than an imperative approach that needs to decide
“how” to reach that goal. Such a declarative approach may be easier
to use, may reduce the risk of erroneous programming, and may result
in shorter development times.

The remainder of this paper is organized as follows. In Section 2 we review
related work. Section 3 gives a formal definition of COPs and demonstrates
how the k-anonymization and PDOAT scenarios can be modeled accordingly.
Section 4 shows how the `-diversity privacy measure can be incorporated into
the new framework. In Section 5 we present a generic method for reducing
any COP into a set of solvable CSPs. Section 6 describes our evaluation and
Section 7 concludes and suggests future research directions.

2. Related Work

Data generalization and data perturbation are the two main techniques
being used for data obfuscation. Generalization replaces values of specific
description, typically the quasi-identifier attributes, with a less specific de-
scription. Perturbation distorts the data by adding noise, aggregating values,
swapping values or generating synthetic data based on some properties of the
original data.

Generalization is widely used in Privacy Preserving Data Publishing (PPDP)
and Privacy Preserving Data Mining (PPDM). PPDP is a developing research
field that is targeted at developing models to enable publishing data so that
privacy is preserved while data distortion is minimized. In the past years,
several models and algorithms were suggested in PPDP, most of them evolved
from the basic model of k-anonymity [45]. Algorithms for k-anonymization
include those of [23, 24, 33, 35, 47, 53], that are designed for obtaining min-
imum distortion, without making assumptions on the type of data mining
to be performed on the published data, and [6, 22, 26, 32, 34], that are
geared towards improving classification results. Variations and alternatives
of k-anonymity were also studied. For example, [38] proposed the model of `-
diversity to address attacks that are based on lack of diversity in the sensitive
data; t-closeness [36] was suggested in order to maintain the distribution of
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the sensitive data; [41] proposed a privacy model similar to t-closeness called
average privacy risk; [51, 52] proposed to limit the confidence of inferring a
sensitive property for a group of individuals; and [58] proposed the notion of
personalized anonymity. For a detailed survey about PPDP see [21]. PPDM,
which is closely related to PPDP, was initiated in 2000 by [2]. PPDM algo-
rithms aim at anonymizing data towards its release for specific data mining
goals. For example, if the data needs to be used for learning a classifier, the
corresponding PPDM algorithm will aim at achieving anonymity while in-
curring a minimal loss of accuracy in the resulting classifier. In PPDP, on the
other hand, the purposes of the published data are unknown and it needs to
be anonymized using utility measures that are not targeted to specific data
mining tasks. For detailed surveys about PPDM see [1, 50].

Many measures were suggested in the literature for the cost of general-
ization. Among the commonly used ones are the Loss Metric measure [32]
and the Entropy measure [25]. The recent study [34] shows that reduced in-
formation loss, as measured by either the Loss Metric or the Entropy Metric,
translates also to enhanced accuracy when using the anonymized tables to
learn classification models. In section 6 we will use these two measures in
order to compare obfuscation algorithms in terms of utility.

One of the means of perturbing the original data is by generating syn-
thetic data. A number of data generation methods have been proposed in
the literature, each focusing on aspects such as data dependencies or fast
generation of a large amount of data. In [11], the authors present a C-like
Data Generation Language (DGL) which allows the generation of data using
the definition of its data types, tuples, iterators and distributions. However,
dependencies in data (such as foreign keys) must be explicitly handled by
the user. In [31], the authors introduce the data dependency graph and
describe a modified topological sort used to determine the order in which
data is generated. However, it is unclear how this method can handle: (1)
cycles in the graph; (2) rules that involve several fields in which no field is
explicitly represented as a formula of the others, for example, X2 + Y 2 = 1.
In [30] the authors suggest a parallel synthetic data generator (PSDG) de-
signed to generate industrial sized data sets quickly using cluster comput-
ing. PSDG depends on an XML based synthetic data description language
(SDDL) which codifies the manner in which generated data can be described
and constrained. However, PSDG suffers from the same limitations of [31].
In [8], the authors suggest a system to generate query aware data. The sys-
tem is given a query and produces data that is tailored to the specific query.
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However it is not very useful for general purpose generation of test data for
ad hoc testing. In [27], a hardware-based technique to quickly generate large
databases on multi-processor systems is described. The authors focus on
low-level implementation details (such as process spawning and table parti-
tioning strategies) to generate data using a dedicated hardware architecture.
In [17], the authors focus on generating data for performance tests. More
specifically, they try to generate data which preserves the query optimizer
characteristics of the original data. The generation process must preserve
three data characteristics: consistence, monotony and dependence between
attributes. The authors of [55] propose an automated system for generating
a synthetic database for testing database applications. Generation is based
on a general location model which they learn by extracting various character-
istics from schema constraints, read-only base tables that store information
about the database, and the production data itself, when it is available.
The characteristics learned from the production data include statistical in-
formation (such as distributions and element counts) or patterns in the data
derived via data-mining. They also analyze the strength of their method in
terms of preventing the disclosure of an individual’s identity as well as the
disclosure of a value of a certain confidential attribute of that individual. To
summarize, as dependencies and rules defined over attributes become more
complicated, none of the existing generation methods is general enough to
handle them.

PPDP and PPDM algorithms are usually tailored to ensure some pri-
vacy measure (e.g. k-anonymity, `-diversity) and thus the obfuscated data
trivially satisfies this measure. However, for other obfuscation algorithms,
privacy may be measured in retrospect. The authors of [40] propose to use
reversibility for the categorization and comparison of obfuscation methods,
with respect to their resilience to reverse engineering. The authors of [49]
propose a risk estimation tool which analyzes a given disclosure policy, cal-
culates the associated risk for a given dataset and provides the user with rel-
evant suggestions to decrease the risk if it exceeds their expectations. They
employ an entropy-based method to derive the Global Risk measure which
estimates both the rareness of identifier-attribute combinations as well as the
rareness of the occurrence value per sensitive attribute. As another example,
this time from the realm of social networks, the studies in [9, 10] suggest
to randomize the original data of a social network and then to measure the
privacy level that those randomized versions provide for the data subjects.
If the measured level of privacy is insufficient, the randomization process is
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repeated with higher randomization parameters.
Commercial obfuscation tools (e.g. [15, 13, 14, 28]) are also available.

These provide a means of enforcing common rules, usually a set of pre-
defined integrity rules (such as identity and reference rules)[19] or simple
statistical aggregate rules (such as maintaining the average value of some
attribute). However, application-specific rules are enforced via obfuscation
routines that are developed ad hoc by the user. Although these tools offer
powerful scripting capabilities which can be used with such routines, a frame-
work that allows translating a set of application-specific constraints into a
set of obfuscating routines without user intervention is clearly missing. Such
a framework would drastically decrease the amount of implementation effort
required by the user.

Other obfuscation techniques besides generalization and perturbation ex-
ist. For example, Anatomy [57] uses a special grouping mechanism in order
to release all the quasi-identifier and sensitive values directly in two separate
tables. In this paper we will focus on the generalization and perturbation
techniques, but our method equally applies to other obfuscation techniques.

3. Constrained Obfuscation Problems

Obfuscation of relational databases generally involves a set of rules (each
defined over a subset of attributes) with which the obfuscated data must com-
ply. The relational nature of such databases gives rise to two types of rules.
Global rules define the allowed combination of values for all tuples. For ex-
ample, a rule requiring that two attributes constitute a composite key means
that the pairs of values in all tuples must be different. Non-global rules define
the allowed combination of values for each tuple independently of the other
tuples. For example, a rule requiring that one attribute is larger than an-
other attribute means that for each tuple, the value corresponding to the first
attribute is larger than that of the second attribute. In this section we intro-
duce and formally define the concept of obfuscating data stored in relational
databases while adhering to a given set of rules. For convenience, Table 2 in
the Appendix summarizes the main notations that we introduce hereinafter.
We also demonstrate how four different obfuscation problems can be mod-
eled according to these definitions: Three of these problems are concerned
with obfuscation of relational databases (namely, PDOAT, k-anonymity, and
`-diversity); the fourth one deals with obfuscation of graph data (k-degree
anonymity).
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3.1. Formal problem definition

The setting for any relational database obfuscation problem includes the
application domain in which the problem arises and two universes: (1) the
source universe, denoted by U , which contains all relations that are valid in
the application domain and (2) the target universe, denoted by U∗, containing
all possible obfuscations of relations in U .

In other words, U includes all legal relations that could occur in the
application domain. Those relations may need to undergo obfuscation before
being published. The universe U∗ includes all legal obfuscated versions of
relations in U .

Relations in U are defined over a set of attributes A = {A1, . . . , Am}; each
attribute Aj has a domain Dj in which it may take values. Therefore, every
relation T in U consists of tuples from D = D1 × · · · ×Dm. Since the order
of tuples in T is insignificant, every relation T in U is therefore some set of
tuples from D. Hence, U (the collection of all legal relations) is a collection
of subsets of D, i.e., U ⊆ 2D.1 Similarly, relations in U∗ are defined over a
set of attributes A∗ = {A∗1, . . . , A∗m∗} with domains D∗1, ..., D

∗
m∗ and contain

tuples from D∗ = D∗1 × ...×D∗m∗ , i.e. U∗ ⊆ 2D∗ .
Given a relation T ∈ U , we let U∗T ⊆ U∗ denote the collection of all ob-

fuscated relations into which T may be transformed. Namely, every relation
in U∗T is a possible obfuscation of T , but on the other hand, any relation in
U∗ \ U∗T cannot be the obfuscation of T . The obfuscation process is said to
be constrained because the relations in U∗T must comply with a given set of
rules. Some of those rules are general, in the sense that they define the legal
structure of an obfuscated relation T ∗, independently of the original relation
T . Other rules define the required consistency conditions between T and T ∗.
More formally, given a relation T ∈ U let R∗T = {R∗1, . . . , R∗q} be the set of
rules defined on A∗ which characterize the legal obfuscations of T . Then, U∗T
is the collection of all relations in 2D∗ that satisfy the set of rules R∗T . In
light of the above, we can define the target universe as U∗ =

⋃
T∈U U

∗
T .

Next, we define the notion of Constrained Obfuscation Problems:

Definition 3.1. Given a relation T ∈ U , a Constrained Obfuscation Prob-
lem (COP) is the task of finding a relation T ∗ ∈ U∗T .

1Depending on the associated application domain, some relations in 2D may not be
valid (as we shall see in Section 3.2).
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Figure 1: A relation T and its obfuscated relation T ∗.

Stated differently, the task of obfuscating a relation T ∈ U involves finding
a relation T ∗ ∈ U∗ that conforms to the rules in R∗T .

Example 3.1. Consider a source universe U which has two attributes: A1=name
and A2=salary with domains D1={all strings} and D2={all positive inte-
gers}. Furthermore, consider a target universe U∗ which has two attributes
A∗1=rowid and A∗2=salary class with domains D∗1={all positive integers} and
D∗2={<30000, ≥30000}. The rules which characterize the legal obfuscations
are the following:

• R∗1: the number of tuples in the obfuscated relation equals the number
of tuples in the original relation;

• R∗2: the values in the attribute rowid are all different; and

• R∗3: the value in the attribute salary class is <30000 if the corresponding
value in the original salary attribute is lower than 30000 or ≥30000
otherwise.

Here, R∗2 is a general rule, independent of T , that defines a condition that
must be satisfied by all obfuscated relations in U∗. R∗1 and R∗3, on the other
hand, are T -dependent rules of compatibility: they define conditions that T ∗

must satisfy in order to be a legal obfuscation of the relation T . An example
of a relation T ∈ U and its obfuscation T ∗ are shown in Figure 1.
2

COPs can be solved using an obfuscation algorithm as defined next:

Definition 3.2. An obfuscation algorithm A takes a relation T ∈ U as input
and outputs a relation T ∗ ∈ U∗T with probability PAT (T ∗).
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Figure 2: Probability distributions induced by two obfuscation algorithms A1 (solid ar-
rows) and A2 (dashed arrows).

In other words, given a relation T ∈ U , A induces a probability distribu-
tion on U∗, denoted by PAT , where for each T ∗ ∈ U∗ \ U∗T , PAT (T ∗) = 0.2

Example 3.2. Assume that in Example 3.1 we add the condition that the
values in the attribute rowid must be limited to the range {1, . . . , n}, where
n is the number of tuples in T and in T ∗. Then T in Figure 1 has two addi-
tional obfuscated forms, T̂ and T̃ , as shown in Figure 1. If the obfuscation
algorithm chooses uniformly at random one of the relations in {T ∗, T̂ , T̃} as
the obfuscation of T , then PAT (T ∗) = PAT (T̂ ) = PAT (T̃ ) = 1

3
, while PAT (T ′) = 0

for all other relations T ′ ∈ U∗.
2

Example 3.3. Figure 2 illustrates probability distributions induced by two
obfuscation algorithms A1 and A2. The blue and red values appearing on top
of the arrows from Ti to T ∗j indicate the probabilities PA1

Ti
(T ∗j ) and PA2

Ti
(T ∗j ),

respectively. For clarity, arrows corresponding to zero valued probabilities are
omitted.

2Consider the three random variables XU , XU∗ and XA, whose possible values are the
relations of U , the relations of U∗ and all possible obfuscation algorithms, respectively.
We can think of PAT as the conditional probability distribution of XU∗ given XU and XA,
i.e. PAT (T ∗) = Pr[XU∗ = T ∗ | XU = T ∧XA = A].
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Assuming that U∗T1
= {T ∗1 , T ∗2 , T ∗3 } and U∗T2

= U∗T3
= {T ∗1 , T ∗3 , T ∗4 }, we

make the following two observations about obfuscation algorithms:

1. An algorithm may not necessarily be able to obfuscate all relations in U .
In our case, A1 cannot obfuscate T2 while A2 cannot obfuscate T1. (In
Section 5.4 we discuss a concrete example of an obfuscation algorithm
that is incapable of obfuscating some relations.)

2. Different algorithms may induce different distributions on the same U∗T .
In our case, the distribution that A1 induces on U∗T3

is: PA1
T3

(T ∗1 ) = 0,

PA1
T3

(T ∗3 ) = 0.01, PA1
T3

(T ∗4 ) = 0.99, whereas the distribution that A2

induces on U∗T3
is PA2

T3
(T ∗1 ) = 0.3, PA2

T3
(T ∗3 ) = 0, PA2

T3
(T ∗4 ) = 0.7.

2

3.2. Modeling PDOAT as a COP

In some obfuscation scenarios, there exists a set of rulesR = {R1, R2, ..., Rk}
that are defined on A; namely, the original data is already constrained. In
such cases, U is a proper subset of 2D because relations in 2D that do not
comply with R are invalid and therefore are not included in U . One such
obfuscation scenario is PDOAT, in which the original production data is
constrained by a set of rules R which must also be maintained by the obfus-
cated relation in order to be useful for testing. The PDOAT scenario can be
modeled as a COP with the following properties:

1. A∗ = A.

2. D∗ = D.

3. R∗T = R
⋃{R∗1} where

(a) R∗1: |T ∗| = |T |.

Namely, T ∗ must be a relation that obeys the same structural rules as
T (those are the rules in R). Since those are general rules, the only rule in
R∗T that depends on T is the rule (iii)(a) which requires T ∗ to have the same
number of tuples as T . There is no rule in R∗T that depends specifically on
the values of T . This property will be used in Section 5.5.

As discussed in Section 2, available obfuscation algorithms for PDOAT
COPs are incapable of handling a combination of complicated rules. In
Section 5 we present a generic yet powerful method for solving COPs.
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3.3. Modeling anonymization problems as COPs

Recall that in the k-anonymization scenario, the usual practice is to re-
move the identifier attributes (ID) and generalize the quasi-identifier at-
tributes (QID) so that the size of each QID block (i.e. a set of tuples in
T ∗ that all have the same QID values) is at least k. All other attributes are
kept unchanged. This scenario can be modeled as a COP with the following
properties:

1. A∗ = A\ID. (The identifier attributes are removed; all other attributes
are retained.)

2. ∀Ai ∈ QID, D∗i = 2Di . (In the quasi-identifier attributes, specific
values will be replaced by subsets of values.)

3. ∀Ai ∈ A\ (ID
⋃
QID), D∗i = Di. (The form of all other attributes will

remain the same.)

4. R∗T = {R∗1, R∗2, R∗3, R∗4} where:

(a) R∗1: |T ∗| = |T |. (Namely, each tuple in T has a corresponding
obfuscated tuple in T ∗.)

(b) R∗2: each quasi-identifier value in T ∗ contains the corresponding
value in T . (The quasi-identifier values are properly generalized.)

(c) R∗3: all other values in T ∗ equal the corresponding values in T .
(d) R∗4: any quasi-identifier tuple in T ∗ appears at least k times. (This

is the desired privacy condition of k-anonymity.)

Property (ii) allows any type of generalization. However, some attributes
are usually subjected to more specific forms of generalization. For exam-
ple, numerical attributes are usually generalized to intervals of values, while
categorical attributes are typically generalized using taxonomy trees. Such
restricted forms of generalizations can be achieved via additional rules. In
our experimental evaluation, Section 6, we use generalization by taxonomy
trees.

While COPs such as this one can be solved using the generic method that
we present in Section 5, k-anonymization is a well-studied problem which has
many dedicated algorithms. In Section 6 we compare our generic method to
the dedicated Mondrian algorithm [35].

As another example, we consider the problem of computing an `-diverse
anonymization of a given relation. In its most basic form, the condition of
`-diversity requires that in any QID block, no sensitive value appears in more
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than 1/` of the tuples in that block. To achieve that goal, we only need to
replace rule R∗4 above with the above rule of `-diversity.

In either examples of k-anonymity or `-diversity, the goal is to comply
with the desired privacy property while incurring minimal loss of information.
The rules that we described above concentrate only on compliance with the
privacy condition. They do not address the goal of achieving that privacy
target while maintaining maximal utility. To do so, we should define for each
obfuscated table T ∗ ∈ U∗T the corresponding information loss. (For example,
a very basic measure of information loss could be a count of the number of
entries in T ∗ that differ from the corresponding entries in T . More accurate
measures, however, were defined in the anonymity literature; see a survey
in [26].) Then, we may augment the CSP with a cost function that equals
the information loss in T ∗ with respect to T , and the target would be to
find a solution to the CSP that minimizes that cost function. The usual
terminology in the study of CSPs refers to the regular constraints as hard
constraints, while the cost function is called a soft constraint. These names
illustrate that hard constraints have to be satisfied, while the soft constraint
only expresses a preference of solutions of a lower cost over solutions with a
higher cost. (We note that the problem of finding a k-anonymization of a
given table with minimal information loss is NP-hard [25, 39]; hence, even
dedicated algorithms for k-anonymization find a k-anonymization with a low
information loss, but not necessarily one with minimal information loss.)

3.4. Modeling graph anonymization problems as COPs

A graph G can be represented as a relation T in the following man-
ner. Each tuple in the relation T corresponds to a vertex in the graph
G. The attributes in a given tuple are the vertex id, its degree, and the
list of its neighbors. Assume that the maximal degree in the graph is W .
Then the graph can be represented as a relation T over W + 2 attributes,
ID,Deg,N1, . . . , NW . The domain of each of those attributes is the set of
nonnegative integers. The rules R with which every such graph-describing
relation must comply are as follows:

1. R1: The values in the attribute ID are all distinct.

2. R2: The values in the attribute Deg are less than or equal to W .

3. R3: If the value of Deg in a given tuple is d, then the values of attributes
N1, . . . , Nd in that tuple are distinct vertex IDs that differ from that
tuple’s ID.
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4. R4: Let di denote the degree of the vertex in the ith tuple. Then if j
appears in one of the attributes N1, . . . , Ndi of tuple i, then i appears
in one of the attributes N1, . . . , Ndj of tuple j. (This rule formulates
the symmetry of the adjacency relation between vertices.)

The model of k-degree anonymity requires to anonymize a given graph
G into another graph G∗ such that two properties hold: (a) The edge set
of G is a subset of the edge set of G∗; (b) each degree in G∗ is shared by
at least k vertices in G∗. Hence, the obfuscated relation T ∗ that describes
the k-degree anonymized graph G∗ must comply with the above four general
rules, R1, R2, R3, R4, as well as with the following rules:

1. R∗1: |T | = |T ∗|.
2. R∗2: Let di and d∗i denote the degrees in the ith tuples in T and T ∗,

respectively. Then for all i, d∗i ≥ di.

3. R∗3: For all i, the values of attributes N1, . . . , Ndi of tuple i in T equal
the values of those attributes in tuple i in T ∗. (Namely, the set of
edges adjacent to any given vertex in G∗ is a superset of the set of
edges adjacent to that vertex in G.)

4. R∗4: For each i, there exist at least k − 1 indices i1, . . . , ik−1 such that
d∗i = d∗i1 = · · · = d∗ik−1

. (This is the k-degree anonymity condition.)

Rules R∗1, R∗2 and R∗3 specify the required compatibility between T ∗ and T .
The rule R∗4 specifies the required compliance with the property of k-degree
anonymity.

All of the above rules define the required compliance with the k-degree
anonymity privacy model. In order to select a k-degree anonymization with
maximal utility, namely, an anonymized graph with a minimal number of
added edges, we may augment the CSP with a cost function that equals∑

i(d
∗
i − di).

4. Measuring Privacy

In order to evaluate the ability of an obfuscation algorithm to preserve
privacy, or to compare between different obfuscation algorithms, a measure
of privacy is required. In this section we show how the well-known `-diversity
privacy measure can be incorporated into our COP framework.
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Definition 4.1. We say that an obfuscated relation respects `-diversity if
an adversary is unable to link any individual with any sensitive value with
confidence greater than 1/`.

In Section 4.1 we give a precise meaning for the confidence in which an
adversary can link any individual with any sensitive value. Then, in Section
4.2, we explain how the level ` of diversity can be practically estimated.

4.1. Defining the level ` of diversity

The definition of the level ` of diversity that is associated with obfuscating
a relation T into T ∗ relies upon the following assumptions:

1. A-priori, all relations in U are equally probable as being the original
relation T . (This assumption is known as the random worlds model [3]
and it is commonly used to reason about adversaries.)

2. The adversary knows the following information:

(a) The obfuscation algorithm A.
(b) The published obfuscated relation T ∗ that was output by A for

the input T .
(c) For every relation T ∈ U , the probability PA

T
(T ∗) that it was

converted by A into T ∗.
(d) The exact set of individuals that are represented in T and their

corresponding QID. Namely, the adversary knows the projection
of the relation T onto the ID and QID attributes, which we
denote by BK := ΠID,QID(T ). (The same assumption was made
in [47, 53, 58].)

Given the obfuscated relation T ∗ and the adversarial background knowledge
BK, let WT ∗ = {T | T ∈ U ∧T ∗ ∈ U∗

T
∧ΠID,QID(T ) = BK} denote the set of

all relations that could be obfuscated into T ∗. The adversary, who observes
the obfuscated relation T ∗ and knows BK, may limit the set of “possible
worlds” to WT ∗ ; namely, only relations in WT ∗ are suspected as being the
original relation T that was obfuscated into T ∗, while all other relations in
U \WT ∗ are ruled out. Clearly, the original relation T is in the collection
WT ∗ . Furthermore, given the obfuscation algorithm A and PA

T
(T ∗) for every

relation T ∈ U , the adversary may associate a probability P̂AT ∗(T ) with each
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possible world T ∈ WT ∗ as being the original relation T .3 That probability
is proportional to the probability that A obfuscated T into T ∗, and is given
by

P̂AT ∗(T ) =
PA
T

(T ∗)∑
T ′∈WT∗

PAT ′(T
∗)

(1)

Example 4.1. Consider the universes U and U∗ and the obfuscation algo-
rithm A := A1 that were described in Example 3.3 and Figure 2. Assume that
the original relation was T = T1. The obfuscation algorithm can obfuscate it
into one of three relations in U∗, namely, T ∗1 , T ∗2 , or T ∗3 , with probabilities
PAT (T ∗1 ) = 0.25, PAT (T ∗2 ) = 0.25, PAT (T ∗3 ) = 0.5. Let us assume that T ∗ := T ∗3
was selected by A. By assumption (ii), the adversary, who knows A and T ∗,
can compute PA

T
(T ∗) for all relations T ∈ U . Those probabilities are illus-

trated by the labels of the blue arrows that are pointing to T ∗ := T ∗3 in Figure
2, i.e., PAT1

(T ∗) = 0.5, PAT3
(T ∗) = 0.01, while PAT2

(T ∗) = 0. Hence, WT ∗ in
this case consists of just two possible worlds: T1 and T3. Their probabilities
as being the original relation are therefore P̂AT ∗(T1) = 0.5

0.5+0.01
≈ 0.98 and

P̂AT ∗(T3) = 0.01
0.5+0.01

≈ 0.02. Hence, if the adversary observes the obfuscated
relation T ∗, and he knows that algorithm A = A1 was utilized, both T1 and
T3 could be the original relation, but T1 is much more likely to be the true
preimage. 2

Let DID and DS denote the domains of the identifier and sensitive at-
tributes, respectively. Fixing a pair (id, s) ∈ DID × DS of an identifier id
and a sensitive value s, we let

W id,s
T ∗ = {T | T ∈ WT ∗ ∧ (id, s) ∈ ΠID,S(T )}

denote the set of all relations in WT ∗ that contain a tuple that has this pair
of values. If we add the probabilities P̂AT ∗(T ) over all possible worlds in W id,s

T ∗ ,
we get the value pid,s :=

∑
T∈W id,s

T∗
P̂AT ∗(T ) which denotes the confidence that

a relation which contains the pair (id, s) was obfuscated into T ∗. Finally, let
pmax := max(id,s)∈DID×DS

pid,s denote the maximal confidence in which the

3Consider the three random variables XU , XU∗ and XA, whose possible values are the
relations of U , the relations of U∗ and all possible obfuscation algorithms, respectively.
We can think of P̂AT∗ as the conditional probability distribution of XU given XU∗ and XA,

i.e. P̂AT∗(T ) = Pr[XU = T | XU∗ = T ∗ ∧XA = A].
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adversary may link any identifier id with any sensitive value s. Then, in view
of Definition 4.1, T ∗ respects `-diversity if pmax ≤ 1/`.

Example 4.2. Following Example 3.3, assume that the identifier and sen-
sitive attributes in relations T1, T2 and T3 are as given in Figure 3. Further,
assume that we obfuscated the relation T1 using A1 and published the obfus-
cated relation T ∗3 .

In view of our assumptions, the adversary is capable of limiting the set of
possible worlds to two relations: WT ∗3

= {T1, T3}. Hence, he may infer that
the original relation included the names Joe, Bob and Dave. By observing
the obfuscated relation T ∗3 he may also infer that the original relation had
three sensitive values, a, b, and c. Hence, for each of the possible nine pairs
(id, s) of a name and a sensitive value he may compute the set W id,s

T ∗3
:

• W Joe,a
T ∗3

= {T1, T3},

• WBob,b
T ∗3

= {T1},

• WBob,c
T ∗3

= {T3},

• WDave,b
T ∗3

= {T3},

• WDave,c
T ∗3

= {T1},

• W id,s
T ∗3

= ∅ otherwise.

In Example 4.1 we showed that P̂A1
T ∗3

(T1) ≈ 0.98 and P̂A1
T ∗3

(T3) ≈ 0.02. There-
fore, the linkage confidences for each of the possible pairs of a name and a
sensitive value are

• pJoe,a = 0.98 + 0.02 = 1,

• pBob,b = 0.98,

• pBob,c = 0.02,

• pDave,b = 0.02, and

• pDave,c = 0.98.
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Figure 3: The content of the relations T1, T2, and T3.

The maximal linkage confidence is therefore pmax = pJoe,a = 1. Hence, T ∗3
respects only 1-diversity (which is the lowest possible level of diversity), since
the adversary can make at least one certain linkage: viewing T ∗3 , the adver-
sary is confident that in the original relation, T , the identifier Joe was linked
with the sensitive value a.
2

Note that if the obfuscation algorithm is based on homogeneous general-
ization (see a discussion on homogeneous and non-homogeneous generaliza-
tion in [53]), then the above calculation can be simplified. In such a case,
`-diversity is respected if within each QID block B of T ∗ (i.e. a set of tuples
in T ∗ which all have the same QID values), there is no sensitive value that

appears more than |B|
`

times.

4.2. Estimating `

The process of computing pmax relies on our assumption that we can com-
pute for each relation T ∈ WT ∗ the probability P̂AT ∗(T ) that it was obfuscated
into T ∗. This assumption is sometimes unrealistic: it might be impossible to
enumerate WT ∗ , or we may not know PA

T
(T ∗) for all T ∈ WT ∗ . A more real-

istic assumption is that there exists an algorithm AR that acts as a reverse
engineering mechanism for A:

Definition 4.2. An algorithm AR is called a reverse engineering algorithm
for an obfuscation algorithm A if, given any T ∗ ∈ U∗ as input, it outputs a
relation T ∈ WT ∗ with probability P̂AT ∗(T ).

(In Section 5 we shall see examples for such algorithms.) By executing AR

repeatedly, we can obtain a multiset MT ∗ of relations from WT ∗ . Assuming
that we execute AR t times, namely, until we get t relations in MT ∗ (some of
which could be repeated, as MT ∗ is a multiset), we can compute an estimate
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α = 0.1 α = 0.05 α = 0.025 α = 0.2 α = 0.01
d = 0.05 403 510 624 664 788
d = 0.02 2516 3184 3899 4147 4925

Table 1: Minimal value of t for different values of d and α.

for pid,s, denoted p̃id,s, as the number of relations in MT ∗ that contain the
pair (id, s), divided by t. After computing the estimated confidence levels,

˜pid,s, we may proceed to estimate the diversity of the release as the inverse
of p̃max := max(id,s)∈DID×DS

p̃id,s.
Clearly, in the process described above, the quality of our estimation of

pmax grows with t. A question that arises is which value of t suffices? To
that end, we define for each id ∈ ΠID(T ) a random variable X id

S over the
sensitive attribute domain DS, where Pr(X id

S = s) = pid,s, for all s ∈ DS.
For simplicity, if we assume that these random variables are independent, we
can use Table 1, which was taken from [48], to determine the minimal value
of t that guarantees that all p̃id,s (id ∈ ΠID(T ) and s ∈ DS) have a maximum
deviation of d from pid,s with probability at least 1 − α. As a consequence,
using such a value of t guarantees that also |p̃max−pmax| ≤ d with probability
at least 1− α.

5. Solving COPs

In this section, we propose a generic method for solving a COP by re-
ducing it into a set of CSPs and solving those CSPs using a CSP solver.
Since the CSP framework supports a large variety of constraints and offers
a rich collection of efficient algorithms for satisfying them, such a reduction
provides a powerful means of solving any COP.

The main stages of the proposed method are illustrated in Figure 4:

1. Stage 1: The COP is reduced into a single CSP which is then decom-
posed into a set of independent sub-CSPs.

2. Stage 2: Large sub-CSPs that were produced in Stage 1 are further
decomposed into dependent sub-CSPs. (Those sub-CSPs are dependent
in the sense that they should be solved in some order, since the solution
of some sub-CSPs may depend on the solution of other sub-CSPs.)

3. Stage 3: All sub-CSPs are solved using a CSP solver and the solutions
are stored in T ∗ which then contains a publishable version of T .

In the following subsections, we describe in details each of those stages.
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Figure 4: Outline of the proposed method for solving COPs.

5.1. Reducing COPs into CSPs

We propose the following reduction for deriving a CSP from a given COP.
First, a CSP variable is defined for each cell in T ∗. We denote the variable
that corresponds to the cell in tuple i of attribute Aj in T ∗ by xT

∗
i,j . Letting N∗

be the number of tuples in the obfuscated relation T ∗ and m∗ be the number
of attributes in T ∗ (see Section 3.1), we let X = {xT ∗i,j : 1 ≤ i ≤ N∗, 1 ≤ j ≤
m∗} denote the set of all variables. Next, each rule is transformed into its
corresponding set of constraints. As opposed to the rules which are defined
over attributes, the CSP constraints are defined over variables. Each global
rule r will produce a single global constraint involving N∗ × |Ar| variables,
where Ar is the set of attributes that r involves. For example, consider a rule
requiring that an attribute Aj is unique. This rule will be translated into a
single N∗-ary “all different” [7] constraint: allDifferent(xT

∗
1,j, x

T ∗
2,j..., x

T ∗
N∗,j).

Alternatively, each non-global rule r will produce N∗ non-global constraints,
each involving |Ar| variables. For example, consider a non-global rule which
requires that the values of attribute Aj are greater than the corresponding
values of attribute Ak. This rule will be translated into N∗ binary “greater
than” [7] constraints: {gt(xT ∗1,j, x

T ∗
1,k), gt(xT

∗
2,j, x

T ∗
2,k), ..., gt(xT

∗
N∗,j, x

T ∗
N∗,k)}.

It is often possible to decompose a CSP into a set of disjoint sub-CSPs, in
the sense that each variable and each constraint of the original CSP belongs
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to exactly one sub-CSP. Such a decomposition is desirable since it results
in separate simpler sub-problems that can be solved independently. A com-
mon way to apply such decomposition is to find the different connectivity
components in the constraint graph [43]:

Definition 5.1. The constraint graph of a given CSP is a graph in which
each variable is represented by a vertex and two vertices are connected if there
exists a constraint that contains both variables.

Each connectivity component in the constraint graph corresponds to a dis-
joint sub-CSP. Although we can apply such a decomposition for COP-derived
CSPs, the special characteristics of COPs allows us to modify our reduction
in a way that it generates the post-decomposition sub-CSPs without the need
of applying a CSP decomposition algorithm on the constraint graph. Before
this is further explained, we note the following observation. Assume that we
applied a standard CSP decomposition algorithm on the constraint graph of
a COP-derived CSP. Then, any two disjoint sub-CSPs satisfy exactly one of
the following two conditions, regarding the sets of attributes and tuples of
their variables:

1. The two sets of attributes are disjoint.

2. The two sets of attributes are identical, but the two sets of tuples are
disjoint. Furthermore, each of the two sets of tuples contains exactly
one tuple.

The above observation implies a method for generating the post-decomposition
sub-CSPs. First, we decompose the set of rules R∗T into disjoint subsets of
rules by finding the different connectivity components of the rule graph:

Definition 5.2. The rule graph of a given COP is a graph in which each
attribute is represented by a vertex and two vertices are connected if there
exists a rule that contains both attributes.

Namely, rules in different subsets relate to disjoint subsets of attributes.
This first step of decomposition is described in Figure 4 as Stage 1.1. Second,
for each disjoint rule subset that contains only non-global rules, we generate
N∗ independent sub-CSP problems corresponding to the N∗ different tuples,
while for each of the remaining rule subsets we generate a single sub-CSP
problem. This second step is described in Figure 4 as Stage 1.2.
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The latter type of sub-CSP problems, i.e. those that originate from a
rule subset that contains at least one global rule, may have a large number
of variables. As a very common example, consider a sub-CSP resulting solely
from the allDifferent constraint, that was previously mentioned, and its N∗

associated variables. Solving such a sub-CSP is impractical in many cases
due to the overwhelming number of variables and may thus require special
heuristics.

5.2. Defining the dependent CSPs

In general, it is reasonable to assume that for any solver s, there exists
some manageable number of variables qs for which any CSP with more than
qs variables cannot be handled by that solver. Sub-CSPs that originate from
a rule subset that contains at least one global rule may have a large number
of variables which may exceed qs. In this section we suggest a method for
decomposing such a large sub-CSP (LCSP hereinafter) into a set of dependent
sub-CSPs with disjoint subsets of variables of sizes no larger than than qs.
In what follows, XLCSP is the set of variables in the LCSP, ALCSP is the set
of attributes to which those variables correspond, and CLCSP is the set of
constraints in the LCSP.

The dependent sub-CSP which is generated in the jth iteration of this
decomposition process will be denoted cspj. The set of variables of cspj,
denoted Xcspj , consists of all variables in XLCSP which correspond to tuples
of indices between q(j−1)+1 and min(qj,N∗), for some parameter q which is
yet to be determined. In other words, each Xcspj , except possibly for the last
one, contains q · |ALCSP | variables that are taken from q consecutive tuples.
If we choose q ≤ qs

|ALCSP | then obviously |Xcspj | ≤ qs, as required in order for
cspj to be manageable.

Note that for each LCSP we could optimally select q = b qs
|ALCSP |c, which is

the value of q that keeps all corresponding dependent sub-CSPs manageable
and minimizes their number. However, for simplicity, we used the same value
of q for all LCSPs. As we show later in Section 6, the value of q must be
carefully chosen because it influences both performance and privacy.

The set of constraints of cspj, denoted by Ccspj , is then defined in two
steps: (1) Ccspj is initialized with the non-global constraints in CLCSP , de-
noted by CNG, whose variables belong to Xcspj (note that all variables of a
non-global constraint appear in the same tuple); (2) a new global constraint
c∗ is derived from each c ∈ CLCSP \ CNG and added to Ccspj . We propose
two heuristics for deriving c∗:
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IG – Incrementally generating values for variables with respect to previously generated values.

LM – Begin with a preliminary solution and iteratively apply local modifications to variable values. 

2

LEGEND:  Omitted             Variables             Values from T * Preliminary solution

𝑐𝑠𝑝1
𝑐𝑠𝑝2
𝑐𝑠𝑝3
𝑐𝑠𝑝4
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𝑐𝑠𝑝2
𝑐𝑠𝑝3
𝑐𝑠𝑝4

Figure 5: Heuristics for decomposing a large sub-CSP into dependent sub-CSPs.

• The Local Modifications (LM) heuristic derives c∗ from c by labeling all
variables in Xc\Xcspj (where Xc is the set of variables in the constraint
c) as constants whose values are taken from the corresponding cells of
T ∗ during the future stage of solving the CSPs. The label is a pointer
to the cell represented by the variable and it is used only to obtain the
actual value stored in T ∗ at the time when cspj needs to be solved.

• The Incremental Generation (IG) heuristic derives c∗ from c in two
steps: (1) all variables in Xc \

⋃
`≤j Xcsp` are omitted; (2) all variables

in
⋃

`<j Xcsp` are labeled as constants (similarly to LM).

Note that either of the above heuristics transform c into a new global
constraint c∗ in which the set of variables is Xc ∩Xcspj ; therefore, c∗ has at
most qs variables, whence it is manageable. The names for the two heuristics
are self-explanatory: LM begins with an initial solution which is stored in
T ∗, and then it iteratively applies local modifications to its values; IG, on
the other hand, incrementally generates values based on previously generated
values. Algorithm 1 and Figure 5 illustrate the two heuristics.

5.3. Solving the CSPs

Solving each CSP requires a CSP solver.4 Each one of the independent
sub-CSPs that were produced in Stage 1 can be solved independently, even

4There are many available CSP packages (both commercial and academic) from which a
solver can be chosen. Deciding which package to use must be carefully considered because
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Algorithm 1 defineDependentCSPs(LCSP ,N∗,q,h)

Input:
LCSP = 〈XLCSP , CLCSP 〉: a large sub-CSP to be decomposed.
N∗: the number of tuples in T ∗.
q: the preferable number of tuples for each sub-CSP.
h: the chosen heuristic, either LM or IG.

Output:
LCSP dep: the set of dependent sub-CSPs into which LCSP was decomposed.

1: LCSP dep ← ∅;
2: firstTuple, j ← 1;
3: CNG ← {c | c ∈ CLCSP ∧ c is a non-global constraint};
4: while (firstTuple < N∗)
5: lastTuple← min{firstTuple+ q − 1, N∗};
6: Xcspj ← {x | x ∈ XLCSP ∧ firstTuple ≤tuple of x ≤ lastTuple};
7: Ccspj ← {c | c ∈ CNG ∧Xc ⊆ Xcspj};
8: for all (c ∈ CLCSP \ CNG)
9: c∗ ← c;

10: if h = LM
11: label all x ∈ Xc∗ \Xcspj as constants from T ∗;
12: else if h = IG
13: Xc∗ ← Xc \

⋃
`>j Xcsp` ;

14: label all x ∈ ⋃
`<j Xcsp` as constants from T ∗;

15: endif
16: Ccspj ← Ccspj

⋃{c∗};
17: end for
18: cspj ← 〈Xcspj , Ccspj〉;
19: LCSP dep ← LCSP dep ⋃{cspj};
20: firstTuple← lastTuple+ 1;
21: j ← j + 1;
22: end while
23: return LCSP dep;
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simultaneously on different machines. It has been our experience that, when
possible, solving fewer problems with a larger number of variables outper-
forms solving more problems with a smaller number of variables. Thus, at
this stage we merge groups of q independent sub-CSPs into a single CSP.
(It should be noted that the value of q here could be optimized by group-
ing the maximal number of independent sub-CSPs which results in a single
manageable CSP. However, for the sake of simplicity we chose in this stage
in our implementation the same value of q that was used also in decomposing
LCSPs to dependent sub-CSPs, see Section 5.2.)

Each of the resulting CSPs is then formulated in terms of the solver,
solved and the results are stored in T ∗ (this is done by the solve procedure
used in Algorithm 2). Since these CSPs are independent, the order in which
they are solved is irrelevant. In contrast to the independent sub-CSPs, the
dependent sub-CSPs that were produced in Stage 2 must be iteratively solved
in the same order in which they were defined. Remember that some of the
actual values from T ∗ that define any c∗ in cspj (for j > 1) are only generated
in iterations ` < j, whence it is impossible to solve cspj before solving csp`
for all ` < j.

5.4. LM vs. IG

LM guarantees that a solution is found for LCSP at the end of the
solving stage. In fact, it guarantees that T ∗ contains a solution to LCSP
at the end of each iteration. The reason for this is that LM is an inductive
process. Before the first iteration (j = 0), T ∗ is initialized with a preliminary
solution to LCSP . Now, assume that T ∗ contained a solution to LCSP after
iteration j (j ≥ 0) and cspj+1 is then solved in iteration j+1. Clearly, cspj+1

has at least one solution, consisting of the current values of the cells in T ∗

that the variables in Xcspj+1
represent. If cspj+1 has more than one solution,

the one returned by the solver may or may not constitute a local modification
of T ∗ from the previous iteration (differing by up to q · |ALCSP | values). In
any case, T ∗ necessarily contains a solution to LCSP also after iteration
j + 1.

Unlike LM , IG does not guarantee that cspj+1 has at least one solution
(even if cspj was solved), and therefore does not guarantee that a solution

not all CSP packages support the required variable domains and/or constraints. Thus,
the choice of CSP package can affect the extendability of the method.
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is found for LCSP (even if a solution does exist). Furthermore, there are
COPs for which IG is guaranteed to fail. For example, consider an attribute
Ai with domain Di being the positive integers and a single global rule that
requires that the total of all tuples for Ai equals some constant t. After
the first iteration of IG, the solution of csp1 is a set of values whose total
already equals t and so no solution can ever be found for csp2 (recall that
Di consists only of positive integers). This is a clear disadvantage of the IG
heuristics compared to LM . On the other hand, IG does not require T ∗ to
be initialized with a preliminary solution, which is sometimes hard to find.

The complete method for solving COPs is formulated in Algorithm 2.

5.5. The special case of PDOAT COPs

The PDOAT scenario has two important properties that will be utilized
in the following subsections: (1) The rules in R∗T do not depend on the values
of T (see Section 3.2) (2) Since T satisfies all rules in R and R∗T = R

⋃{|T ∗| =
|T |}, it also satisfies all rules in R∗T and thus T ∈ U∗T .

5.5.1. A preliminary solution to be used with LM

Recall that LM requires T ∗ to be initialized with a preliminary solution.
Since in the PDOAT scenario T ∈ U∗T , then T can be used as such a pre-
liminary solution. However, such initialization provides the adversary more
knowledge for exploitation as we explain next.

In Section 4.1 we denoted by WT ∗ the set of all relations that could
be obfuscated into T ∗, given the adversarial background knowledge BK.
An adversary who knows the set WT ∗ may infer that P̂AT ∗(T ) = 0, for all
obfuscation algorithmsA and for all relations T ∈ U\WT ∗ . However, without
knowing the specific algorithm that was used, the adversary cannot infer the
probability that some relation in WT ∗ is the original relation T , and thus all
relations in WT ∗ are equally likely to be T . An ideal obfuscation algorithm is
an algorithm that does not add any information about these probabilities. In
other words, such an ideal algorithm induces a uniform distribution P̂AT ∗ on
WT ∗ (i.e., it does not provide the adversary any additional knowledge). If this
property is held for all T ∗ ∈ U∗, we call such an algorithm a zero-knowledge
obfuscation algorithm:

Definition 5.3. An obfuscation algorithm A is called a zero-knowledge ob-
fuscation algorithm if and only if ∀T ∗∈U∗∀T∈WT∗

P̂AT ∗(T ) = 1/|WT ∗|.
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Algorithm 2 solveCOP(T ,S,R,h,q,s)

Input:
T : the original relation (together with the associated set of attributes A and
the domain of tuples D).
R∗T : the set of rules.
h: the chosen heuristic, either LM or IG.
q: the preferable number of tuples for each sub-CSP.
s: the CSP solver.

Output:
T ∗: the obfuscated relation.

1: RSs← ruleSetDecomposition(R∗T ); // Stage 1.1 (see Figure 4)
2: for all (RS ∈ RSs)
3: if (RS contains a global rule)
4: LCSP ← the single sub-CSP generated from RS; // Stage 1.2
5: LCSP dep ← defineDependentCSPs(LCSP ,|T ∗|,q,h); // Stage 2
6: for all (cspj ∈ LCSP dep)
7: solve(s,cspj); // stage 3
8: end for
9: else

10: CSPs ← independent sub-CSPs generated from RS; // Stage
1.2

11: merge groups of q sub-CSPs in CSPs into a single CSP.
12: for all (csp ∈ CSPs)
13: solve(s,csp); // Stage 3
14: end for
15: endif
16: end for
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The next theorem claims that in some cases IG is a zero-knowledge ob-
fuscation algorithm.

Theorem 5.1. In the PDOAT scenario, if IG can provide at least one so-
lution for each T ∈ U then IG is a zero-knowledge obfuscation algorithm.

Proof. We assume that for each relation T ∈ U , the set of solutions
returned by IG has at least one member. Consider an arbitrary member
of this set, denoted by T

∗ ∈ U∗
T

. In the PDOAT scenario, IG completely
disregards its input (recall that the rules in R∗T do not depend on the values
of T and IG does not need to be initialized with a preliminary solution).
Therefore, we get that for any two relations T1, T2 ∈ UT

∗ , P̂ IG
T
∗ (T1) = P̂ IG

T
∗ (T2).

In particular we get that P̂ IG
T
∗ (Ti) = 1/|WT

∗| for any Ti ∈ UT
∗ . Hence, IG is

a zero-knowledge obfuscation algorithm.
2

In contrast to the above, LM is not necessarily a zero-knowledge obfus-
cation algorithm in the PDOAT scenario. For example, consider a relation
T that contains 100 tuples, one attribute A1 with domain D1 = {1, . . . , 100}
and one rule R1 which requires that the values in attribute A1 are all dif-
ferent. Since T satisfies R1 it is necessarily a permutation of the values
1, ..., 100. Clearly, obfuscating T using LM and q = 1 will always produce an
obfuscated relation T ∗ which is identical to T and thus P̂LM

T ∗ (T ) = 1. On the
other hand, |WT ∗| = 100! because there exist 100! permutations of the values
1, . . . , 100 so P̂LM

T ∗ (T ) 6= 1/|WT ∗| and LM is therefore not a zero-knowledge
obfuscation algorithm.

LM provides the adversary the following additional knowledge about the
obfuscation process in the PDOAT scenario:

1. T ∗ was initialized with T as a preliminary solution.

2. Each block of variables contains maximum q · |ALCSP | variables.

3. The order of selecting the variables is determined in advanced.

While LM heavily relies on the first two properties, the third property
can easily be relaxed by adding randomization to the process of selecting the
variables: for csp1 we select q random tuples (instead of tuples 1, . . . , q), then
for csp2 we select q random tuples that were not selected for csp1 (instead of
tuples q + 1, . . . , 2q), and so forth: for cspj we select q random tuples that
were not selected in any csp`, where 1 ≤ ` < j. We denote henceforth this
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randomized version of the LM heuristics by LM∗. Clearly, LM∗ provides
less information to the adversary than LM does. As we shall see in Section
6, LM∗ achieves significantly better privacy levels than LM .

5.5.2. Estimating `

Assume that given a CSP as an input, the CSP solver outputs each one
of the possible solutions with equal probabilities. Then, it is possible to
derive reverse engineering algorithms for LM , LM∗ and IG in the PDOAT
scenario. In Section 6 we will use those reverse engineering algorithms in
order to estimate the diversity level, `, of the three heuristics, as explained
in Section 4.2.

A reverse engineering algorithm for LM , denoted by LMR, acts exactly
as LM , except for the following two modifications: (1) adding the rule
ΠID,QID(T ∗) = BK to the set R∗T and (2) selecting the tuples for each
cspj in a reverse order. That is, denoting the number of dependent sub-
CSPs as B = d|T ∗|/qe, the tuples selected for cspj, 1 ≤ j ≤ B are between
(B − j)× q + 1 and min(|T ∗|, (B − j + 1)× q). It is easy to verify that the
combination of these two modifications ensures that executing LMR with the
input T ∗ outputs a relation T ∈ WT ∗ with probability P̂LM

T ∗ (T ).
Similarly, a reverse engineering algorithm for LM∗, denoted by (LM∗)R,

acts exactly as LM∗, except for the following single modification: (1) adding
the rule ΠID,QID(T ∗) = BK to the set R∗T . This modification ensures that

executing (LM∗)R with the input T ∗ outputs a relation T ∈ WT ∗ with prob-
ability P̂LM∗

T ∗ (T ).
As for IG, as explained earlier, in cases where it does find a solution, all

relations in WT ∗ are equally likely to be the original relation T , and thus
∀T∈WT∗

P̂AT ∗(T ) = 1/|WT ∗ |. Therefore, a reverse engineering algorithm for IG

should output each relation T ∈ WT ∗ with probability 1/|WT ∗|. If the number
of tuples in T is relatively small (i.e. |T | ≤ q), such a reverse engineering
algorithm can be obtained by modifying our COP solving method as follows:
(1) adding the rule ΠID,QID(T ∗) = BK to the set R∗T and (2) omitting Stage
3 from the method (i.e. large sub-CSPs are not further decomposed into
dependent sub-CSPs).

5.6. A toy example

In this section we demonstrate our obfuscation method in the PDOAT
scenario using a toy example. Consider the M.Sc. students relation T from
Figure 6. The set of attributes A consists of: A1=phone number, A2=age,
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final_gradethesis_gradecourses_gradegraduation_dateregistration_dateagephone_number

85809031/10/201003/01/20093005464106161

92949015/09/200905/06/20082205219726962

87829226/10/201002/10/20102505082074633

961009220/03/201101/12/20093705762041624

7654321

final_gradethesis_gradecourses_gradegraduation_dateregistration_dateagephone_number

84808823/02/201003/02/20073005047836211

93909628/02/199924/07/19962205431228212

95939730/01/201112/12/19952505789181883

88928423/03/201014/03/20103705444222314

7654321

Figure 6: A relation that stores tuples of M.Sc. students

final_gradethesis_gradecourses_gradegraduation_dateregistration_dateagephone_number

85809031/10/201003/01/20093005464106161

92949015/09/200905/06/20082205219726962

87829226/10/201002/10/20102505082074633

961009220/03/201101/12/20093705762041624

7654321

final_gradethesis_gradecourses_gradegraduation_dateregistration_dateagephone_number

84808823/02/201003/02/20073005047836211

93909628/02/199924/07/19962205431228212

95939730/01/201112/12/19952505789181883

88928423/03/201014/03/20103705444222314

7654321

Figure 7: An obfuscation of the relation in Figure 6

A3=registration date, A4=graduation date, A5=courses grade, A6=thesis grade
and A7=final grade; the corresponding domains are: D0 ={all strings}, D1 =
{1, . . . , 120}, D2 = D3={all dates} and D4 = D5 = D6 = {80, . . . , 100}; the
set of sensitive attributes S̃ = A\{age} and the set of rules R consists of the
following rules:

• R1: The phone number attribute is a unique primary key.

• R2: The phone number attribute must be a valid cellular phone number
that conforms to the following regular expression pattern: “05[0247][0-
9][0-9][0-9][0-9][0-9][0-9]”.

• R3: The registration date must precede the graduation date.

• R4: The final grade is the average of the courses grade and the thesis
grade.

• R5: The average of all final grades is exactly 90 (as required by the
faculty).

The three-stage obfuscation process is performed as follows:

1. The independent CSPs are generated as follows. First, we perform the
rule set decomposition, as shown in Figure 8, and get the rule subsets:
RS1 = {R1, R2}, RS2 = {R3} and RS3 = {R4, R5}.

33



𝐴1 𝐴2 𝐴3 𝐴4

𝐴5

𝐴6 𝐴7

𝑅1, 𝑅2 𝑅3

𝑅4, 𝑅5 𝑅5

𝑅5

Figure 8: The rule graph of the toy problem

Second, we define the independent sub-CSPs for each rule subset that
does not contain any global rule, i.e. RS2, and get
CSP1 = 〈{x1,3, x1,4}, {lt(x1,3, x1,4)}〉
CSP2 = 〈{x2,3, x2,4}, {lt(x2,3, x2,4)}〉
CSP3 = 〈{x3,3, x3,4}, {lt(x3,3, x3,4)}〉
CSP4 = 〈{x4,3, x4,4}, {lt(x4,3, x4,4)}〉
where for each of the sub-CSPs above, the two sets represent the set of
variables and the set of constraints respectively.

2. Assuming that we use the LM heuristic with q = 2, then we define
the following two sets of dependent sub-CSPs: {CSP5, CSP6} and
{CSP7, CSP8} where:
CSP5 = 〈{x1,1, x2,1}, {allDifferent(x1,1, x2,1, xconst

3,1 , xconst
4,1 ), regular(regexp, x1,1), regular(regexp, x2,1)}〉

CSP6 = 〈{x3,1, x4,1}, {allDifferent(xconst
1,1 , xconst

2,1 , x3,1, x4,1), regular(regexp, x3,1), regular(regexp, x4,1)}〉

CSP7 = 〈{x1,5, x1,6, x1,7, x2,5, x2,6, x2,7}, {
x1,5+x1,6

2
= x1,7,

x2,5+x2,6

2
= x2,7,

x1,7+x2,7+xconst
3,7 +xconst

4,7

4
=

90}〉

CSP8 = 〈{x3,5, x3,6, x3,7, x4,5, x4,6, x4,7}, {
x3,5+x3,6

2
= x3,7,

x4,5+x4,6

2
= x4,7,

xconst
1,7 +xconst

2,7 +x3,7+x4,7

4
=

90}〉

where regexp = 05[0247][0−9][0−9][0−9][0−9][0−9][0−9] and const
represents a constant label.

3. Each one of the eight CSPs is solved using the CSP solver. The first four
CSPs can be solved independently (possibly simultaneously). However,
as described above, in order to reduce the number of calls to the CSP
solver, they are first merged into groups of CSPs of size q, and then each
group is solved by the CSP solver independently. The two dependent
CSPs: CSP5 and CSP6 and the two dependent CSPs: CSP7 and CSP8

are solved iteratively.
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Note that the age attribute is copied from T at stage 1 and is not modified
later. A possible obfuscation of T , is given in Figure 7. A close inspection
will show that it indeed satisfies all the rules in R.

6. Evaluation

The evaluation had the following goals: (1) demonstrating the flexibility
of the COP framework by implementing and examining three of the aforemen-
tioned obfuscation scenarios, namely PDOAT, k-anonymity, and `-diversity;
(2) illustrating the feasibility of the new method in terms of execution time;
(3) empirically comparing the influence of using different q values; and (4)
empirically comparing the different heuristics in the PDOAT scenario.

All experiments were conducted on an Intel Core 2 Duo CPU 2.4 GHz
personal computer with 8 GB of RAM, running Windows 8 Enterprise and
MySQL 5.136 with default settings. For the solving stage, we used the
CHOCO CSP solver [18], version 2.1.1. In Section 6.1 we describe our eval-
uation for the PDOAT scenario. In Section 6.2 we describe our evaluation
for the k-anonymity scenario. We conclude in Section 6.3 which is devoted
to the `-diversity scenario.

6.1. PDOAT

Experiments in this section were performed on relations that have the
same structure and comply with the same set of rules as described in the
toy example in Section 5.6. In the first experiment we wanted to check the
influence of q on the execution time. In order to achieve this goal, we created
an original relation with N = 100000 tuples and obfuscated it using the
h ∈ {IG, LM} heuristic with q ∈ {10, 50, 100, 200, 333, 500, 1000}. Figure
9 demonstrates the influence of q and h on the execution time. Intuitively,
using smaller values of q generates smaller CSPs which are easier to solve and
thus take the CSP solver less time. At the same time, decreasing q increases
the number of calls to the CSP solver, and that result in a higher overhead.
In this experiment, using q = 100 was the best choice for both heuristics.

In the second experiment we wanted to check the influence of q and h
on the obtained level of privacy. In order to achieve this goal, we cre-
ated an original relation with N = 1000 tuples and obfuscated it using
h ∈ {IG, LM,LM∗} with q ∈ {1, 5, 10, 50, 100, 200, 333, 500, 1000}. Then,
for each one of those obfuscated relations, we used the technique described
in Section 4.2 in order to estimate the obtained level of diversity `. More
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Figure 9: PDOAT: Execution time for different values of q.

specifically, we de-obfuscated each obfuscated relation, using the reverse en-
gineering algorithms, t = 510 times (corresponding to d = 0.05 and α = 0.05,
see Table 1), and calculated the maximum probability of the different linkages
(in this context we assumed that ID={phone number} and S={final grade}).
In order to illustrate better the differences between the heuristics, we sorted
the original table by the final grade attribute before starting the obfusca-
tion process. As a result, each group of q tuples that were considered by
the LM heuristics contained final grades that were relatively close one to
another. Figure 10 demonstrates the influence of q and h on the obtained
level of diversity `. IG achieves the best ` and this value does not depend
on q. LM achieves the worst results since it uses a predefined grouping into
blocks. LM∗ achieves an intermediate level of privacy between IG and LM .
Moreover, for values of q greater than or equal to 200, there is no difference
between IG and LM∗. Using LM∗ with an appropriate value of q seems to
be the best choice, since it guarantees a solution, as opposed to IG. Note
the extreme cases of q = 1 where LM and LM∗ fail to achieve any level of
privacy, and of q = N where all three heuristics are identical.

In the third experiment we checked the dependence of the execution
time on N and h. In order to do so, we created original relations with
N ∈ {20000, 40000, 60000, 80000, 100000} and obfuscated them using h ∈
{IG, LM∗}. In all those runs we used q = 200 (which, in view of the previ-
ous two experiments, seems to be the best choice for those heuristics, in terms
of runtime and privacy). As can be seen by examining the curves that are
denoted IG-1 and LM∗-1 in Figure 11, the execution time grows roughly lin-
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Figure 10: PDOAT: Estimated ` for different values of q

early with the number of tuples. Moreover, as expected, IG achieves slightly
better execution times than LM∗. The explanation for this is that for global
rules LM∗ always solves problems with q tuples of variables and N−q tuples
of constants, while IG starts with a much smaller problem of only q tuples
of variables and 0 tuples of constants, and only its last problem includes q
tuples of variables and N − q tuples of constants.

Finally, our fourth experiment examined the advantages of parallelizing
the obfuscation process. Towards that end, we repeated each of the runs that
were executed in the previous experiment using two processors. The resulting
runtimes are shown in the curves denoted IG-2 and LM∗-2 in Figure 11. As
can be seen, using two processors instead of one reduced the execution time
by more than 30%.

To conclude this section, even though the original database contained
several rules of different types and despite the fact that CSP is NP-hard in
general, the solving process was completed in a reasonable time. Further-
more, the execution time was practically the same for all three heuristics,
and using concurrency obviously improved execution time. It is important
to note that when heuristics were not used, the CHOCO CSP solver was not
able to complete its execution even for relatively small sized relations (e.g.,
N = 15000).

6.2. k-Anonymity

Our k-anonymity experiments were performed on two datasets: CENSUS
[42] and ADULT [20]. The findings from the experiments on ADULT were
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Figure 11: PDOAT: The influence of N , h and p on the execution time.

consistent with those from the experiments on CENSUS. In this section we
report in detail the experiments with respect to CENSUS; the results with
respect to ADULT are provided in Appendix B.

The CENSUS dataset has 500000 tuples and eight attributes: age, gender,
education level, marital status, race, work class, country, and a sensitive
attribute. We considered the two attributes age and gender to be quasi-
identifiers, and used for them generalization taxonomies of heights 4 and 2
respectively.

We compared our new method (using the IG heuristic) with a dedicated
k-anonymization algorithm, Mondrian [35], in terms of information loss and
execution time. Information loss in this experiment was measured using the
Loss Metric measure [32]. That measure takes the average information loss
over all obfuscated cells, T ∗i (j), 1 ≤ i ≤ N∗, 1 ≤ j ≤ m∗. The information
loss in the cell T ∗i (j) is defined as (|T ∗i (j)|−1)/(|Aj|−1), where |T ∗i (j)| is the
size of the subset that replaces the original value in the jth attribute in the
ith tuple, while |Aj| is the number of possible values in that attribute. Note
that in terms of privacy, both methods achieve the required level of privacy
by definition, since the output in both methods issue k-anonymized tables.

In the first experiment we wanted to compare the two methods in terms
of information loss and execution time for different relation sizes N . In order
to achieve this goal, we used relations of size N = 10000× i, 1 ≤ i ≤ 10, (i.e.
the first N tuples from the CENSUS dataset) and we fixed q = 2000. The
required privacy target was set to 5-anonymity. As can be seen in Figure
12, while the average information loss in the Mondrian obfuscated relations

38



0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0 20000 40000 60000 80000 100000

In
fo

rm
at

io
n 

L
os

s 
(L

os
s 

M
et

ri
c)

N

COP

Mondrian

Figure 12: k-Anonymity: Information loss for different values of N .

remains almost unchanged for all N ≥ 20000, the information loss in the
output of our obfuscation method is always smaller, and it keeps decreasing
with N . For N = 100000 the information loss in our method is roughly 60%
of the information loss in the Mondrian algorithm, namely, the improvement
is significant. As for the execution time, Figure 13 shows that the execution
time of the new method grows roughly linearly with the number of tuples.
For comparison, the Mondrian algorithm finished its execution within a few
seconds even for N = 100000. Having said that, we note that anonymization
is a process that is executed on tables that contain data that was accumulated
during very long periods of time. Hence, an anonymization algorithm that
runs in few seconds offer no real advantage compared to another algorithm
that runs in few minutes or even hours. In our case, as our method issues
relations with significantly smaller information losses and its runtime, even
for very large tables, is manageable, it appears to be the better choice.

In the second experiment we wanted to test the influence of different q
values on the information loss and execution time. In order to achieve this
goal, we compared the two methods for a relation with a fixed size of N =
100000 and for q ∈ {200, 400, 600, 800, 1000, 2000, 3000, 4000, 5000, 10000}.
Again, the privacy target was set to 5-anonymity. As can be seen in Figure
14, the information loss for the new method decreases with q and, for the
largest value of q that we tested, the resulting information loss in our method
was less than 0.5% of the information loss in the Mondrian algorithm (i.e., an
improvement factor of more than 200). Figure 15 shows that the execution
time of the new method grows roughly linearly with q. This is encouraging
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Figure 13: k-Anonymity: Execution time for different values of N .
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Figure 14: k-Anonymity: Information loss for different values of q.

since it allows us to choose larger values of q in order to obtain lower levels
of information loss while not sacrificing scalability.

The above experiments were also conducted with the Entropy measure
[25], instead of the Loss Metric measure. The findings were quite consistent
with the ones reported above. Due to space limitations, we include herein
only Figure 16 which shows the entropy information loss for the same settings
of N , q, and k as in Figure 14.

6.3. `-Diversity

The experiments in this section were performed on the CENSUS dataset
[42]. In Appendix B we report the corresponding results with respect to the
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Figure 15: k-Anonymity: Execution time for different values of q.
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Figure 16: k-Anonymity: Information loss for different values of q (Entropy).

41



0

0.0005

0.001

0.0015

0.002

0.0025

0 20000 40000 60000 80000 100000

In
fo

rm
at

io
n 

L
os

s 
(L

os
s 

M
et

ri
c)

N

COP

Mondrian

Figure 17: `-Diversity: Information loss for different values of N .

ADULT dataset [20].
Here too, we compared our method (using the IG heuristic) with the Mon-

drian algorithm [35]. In the first experiment we compared the two methods in
terms of information loss and execution time for different relation sizes N . As
in Section 6.2, we used relations of size N = 10000i, 1 ≤ i ≤ 10, and we fixed
q = 2000. The required privacy target was set to 2-diversity. As can be seen
in Figure 17, while the average information loss in the Mondrian obfuscated
relations fluctuates, the information loss in the output of our obfuscation
method is always smaller, and it keeps decreasing with N . For N = 100000
the information loss in our method is roughly 7% of the information loss in
the Mondrian algorithm. As for the execution time, Figure 18 shows that the
execution time of the new method grows roughly linearly with the number
of tuples. The Mondrian algorithm, on the other hand, was always much
faster and finished its execution within few seconds. As explained in Section
6.2, the runtime is a secondary consideration when choosing a method to
anonymize tables that contain data that was accumulated over months and
years.

In the second experiment we tested the influence of q on the information
loss and execution time. We compared the two methods for a relation with a
fixed size ofN = 100000 and for q ∈ {200, 400, 600, 800, 1000, 2000, 3000, 4000, 5000, 10000}.
Also here, the privacy target was set to 2-diversity. As can be seen in Figure
19, the information loss in the output of our method (as measured by the
Loss Metric measure) decreases with q and, for the largest value of q that we
tested, the resulting information loss in our method was about 1% of the in-
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Figure 18: `-Diversity: Execution time for different values of N .
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Figure 19: `-Diversity: Information loss for different values of q.

formation loss in the Mondrian algorithm. We achieved similar results when
using the entropy measure instead of the Loss Metric Measure, see Figure 20.
Finally, Figure 21 shows that the execution time of the new method grows
roughly linearly with q.

7. Summary and Future Work

In this paper we introduced the concept of COPs as a general framework
for obfuscating relational databases. The flexibility of the COP definition was
demonstrated by modeling several different problems of obfuscation. We sug-
gested a general approach for solving COPs via the CSP framework, thereby
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Figure 20: `-Diversity: Information loss for different values of q (Entropy).
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Figure 21: `-Diversity: Execution time for different values of q.
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supporting a wide variety of complicated COP rules. In order to cope with
intractability issues that may arise from this approach, we provided two use-
ful heuristics, namely Incremental Generation (IG) and Local Modification
(LM). We also showed how the well-known `-diversity privacy measure can
be incorporated into the COP framework in order to evaluate the privacy
level of COP solutions.

Existing obfuscation methods are either confined to a certain application
domain and their applicability is thus limited (e.g. dedicated algorithms for
k-anonymization) or general enough but incapable of handling complicated
rules (e.g. generation methods). Our method is general and thus can be used
in cases where a dedicated algorithm cannot be used (e.g. if no dedicated
algorithm exists). Our method can also be used in cases where a dedicated
algorithm exists and, as we demonstrated, it can even achieve better results
than those of the dedicated algorithm. Moreover, although our method is
general, it is capable of handling complicated rules, since it harnesses the
power of the well-studied CSP framework.

The COP framework is designed mainly for obfuscating relational databases.
As we showed in Section 3.4, it is general enough to model even obfuscation
problems of other types of data, such as graph data (and, more generally, so-
cial networks). This is achieved by representing the graph data as a relational
database. However, from experimentation that we conducted, it appears that
representing the graph data as a relational database and then translating the
graph obfuscation problem into a COP, we get problems that are very hard
to solve for large problem parameters. In the future, we intend to explore
other ways of extending the COP framework to deal with graph data in a
practical and efficient manner. In another line of research, we intend to com-
pare our generic method with dedicated algorithms in other scenarios. As for
the PDOAT scenario, we intend to develop methodologies for automatically
extracting the COP rules (like the one described in [56]), and evaluate our
method on a real or a benchmark database.
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A. Summary of Notations

Notation Meaning
U The source universe
T The original pre-obfuscated relation from U
A1, . . . , Am The attributes of T
D1, . . . , Dm The domains of attributes of T
N The number of tuples in T
U∗ The target universe
T ∗ An obfuscation of T from U∗

A∗1, . . . , A
∗
m The attributes of T ∗

D∗1 , . . . , D
∗
m The domains of attributes of T ∗

N∗ The number of tuples in T ∗

ID The set of identifier attributes of T
QID The set of quasi-identifier attributes of T
S The set of sensitive attributes of T
O The set of other attributes of T
BK The adversarial background knowledge
R = {R1, . . . , Rk} Rules that apply on relations in U
R∗T = {R∗1 , . . . , R

∗
q} Rules that apply on relations in U∗

U∗T The set of all relations in U∗ that satisfy R∗T
A An obfuscation algorithm
PAT (T ∗) The probability that algorithm A outputs T ∗ when given T as input
WT∗ The set of all relations T ∈ U that could possibly be the pre-image of T ∗

P̂AT∗ (T ) The posterior probability that T ∈WT∗ is the pre-image of T under A
W id,s

T∗ The set of relations from WT∗ that contain the pair (id, s)
pid,s The probability that the original relation T contains the pair (id, s)
pmax The maximal probability over the different pid,s
AR A reverse engineering algorithm for A
p̃id,s An estimator for pid,s
t The number of times that AR should be executed

xT∗
ij The CSP variable corresponding to the cell in tuple i of attribute Aj

c A CSP constraint
c∗ A derived global constraint
ARule or ACSP The attributes of a given rule or CSP
XConstraint or XCSP The variables of a given constraint or CSP
CCSP The constraint set of a given CSP
RS A rule subset
LCSP A large CSP that originates from a rule subset with a global rule
CNG The set of non-global constraints in LCSP
qs The maximum number of variables that a CSP solver can handle
q The preferable number of tuples in a sub-CSP (q · |ALCSP | ≤ qs)
IG The incremental generation heuristic
LM The local modification heuristic
LM∗ The randomized version of the LM heuristic
h A heuristic - either IG, LM or LM∗

LCSP dep The set of dependent sub-CSPs into which LCSP was decomposed

Table 2: Notation table
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Figure 22: k-Anonymity: Information loss for different values of N .

B. Additional Experiments

B.1. k-Anonymity

In Section 6.2 we reported a suite of k-anonymity experiments that we
conducted on the CENSUS datasets. We repeated the same suite of exper-
iments for the ADULT dataset from the UCI Machine Learning Repository
[20]. That dataset was extracted from the US Census Bureau Data Extrac-
tion System. It holds demographic information of a small sample of the
US population with 14 quasi-identifiers such as age, gender, education level,
marital status, and native country, and it contains 32,561 tuples. Here too
we considered the two attributes age and gender to be quasi-identifiers, and
used for them generalization taxonomies of heights 4 and 2 respectively.

Figures 22 and 23 show the information loss and execution time as ob-
tained on subsets of ADULT of various sizes. (The corresponding figures in
Section 6.2 are Figures 12 and 13). Figures 24 and 25 show the information
loss and execution time for different values of q over the complete dataset
(compare to Figures 14 and 15). Finally, Figure 26 shows the information
loss, by the entropy measure, for different values of q (compare to Figure 16).
As can be seen, the findings here are similar to those with respect to CEN-
SUS. For example, concentrating on Figure 24, we see that the information
loss for the new method decreases with q and, for the largest value of q that
we tested, our method achieved an information loss that was more than 7
times smaller than that in the Mondrian algorithm.
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Figure 23: k-Anonymity: Execution time for different values of N .
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Figure 24: k-Anonymity: Information loss for different values of q.
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Figure 25: k-Anonymity: Execution time for different values of q.
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Figure 26: k-Anonymity: Information loss for different values of q (Entropy).
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Figure 27: `-Diversity: Information loss for different values of N .
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Figure 28: `-Diversity: Execution time for different values of N .

B.2. `-Diversity

In Section 6.3 we reported a suite of `-diversity experiments that we con-
ducted on the CENSUS datasets. We repeated the same suite of experiments
for the ADULT dataset [20]. Figures 27-30 are parallel to Figures 17-20 in
Section 6.3.
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Figure 29: `-Diversity: Information loss for different values of q.
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Figure 30: `-Diversity: Information loss for different values of q (Entropy).
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Figure 31: `-Diversity: Execution time for different values of q.
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gen: generating query-aware test databases. In Proceedings of the ACM
SIGMOD International Conference on Management of Data. 341–352.

[9] Boldi, P., Bonchi, F., Gionis, A., and Tassa, T. 2012. Inject-
ing uncertainty in graphs for identity obfuscation. In Proceedings of the
International Conference on Very Large Data Bases. Vol. 5. 1376–1387.

[10] Bonchi, F., Gionis, A., and Tassa, T. 2011. Identity obfuscation
in graphs through the information theoretic lens. In Proceedings of the
International Conference on Data Engineering. 924–935.

[11] Bruno, N. and Chaudhuri, S. 2005. Flexible database generators.
In Proceedings of the International Conference on Very Large Data Bases.
1097–1107.

[12] Burnett, L., Barlow-Stewart, K., Proos, A., and Aizenberg,
H. 2003. The” GeneTrustee”: a universal identification system that en-
sures privacy and confidentiality for human genetic databases. Journal of
Law and Medicine 10, 506.

[13] Camouflage Software Inc. 2009a. Camou-
flage Transformers. Camouflage Software Inc.
http://www.datamasking.com/usr/pdfs/CamouflageTransformers.pdf.

[14] Camouflage Software Inc. 2009b. Enterprise-Wide Data Masking
with the Camoufl age Translation Matrix. Camouflage Software Inc.
http://www.datamasking.com/usr/pdfs/CamouflageTransformers.pdf.

[15] Camouflage Software Inc. 2009c. Secure Analytics -
Maximizing Data Quality & Minimizing Risk for Bank-
ing and Insurance Firms. Camouflage Software Inc.
http://online.datamasking.com/forms/maximizingdatautility.

[16] Campan, A. and Truta, T. M. 2008. Data and structural k-
anonymity in social networks. In Proceedings of the International Work-
shop on Privacy, Security, and Trust in KDD. 33–54.

[17] Castellanos, M., Zhang, B., Jimenez, I., Ruiz, P., Durazo,
M., Dayal, U., and Jow, L. 2010. Data desensitization of customer

53



data for use in optimizer performance experiments. In Proceedings of the
International Conference on Data Engineering. 1081–1092.

[18] CHOCO Team 2010. CHOCO: an open source java constraint pro-
gramming library. CHOCO Team. http://www.emn.fr/z-info/choco-
solver/pdf/choco-presentation.pdf.

[19] Duncan, K. and Wells, D. 1999. A Rule-Based Data Cleansing.
Journal of Data Warehousing 4, 146–159.

[20] Frank, A. and Asuncion, A. 2010. UCI machine learning repository
[http://archive.ics.uci.edu/ml]. University of California, Irvine, School of
Information and Computer Sciences .

[21] Fung, B., Wang, K., Chen, R., and Yu, P. 2010. Privacy-
preserving data publishing: A survey of recent developments. ACM Com-
puting Surveys 42, 1–53.

[22] Fung, B., Wang, K., and Yu, P. 2005. Top-down specialization for
information and privacy preservation. In Proceedings of the International
Conference on Data Engineering. 205–216.

[23] Ghinita, G., Karras, P., Kalnis, P., and Mamoulis, N. 2007.
Fast data anonymization with low information loss. In Proceedings of the
International Conference on Very Large Data Bases. 758–769.

[24] Gionis, A., Mazza, A., and Tassa, T. 2008. k-anonymization revis-
ited. In Proceedings of the International Conference on Data Engineering.
744–753.

[25] Gionis, A. and Tassa, T. 2009. k-Anonymization with minimal loss
of information. Transactions on Knowledge and Data Engineering 21,
206–219.

[26] Goldberger, J. and Tassa, T. 2010. Efficient anonymizations with
enhanced utility. Transactions on Data Privacy 3, 149–175.

[27] Gray, J., Sundaresan, P., Englert, S., Baclawski, K., and
Weinberger, P. 1994. Quickly generating billion-record synthetic
databases. SIGMOD Record 23, 252.

54



[28] GridTools Ltd. 2009. Simple Data Masking. GridTools Ltd.
http://www.grid-tools.com/download/Simple Data Masking.pdf.

[29] Hanhijärvi, S., Garriga, G., and Puolamaki, K. 2009. Random-
ization techniques for graphs. In Proceedings of the SIAM International
Conference on Data Mining. 780–791.

[30] Hoag, J. E. and Thompson, C. W. 2007. A parallel general-purpose
synthetic data generator. SIGMOD Record 36, 19–24.

[31] Houkjar, K., Torp, K., and Wind, R. 2006. Simple and realistic
data generation. In Proceedings of the International Conference on Very
Large Data Bases. 1246.

[32] Iyengar, V. 2002. Transforming data to satisfy privacy constraints. In
Proceedings of the International Conference on Knowledge Discovery and
Data Mining. 279–288.

[33] Kenig, B. and Tassa, T. 2012. A practical approximation algorithm
for optimal k-anonymity. Data Mining and Knowledge Discovery 25, 134–
168.

[34] Last, M., Tassa, T., Zhmudyak, A., and Shmueli, E. 2014.
Improving accuracy of classification models induced from anonymized
datasets. Information Sciences 256, 138–161.

[35] LeFevre, K., DeWitt, D. J., and Ramakrishnan, R. 2006. Mon-
drian multidimensional k-anonymity. In Proceedings of the International
Conference on Data Engineering. 25.

[36] Li, N., Li, T., and Venkatasubramanian, S. 2010. Closeness: A
new privacy measure for data publishing. Transactions on Knowledge and
Data Engineering 22, 943–956.

[37] Liu, K. and Terzi, E. 2008. Towards identity anonymization on
graphs. In Proceedings of the ACM SIGMOD International Conference on
Management of Data. 93–106.

[38] Machanavajjhala, A., Kifer, D., Gehrke, J., and Venkitasub-
ramaniam, M. 2007. l-diversity: Privacy beyond k-anonymity. Transac-
tions on Knowledge Discovery from Data 1, 3.

55



[39] Meyerson, A. and Williams, R. 2004. On the complexity of opti-
mal k-anonymity. In Proceedings of the ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems. 223–228.

[40] Parameswaran, R. and Blough, D. 1999. A Robust Data Obfusca-
tion Approach for Privacy Preservation of Clustered Data. In Proceedings
of the International Conference on Data Mining. 18–25.

[41] Rebollo-Monedero, D., Forne, J., and Domingo-Ferrer, J.
2010. From t-closeness-like privacy to postrandomization via information
theory. Transactions on Knowledge and Data Engineering 22, 1623–1636.

[42] Ruggles, S., Alexander, T., Genadek, K., Goeken, R.,
Schroeder, M., and Sobek, M. 2010. Integrated public use microdata
series: Version 5.0 [machine-readable database]. Minneapolis: University
of Minnesota.

[43] Russell, S., Norvig, P., Canny, J., Malik, J., and Edwards, D.
1995. Artificial intelligence: a modern approach. Prentice hall Englewood
Cliffs, NJ.

[44] Samarati, P. and Sweeney, L. 1998. Generalizing data to pro-
vide anonymity when disclosing information. In Proceedings of the ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Sys-
tems. 188.

[45] Sweeney, L. 2002. k-Anonymity: A model for protecting privacy. In-
ternational Journal of Uncertainty, Fuzziness and Knowledge-Based Sys-
tems 10, 557–570.

[46] Tassa, T. and Cohen, D. J. 2013. Anonymization of centralized
and distributed social networks by sequential clustering. Transactions on
Knowledge and Data Engineering 25, 311–324.

[47] Tassa, T., Mazza, A., and Gionis, A. 2012. k-concealment: An
alternative model of k-type anonymity. Transactions on Data Privacy 5,
189–222.

[48] Thompson, S. 1987. Sample size for estimating multinomial propor-
tions. The American Statistician 41, 42–46.

56



[49] Trabelsi, S., Salzgeber, V., Bezzi, M., and Montagnon, G.
2010. Data disclosure risk evaluation. In Proceedings of the International
Conference on Risks and Security of Internet and Systems. 35–72.

[50] Wang, J., Luo, Y., Zhao, Y., and Le, J. 2009. A survey on privacy
preserving data mining. In Proceedings of the International Workshop on
Database Technology and Applications. 111–114.

[51] Wang, K., Fung, B., and Yu, P. 2005. Template-based privacy
preservation in classification problems. In Proceedings of the International
Conference on Data Mining. 8.

[52] Wang, K., Fung, B., and Yu, P. 2007. Handicapping attacker’s con-
fidence: an alternative to k-anonymization. Knowledge and Information
Systems 11, 345–368.

[53] Wong, W. K., Mamoulis, N., and Cheung, D. W.-L. 2010. Non-
homogeneous generalization in privacy preserving data publishing. In Pro-
ceedings of the ACM SIGMOD International Conference on Management
of Data. 747–758.

[54] Wu, W., Xiao, Y., Wang, W., He, Z., and Wang, Z. 2010. k-
Symmetry model for identity anonymization in social networks. In Proceed-
ings of the International Conference on Extending Database Technology.
111–122.

[55] Wu, X., Wang, Y., Guo, S., and Zheng, Y. 2007. Privacy pre-
serving database generation for database application testing. Fundamenta
Informaticae 78, 595–612.

[56] Wu, X., Wang, Y., and Zheng, Y. 2003. Privacy preserving database
application testing. In Proceedings of the ACM Workshop on Privacy in
the Electronic Society. 128.

[57] Xiao, X. and Tao, Y. 2006. Anatomy: simple and effective privacy
preservation. In Proceedings of the International Conference on Very Large
Data Bases. 139–150.

[58] Xiao, X. and Tao, Y. 2007. M-invariance: towards privacy preserving
re-publication of dynamic datasets. In Proceedings of the ACM SIGMOD
International Conference on Management of Data. 700.

57



[59] Yahalom, R., Shmueli, E., and Zrihen, T. 2010. Constrained
Anonymization of Production Data: A Constraint Satisfaction Problem
Approach. In Proceedings of the VLDB Workshop on Secure Data Man-
agement. Springer, 41–53.

[60] Zheleva, E. and Getoor, L. 2007. Preserving the privacy of sensitive
relationship in graph data. In Proceedings of the International Workshop
on Privacy, Security, and Trust in KDD. 153–171.

[61] Zhou, B. and Pei, J. 2008. Preserving privacy in social networks
against neighborhood attacks. In Proceedings of the International Confer-
ence on Data Engineering. 506–515.

58


