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Abstract

The technique of k-anonymization allows the releasing of databases that contain personal in-
formation while ensuring some degree of individual privacy. Anonymization is usually performed
by generalizing database entries. We formally study the concept of generalization, and propose
three information-theoretic measures for capturing the amount of information that is lost during
the anonymization process. The proposed measures are more general and more accurate than
those that were proposed by Meyerson and Williams [MW04] and Aggarwal et al. [AFK+05].
We study the problem of achieving k-anonymity with minimal loss of information. We prove
that it is NP-hard and study polynomial approximations for the optimal solution. Our first
algorithm gives an approximation guarantee of O(ln k) for two of our measures as well as for the
previously studied measures. This improves the best-known O(k)-approximation of [AFK+05].
While the previous approximation algorithms relied on the graph representation framework, our
algorithm relies on a novel hypergraph representation that enables the improvement in the ap-
proximation ratio from O(k) to O(ln k). As the running time of the algorithm is O(n2k), we
also show how to adapt the algorithm of [AFK+05] in order to obtain an O(k)-approximation
algorithm that is polynomial in both n and k.

1 Introduction

Consider a database that holds information on hospitalized patients in the oncological department
in some hospital. Each record in that database describes a patient by several “general” attributes
such as age, gender, address, profession, marital status etc., as well as “specific” attributes such
as the type of cancer that was diagnosed in that patient or the patient’s response to some new
medication.

Such databases are of interest to the general public, even though they hold information on
individuals, since they can be used for medical research in order to find interesting patterns by
means of statistical analysis and data mining. However, the hospital is committed to respect the
privacy of its patients and, consequently, it cannot release the database as is. The problem lies
with those attributes (columns) to which we referred above as “general”. Assume that Alice knows
that her neighbor Bob was hospitalized in the oncological department that provided the data for
the research. She may use her knowledge of Bob’s “general” attributes (which she may know either
since she knows Bob in person or because she traces that information in publicly available databases
such as the voter’s list) in order to uniquely trace Bob’s record in the database and then infer his
”specific” medical information. In other words, the table’s attributes that can be found in other
publicly available databases — known as the public attributes or quasi-identifiers — may be used by
an adversary in order to learn the value of the specific attributes — known as the private attributes
— for some of the individuals in the database. Hence, it is desired to reveal information in order
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to allow data mining, while respecting the privacy of the individuals that are represented in the
database. (In other words, we would like to allow learning information about the public but not
about the individuals of which that public consists.)

Back in 1977, Dalenius [Dal77] articulated a desideratum for database security, saying that
any information that may be extracted from a statistical database about an individual could also
be learnt without an access to that database. That notion of security is similar to the notion of
semantic security for cryptosystems, as defined by Goldwasser and Micali [GM84]. Alas, while
semantic security for cryptosystems may be achieved, Dalenius’ idealized goal may not be achieved
[Dwo06]. Hence, a more realistic goal of privacy is to limit the risk to one’s privacy as a result of
one’s participation in a statistical database.

Many approaches were suggested for playing this delicate game that requires finding the right
path between data hiding and data disclosure. Such approaches include query auditing [DN03,
KMN05, KPR03], output perturbation [BDMN05, DN03, DN04], secure multi-party computation
[AMP04, FNP04, GMW87, LP02, Yao86], and data sanitization [AA01, AS00, AST05, CDM+05,
EGS03].

1.1 k-Anonymization

One of the recent approaches, proposed by Samarati and Sweeney [Sam01, SS98, Swe02], is k-
anonymization. The main idea in this approach is to suppress or generalize some of the public data
in the database so that each of the records becomes indistinguishable from at least k−1 additional
records, when projected on the subset of public attributes. Consequently, the private data may be
linked to sets of individuals of size no less than k, whence the privacy of the individuals is protected
to some extent.

For example, assume that there are three public attributes — name, age, and address — and one
private attribute — disease. In order to achieve k-anonymity for some k > 1, one might suppress
the name attribute, replace the age with a range of ages, and replace the exact address with just
the zip code. It is clear that by such actions of replacing public database entries with more general
subsets of values that are consistent with the original values of those entries, one may always arrive
at a k-anonymized database for any given k ≤ n (where n is the number of records in the database).

The problem that we study here is the problem of k-anonymization with minimal loss of infor-
mation: Given a public database D, and acceptable generalization rules for each of its attributes,
find its ”nearest” k-anonymization; namely, find a k-anonymization of D that conceals a minimum
amount of information. Meyerson and Williams [MW04] introduced this problem and studied it
under the assumption that database entries may be either left intact or totally suppressed. In
that setting, the goal is to achieve k-anonymity while minimizing the number of suppressed entries.
They showed that the problem is NP-hard and devised two approximation algorithms for that prob-
lem: One that runs in time O(n2k) and achieves an approximation ratio of O(k ln k); and another
that has a fully polynomial running time (namely, it depends polynomially on both n and k) and
guarantees an approximation ratio of O(k lnn). Aggarwal et al. [AFK+05] extended the setting of
suppressions-only by allowing more general rules for generalizing database entries towards achiev-
ing k-anonymity. They proposed a way of penalizing each such action of generalizing a database
entry and showed that the problem of achieving k-anonymity in that setting with minimal penalty
is NP-hard. They then devised an approximation algorithm for that problem that guarantees an
approximation ratio of O(k).

2



1.2 Our contribution

In this study we extend the framework of k-anonymization to include any type of generalization
operators and define three measures of loss of information that are more general and more accurate
than the measure that was used in [AFK+05] (the measure that was used in [MW04] is a special case
of the one that was used in [AFK+05]). We call these measures, the entropy measure, the monotone
entropy measure, and the non-uniform entropy measure. We discuss those measures and show that
they serve the purposes of data mining better than the previous measures. We show that the
problem of k-anonymization with minimal loss of data (measured by any one of those measures)
is NP-hard. We then proceed to describe an approximation algorithm with an approximation
guarantee of O(ln k) — a significant improvement over the previous best result of O(k). The
algorithm applies to the entropy and monotone entropy measures, as well as the measures that were
used in [MW04] and [AFK+05]. We note that Meyerson and Williams [MW04] hypothesized that
k-anonymization cannot be approximated, in polynomial time, with an approximation factor that
is o(ln k). What enabled this significant improvement was our novel approach to this approximation
problem. The approximation algorithms in both [MW04] and [AFK+05] were based on the so-called
graph representation. In [AFK+05] it was shown that using the graph representation it is impossible
to achieve an approximation ratio that is better than Θ(k). We were able to offer the significantly
better O(ln k) approximation ratio by breaking out of the graph representation framework and
using a hypergraph approach instead.

1.3 Organization of the paper

We begin with preliminaries and introducing our notation in Section 2. In Section 3 we give a
precise definition of what is generalization, and we describe and illustrate several natural types
of generalization. In Section 4 we describe the measures of loss of information that were used
in [AFK+05, MW04] and their shortcomings (Section 4.1); we then propose three measures of
loss of information that are more general and more accurate than the previously used ones: the
entropy measure (Section 4.2), the monotone entropy measure (Section 4.3) and the non-uniform
entropy measure (Section 4.4). In Section 5 we define the problem of k-anonymization with minimal
loss of information and we prove that it is NP-hard with respect to all three measures of loss of
information. In Section 6 we present an algorithm that approximates optimal k-anonymity with
approximation ratio of O(ln k), for the entropy and monotone entropy measures. The running time
of that algorithm is O(n2k). We then proceed to describe an adaptation of the approximation
algorithm of [AFK+05] that achieves an O(k)-approximation ratio with respect to the entropy and
monotone entropy measures, in time that is polynomial in both n and k. Finally, Section 7 includes
a summary of our study and discussion of some open problems.

2 Preliminaries

The database holds information on individuals in some population U = {u1, . . . , un}. Each individ-
ual is described by a collection of r public attributes (also known as quasi-identifiers), A1, . . . , Ar,
and s private attributes, Z1, . . . , Zs. Each of the attributes consists of several possible values:

Aj = {aj,ℓ : 1 ≤ ℓ ≤ mj}, 1 ≤ j ≤ r ,

and
Zj = {zj,ℓ : 1 ≤ ℓ ≤ nj}, 1 ≤ j ≤ s .
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For example, if Aj is gender then Aj = {M,F}, while if it is the age of the individual, it is a
bounded nonnegative natural number. The public database holds all publicly available information
on the individuals in U ; it takes the form,

D = {R1, . . . , Rn} , where Ri ∈ A1 × ⋅ ⋅ ⋅ ×Ar , 1 ≤ i ≤ n . (1)

The corresponding private database holds the private information,

D′ = {S1, . . . , Sn} , where Si ∈ Z1 × ⋅ ⋅ ⋅ × Zs , 1 ≤ i ≤ n . (2)

The complete database is the concatenation of those two databases, D∥D′ = {R1∥S1, . . . , Rn∥Sn}.
We refer hereinafter to the tuples Ri and Si, 1 ≤ i ≤ n, as (public or private) records. The
j-th component of the record Ri (namely, the (i, j)-th entry in the database D) will be denoted
hereinafter by Ri(j).

It should be noted that the sets in (1) and (2) may be multi-sets, in the sense that they may
include repeated records. For example, if r = 3 and the three attributes are gender, age, and zip
code, there may be two distinct individuals that are described by the public record (M, 42, 91845)
(namely, two 42-year-old males who reside in the area code 91845). The same observation holds
for all sets of records that appear hereinafter — they may include repetitions.

3 Generalization

The basic technique for obtaining k-anonymization is by means of generalization. By generalization
we refer to the act of replacing the values that appear in the database with subsets of values, so
that entry Ri(j), 1 ≤ i ≤ n, 1 ≤ j ≤ r, which is an element of Aj , is replaced by a subset of Aj

that includes that element.

Definition 3.1 Let Aj, 1 ≤ j ≤ r, be finite sets and let Aj ⊆ P(Aj) be a collection of subsets
of Aj. A mapping g : A1 × ⋅ ⋅ ⋅ × Ar → A1 × ⋅ ⋅ ⋅ × Ar is called a generalization if for every
(b1, . . . , br) ∈ A1 × ⋅ ⋅ ⋅ ×Ar and (B1, . . . , Br) = g(b1, . . . , br), it holds that bj ∈ Bj, 1 ≤ j ≤ r.

We illustrate the concept of generalization by several examples of natural generalization oper-
ators.

The trivial generalization. Assume that for all 1 ≤ j ≤ r the collection of subsets Aj includes
all singleton subsets {aj,ℓ}, 1 ≤ ℓ ≤ mj . Then the generalization

g(b1, . . . , br) = ({b1}, . . . , {br})

is the trivial generalization that leaves all entries unchanged. It is always natural to assume that
the collection of subsets of each of the attributes includes all singleton subsets because whenever
possible we prefer to leave the database entries unchanged. We formulate this assumption as follows:

Aj ⊆ Aj , 1 ≤ j ≤ r . (3)

Note the freedom of notation that we take here and that we adopt hereinafter: The set on the right
hand side of (3) is a set of sets, while the set on the left hand side is a set of elements. However, we
always identify the element aj,ℓ with the set {aj,ℓ}. Hence, the notation Aj on the left hand side of
(3) means Aj =

{{aj,1}, . . . , {aj,mj}
}
(as opposed to the original meaning Aj =

{
aj,1, . . . , aj,mj

}
).
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Generalization by suppression. Assume that Aj = Aj ∪ {Aj} for all 1 ≤ j ≤ r and that g
either leaves entries unchanged (no generalization) or replaces them by the entire set of attribute
values (total generalization),

g(b1, . . . , br) = (b1, . . . , br), where bj ∈ {bj , Aj}, 1 ≤ j ≤ r .

In that case we refer to g as generalization by suppression. Letting * denote an element outside∪
1≤j≤r Aj , it is more convenient to think of g as follows,

g(b1, . . . , br) = (b1, . . . , br), where bj ∈ {bj , ∗} .

Generalization by hierarchical clustering trees. In [AFK+05], Aggarwal et al. considered a
setting in which for every attribute Aj there is a corresponding balanced tree, T (Aj), that describes
a hierarchical clustering of Aj . Each node of T (Aj) represents a subset of Aj , the root of the tree is
the entire set Aj , the descendants of each node represent a partition of the subset that corresponds
to the ancestor node, and the leaves correspond to the singleton subsets. Given such a balanced
tree, they considered generalization operators that may replace an entry Ri(j) with any of the
ancestors of Ri(j) in T (Aj). Generalization by suppression is a special case of generalization by
clustering trees where all trees are of height 2.

Unrestricted generalization. The case where Aj = P(Aj) is the case of unrestricted gener-
alization. Here, each entry Ri(j) may be replaced by any of the subsets of Aj that includes it.
Generalizations where Aj ⊊ P(Aj) will be referred to hereinafter as restricted generalizations.

Some of our results require that the collection of subsets Aj , 1 ≤ j ≤ r, satisfy the following
natural property.

Definition 3.2 Given an attribute A = {a1, . . . , am}, a corresponding collection of subsets A is
called proper if (i) it includes all singleton subsets {ai}, 1 ≤ i ≤ m, (ii) it includes the entire set
A, and (iii) it is a laminar collection in the sense that B1 ∩B2 ∈ {∅, B1, B2} for all B1, B2 ∈ A.

Lemma 3.3 Let A be an attribute and A be a corresponding collection of subsets. Then A is proper
if and only if it is consistent with the (possibly unbalanced) hierarchical clustering tree framework.

The proof of Lemma 3.3 is given in the appendix. Note that the framework of proper collections
of subsets extends the hierarchical clustering tree framework, as it allows unbalanced trees.

Example 3.4
Consider the age attribute, A, and let us assume that A = {1, . . . , 120}. In unrestricted generaliza-
tion we may replace an entry that has the value, say, 27 by any subset of age values that includes 27,
say, {18, 27, 41, 55}. In generalization by suppression we may either leave that entry unchanged or
replace it with an undefined entry ’∗’ that stands for the set of all possible ages. Assume next that
we arrange the age values in a 3-level balanced tree where the root stands for A = {1, . . . , 120}, it
has 12 descendants that stand for the subsets {10(i−1)+1, . . . , 10i}, 1 ≤ i ≤ 12, and each of those
nodes has 10 descendants that are all singleton leaves. Then in that model we may leave the entry
27 unchanged, or replace it by the range of ages {21, . . . , 30}, or totally generalize it by replacing
it with the symbol ’∗’. Finally, we may consider other models of restricted generalization in this
case: for example, a generalization by intervals allows only subsets of the form {i : s ≤ i ≤ t}. Such
generalization by intervals, like the unrestricted generalization, is non-proper. □

So far we spoke of generalizations of records. We now turn to speak of generalizations of an
entire database.
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Definition 3.5 Let D = {R1, . . . , Rn} be a database having public attributes A1, . . . , Ar, let A1, . . . , Ar

be corresponding collections of subsets, and let gi : A1 × ⋅ ⋅ ⋅ × Ar → A1 × ⋅ ⋅ ⋅ × Ar be corre-
sponding generalization operators. Denoting Ri := gi(Ri), 1 ≤ i ≤ n, we refer to the database
g(D) := {R1, . . . , Rn} as a generalization of D.

Hereinafter, we let Di and g(D)i denote the ith records in D and g(D) respectively; namely,
Di = Ri and g(D)i = Ri.

Recall that D is a multiset, meaning that it may have repeated records. If all records of D are
distinct then we may apply to all records in the database the same mapping g : A1 × ⋅ ⋅ ⋅ × Ar →
A1 × ⋅ ⋅ ⋅ ×Ar. However, if D includes repeated records, say Ri = Rj , for 1 ≤ i < j ≤ n, the above
definition allows generalizations where Ri ∕= Rj .

We conclude this section with the following definitions:

Definition 3.6 Define a relation ⊑ on A1 × ⋅ ⋅ ⋅ × Ar as follows: If R,R′ ∈ A1 × ⋅ ⋅ ⋅ × Ar then
R ⊑ R′ if and only if R(j) ⊆ R′(j) for all 1 ≤ j ≤ r.

It is easy to see that ⊑ defines a partial order on A1 × ⋅ ⋅ ⋅ ×Ar. We may use this partial order
to define a partial order on the set of all generalizations of a given database.

Definition 3.7 Let D be a database and let g(D) and g′(D) be two generalization of D. Then
g(D) ⊑ g′(D) if g(D)i ⊑ g′(D)i for all 1 ≤ i ≤ n.

4 Measures of loss of information

4.1 Previously used measures

In previous studies of k-anonymity, the quality of a k-anonymization of a given database was mea-
sured by the amount of information that was lost due to generalization. Meyerson andWilliams [MW04]
concentrated on the case of generalization by suppression. Their measure of loss of information
was the number of generalized entries (namely, *s) in the k-anonymized database. Aggarwal et
al. [AFK+05], who considered generalizations by hierarchical clustering trees, offered the following
measure (which we call the tree measure): Assume that the values of an attribute Aj are arranged
in a balanced tree T (Aj), as described above, having ℓj + 1 levels: Lj,0, ⋅ ⋅ ⋅ , Lj,ℓj (the level Lj,0

consists of the leaves while Lj,ℓj is the level of the root). Then the cost of replacing the original
entry Ri(j) with a subset of Aj that appears in the tree T (Aj) in level Lj,r is r/ℓj . The overall
cost of the entire k-anonymization is the sum of costs in all entries. Note that the tree measure is
a generalization of the measure proposed by Meyerson and Williams (since in the case of general-
ization by suppression all entries are either left unchanged, thus incurring a zero cost, or replaced
by the root of the corresponding tree, thus incurring a maximal cost of 1).

We find the tree measure quite arbitrary. For example, if one attribute is gender and another
attribute is age, the loss of information by concealing the gender is much less than that incurred
by concealing the age. Also, the levels of the trees T (Aj) need not be equally-spaced in terms of
information loss.

4.2 The entropy measure

Following [DW99] and [WD01], we suggest to use the standard measure of information, namely
entropy, in order to assess more accurately the amount of information that is lost by anonymization.
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The public database D = {R1, . . . , Rn} induces a probability distribution for each of the public
attributes. Let Xj , 1 ≤ j ≤ r, denote hereinafter the value of the attribute Aj in a randomly
selected record from D. Then

Pr(Xj = a) =
#{1 ≤ i ≤ n : Ri(j) = a}

n
.

The entropy of Xj is a measure of the amount of information that is delivered by revealing the
value of a random sample of Xj (or, equivalently, the amount of uncertainty regarding the value of
the random sample before its value is revealed). It is defined as

H(Xj) = −
∑

a∈Aj

Pr(Xj = a) log Pr(Xj = a) ,

where hereinafter log = log2. Let Bj be a subset of Aj . Then the conditional entropy H(Xj ∣Bj) is
defined as

H(Xj ∣Bj) = −
∑

b∈Bj

Pr(Xj = b∣Xj ∈ Bj) log Pr(Xj = b∣Xj ∈ Bj) ,

where

Pr(Xj = b∣Xj ∈ Bj) =
#{1 ≤ i ≤ n : Ri(j) = b}
#{1 ≤ i ≤ n : Ri(j) ∈ Bj} , b ∈ Bj .

Note that if Bj = Aj then H(Xj ∣Bj) = H(Xj) while in the other extreme case where Bj consists
of one element, we have zero uncertainty, H(Xj ∣Bj) = 0. This allows us to define the following
cost function of a generalization operator:

Definition 4.1 Let D = {R1, . . . , Rn} be a database having public attributes A1, . . . , Ar, and let
Xj be the random variable that equals the value of the j-th attribute Aj, 1 ≤ j ≤ r, in a randomly
selected record from D. Then if g(D) = {R1, . . . , Rn} is a generalization of D,

Πe(D, g(D)) =
n∑

i=1

r∑

j=1

H(Xj ∣Ri(j)) (4)

is the entropy measure of the loss of information caused by generalizing D into g(D).

4.2.1 Discussion

Assume that the entry Ri(j) is left unchanged under the generalization g. Then its contribution to
the sum in (4) is H(Xj ∣Ri(j)) = 0, just like in the tree measure. However, if it is suppressed, then
its contribution to the sum in (4) is H(Xj), as opposed to the tree measure where it contributes
1, regardless of the properties of that attribute. Therefore, the entropy measure does distinguish
between ”simple” attributes (such as gender) and attributes that convey more information (like
age or address). In addition, in intermediate cases where Ri(j) is generalized to a subset of values
Ri(j) ⊂ Aj , the contribution to the measure of loss of information in (4) is the exact conditional
entropy, and not the somewhat arbitrary fractional value in the definition of the tree measure.

To illustrate the significance of these two features of the entropy measure to data mining, we
examine the following two examples.

Example 4.2
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Consider the following public database D that consists of four individuals and two attributes —
gender and zip code:

D =

⎡
⎢⎢⎣

M 41278
M 98705
F 41278
F 98705

⎤
⎥⎥⎦ .

The following two generalized tables are 2-anonymizations of D:

g1(D) =

⎡
⎢⎢⎣

∗ 41278
∗ 98705
∗ 41278
∗ 98705

⎤
⎥⎥⎦ , g2(D) =

⎡
⎢⎢⎣

M ∗
M ∗
F ∗
F ∗

⎤
⎥⎥⎦ .

The tree measure will consider the two generalizations as equally distant from D in terms of
information loss. The entropy measure, on the other hand, will favor g1(D) since the entropy of
the gender is smaller than that of the zip code. The generalized table g1(D) is more likely to serve
better the purposes of data mining because it conceals the less informative attribute and leaves out
the attribute that may be of better use for extracting interesting patterns and association rules. □

We would like to stress that while the entropy measure indeed offers a more accurate mea-
surement of the public information that is lost due to anonymization, using it does not guarantee
that the resulting table has better utility for data mining. For instance, if in the above example
the private information is a disease that has correlation with the gender but it has no correlation
with geographical location, we should prefer always the generalization of entries from the zipcode
column over that of entries from the gender column. Almost all studies thus far, including the
present one, concentrate on minimizing the public information that is lost due to anonymization,
rather than minimizing the amount of relevant public information that is lost. Namely, a better
anonymization stratgey would be one that already performs some data mining in order to reveal the
dependencies between the public and private attributes and, consequently, make better decisions
regarding which public attributes are less correlated with the private attribute. Such a strategy
may yield anonymized tables that retain the maximal amount of relevant public information. A
recent study [GT08], that was triggered and motivated by the present one, offers a measure of
information that extends the ones presented herein in order to serve the above outlined goal.

Example 4.3

Consider a database in which one of the attributes is profession, and among the values that it
includes there are: kindergarten teacher, school teacher, university lecturer; and electrical engineer,
mechanical engineer, and civil engineer. Assume that in the first level of generalization, the first
three professions are grouped together under education while the other three are grouped together
under engineering. Finally, assume that the table has similar percentage of kindergarten teachers,
school teachers and university lecturers, but, among the engineers, most of them are electrical
engineers, while there are only few mechanical and civil engineers.

The tree measure will penalize a generalized entry with the value education in the same way
it penalizes a generalized entry with the value engineering. However, the entropy measure will
penalize the first generalization more than it does the second one, because the conditional entropy
of education is roughly log 3 while that of engineering is close to zero. This distinction serves the
purposes of data mining, since any association rule that involves the generalized value engineering
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may be replaced with an association rule with the more precise value electrical engineering (barring
a slight degradation of accuracy), while no similar refinement can be made with association rules
that involve the generalized value education. Hence, the entropy measure gives an advantage to
generalizations that allow more efficient data mining. □

Having said that, we would like to note that while the entropy measure is significantly more
accurate than the tree measure, and more general (as it applies to all generalizations and not
just to generalizations that comply with the hierarchical clustering tree framework), it is still not
entirely accurate. This measure, just like the tree measure, defines the information loss per entry
and then adds up the information that was lost over all entries of the database. In other words,
both measures assume that the columns (attributes) of the database are independent, and so are
the rows (individuals).

However, the columns of the database need not be independent. For example, if one attribute
is location and another is age, it is possible that some locations (say, around central university
campuses) will be associated with populations that are younger than elsewhere. In this study we
concentrate on the simpler model of independent attributes and leave it for a further research to
extend the framework that we lay here to the more general model in which the dependence between
attributes is also taken into account.

As for the rows of the database, they are not independent either. There exists dependence
between the rows that stems from statistical or social reasons; for example, if one individual in
the database is married to another, then they probably have the same location and a similar
age. In addition, there exists another type of dependence between the rows that stems from a
combinatorial reason, as we proceed to explain. Let D be the original public database, g(D) be its
k-anonymization, and D′ be the corresponding private database. The publicly available database is
g(D)∥D′. The records of the non-anonymized database D are also publicly known (through other
sources), but they are not ordered. Some orderings of the records in D are consistent with the
records of g(D), but some are not. Therefore, an adversary, as well as a data-miner, may analyze
all possible orderings of D that agree with g(D) and deduce a-posteriori probabilities for the exact
values of the generalized entries that differ from the a-priori probabilities that are implied by D
alone.

Example 4.4

Consider the public database D that consists of only one attribute A1 and four individuals, and its
2-anonymization g(D):

D =

⎡
⎢⎢⎣

1
2
3
3

⎤
⎥⎥⎦ , g(D) =

⎡
⎢⎢⎣

∗
∗
3
3

⎤
⎥⎥⎦ .

The a-priori probabilities of the corresponding random variable X1 in this example are

p1 = Pr[X1 = 1] =
1

4
, p2 = Pr[X1 = 2] =

1

4
, p3 = Pr[X1 = 3] =

1

2
.

The entropy of such a random variable is H(X1) = 1.5. Hence, according to our measure,

Πe(D, g(D)) = 1.5 + 1.5 + 0 + 0 = 3 .

However, by comparing g(D) to D we can deduce that the suppressed entries should be either 1
or 2, with equal probabilities. Hence, the actual amount of information lost in this case is just
1 + 1 + 0 + 0 = 2. □
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Example 4.4 demonstrates that the entropy measure may overestimate the actual amount of
information that is lost by anonymization. It may also underestimate that amount, as exemplified
next.

Example 4.5

Consider the following public database D and its 3-anonymization g(D):

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2
3
3
3
3
3
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, g(D) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗
∗
∗
3
3
3
3
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In this case the entropy of the random variable X1 that corresponds to the attribute A1 is H(X1) =
2
8 log 8 +

6
8 log

8
6 ≈ 1.061, so that Πe(D, g(D)) = 3 ⋅H(X1) ≈ 3.183. However, by comparing g(D)

with D one deduces that the suppressed entries are 1, 2, or 3 with probability 1
3 each, whence the

actual amount of information loss is 3 ⋅ log 3 ≈ 4.755. □

Having said that, it should be realized that the above analysis that was simple and straight-
forward in the given toy examples, can be extremely intricate for large databases with many rows,
many columns, more complicated attributes and more general generalization operators. In fact, it
is not clear to us whether it is possible to compute in polynomial time the a-posteriori probabil-
ities and the corresponding entropy, due to the exponential number of orderings of D that agree
with a given generalization g(D). Hence, while the proposed entropy measure is not accurate from
information-theoretic point of view, it seems to be an appropriate measure from computational
point of view as we cannot rely on information that requires (possibly) super-polynomial time to
reveal.

4.2.2 The non-monotonicity of the entropy measure

A natural property that one might expect from any measure of loss of information is monotonicity:

Definition 4.6 Let D be a database, let g(D) and g′(D) be two generalizations of D and let Π
be any measure of loss of information. Then Π is called monotone if Π(D, g(D)) ≤ Π(D, g′(D))
whenever g(D) ⊑ g′(D).

The tree measure is clearly monotone. The entropy measure Πe, on the other hand, is not
always monotone, as we show in the following example.

Example 4.7

Consider a database with one (r = 1) attribute that may get the values {1, 2, 3, 4} with probabilities
{1 − 3", ", ", "} respectively, where " ≪ 1. The entropy of that attribute is ℎ(1 − 3", ", ", ") ≈ 0,
where hereinafter ℎ(p1, . . . , pt) := −∑t

i=1 pi log pi denotes the entropy of a discrete t-valued random
variable with probabilities {p1, . . . , pt}.

Next, assume that the values of this attribute are arranged in a tree with three levels where
the root is the entire set of values, the descendants in the next level are the subsets {1, 2} and
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{3, 4}, and the third level consists of the four singleton subsets. Entries with the value 4 may be
generalized to {3, 4} or be suppressed. The first generalization, 4 7→ {3, 4}, incurs a cost of 1 bit,
since given that the unknown attribute value is in the subset {3, 4}, it can be either of the two
values with equal probabilities. However, if we suppress such an entry, the resulting cost is the
entropy ℎ(1−3", ", ", ") ≈ 0. Namely, the entropy measure is not monotone in this case as it favors
the total suppression of such entries over the partial generalizations to {3, 4}. □

The question is which measure serves our goal better here — the monotone tree measure or
the non-monotone entropy measure. From the data-mining point of view monotonicity is essential.
Namely, we should always prefer to generalize the entries of the database to as small sets as possible.
On the other hand, from privacy point of view the entropy measure seems more appropriate, since
the generalization 4 → {3, 4} in the above example reveals critical information and hence it should
be penalized more than suppressing 4 → ∗. However, as explained in the introduction, we address
the privacy concerns by respecting k-anonymity.

We believe that non-monotonicity is not a critical argument against the entropy measure for two
reasons. The first reason is that such anomalies are rare. Namely, given a random variable X that
takes values in a finite set A, and given two subsets B1 ⊂ B2 ⊆ A, usually H(X∣B1) ≤ H(X∣B2).
To verify our claim, we conducted the following test: we sampled integers to represent the sizes of
the two subsets, n1 = ∣B1∣ and n2 = ∣B2∣ (we always took 2n1 ≤ n2 ≤ 10n1). We then sampled
uniformly at random the vector of probabilities for X∣B2. Finally, we computed H(X∣B1) and
H(X∣B2). The desired inequality H(X∣B1) ≤ H(X∣B2) was violated only in a fraction of less than
10−5 of the total number of tests that we ran.

The second reason why the non-monotonicity of the entropy measure is not grave, is that it
may always be rectified. More specifically, given any collection of subsets of a given attribute, A,
it is always possible to find a partial collection, Â ⊆ A, so that the entropy measure is monotone
on Â. Assume, for example, that A is proper. Then, by Lemma 3.3, it may be represented by
a hierarchical clustering tree. Then if the entropy measure is not monotone with respect to that
collection (as in the example above), the following algorithm may be used to modify it into a
(coarser) collection of subsets that does respect monotonicity.

1. Look for an edge (B,B′) in the tree, B ⊃ B′, where the conditional entropy of the attribute
A with respect to B is smaller than its conditional entropy with respect to B′.

2. Unify the node B′ with one of its siblings. If B′ has only one sibling B′′, remove those two
nodes from the tree and connect the sons of both B′ and B′′ directly to B.

3. Repeat until the tree has no more edges that violate monotonicity.

This algorithm clearly terminates with a tree that respects monotonicity, since if we keep uni-
fying nodes in the tree in the manner described above, we will end up with the trivial tree with two
levels that corresponds to generalization by suppression, and that tree obviously respects mono-
tonicity.

4.3 The monotone entropy measure

Here we introduce the monotone entropy measure. It is a simple variant of the entropy measure
that respects monotonicity.
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Definition 4.8 Let D = {R1, . . . , Rn} be a database having public attributes A1, . . . , Ar, and let
Xj be the random variable that equals the value of the j-th attribute Aj, 1 ≤ j ≤ r, in a randomly
selected record from D. Then if g(D) = {R1, . . . , Rn} is a generalization of D,

Πme(D, g(D)) =
n∑

i=1

r∑

j=1

Pr(Ri(j)) ⋅H(Xj ∣Ri(j)) (5)

is the monotone entropy measure of the loss of information caused by generalizing D into g(D).

Comparing (5) to (4), we see that each of the conditional entropies is multiplied by the cor-
responding probability. The monotone entropy measure coincides with the entropy measure when
considering generalization by suppressions only. However, when the collections of subsets Aj in-
clude also intermediate subsets, the entropy that is associated with such a subset is multiplied by
the probability of the subset. Since this multiplier increases as the subset includes more elements,
the monotone entropy measure penalizes generalizations more than the entropy measure does.

Example 4.9
Consider an attribute X that takes values in A = {a1, . . . , am} with a uniform distribution, i.e.,
Pr(X = aj) = 1/m for all 1 ≤ j ≤ m. Assume that we replace an exact value of that attribute
with a subset of values, B ⊆ A, of size b = ∣B∣. Then the entropy measure will penalize such a
generalization by log b, while the monotone entropy measure will penalize it by b

m ⋅ log b.
Lemma 4.10 The monotone entropy measure is monotone.

Proof. Let X be a random variable that takes values in A = {a1, . . . , am} and let B = {a1, . . . , ab}
be a nonempty subset of A. (For convenience and without loss of generality, we assume that
B consists of the first b elements of A.) Assume that Pr(X = aj) = pj , 1 ≤ j ≤ m, and let

pA = Pr(A) =
∑m

j=1 pj and pB = Pr(B) =
∑b

j=1 pj . Then

Pr(B) ⋅H(X∣B) = pB ⋅
b∑

j=1

pj
pB

log
pB
pj

= pB log pB +
b∑

j=1

pj log
1

pj
.

Similarly,

Pr(A) ⋅H(X∣A) = pA log pA +
m∑

j=1

pj log
1

pj
.

Since pB ≤ pA, the last two equalities imply that Pr(B) ⋅H(X∣B) ≤ Pr(A) ⋅H(X∣A). This proves
that Πme is monotone. □

4.4 The non-uniform entropy measure

Both the entropy and the monotone entropy measures are uniform for all records in the same
cluster. Consider, for instance, the setting in Example 4.7. If we replace the two attribute values
1 and 2 with the generalized subset {1, 2} then the entropy measure for the information loss will
be the same in all records that have one of those two values. However, the value 1 is much more
frequent than the value 2. Hence, a more careful measure of information loss would indicate that
the amount of information lost in the rare records with the value 2 is much larger than that in the
more frequent records with the value 1.

To this end we define the following alternative measure, to which we refer as the non-uniform
entropy measure.
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Generalization Entropy (Πe) Monotone entropy (Πme) Non-uniform entropy (Πne)

1 7→ {1, 2} ℎ
(
1−3"
1−2" ,

"
1−2"

)
(1− 2")ℎ

(
1−3"
1−2" ,

"
1−2"

)
− log 1−3"

1−2"

2 7→ {1, 2} ℎ
(
1−3"
1−2" ,

"
1−2"

)
(1− 2")ℎ

(
1−3"
1−2" ,

"
1−2"

)
− log "

1−2"

3 7→ {3, 4} ℎ
(
1
2 ,

1
2

)
= 1 2" ⋅ ℎ (12 , 12

)
= 2" − log 1

2 = 1
4 7→ {3, 4} ℎ

(
1
2 ,

1
2

)
= 1 2" ⋅ ℎ (12 , 12

)
= 2" − log 1

2 = 1

Table 1: Partial generalization.

Generalization Entropy (Πe) Monotone entropy (Πme) Non-uniform entropy (Πne)

1 7→ ∗ ℎ (1− 3", ", ", ") ℎ (1− 3", ", ", ") − log(1− 3")
2 7→ ∗ ℎ (1− 3", ", ", ") ℎ (1− 3", ", ", ") log "−1

3 7→ ∗ ℎ (1− 3", ", ", ") ℎ (1− 3", ", ", ") log "−1

4 7→ ∗ ℎ (1− 3", ", ", ") ℎ (1− 3", ", ", ") log "−1

Table 2: Generalization by suppression.

Definition 4.11 Let D = {R1, . . . , Rn} be a database having public attributes Aj, 1 ≤ j ≤ r, and
let g(D) = {R1, . . . , Rn} be a generalization of D. Then

Πne(D, g(D)) =
n∑

i=1

r∑

j=1

− log Pr(Ri(j)∣Ri(j)) (6)

is the non-uniform entropy measure of the loss of information caused by generalizing D into g(D).

Lemma 4.12 The non-uniform entropy measure is monotone.

Proof. Let X be a random variable that takes values in A and let a ∈ A1 ⊆ A2 ⊆ A. Then
Pr(X = a∣X ∈ A1) ≥ Pr(X = a∣X ∈ A2). The monotonicity of Πne immediately follows. □

Let us exemplify the non-uniform entropy measure and compare it to the previous measures on
Example 4.7. In Table 1 we present the three measures of loss of information per record in case
of partial generalization, while in Table 2 we present the corresponding data for the case of total
generalization (namely, suppression) of the same database.

By comparing the columns for Πme and Πne in both tables we see that the values in Table 1
are less than or equal to those in Table 2, thus demonstrating the monotonicity of the monotone
and non-uniform entropy measures. By comparing the first two rows in both tables we see that the
non-uniform measure treats differently the values 1 and 2 and penalizes more the generalization of
rare values.

While Tables 1 and 2 presented the costs per record, the overall cost is computed as the sum
of costs over all records, see (4) and (6). Assume that we generalized all entries in the database by
partial generalization (Table 1). Since the database holds (1−3")n records with the value 1 and "n
records with each of the values 2, 3 and 4, then the overall entropy measure of loss of information is

Πe(D, g(D)) = n ⋅
[
(1− 2")ℎ

(
1− 3"

1− 2"
,

"

1− 2"

)
+ 2"

]
, (7)
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while

Πne(D, g(D)) = n ⋅
[
(1− 3") log

1− 2"

1− 3"
+ " log

1− 2"

"
+ 2"

]
. (8)

As can be easily seen, the two values in (7) and (8) coincide. The same coincidence occurs also
in the case of generalization by suppression. This is no coincidence.

Lemma 4.13 Let D be a database and let g(D) be a generalization of D where for all 1 ≤ i <
i′ ≤ n and for all 1 ≤ j ≤ r, either g(D)i(j) = g(D)i′(j) or g(D)i(j) ∩ g(D)i′(j) = ∅. Then
Πe(D, g(D)) = Πne(D, g(D)).

The proof of Lemma 4.13 is given in the appendix. We note that the condition in Lemma 4.13 is
violated when one of the columns in the generalized database includes intersecting entries. This
is the case, for example, with generalization by suppression, when some entries in a given column
were suppressed while some others were not. In such cases, the two measures Πe and Πne might
differ.

5 k-anonymization with minimal loss of data

We are now ready to define the concepts of k-anonymization and the corresponding problem of
k-anonymization with minimal loss of information.

Definition 5.1 A k-anonymization of a database D = {R1, . . . , Rn} is a generalization g(D) =
{R1, . . . , Rn} where for all 1 ≤ i ≤ n, there exist indices 1 ≤ i1 < i2 < ⋅ ⋅ ⋅ < ik−1 ≤ n, all of which
are different from i, such that Ri = Ri1 = ⋅ ⋅ ⋅ = Rik−1

.

k-anonymization: Let D = {R1, . . . , Rn} be a database having public attributes Aj , 1 ≤ j ≤ r.
Given collections of attribute values, Aj ⊆ P(Aj), 1 ≤ j ≤ r, and a measure of information loss Π,
find a k-anonymization g(D) = {R1, . . . , Rn}, where Ri ∈ A1 × ⋅ ⋅ ⋅ ×Ar, 1 ≤ i ≤ n, that minimizes
Π(D, g(D)).

The following theorem and its proof (that is postponed to the appendix) are an adaptation
of [MW04, Theorem 3.1]. We show that the problem of k-anonymization with minimal loss of
information is NP-hard with respect to each of the three proposed entropy measures.

Theorem 5.2 The problem of k-anonymization with generalization by suppression, where the
measure of loss of information is the entropy measure (4), Π = Πe, the monotone entropy measure
(5), Π = Πme, or the non-uniform entropy measure (6), Π = Πne, is NP-hard for k ≥ 3, if
∣Aj ∣ ≥ ⌈(n− k)/(k − 1)⌉+ 1 for all attributes A1, . . . , Ar.

6 Approximating optimal k-anonymity

In this section we describe two approximation algorithms for the problem of k-anonymization with
minimal loss of information. We concentrate on approximating optimal k-anonymity with respect
to the entropy and monotone entropy measures. We also assume here that all collections of subsets
are proper. The first algorithm, described in Sections 6.1-6.3, achieves an approximation ratio of
O(ln k) — a significant improvement over the algorithm due to Aggarwal et al. [AFK+05] that offers
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an approximation ratio of O(k). In Section 6.1 we define the key notion of the generalization cost
of a set of records and compare it to the related notion of the diameter of such sets that played an
important role in the approximation algorithm of [MW04]. In Section 6.2 we explore the relations
between k-anonymizations, clusterings and covers of a given database D. Using these relations,
we describe in Section 6.3 an approximation algorithm for optimal k-anonymization that uses an
approximation algorithm for the problem of finding a minimum-weight cover. The algorithm of
Section 6.3 runs in time O(n2k). In Section 6.4 we discuss another approximation algorithm that
is fully polynomial. We show that the O(k)-approximation algorithm of [AFK+05] that runs in
time O(kn2) may be used also for approximating optimal k-anonymity when using the entropy and
monotone entropy measures. The question of the existence of a fully polynomial approximation
algorithm with a logarithmic approximation ratio remains open. It also remains open to find an
approximation algorithm, fully polynomial or not, for the non-uniform entropy measure.

6.1 The generalization cost of subsets

Any k-anonymization ofD defines a clustering (namely, a partition) ofD where each cluster consists
of all records that were replaced by the same generalized record. In order to lose a minimal amount
of information, all records in the same cluster are replaced with the minimal generalized record
that generalizes all of them. To that end we define the closure of a set of records1.

Definition 6.1 Let A1, . . . , Ar be attributes with corresponding collections of subsets A1, . . . Ar that
are all proper. Then given M ⊆ A1 × ⋅ ⋅ ⋅ ×Ar, its closure is defined as

M = min
⊑

{
C ∈ A1 × ⋅ ⋅ ⋅ ×Ar : R ⊑ C for all R ∈ M

}
.

Definition 6.2 Let D = {R1, . . . , Rn} be a database with attributes A1, . . . , Ar, having proper
collections of subsets A1, . . . Ar. Let Xj be the value of the attribute Aj in a randomly selected
record from D. Then given a subset of records, M ⊆ D, its generalization cost by the entropy
measure is,

d(M) = de(M) =
r∑

j=1

H(Xj ∣M j) , (9)

while its generalization cost by the monotone entropy measure is,

d(M) = dme(M) =
r∑

j=1

Pr(M j) ⋅H(Xj ∣M j) . (10)

The generalization cost of M is therefore the amount of information that we lose for each record
R ∈ M if we replace it by the minimal generalized record M .

We noted earlier that the entropy measure is not necessarily monotone in the sense of Defini-
tion 4.6. Hence, it is possible that for a given set M there exists a record C ∈ A1 × ⋅ ⋅ ⋅ × Ar that
dominates the closure of M , i.e., M ⊑ C, but

∑r
j=1H(Xj ∣M j) ≥ ∑r

j=1H(Xj ∣Cj). Namely, for
such a set M it is better to replace all records in M with the generalized record C and not with
M . As noted earlier, this problem rarely occurs, and we may always avoid it by narrowing down
the collections Aj , 1 ≤ j ≤ r, until the entropy measure becomes monotone with respect to them.
For the sake of simplicity, we assume monotonicity hereinafter. Namely,

M ⊆ M ′ ⊆ A1 × ⋅ ⋅ ⋅ ×Ar implies that d(M) ≤ d(M ′) . (11)

1In our discussion, a set actually means a multiset; namely, it may include repeated elements.
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If we use the generalization cost by the monotone entropy measure, d(M) = dme(M), then (11)
always holds.

The notion of the generalization cost of a set of records is related to the notion of the diameter
of such a set, as defined in [MW04]. The diameter of a set of records M ⊆ A1×⋅ ⋅ ⋅×Ar was defined
as

diam(M) = max
R,R′∈M

dist(R,R′), where dist(R,R′) = ∣{1 ≤ j ≤ r : R(j) ∕= R′(j)}∣ . (12)

In other words, if the two records R and R′ were to be generalized by means of suppression,
dist(R,R′) equals the minimal number of attributes that would be suppressed in each of the two
records in order to make them identical.

Our notions of generalization cost, (9) and (10), and the notion of the diameter, (12), are
functions that associate a size to a given set of records. Our notions, though, of generalization cost,
improve that of the diameter as follows:

1. The generalization costs, (9) and (10), generalize the definition of the diameter, (12), in the
sense that they apply to any type of generalization (the definition of the diameter is restricted
to generalization by suppression).

2. The notions of the generalization cost use the more accurate entropy and monotone entropy
measures (the definition of the diameter only counts the number of suppressed entries).

3. Most importantly, while the size of a set of records that is defined in (12) is a diameter
(namely, it is based on pairwise distances), the size that is defined in (9) and (10) is a volume.
All three notions offer measures for the amount of information that is lost if the entire set of
records, M , is to be anonymized in the same way. But while the diameter does this only by
looking at pairs of records in M , the generalization costs do this by looking simultaneously at
all records in M and computing the information loss that their closure entails. This simple
difference turns out to be very important, as we show below.

Before moving on, we prove the following basic lemma that will be needed for our later analysis.

Lemma 6.3 Assume that all collections of subsets, Aj, 1 ≤ j ≤ r, are proper. Then the general-
ization costs d(⋅), (9) and (10), are sub-additive in the sense that for all S, T ⊆ A1 × ⋅ ⋅ ⋅ ×Ar,

S ∩ T ∕= ∅ implies that d(S ∪ T ) ≤ d(S) + d(T ) . (13)

Proof. Denote U = S ∪ T and let

Sj = {s(j) : s ∈ S}, Tj = {t(j) : t ∈ T}, Uj = {u(j) : u ∈ U}
denote the set of values of the j-th attribute, 1 ≤ j ≤ r, that appear in S, T , and U , respectively.
Let Sj , T j and U j be the minimal sets in Aj that include Sj , Tj and Uj , respectively. Since
S ∩ T ∕= ∅, we conclude that Sj ∩ Tj ∕= ∅. Hence Sj ∩ T j ∕= ∅. But since Aj is proper, we have that
Sj ⊆ T j or T j ⊆ Sj . Therefore, U j = Sj or U j = T j . We conclude that

H(Xj ∣U j) ≤ H(Xj ∣Sj) +H(Xj ∣T j) , (14)

and
Pr(U j) ⋅H(Xj ∣U j) ≤ Pr(Sj) ⋅H(Xj ∣Sj) + Pr(T j) ⋅H(Xj ∣T j). (15)
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Summing (14) for all 1 ≤ j ≤ r we arrive at (13) for d(⋅) = de. Summing (15) for all 1 ≤ j ≤ r we
arrive at (13) for d(⋅) = dme. □

Lemma 6.3 does not necessarily hold for generalizations that are not proper. As a simple
example, consider the case of one attribute (r = 1), where A1 = A = {1, 2, 3}, and A = P(A)
(note that a generalization that allows any subset of attribute values is indeed non-proper). Let
S = {1, 2}, T = {2, 3}, and assume that Pr(X = 1) = 1

2−", Pr(X = 2) = 2", and Pr(X = 3) = 1
2−".

Then, letting d(⋅) = de, (9),
d(S ∪ T ) = H(X) ≈ 1 ,

while
d(S) = H(X∣S) ≈ 0, d(T ) = H(X∣T ) ≈ 0 .

Hence, in this case d(S ∪ T ) > d(S) + d(T ). It may be easily seen that also the generalization cost
by the monotone entropy measure, d(⋅) = dme, (10), fails to satisfy sub-additivity in this case.

6.2 Covers, clusterings, k-anonymizations and their generalization cost

As noted earlier, any k-anonymization of D defines a clustering of D. Without loss of generality,
we may assume that all clusters are of sizes between k and 2k − 1; indeed, owing to monotonicity,
any cluster of size greater than 2k may be split into clusters of sizes in the range [k, 2k−1] without
increasing the amount of information loss due to k-anonymization. Let:

1. G be the family of all k-anonymizations of D, where the corresponding clusters are of sizes in
the range [k, 2k − 1].

2. Γ be the family of all covers of D by subsets of sizes in the range [k, 2k − 1].

3. Γ0 ⊂ Γ be the family of all covers in Γ that are clusterings (or partitions); namely, all covers
in Γ consisting of non-intersecting subsets.

There is a natural one-to-one correspondence between G and Γ0.
Hereinafter, Π denotes either the entropy measure of loss of information, Π = Πe, or the

monotone entropy measure of loss of information, Π = Πme. The corresponding generalization
cost is then denoted by d(⋅) (namely, d(⋅) = de if Π = Πe and d(⋅) = dme if Π = Πme).

Given a cover ° ∈ Γ, we define its generalization cost as follows:

d(°) =
∑

S∈°
d(S) . (16)

This cost is closely related to the measure of loss of information by k-anonymization, as stated in
the next lemma.

Lemma 6.4 Let g ∈ G be a k-anonymization of D and let °0 ∈ Γ0 be its corresponding clustering
of D. Let d(⋅) be the generalization cost by the measure Π. Then

k ⋅ d(°0) ≤ Π(D, g(D)) ≤ (2k − 1) ⋅ d(°0) . (17)

Proof. As we have
k ≤ ∣S∣ ≤ 2k − 1, for all S ∈ °0, (18)
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and
Π(D, g(D)) =

∑

S∈°0

∣S∣ ⋅ d(S), (19)

inequality (17) follows from (19), (18) and (16). □

Next, we claim the following:

Theorem 6.5 Let °̂ be a cover that achieves minimal generalization cost d(⋅) in Γ. Let g ∈ G be
a k-anonymization and let °0 ∈ Γ0 be its corresponding clustering. Then

Π(D, g(D)) ≤ 2d(°0)

d(°̂)
⋅OPT (D), (20)

where
OPT (D) := min

g∈G
Π(D, g(D)). (21)

Proof. Let g∗ be a k-anonymization for which OPT (D) = Π(D, g∗(D)) and let °∗ be its corre-
sponding clustering. On one hand, by the lower bound in (17) and the definition of °̂,

OPT (D) = Π(D, g∗(D)) ≥ k ⋅ d(°∗) ≥ k ⋅ d(°̂). (22)

On the other hand, by the upper bound in (17),

Π(D, g(D)) ≤ (2k − 1) ⋅ d(°0). (23)

Hence, by (23) and (22),

Π(D, g(D)) ≤ 2k − 1

k
⋅ d(°

0)

d(°̂)
⋅OPT (D) ≤ 2d(°0)

d(°̂)
⋅OPT (D) .

□

6.3 Approximating optimal k-anonymization

Our approximation algorithm follows the algorithm of [MW04]. It has two phases, as described
hereinafter.

Phase 1: Producing a cover. Let °̂ be a cover that minimizes d(⋅) in Γ. In the first phase
of the algorithm we execute the greedy algorithm for approximating the weighted set cover
problem [Joh74].

1. Set C to be the collection of all subsets of D with cardinality in the range [k, 2k − 1]. Each
set S is associated with a cost d(S). Also set ° = ∅ and E = ∅.

2. While E ∕= D do:

∙ For each S ∈ C compute the ratio r(S) = d(S)/∣S ∩ (D ∖E)∣.
∙ Choose S that minimizes r(S).

∙ E = E ∪ S, ° = ° ∪ {S}, C = C ∖ {S}.
3. Output °.

Since the greedy algorithm for the weighted set cover problem has logarithmic approximation
guarantee (see, e.g., [Chv79]), the result of that phase is a cover ° ∈ Γ for which

d(°) ≤ (1 + ln 2k)d(°̂) . (24)
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Phase 2: Translating the cover into a k-anonymization. In the second phase we translate
the cover ° ∈ Γ to a clustering °0 ∈ Γ0 and then to its corresponding k-anonymization g ∈ G. The
translation procedure works as follows:

1. Input: ° = {S1, . . . , St}, a cover of D = {R1, . . . , Rn}.
2. Set °0 = °.

3. Repeat until the cover °0 has no intersecting subsets:

∙ Let Sj , Sℓ ∈ °0 be such that Sj ∩ Sℓ ∕= ∅ and let R be a record in D that belongs to
Sj ∩ Sℓ.

∙ If ∣Sj ∣ > k set Sj = Sj ∖ {R}.
∙ Else, if ∣Sℓ∣ > k set Sℓ = Sℓ ∖ {R}.
∙ Else (namely, if ∣Sj ∣ = ∣Sℓ∣ = k) remove Sℓ from °0 and set Sj = Sj ∪ Sℓ.

4. Output the following k-anonymization: For i = 1, . . . , n, look for Sj ∈ °0 such that Ri ∈ Sj

and then set g(D)i = Sj .

Theorem 6.6 The k-anonymization g that is produced by the above described algorithm satisfies

Π(D, g(D)) ≤ 2(1 + ln 2k) ⋅OPT (D) , (25)

where OPT (D) is the cost of an optimal k-anonymization, (21).

Proof. First, we observe that d(°0) ≤ d(°), as implied by our monotonicity assumption, (11),
and by Lemma 6.3. Hence, by (24), d(°0) ≤ (1 + ln 2k)d(°̂). Finally, by Theorem 6.5, the k-
anonymization g satisfies (25). □

The corresponding result in [MW04] is Theorem 4.1 there, according to which the approxima-
tion algorithm achieves an approximation factor of 3k ⋅ (1 + ln 2k). Aggarwal et al. proposed an
improved approximation algorithm that achieves an O(k) approximation factor [AFK+05, Theorem
5]. The approximation algorithms in both [MW04] and [AFK+05] were based on the so-called graph
representation. In that approach, the records of D are viewed as nodes of a complete graph, where
the weight of each edge (Ri, Rj) is the generalization cost of the set {Ri, Rj}. Both algorithms
work with such a graph representation and find the approximate k-anonymization based only on
the information that is encoded in that graph. Such an approach is limited since it uses only the
distances between pairs of nodes. In [AFK+05] it was shown that using the graph representation
it is impossible to achieve an approximation ratio that is better than Θ(k).

We were able to offer the significantly better O(ln k) approximation ratio by breaking out of the
graph representation framework. As explained in Section 6.1, our cost function d(⋅) is defined for sets
of records, rather than pairs of records. Hence, it represents volume rather than a diameter. This
upgrade from the graph representation to a hypergraph representation enabled the improvement
from a linear approximation ratio to a logarithmic one.

It should be noted that our improved approximation algorithm works also with the tree measure,
if we modify the definition of the generalization cost, Definition 6.2, to be consistent with that
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measure. Such a modified generalization cost is clearly monotone, (11), and sub-additive, (13),
whence all of our claims hold also for that cost.

The algorithm described in this section runs in time O(n2k). The exponential dependence of the
running time on k is due to the fact that we examine all subsets of records of D with cardinalities
between k and 2k − 1.

6.4 A fully polynomial approximating algorithm

6.4.1 Preliminaries

We describe here the algorithm due to Aggarwal et al. [AFK+05] for approximating optimal k-
anonymization and we show that it may be applied also to the entropy measure.

Let D = {R1, . . . , Rn} be a database having public attributes Aj , 1 ≤ j ≤ r, and assume that
all collections of subsets, Aj , 1 ≤ j ≤ r, are proper. Such a database may be represented by a
graph.

Definition 6.7 The graph representation for the database D = {R1, . . . , Rn} is the complete
weighted graph G = (V,E) where V = D, E = {ei,j = {Ri, Rj} : 1 ≤ i < j ≤ n}, and
w(ei,j) = d({Ri, Rj}), where d(⋅) is the generalization cost by the entropy measure, Definition
6.2.

Let ℱ = {T1, . . . , Ts} be a spanning forest of G; namely, each Tj is a tree in G and every node
Ri, 1 ≤ i ≤ n, belongs to exactly one tree Tj(i) ∈ ℱ . If all tress in that forest are of size at least
k then that forest induces a k-anonymization of D, denoted gℱ . The charge of each node with
respect to gℱ is defined as c(Ri, gℱ ) = d(Tj(i)), where d(⋅) is the generalization cost by the measure
Π (that could be either the entropy measure, Πe, or the monotone entropy measure, Πme). The
generalization cost of gℱ is then

Π(D, gℱ (D)) =

n∑

i=1

c(Ri, gℱ ) . (26)

An important observation in designing the algorithm is the following.

Lemma 6.8 Let ℱ = {T1, . . . , Ts} be a spanning forest of G, and let gℱ be its corresponding
anonymization. Then the charge of each node with respect to that anonymization is bounded by the
sum of weights of all edges in the tree to which that node belongs:

c(Ri, gℱ ) ≤ w(Tj(i)) :=
∑

e∈Tj(i)
w(e) . (27)

Proof. We need to prove that for any given tree, T , we have d(T ) ≤ w(T ), where d(T ) is the
generalization cost of T by the entropy measure and w(T ) is the sum of weights all edges in T .
We prove the claim by induction on the size of T . If ∣T ∣ ≤ 2 the claim is obviously true. Assume
next that we proved the claim for all trees of size less than ∣T ∣ and we proceed to prove it for T .
Let T1 and T2 be two subtrees of T where ∣T1 ∩ T2∣ = 1 and max{∣T1∣, ∣T2∣} < ∣T ∣. Then by the
sub-additivity of the generalization cost with respect to the entropy measure, Lemma 6.3,

d(T ) = d(T1 ∪ T2) ≤ d(T1) + d(T2) .
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As the induction hypothesis applies to both T1 and T2 we infer that

d(T1) + d(T2) ≤ w(T1) + w(T2) = w(T ) ,

thus proving the claim. □

We are now able to state the main result.

Theorem 6.9 Let OPT = OPT (D) be the cost of an optimal k-anonymization of D with respect to
the measure of loss of information, Π, and let L be an integer such that L ≥ k. Let ℱ = {T1, . . . , Ts}
be a spanning forest of G whose total weight is at most OPT and in which each of the trees is of
size in the range [k, L]. Then the corresponding k-anonymization, gℱ , is an L-approximation for
the optimal k-anonymization, i.e.,

Π(D, gℱ (D)) ≤ L ⋅OPT .

Proof. Invoking (26), (27), and the fact that each node belongs to exactly one tree in the forest,
we conclude that

Π(D, gℱ (D)) =
n∑

i=1

c(Ri, gℱ ) ≤
n∑

i=1

w(Tj(i)) =
s∑

j=1

∣Tj ∣ ⋅ w(Tj) .

Hence, since all trees are of size L at the most, we get that

Π(D, gℱ (D)) ≤ L ⋅
s∑

j=1

w(Tj) ≤ L ⋅OPT .

□

6.4.2 The approximation algorithm

The algorithm has two stages:

1. Stage 1: Create a spanning forest ℱ = {T1, . . . , Ts} whose total weight is at most OPT and
in which all trees are of size at least k.

2. Stage 2: Compute a decomposition of this forest such that each component has size in the
range [k, L] for L = max{2k − 1, 3k − 5}.

The first stage constructs a directed forest where the out-degree of each node is at most one, and
(Ri, Rj) is an edge in that forest only if Rj is one of the k − 1 nearest neighbors of Ri.

Algorithm Forest

1. Set ℱ = (V,E) where V = D and E = ∅. We continue to add directed edges to the forest
ℱ while respecting two rules: the added edges contain no cycles and the out-degree of each
node in the forest is at most one.

2. Repeat until all components (trees) of ℱ have size at least k:

∙ Pick a component T of ℱ of size ∣T ∣ < k.
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∙ Let R ∈ T be a node without any outgoing edges.

∙ As ∣T ∖ {R}∣ ≤ k − 2, there exists a node R′ outside T that is one of the k − 1 nearest
neighbors of R; find such a node and add to the forest the directed edge (R,R′).

Lemma 6.10 The forest produced by the algorithm Forest has minimum tree size k and has
weight at most OPT .

Proof. As the algorithm repeats adding edges to forest components of size less than k until the forest
has no more such components, the first claim is obvious. As for the second claim, it follows from the
monotonicity of Π. Let g∗ be an optimal k-anonymization, °∗ = {S1, . . . , St} be its corresponding
clustering, and c(Ri, g

∗) be the charge of Ri in that anonymization. Then c(Ri, g
∗) = d(Sj(i)) where

Sj(i) ∈ °∗ is the cluster to which Ri belongs. Let {R′
1, . . . , R

′
k−1} be the k− 1 nearest neighbors of

Ri in the graph G and let {R′′
1 , . . . , R

′′
k−1} be the k − 1 nearest neighbors of Ri in Sj(i). Then, by

monotonicity,

c(Ri, g
∗) = d(Sj(i)) ≥ d({Ri, R

′′
1 , . . . , R

′′
k−1}) ≥ max

1≤ℓ≤k−1
d({Ri, R

′′
ℓ }) ≥ max

1≤ℓ≤k−1
d({Ri, R

′
ℓ}) .

This implies that the charge of a node Ri in an optimal k-anonymization is greater than the weight
of the edge that out-goes from Ri in the forest ℱ , if such an edge exists. Summing up over all edges
we get that OPT is greater than or equal to the weight of the forest. □

The second stage operates on the forest that is output by the first stage and breaks every
component of size greater than L = max{2k− 1, 3k− 5} to two components of size at least k. This
is accomplished by applying algorithm Decompose-Component, that is described in [AFK+05,
Section 4.2], to each such component, until no more components of size greater than L are left.
We omit further details on that algorithm since it is a pure graph algorithm that does not depend
on the underlying measure of loss of information. Both algorithms, Forest and Decompose-
Component, run in time O(kn2) so the overall running time is fully polynomial.

7 Conclusions

In this paper we studied the problem of k-anonymization, and we proposed three information-
theoretic measures that capture the amount of information that is lost during the anonymization
process. Our measures are more general and more accurate than previous measures that were
studied in the literature. We proved that the problem of finding the optimal k-anonymization of a
database is NP-hard with respect to the proposed measures.

We then continued to study the approximability of that problem, with respect to the entropy and
monotone entropy measures. First, we adapted the algorithm of Meyerson and Williams [MW04]
and obtained an O(ln k)-approximation guarantee. The same guarantee holds also for the previ-
ously proposed measures, thus, our result improves upon the best-known O(k)-approximation ratio
obtained by Aggarwal et al. [AFK+05]. While the approximation algorithms of [AFK+05, MW04]
relied on the so-called graph representation framework, which was shown in [AFK+05] to be limited
to Ω(k)-approximations, our algorithm relies on a novel hypergraph representation that enables the
improvement in the approximation ratio from O(k) to O(ln k). As the running time of our suggested
algorithm is O(n2k), we also showed how to adapt the algorithm of [AFK+05] in order to obtain
a fully polynomial approximation algorithm for our entropy and monotone entropy measures with
an O(k)-approximation guarantee.
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Two main open problems remain. The first is to find a fully polynomial approximation al-
gorithm with performance guarantee better than O(k). The second open problem is to design an
approximation algorithm, fully polynomial or not, for the non-uniform entropy measure. We expect
that, in practice, our hypergraph-based algorithm works well for the non-uniform entropy measure
too, since a good cover tends to contain disjoint sets, and, consequently, may be easily converted to
a clustering. However, the main difficulty of proving an approximation guarantee in the case of the
non-uniform entropy measure is that the sub-additivity property does not hold for the non-uniform
entropy measure, whence it is not clear how to convert a cover to a clustering without increasing
the cost of the solution.

8 Appendix

8.1 Proof of Lemma 3.3

Assume first that A is consistent with the (possibly unbalanced) hierarchical clustering tree frame-
work. Then A ⊂ A, since the leaves of the tree represent all singleton subsets, and A ∈ A since
the root of the tree represents the entire set. In addition, any two intersecting subsets in that tree
must appear on the same path from the root to one of the leaves, whence one of them is a subset
of the other. Such a collection of subsets is therefore proper.

Assume next that A is proper. Construct a directed graph G = (V,E), where V = A and for
any two distinct sets B,B′ ∈ A, the graph has the directed edge (B,B′) if and only if B ⊂ B′

and there exists no subset B′′ ∈ A ∖ {B,B′} such that B ⊂ B′′ ⊂ B′. We proceed to show that
the obtained directed graph G = (V,E) is a hierarchical clustering tree. Clearly, as A includes
all singleton subsets, the set of nodes in the graph G having zero in-degree is exactly the set of
singleton subsets. As A ∈ A, the graph G has exactly one node with a zero out-degree (the root)
and that is the node that corresponds to the entire set. It is also clear that every node in G is
connected to the root. Hence, it remains only to show that every two nodes B,B′ ∈ A, can be
connected through at most one directed path. Assume, towards contradiction, that there are two
directed paths that connect B to B′. All the subsets that appear on either of those two paths
include B, so they have non-empty intersection. Hence, as A is proper, the relation of set inclusion
is a total order on the collection of those subsets. Therefore, those subsets must reside linearly on
a single directed path in G. This completes the proof. □

8.2 Proof of Lemma 4.13

For the sake of simplicity we assume that r = 1, namely, that the database D has only one
attribute A = {a1, . . . , am}. The case of r > 1 trivially follows by adding up the contributions from
all attributes.

By assumption, the entries in the generalized database g(D) are disjoint subsets of A. Denote
the subsets of A that appear in g(D) by B1, . . . , Bt. Then each value aℓ ∈ A, 1 ≤ ℓ ≤ m, that
appears in D is generalized to a unique subset Bℎ(ℓ) where 1 ≤ ℎ(ℓ) ≤ t.

Let X be the value of the attribute A in a randomly selected record in D. Define pℓ = Pr(X =
aℓ), qj =

∑
aℓ∈Bj

pℓ, and p′ℓ = pℓ/qℎ(ℓ), for all 1 ≤ ℓ ≤ m, 1 ≤ j ≤ t. This implies that

H(X∣Bj) =
∑

aℓ∈Bj

p′ℓ log
1

p′ℓ
=

∑

aℓ∈Bj

pℓ
qj

log
qj
pℓ
, 1 ≤ j ≤ t .
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Consequently, the entropy measure of information loss is

Πe(D, g(D)) =

t∑

j=1

qjn ⋅H(X∣Bj) =

t∑

j=1

qjn ⋅
∑

aℓ∈Bj

pℓ
qj

log
qj
pℓ

= n

m∑

ℓ=1

pℓ log
qℎ(ℓ)

pℓ
,

which is precisely the value of the non-uniform entropy measure Πne(D, g(D)). □

8.3 Proof of Theorem 5.2

The reduction is from k-dimensional perfect matching: Given a simple hypergraphH = (U,E)
where ∣U ∣ = n, ∣e∣ = k for all e ∈ E, and k∣n, is there a subset S ⊂ E of n/k hyperedges such that∪

e∈S = U?
Let H = (U,E) be an input to the k-dimensional perfect matching problem, and denote U =

{u1, . . . , un}, E = {e1, . . . , em}. We construct the input for the k-anonymization problem as follows.
For every node ui ∈ U we define a record Ri, and for every edge ej ∈ E we define an attribute Aj .
The possible values for all attributes Aj , 1 ≤ j ≤ m, are drawn from the set

A = {0, 1, . . . , ⌈(n− k)/(k − 1)⌉} .

The entries Ri(j), 1 ≤ i ≤ n, 1 ≤ j ≤ m in the database D are defined according to the following
rule: If ui ∈ ej then Ri(j) = 0 ; the rest of the n− k entries of the j-th attribute in D attain values
from the set A ∖ {0}, such that each value appears exactly k − 1 times, except for the last value
⌈(n− k)/(k − 1)⌉ that may appear less than k − 1 times.

In order to prove the NP-hardness with respect to the entropy measure, we claim that there
exists a k-dimensional perfect matching if and only if there exists a k-anonymization g(D) for which

Πe(D, g(D)) ≤ n(m− 1) ⋅Hk,n (28)

whereHk,n is the entropy of each of the attributes. Note that by our definition ofD, the information
loss due to each suppressed entry is the same, namely Hk,n.

Assume first that there exists a k-dimensional perfect matching, S ⊂ E, and define the gener-
alization g(D) = {R1, . . . , Rn} where

Ri(j) =

{
0 if ui ∈ ej and ej ∈ S
∗ otherwise

. (29)

We claim that this generalization is a k-anonymization. Indeed, consider the k nodes in an edge
e ∈ S. Clearly, the above generalization dictates that their corresponding generalized records are
equal. Since every node belongs to exactly one edge e ∈ S, we are looking at a k-anonymized table.
As the number of suppressed entries is clearly n(m− 1), this k-anonymization satisfies (28).

Conversely, assume that there exists a k-anonymization g(D) that satisfies (28). Such an
anonymization must have at most n(m − 1) suppressed entries. We first note that in any k-
anonymization of D, the only value that may be left non-suppressed is 0, because every other value
appears in no more than k− 1 entries in each attribute. Now, every row in g(D) can have at most
one zero entry, otherwise g(D) would contain a group of k rows which have zeros in two or more
attributes, leading to a contradiction because the hypergraph is simple. On the other hand, every
row in g(D) must contain at least one non-suppressed value, otherwise there would be more than
n(m − 1) suppressed entries in the table. We conclude that every row contains exactly one zero,
while all other entries are suppressed. Therefore, the clusters induced by the k-anonymization g(D)
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may be translated to a k-dimensional perfect matching, by choosing only the attributes (namely,
edges) which are represented by k zeros in g(D).

Since the entropy measure coincides with the monotone entropy measure in case of generalization
by suppression, the above proof of NP-hardness of the problem of k-anonymization with minimal
loss of information with respect to the entropy measure applies also to the monotone entropy
measure.

Finally, we turn to proving the NP-hardness with respect to the non-uniform entropy measure.
To that end, we note that in each column in D there are exactly k entries with the value 0,
k − 1 entries with the value j, for all 1 ≤ j < ⌈(n − k)/(k − 1)⌉, and cn,k entries with the value
⌈(n− k)/(k − 1)⌉, where cn,k = k − 1 if (k − 1)∣(n− k) and cn,k = (n− k) mod (k − 1) otherwise.
Hence, by suppressing an entry with the value 0, the non-uniform entropy measure incurs a penalty
of log(n/k); suppressing an entry with the value j, for all 1 ≤ j < ⌈(n−k)/(k−1)⌉, incurs a penalty
of log(n/(k − 1)); and suppressing an entry with the value ⌈(n − k)/(k − 1)⌉ incurs a penalty of
log(n/cn,k). We infer that the sum of suppression penalties over all entries in the table D is

Pn,k := m ⋅ [k ⋅ log(n/k) + (⌈(n− k)/(k − 1)⌉ − 1) ⋅ log(n/(k − 1)) + cn,k ⋅ log(n/cn,k)] .

With these notations, we claim that there exists a k-dimensional perfect matching if and only if
there exists a k-anonymization g(D) for which

Πne(D, g(D)) ≤ Pn,k − n ⋅ log(n/k) . (30)

Assume first that there is a k-dimensional perfect matching, S ⊂ E, and define the same k-
anonymization g(D) as in (29). Since all entries in g(D) are suppressed, except for one entry of
the value zero in each of the n records, we infer that g(D) satisfies (30). Conversely, assume that
there exists a k-anonymization g(D) that satisfies (30). We showed earlier that each record Ri in
g(D) can have at most one non-* entry and that such non-generalized entries must be zero. On
the other hand, each Ri must have at least one non-generalized entry, for otherwise the amount of
information lost would exceed the value on the right hand side of (30). As shown earlier, such a
k-anonymization defines a k-dimensional perfect matching of H. □

Acknowledgements. The authors thank Jacob Goldberger who proposed the monotone entropy
measure as a modification of the entropy measure that respects monotonicity.
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