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Abstract. We consider the problem of threshold secret sharing in groups
with hierarchical structure. In such settings, the secret is shared among a
group of participants that is partitioned into levels. The access structure
is then determined by a sequence of threshold requirements: a subset of
participants is authorized if it has at least k0 members from the highest
level, as well as at least k1 > k0 members from the two highest levels
and so forth. Such problems may occur in settings where the partici-
pants differ in their authority or level of confidence and the presence
of higher level participants is imperative to allow the recovery of the
common secret. Even though secret sharing in hierarchical groups has
been studied extensively in the past, none of the existing solutions ad-
dresses the simple setting where, say, a bank transfer should be signed by
three employees, at least one of whom must be a department manager.
We present a perfect secret sharing scheme for this problem that, unlike
most secret sharing schemes that are suitable for hierarchical structures,
is ideal. As in Shamir’s scheme, the secret is represented as the free co-
efficient of some polynomial. The novelty of our scheme is the usage of
polynomial derivatives in order to generate lesser shares for participants
of lower levels. Consequently, our scheme uses Birkhoff interpolation,
i.e., the construction of a polynomial according to an unstructured set
of point and derivative values. A substantial part of our discussion is
dedicated to the question of how to assign identities to the participants
from the underlying finite field so that the resulting Birkhoff interpo-
lation problem will be well posed. In the course of this discussion, we
borrow some results from the theory of Birkhoff interpolation over R
and import them to the context of finite fields.

1 Introduction

A (k, n)-threshold secret sharing is a method of sharing a secret among a given
set of n participants, U , such that every k of those participants (k ≤ n) could
recover the secret by pooling their shares together, while no subset of less than
k participants can do so [4, 15]. Generalized secret sharing refers to situations
where the collection of permissible subsets of U is any collection Γ ⊂ 2U . Given
such a collection, the corresponding generalized secret sharing is a method of



sharing a secret among the participants of U such that only subsets in Γ (that is
referred to as the access structure) may recover the secret, while all other subsets
cannot; this makes sense, of-course, only if the access structure is monotone in
the sense that if B ∈ Γ then any superset of B also belongs to Γ .

There are many real-life examples of threshold secret sharing. Typical exam-
ples include sharing a key to the central vault in a bank, the triggering mechanism
for nuclear weapons, or key escrow. We would like to consider here a special kind
of generalized secret sharing scenarios that is a natural extension of threshold
secret sharing. In all of the above mentioned examples, it is natural to expect
that the participants are not equal in their privileges or authorities. For example,
in the bank scenario, the shares of the vault key may be distributed among bank
employees, some of whom are tellers and some are department managers. The
bank policy could require the presence of, say, 3 employees in opening the vault,
but at least one of them must be a department manager. Or in key escrow, the
dealer might demand that some escrow agents (say, family members) must be
involved in any emergency access to his private files. Such settings call for special
methods of secret sharing. To this end, we define hierarchical secret sharing as
follows:

Definition 1. Let U be a set of n participants and assume that U is composed of
levels, i.e., U =

⋃m
i=0 Ui where Ui∩Uj = ∅ for all 0 ≤ i < j ≤ m. Let k = {ki}m

i=0

be a monotonically increasing sequence of integers, 0 < k0 < · · · < km. Then the
(k, n)–hierarchical threshold secret sharing problem is the problem of assigning
each participant u ∈ U a share of a given secret S such that the access structure
is

Γ =
{V ⊂ U :

∣∣V ∩ (∪i
j=0Uj

)∣∣ ≥ ki ∀i ∈ {0, 1, . . . , m}} . (1)

In other words, if σ(u) stands for the share assigned to u ∈ U , and for any
V ⊂ U , σ(V) = {σ(u) : u ∈ V}, then

H(S|σ(V)) = 0 ∀V ∈ Γ (accessibility) (2)

while
H(S|σ(V)) = H(S) ∀V /∈ Γ (perfect security) . (3)

The zero conditional entropy equality (2) should be understood in a constructive
sense. Namely, if it holds then V may compute S.

There are few methods of solving this problem. The simplest way [18] is to
generate m random and independent secrets Si, 1 ≤ i ≤ m, of the same size
as S and define S0 = S

⊕
S1

⊕ · · ·⊕ Sm. Then, for every 0 ≤ i ≤ m, the
secret Si is distributed among all participants of ∪i

j=0Uj using a (ki,
∑i

j=0 |Uj |)
threshold secret sharing scheme. The secret S may be recovered only if all Si,
0 ≤ i ≤ m, are recovered. As the recovery of Si requires the presence of at least ki

participants from ∪i
j=0Uj , the access requirements are met by this solution. This

scheme is perfect since if V /∈ Γ , it fails to satisfy at least one of the threshold
conditions in (1) and, consequently, it is unable to learn a thing about the
corresponding share Si; such a deficiency implies (3). However, its information
rate is 1/(m + 1) since all members of U0 are assigned m + 1 shares.



Another method is the monotone circuit construction due to Benaloh and
Leichter [2]. Assume a monotone access structure Γ over a set of n participants.
Let C(x1, . . . , xn) be a monotone circuit that recognizes the access structure
(namely, C(x1, . . . , xn) = 1 if and only if the subset of the variables that have a 1
value belongs to Γ ). They then show how to build a perfect secret sharing scheme
from the description of that circuit. However, for threshold access structures
the resulting schemes are far from being ideal. Even for the simplest threshold
problem of only one level (i.e., all participants are equal), an optimal circuit is
of size O(n log n) [9], which implies an information rate of O(1/ log n) for the
corresponding secret sharing scheme.

Another construction is due to Brickell [5]. The main observation in his con-
struction is the following: let F be a finite field such that S ∈ F and let Fd be the
d-dimensional vector space over that field. Assume that there exists a function
φ : U → Fd with the property

(1, 0, . . . , 0) ∈ Span{φ(u) : u ∈ V} ⇔ V ∈ Γ . (4)

Then the dealer selects random and independent values ai ∈ F, 2 ≤ i ≤ d, and
then

σ(u) = φ(u) · a where a = (S, a2, . . . , ad) . (5)

This is indeed a perfect secret sharing scheme, (2)+(3), and, as opposed to the
previous construction of Benaloh and Leichter, it is ideal since every participant
receives a share that is of the same size as the secret. Alas, finding a mapping φ
that satisfies condition (4) is not simple. Given a specific access structure, it is
usually a matter of trial and error until such φ is found.

In this paper, we present a simple solution for the hierarchical secret sharing
problem that is both perfect and ideal. Our construction is, in fact, a realization
of the general vector space construction of Brickell for the case of hierarchi-
cal threshold secret sharing. Our idea is based on Birkhoff interpolation (also
known as Hermite-Birkhoff or lacunary interpolation). The basic threshold se-
cret sharing of Shamir [15] was based upon Lagrange interpolation, namely, the
construction of a polynomial of degree less than or equal to k from its values
in k + 1 distinct points. There are two other types of interpolation that are
encountered in numerical analysis. In such problems, one is given data of the
form

djP

dxj
(xi) := P (j)(xi) = ci,j (k + 1 equations) (6)

and seeks a polynomial of degree less than or equal to k that agrees with the
given data (6). If for each i (namely, at each interpolation point) the sequence
of the derivative orders j that are given by (6) is an unbroken sequence that
starts at zero, j = 0, . . . , ji, then the problem falls under the framework of
Hermite interpolation. In that case, the problem always admits a unique solution
P ∈ Rk[x]. The more general case is when the data is lacunary in the sense that,
at some sample points, the sequence of orders of derivatives is either broken or
does not start from j = 0. This case is referred to as Birkhoff interpolation and



it differs radically from the more standard Hermite or Lagrange interpolation.
In particular, Birkhoff interpolation problems may be ill posed in the sense that
a solution may not exist or may not be unique.

In our method, like in Shamir’s, the secret is the free coefficient of some
polynomial P (x) ∈ Fk−1[x], where F is a large finite field and k = km is the
maximal threshold, i.e., the total number of participants that need to collaborate
in order to reconstruct the secret. Each participant u ∈ U is given an identity
in the field, denoted also u, and a share that equals P (j)(u) for some derivative
order j that depends on the position of u in the hierarchy. The idea is that
the more important participants (namely, participants who belong to levels with
lower index) will get shares with lower derivative orders, since lower derivatives
carry more information than higher derivatives. By choosing the derivative orders
properly, this allocation of shares dictates the threshold access requirements
(1). As a consequence, when an authorized subset collaborates and attempts to
recover the secret, they need to solve a Birkhoff interpolation problem. Hence, a
great part of our analysis is devoted to the question of how to assign participants
with identities in the field so that the Birkhoff interpolation problems that are
associated with the authorized subsets would be well posed.

Organization of the paper. In Section 2 we review the basic terminology and
results from the theory of Birkhoff interpolation [12]. We present those results
in the context of the reals, R, which is the natural context in numerical analysis.
However, as R is not the field of choice in cryptography, one should be very
careful when borrowing results from such a theory and migrating them to the
context of finite fields. The algebraic statements usually travel well and survive
the migration; the analytic ones, however, might not. Part of our analysis later
on will be dedicated to those issues. Section 3 is devoted to our scheme. After
presenting the scheme, we discuss in Section 3.1 conditions for accessibility, (2),
and perfect security, (3). Then, we proceed to examine strategies for allocat-
ing participant identities in the underlying finite field so that accessibility and
perfect security are achieved. In Section 3.2 we consider the strategy of random
allocation of participant identities and prove that such a strategy guarantees that
both (2) and (3) hold with almost certainty. In Section 3.3 we consider a simple
monotone allocation of participant identities. Borrowing an interesting result
from the theory of Birkhoff interpolation, we prove that such an allocation is
guaranteed to provide both accessibility and perfect security, (2)+(3), provided
that the prime order of the field is sufficiently large with respect to n (number of
participants) and km (minimal number of participants in an authorized subset),
Theorem 4.

Related work. The problem of secret sharing in hierarchical (or multilevel)
structures, was studied before under different assumptions, e.g. [3, 5–7, 16, 17].
Already Shamir, in his seminal work [15], has recognized that in some settings it
would be desired to grant different capabilities to different participants according
to their level of authority. He suggested to accomplish that by giving the partic-
ipants of the more capable levels a greater number of shares. More precisely, if U
has an hierarchical structure as in Definition 1, the participants in Ui, 0 ≤ i ≤ m,



get wi shares of the form (u, P (u)), u ∈ F, where w0 > w1 > · · · > wm. This
way, the number of participants from a higher level that would be required in
order to reconstruct the secret would be smaller than the number of participants
from a lower level that would need to cooperate towards that end.

Simmons [16], and later Brickell [5], considered a similar, yet slightly more
rigid setting. Assume a scenario where an electronic fund transfer (up to some
maximum amount) may be authorized by any two vice presidents of a bank, or,
alternatively, by any three senior tellers. A natural requirement in such a scenario
is that also a mixed group of one vice president and two senior tellers could
recover the private key that is necessary to sign and authorize such a transfer.
Motivated by this example, Simmons studied a general hierarchical threshold
secret sharing problem that agrees with the problem in Definition 1 with one
difference: while we require in (1) a conjunction of threshold conditions, Simmons
studied the problem with a disjunction of the threshold conditions. Namely, in
his version of the problem,

Γ =
{V ⊂ U : ∃i ∈ {0, 1, . . . ,m} for which

∣∣V ∩ (∪i
j=0Uj

)∣∣ ≥ ki

}
. (7)

His solution to that version is based on a geometric construction that was pre-
sented by Blakley [4]. Assume that the secret S is d-dimensional (typically d = 1;
however, Simmon’s construction may easily deal with the simultaneous sharing
of d > 1 secrets as well). Then the construction is embedded in Fr, where F is a
large finite field and r = km + d − 1. Simmons suggests to construct a chain of
affine subspaces W0 ⊂ W1 ⊂ · · · ⊂ Wm of dimensions ki−1, 0 ≤ i ≤ m, together
with a publicly known affine subspaceWS of dimension d, with the property that
Wi ∩WS = {S} for all 0 ≤ i ≤ m (i.e., each Wi intersects WS in a single point
whose d coordinates in WS are the d components of the secret S). Then, each
participant from level Ui gets a point in Wi \ Wi−1, 0 ≤ i ≤ m (W−1 = ∅),
such that every ki points from ∪i

j=0Uj span the entire subspace Wi. Hence, if
a subset of participants V satisfies at least one of the threshold conditions, say,∣∣V ∩ (∪i

j=0Uj

)∣∣ ≥ ki for some i, 0 ≤ i ≤ m, then the corresponding Wi may be
constructed and intersected with WS to yield the secret S.

Shamir’s version of the hierarchical setting is slightly more relaxed than Sim-
mons’. In the former, the number of participants that are required for recovery is
determined by a weighted average of the thresholds that are associated with each
of the levels that are represented in the subset of participants. In the latter, the
necessary number of participants is the highest of the thresholds that are asso-
ciated with the levels that are represented. However, it is natural to expect that
more rigid conditions will be imposed in some scenarios. Namely, even though
higher level (i.e., important) participants could be replaced by lower level ones,
a minimal number of higher level participants would still need to be involved
in any recovery of the secret. For example, the common practice of authorizing
electronic fund transfers does call for the presence of at least one vice president
or manager department. The above described solutions of Shamir and Simmons
are incapable of imposing such restrictions since they allow the recovery of the
secret for any subset of lower-level participants that is sufficiently large. This



difference in the definition of the problem is manifested by the replacement of
the existential quantifier ∃ in (7) with the universal quantifier ∀ in (1).

We note that none of the above mentioned explicit secret sharing schemes
that are suitable for hierarchical structures (i.e., the first solution of splitting the
secret to m+1 sub-secrets, Benaloh and Leichter’s monotone circuit construction,
Shamir’s scheme and Simmons’ scheme) is ideal. The scheme introduced herein
is.

Padró and Sáez [13] studied the information rate of secret sharing schemes
with a bipartite access structure. A bipartite access structure is one in which
there are two levels of participants, U = U0 ∪ U1, and all participants in the
same level play an equivalent role in the structure. They showed that the ideal
bipartite access structures are exactly those that are vector space access struc-
tures, namely, are consistent with Brickell’s construction [5]. Furthermore, they
showed that all such ideal access structures are quasi-threshold in the sense that
a subset V ⊂ U is authorized if |V|, |V ∩ U0| and |V ∩ U1| satisfy some thresh-
old conditions [13, Theorem 5]. They characterized four types of quasi-threshold
access structures, denoted Ωi, 1 ≤ i ≤ 4. It may be shown that when there are
two levels, i.e., m = 1, our conjunctive problem, (1), is consistent with type Ω2

or Ω3, while Simmons’ disjunctive problem, (7), agrees with Ω1. What we show
in this paper is that in the multi-partite case, the conjunctive threshold access
structures are vector access structures and that Birkhoff interpolation yields an
explicit construction.

2 Birkhoff interpolation

Let X = {x1, . . . , xk} be a given set of points in R, where x1 < x2 < · · · < xk,
E = (ei,j) k

i=1
`

j=0 be a matrix with binary entries, I(E) = {(i, j) : ei,j = 1},
d = |I(E)|, and C = {ci,j : (i, j) ∈ I(E)} be a set of d real values (we assume
hereinafter that the right-most column in E is nonzero). Then the Birkhoff in-
terpolation problem that corresponds to the triplet 〈X, E, C〉 is the problem of
finding a polynomial P (x) ∈ Rd−1[x] that satisfies the d equalities

P (j)(xi) = ci,j , (i, j) ∈ I(E) . (8)

The matrix E is called the interpolation matrix.
Unlike Lagrange or Hermite interpolation that are unconditionally well-posed,

the Birkhoff interpolation problem may not admit a unique solution. The pair
〈X, E〉 is called regular if the system (8) has a unique solution for any choice of
C, and singular otherwise. The matrix E is called regular or poised if 〈X, E〉 is
regular for all X = {x1 < x2 < · · · < xk} ⊂ R.

The following lemma provides a simple necessary condition that E must
satisfy, lest 〈X, E〉 would be singular for all X [14].

Lemma 1. (Pólya’s condition) A necessary condition that the interpolation ma-
trix E must satisfy in order for the corresponding Birkhoff interpolation problem
to be well posed is that

|{(i, j) ∈ I(E) : j ≤ t}| ≥ t + 1 , 0 ≤ t ≤ ` . (9)



Pólya’s is a necessary condition. Sufficient conditions, on the other hand, are
scarce. We continue to describe one such condition that will serve us later on in
our application to secret sharing. To this end we define the following.

Definition 2. A 1-sequence in the interpolation matrix E is a maximal run of
consecutive 1s in a row of the matrix E. Namely, a triplet of the form (i, j0, j1)
where 1 ≤ i ≤ k, 0 ≤ j0 ≤ j1 ≤ `, such that ei,j = 1 for all j0 ≤ j ≤ j1 while
ei,j0−1 = ei,j1+1 = 0 (letting ei,−1 = ei,`+1 = 0). A 1-sequence (i, j0, j1) is called
supported if E has 1s both to the northwest and southwest of the leading entry
in the sequence, i.e., there exist inw < i, isw > i and jnw, jsw < j0 such that
einw,jnw = eisw,jsw = 1.

The following theorem was first proved by K. Atkinson and A. Sharma [1].

Theorem 1. Assume that x1 < x2 < · · · < xk. Then the interpolation problem
(8) has a unique solution if the interpolation matrix E satisfies Pólya’s condition
and contains no supported 1-sequences of odd length.

Lemma 1, being algebraic, is not restricted to the reals and applies over
any field. Theorem 1, on the other hand, relies upon the existence of order in
R. Hence, as finite fields are not ordered, Theorem 1 does not apply to them.
However, Theorem 1 may be of use over finite fields as well if we impose further
restrictions on the set of points in X. This will be dealt with in Section 3.3.

3 An ideal hierarchical secret sharing scheme

Consider the hierarchical secret sharing problem (k, n), k = {ki}m
i=0, as defined

in Definition 1. Let F be a finite field of large size, say Fq where q is a prime
number. The size of the field is determined by the size of the secret S (for
example, if S is an AES key then q should be at least 128 bits long). Let k = km

be the overall number of participants that are required for recovery of the secret.
Then the dealer selects a random polynomial P (x) ∈ Fk−1[x], where

P (x) =
k−1∑

i=0

aix
i and a0 = S , (10)

and then distributes shares to all participants u ∈ U in the following manner.
First, each participant is identified with a field element, which we also denote
by u (i.e., U may be viewed as a subset of the field F). Then, each participant of
the ith level in the hierarchy, u ∈ Ui, 0 ≤ i ≤ m, receives the share P (ki−1)(u),
i.e., the (ki−1)th derivative of P (x) at x = u, where k−1 = 0. This scheme is
of-course ideal, as every participant receives a share that is a field element, just
like the secret. Note that the Shamir secret sharing scheme [15] is a special case
of our scheme since in that case all users belong to the same level (i.e., U = U0)
and, consequently, there are no derivatives and all users get shares of the form
P (u).



3.1 Conditions for accessibility and perfect security

The main questions that arise with regard to the scheme are whether it complies
with conditions (2) and (3). Let V = {v1, . . . , v|V|} ⊂ U and assume that

v1, . . . , v`0 ∈ U0

v`0+1, . . . , v`1 ∈ U1

...
v`m−1+1, . . . , v`m ∈ Um

where 0 ≤ `0 ≤ · · · ≤ `m = |V| . (11)

V is authorized if and only if `i ≥ ki for all 0 ≤ i ≤ m. Let r : F → Fk be
defined as r(x) = (1, x, x2, . . . , xk−1) and, for all i ≥ 0, let r(i)(x) denote the
ith derivative of that vector. Using this notation, we observe that the share that
is distributed to participants u ∈ Ui is σ(u) = r(ki−1)(u) · a where a = (a0 =
S, a1, . . . , ak−1) is the vector of coefficients of P (x). Hence, when all participants
of V, (11), pool together their shares, the system that they need to solve in the
unknown vector a is MVa = σ, where the coefficient matrix is (written by its
rows),

MV =
(
r(v1), . . . , r(v`0) ; r(k0)(v`0+1), . . . , r(k0)(v`1) ; . . . ;

r(km−1)(v`m−1+1), . . . , r(km−1)(v`m)
)

, (12)

while
σ = (σ(v1), σ(v2), . . . , σ(v`m))T .

In view of the discussion in Section 2, the matrix MV is not always solvable even
if V ∈ Γ . Our first observation is as follows.

Proposition 1. The Birkhoff interpolation problem that needs to be solved by
an authorized subset satisfies Pólya’s condition (9).

Next, assume that 0 ∈ U is a special phantom participant and that it belongs
to the highest level U0. This assumption enables us to answer both questions of
accessibility and perfect security by examining the regularity of certain matrices.

Theorem 2. Assume that 0 ∈ U0 and that for any minimal authorized subset
V ∈ Γ (namely, |V| = k), the corresponding square matrix MV , (12), is regu-
lar, i.e., detMV 6= 0 in F. Then conditions (2) (accessibility) and (3) (perfect
security) hold.

Proof. Let V be a ”genuine” authorized subset, namely V ∈ Γ and 0 /∈ V. If V
is minimal, |V| = k, then MV is square and regular; therefore, V may recover the
polynomial P (x) and, consequently, the secret S. If V is not minimal, |V| > k,
there exists a subset V0 ⊂ V of size |V0| = k that is authorized. Since all |V|
equations in the linear system of equations MVa = σ are consistent and since, by



assumption, the sub-matrix MV0 is regular, then MVa = σ has a unique solution
a, the first component of which is the secret S. Therefore, the assumptions of
the theorem imply accessibility.

Next, we prove that those assumptions also imply the perfect security of
the scheme. Let V ∈ 2U\{0} \ Γ be an unauthorized subset and assume that V
is as in (11). We aim at showing that even if all participants in V pool their
shares together, they cannot reveal a thing about the secret S. Every unautho-
rized subset may be completed into an authorized subset (though not necessarily
minimal) by adding to it at most k participants. Without loss of generality, we
may assume that V is missing only one participant in order to become autho-
rized. Therefore, if we add to V the phantom participant 0 we get an authorized
subset, V1 = {0} ∪ V ∈ Γ , since 0 belongs to the highest level U0.

Let us assume first that |V| = k − 1. Then |V1| = k and, consequently, MV1

is square and regular. Therefore, the row in MV1 that corresponds to the user 0
is independent of the rows that correspond to the original k − 1 members of V,
i.e.,

r(0) = (1, 0, . . . , 0) /∈ row-space(MV) .

Hence, the value of the secret S is completely independent of the shares of V.
Next, assume that |V| > k − 1. Assume that the single participant that V

is missing in order to become authorized is missing at the jth level for some
0 ≤ j ≤ m; i.e., using the notations of (11),

`i ≥ ki 0 ≤ i ≤ j−1 , `j = kj−1 and `i ≥ ki−1 j +1 ≤ i ≤ m . (13)

Since |V| = `m > k − 1, we conclude that `m − `j > k − kj . All `m − `j rows
in MV that correspond to the participants of V from levels Uj+1 through Um

have at least kj leading zeros, since they all correspond to derivatives of order
kj or higher. Therefore, those rows belong to a subspace of Fk of dimension
k− kj . Hence, we may extract from among them k− kj rows that still span the
same subspace as the original `m − `j rows. Let W denote the subset of V that
corresponds to the (`m − `j) − (k − kj) redundant rows from among the last
`m − `j rows in MV ; let V0 = V \W. By (13),

|V0| = |V| − |W| = `m − [(`m − `j)− (k − kj)] = `j + k − kj = k − 1 .

Clearly, the removal from V of the participants in W cannot create new deficien-
cies, whence, V0, like V, also lacks only a single participant at the jth level in
order to become authorized. Hence, we may apply to it our previous arguments
and conclude that

r(0) = (1, 0, . . . , 0) /∈ row-space(MV0) .

But since
row-space(MV0) = row-space(MV) ,

we arrive at the sought-after conclusion that

r(0) = (1, 0, . . . , 0) /∈ row-space(MV) ,

which implies perfect security. ¤



3.2 Random allocation of participant identities

The first strategy of allocating participant identities that we consider is the
random one. Namely, recalling that |U| = n and |F| = q, the random strategy is
such that

Prob(U = W) =
1(

q−1
n

) ∀ W ⊂ F \ {0} , |W| = n . (14)

Theorem 3. Assume a random allocation of participant identities, (14). Let V
be a randomly selected subset from 2U . Then if V ∈ Γ

Prob (H(S|σ(V)) = 0) ≥ 1− ε , (15)

while otherwise
Prob (H(S|σ(V)) = H(S)) ≥ 1− ε , (16)

where

ε =
(k − 2)(k − 1)

2(q − k)
. (17)

Proof. Let V ∈ Γ be an authorized subset, not necessarily minimal. In view of
Theorem 2 there exists a minimal authorized subset V0 (i.e., |V0| = k) such that
if det MV0 6= 0, V may recover S. On the other hand, we saw in Theorem 2 that
if 0 ∈ U0 and V /∈ Γ is an unauthorized subset, there exists a minimal authorized
subset V0 such that detMV0 6= 0 implies that V cannot learn any information
about S.

Hence, in order to prove both statements of the theorem, (15) and (16),
it suffices to assume that 0 ∈ U0 and then show that if V ∈ Γ is a minimal
authorized subset, MV has a nonzero determinant in probability at least 1− ε.

To that end, let V be such a subset and assume that its participants are
ordered according to their position in the hierarchy, (11). We proceed to show
that

Prob (det(MV) = 0) ≤ (k − 2)(k − 1)
2(q − k)

. (18)

Noting that (18) clearly holds when k = 1, 2, we continue by induction on k.
There are two cases to consider:

1. The last row in MV is r(h)(vk) where h < k−1 (this happens if km−1 < km−1
or if V ∩ Um = ∅).

2. The last row in MV is r(k−1)(vk) (this happens when km−1 = km − 1 and
V ∩ Um 6= ∅; in that case vk is the only participant in V ∩ Um).

We begin by handling the first case. Let v = (v1, . . . , vk−1) and (v, vk) =
(v1, . . . , vk). Let µk−1 = µk−1(v) denote the determinant of the (k− 1)× (k− 1)
minor of MV that is obtained by removing the last row and last column in MV .
Then

det(MV) =
k−2−h∑

i=0

civ
i
k +

(k − 1)!
(k − 1− h)!

· µk−1 · vk−1−h
k , (19)



for some constants ci that depend on v. Let Ω denote the collection of all v ∈
Fk−1 for which µk−1 = µk−1(v) = 0. Then

Prob(det(MV) = 0) =

=
∑

v∈Fk−1\Ω
Prob(det(MV) = 0|v)·Prob(v)+

∑

v∈Ω

Prob(det(MV) = 0|v)·Prob(v) .

(20)
If v ∈ Fk−1 \ Ω then det(MV) is a polynomial of degree k − 1 − h in vk, (19).
Hence, there are at most k − 1 − h values of vk for which det(MV) = 0. This
implies that

Prob(det(MV) = 0|v) ≤ k − 1− h

(q − 1)− (k − 1)
∀v ∈ Fk−1 \Ω (21)

(recall that the participant identities are distinct and are randomly selected from
F\{0}). Note that h could take any value between 0 and k−2. However, if h = 0
it means that all participants in V belong to the highest level, so that MV is a
Vandermonde matrix. In that case, the matrix is invertible and, consequently,
Prob(det(MV) = 0) = 0. Therefore, the worst case in (21) is when h = 1. Hence,
we rewrite (21) as follows:

Prob(det(MV) = 0|v) ≤ k − 2
q − k

∀v ∈ Fk−1 \Ω . (22)

If v ∈ Ω then the degree of det(MV) as a polynomial in vk is less than k−1−h.
The problem is that it may completely vanish and then det(MV) would be zero
for all values of vk. However, as v is a vector of dimension k− 1, we may invoke
the induction assumption (i.e., (18) for k − 1) and conclude that

Prob(v ∈ Ω) ≤ (k − 3)(k − 2)
2(q − k + 1)

. (23)

Finally, combining (20), (22) and (23) we may prove (18) in this case:

Prob(det(MV) = 0) ≤ k − 2
q − k

+
(k − 3)(k − 2)
2(q − k + 1)

≤ (k − 2)(k − 1)
2(q − k)

.

In the second case, det(MV) does not depend on vk as the last row in the
matrix in this case is (0, . . . , 0, (k−1)!). Hence, we may solve for ak−1 and reduce
the system to a system in only (k−1) unknowns, {ai}k−2

i=0 . Consequently, we may
apply induction in order to conclude that

Prob (det(MV) = 0) ≤ (k − 3)(k − 2)
2(q − k + 1)

<
(k − 2)(k − 1)

2(q − k)
.

The proof is thus complete. ¤
Theorem 3 implies that if k, the number of overall participants that are

required in an authorized subset, is a small number, the failure probability is
Θ(1/q) and therefore negligible, as it is equivalent to the probability of simply
guessing the secret.



Corollary 1. Assume a random allocation of participant identities, (14). Then
the probability that the resulting scheme has accessibility, (2), for all authorized
subsets and and perfect security, (3), for all unauthorized subsets is at least
1− (

n+1
k

) · ε, where ε is as in (17).

The random allocation is therefore a safe bet. Since usually n and k are not
too large, the dealer may adopt this strategy and be certain in a high probability
that both requirements – accessibility, and perfect security – will be satisfied.

3.3 Monotone allocation of participant identities

Here, we present a simple allocation method that guarantees both accessibility,
(2), and perfect security, (3), if the size of the underling field, q, is sufficiently
large.

For every 0 ≤ i ≤ m we define ni = |⋃i
j=0 Ui| and let n−1 = 0. The simpler

version of our method associates all ni− ni−1 members of Ui with the identities
[ni−1 + 1, ni] ⊂ F. The more flexible version of this method leaves gaps between
the m + 1 intervals of identities, in order to allow new participants to be added
to any level while still maintaining the monotonic principle,

u ∈ Ui , v ∈ Uj , i < j ⇒ u < v , (24)

where the inequality is in the usual sense between integers in the interval [0, q−1].
In Lemma 2 and Theorem 4 we prove that this method guarantees acces-

sibility and perfect security, (2)+(3), provided that the size of the underlying
field, q, is sufficiently large with respect to the parameters of the problem. In
Lemma 2 we prove our basic lower bound on q that guarantees these two condi-
tions. Then, in Theorem 4, we use the bound of Lemma 2 and carry out a more
delicate analysis that yields a better bound.

Lemma 2. Let (k, n) be a hierarchical secret sharing problem. Assume that the
participants in U were assigned identities in F in a monotone manner, namely,
in concert with condition (24), and let N = maxU . Finally, assume that

2−k · (k + 1)(k+1)/2 ·N (k−1)k/2 < q = |F| , (25)

(where k = km is the minimal size of an authorized subset). Then our hierarchical
secret sharing scheme satisfies conditions (2) and (3).

Proof. In view of Theorem 2, it suffices to prove that if V ∈ Γ is a minimal
authorized subset, that may include the phantom participant u = 0, then the
corresponding square matrix MV , (12), is regular. Without loss of generality we
assume that the participant identities in V are given by (11) (with `m = k) and
that they are ordered in the usual sense in R, v1 < v2 < · · · < vk. First, we prove
that

det MV 6= 0 in R . (26)



Then, invoking (25), we shall prove that

|det MV | < q in R . (27)

Combining (26) and (27) we conclude that det MV 6= 0 in F = Zq, as required.
In order to prove (26), we observe that the interpolation matrix E that

corresponds to the Birkhoff interpolation problem with which the participants
in V are faced, has an echelon form. Indeed, all rows have exactly one entry
that equals 1, and the position of the 1 is monotonically non-decreasing as we
go down the rows of E: in the first `0 rows we encounter the 1 in column j = 0,
in the next `1− `0 rows the 1 appears in column j = `0 and so forth. Hence, the
matrix E has no supported 1-sequences in the sense of Definition 2. Recalling
Proposition 1, we infer that the conditions of Theorem 1 are satisfied. Therefore,
the corresponding Birkhoff interpolation problem is well-posed over R, (26).

In order to bound the determinant of MV , we invoke Hadamard’s maximal
determinant theorem [8, problem 523]. According to that theorem, if A is a k×k
real matrix, and

|Ai,j | ≤ 1 , 0 ≤ i, j ≤ k − 1 , (28)

then
| det(A)| ≤ 2−k · (k + 1)(k+1)/2 . (29)

Let A be the matrix that is obtained from MV if we divide its jth column by
N j , 0 ≤ j ≤ k − 1. Since that matrix A satisfies condition (28), we conclude, in
view of (29) and (25), that MV satisfies (27). That completes the proof. ¤

Theorem 4. Under the conditions of Lemma 2, the hierarchical secret sharing
scheme satisfies conditions (2) and (3) provided that

α(k)N (k−1)(k−2)/2 < q = |F| where α(k) := 2−k+2 · (k − 1)(k−1)/2 · (k − 1)! .
(30)

Proof. Assume that V ∈ Γ is as in (11), and assume that it has k participants
whose identities are ordered in the usual sense in R, v1 < v2 < · · · < vk. Let
di, 1 ≤ i ≤ k, be the order of derivative of the share that vi got. Namely, in
view of (11) and (12), di = 0 for 1 ≤ i ≤ `0, di = k0 for `0 + 1 ≤ i ≤ `1, and
so forth. We refer to d = (d1, . . . , dk) as the type of the interpolation problem
that needs to be solved by the participants of V since it characterizes the form
of the coefficient matrix MV , (12). Finally, let t be the largest integer such that
di = i− 1 for all 1 ≤ i ≤ t. We note that t is well defined and t ≥ 1 since always
d1 = 0 (i.e., V must always include at least one participant of the highest level
U0).

Let P denote the problem of recovering P from the shares of {vi}1≤i≤k. We
claim that P may be decomposed into two independent problems that may be
solved in succession:

– Problem P1. Recovering P (t−1) (namely, the coefficients ai, t−1 ≤ i ≤ k−1,
see (10)) from the shares of vi, t ≤ i ≤ k.



– Problem P2. Recovering ai−1 from the share of vi, for i = t− 1, . . . , 1.

Indeed, the equations that correspond to the k−t+1 last participants – {vi}t≤i≤k

– involve only the k − t + 1 coefficients {ai}t−1≤i≤k−1 (note that if t = 1, P1

coincides with the original problem P and then P2 is rendered void). Hence, we
may first concentrate on solving the (possibly reduced) interpolation problem
P1. If that problem is solvable, we may proceed to problem P2. That problem is
always solvable by the following simple procedure: for every i, i = t−1, . . . , 1, we
perform one integration and then, using the share of vi, we recover the coefficient
ai−1 of P . Hence, we may concentrate on determining a sufficient condition for
the solvability of P1. That condition will guarantee also the solvability of P.
(Note that P1 still satisfies Pólya’s condition, Lemma 1.)

The dimension of the interpolation problem P1 is k − t + 1. Hence, since
the left hand side in (30) is monotonically increasing in k, we may concentrate
here on the worst case where t = 1 and the dimension of P1 is k (namely,
P1 = P). The main observation, that justifies this preliminary discussion and
the decomposition of P into two sub-problems, is that in the type d of P1,
d1 = d2 = 0. Indeed, d1 = 0 and d2 ≤ 1 as enforced by Pólya’s condition;
moreover, d2 6= 1 for otherwise t ≥ 2, as opposed to our assumption that t = 1.
With this in mind, we define s ≥ 2 to be the maximal integer for which di = 0
for all 1 ≤ i ≤ s.

Next, we write down the system of linear equations that characterizes the
interpolation problem P1. To that end, we prefer to look for the polynomial
P in its Newton form with respect to {vi}1≤i≤k (as opposed to its standard
representation (10)):

P (x) =
k−1∑

j=0

cj

j∏

i=1

(x− vi) . (31)

Writing down the system of linear equations in the unknowns {cj}0≤j≤k−1, we
see that the corresponding coefficient matrix, M̂ = M̂V , has a block triangular
form,

M̂ =
(

B1 0
B2 B3

)
(32)

where the upper-left s× s block is given by

B1 =




1 0 0 0 · · · 0
1 v2 − v1 0 0 · · · 0
1 v3 − v1

∏2
i=1(v3 − vi) 0 · · · 0

...
...

...
...

...
...

1 vs − v1

∏2
i=1(vs − vi)

∏3
i=1(vs − vi) · · ·

∏s−1
i=1 (vs − vi)




(33)

(we use the notation M̂ in order to distinguish this matrix from M = MV ,
(12), that was the coefficient matrix in the linear system for the unknowns ai

in the standard representation of the interpolant P (x), (10)). Invoking the same



arguments as in Lemma 2, we conclude that

det M̂ 6= 0 in R . (34)

We need to show that
det M̂ 6= 0 in F . (35)

In order to prove (35), we first invoke (32) to conclude that

det M̂ = det B1 · detB3 . (36)

As N < q, all terms on the diagonal of B1, (33), are nonzero in F, so that B1 is
invertible over F. Therefore, by (36), we only need to show that

detB3 6= 0 in F , (37)

in order to prove (35). Since det B3 6= 0 in R, as implied by (34) and (36), this
amounts to showing that

|det B3| < q in R . (38)

In order to prove (38), we shall show that

|M̂i,j | ≤ j ·N j−1 for all s + 1 ≤ i ≤ k , s ≤ j ≤ k − 1 (39)

(note that the rows of M̂ correspond to vi, 1 ≤ i ≤ k, while the columns of M̂
correspond to the unknown coefficient cj , 0 ≤ j ≤ k−1). Then, we may proceed
to prove (38) using Hadamard’s inequality: let A be the matrix that is obtained
from B3 after dividing its jth column, s ≤ j ≤ k−1, by j ·N j−1. Then according
to (39), the normalized block A satisfies condition (28) of Hadamard’s maximal
determinant theorem. Hence, by (29),

| detA| ≤ 2−k+s · (k − s + 1)(k−s+1)/2 .

Consequently, since s ≥ 2,

|det B3| = |det A|·



k−1∏

j=s

j ·N j−1


 ≤ 2−k+2·(k−1)(k−1)/2·(k−1)!·N (k−1)(k−2)/2 .

(40)
Inequalities (40) and (30) prove (38).

The only missing link is (39). In order to prove this inequality, we need
to derive an expression for the derivatives of P (x), (31). Let us introduce the
notations

Pj(x) =
j∏

i=1

(x−vi) and Pj,h(x) =
dhPj(x)

dxh
, 0 ≤ j ≤ k−1 , h ≥ 0 . (41)



Then, since Pj,h = 0 for all j < h,

P (h)(x) =
k−1∑

j=h

cjPj,h(x) . (42)

The expression for Pj,h(x) is given by

Pj,h(x) =
∑{

Π(g1,...,gh)(x) : (g1, . . . , gh) ∈ G(j, h)
}

, (43)

where G(j, h) is the set of all j!
(j−h)! ordered selections of h elements from

{1, . . . , j} and

Π(g1,...,gh)(x) =
∏

{(x− vi) : i ∈ {1, . . . , j} \ {g1, . . . , gh}} . (44)

Setting x = v`, for some s + 1 ≤ ` ≤ k, in (42), we see that the `th row in M̂
takes the form

(M̂`,j)0≤j≤k−1 =
(
0 · · · 0 Ph,h(v`) · · · Pk−1,h(v`)

)
, (45)

where h = d` is the order of derivative of the share of v`. From (43),

|Pj,h(v`)| ≤ |G(j, h)| · max
(g1,...,gh)

|Π(g1,...,gh)(v`)| .

Since, by (44), |Π(g1,...,gh)(v`)| ≤ N j−h, we conclude that

|Pj,h(v`)| ≤ j!
(j − h)!

·N j−h , h ≤ j ≤ k − 1 . (46)

As the definition of s implies that h ≥ 1 for all rows s + 1 ≤ ` ≤ k, and since
j ≤ k − 1 < N , we infer by (46) and (45) that

|M̂`,j | ≤ j ·N j−1 , h ≤ j ≤ k − 1 . (47)

Since, by (45), the inequality in (47) holds trivially for columns 0 ≤ j ≤ h − 1
as well, that proves (39). The proof of the theorem is thus complete. ¤

Condition (30) is pretty sharp. It may be seen that the worst scenario is
that in which d = (0, 0, 1, . . . , 1) – namely, k0 = 1 (the number of participants
from U0 must be at least 1) and there are two participants from U0 while all the
rest are from U1. In such cases, the (real) determinant of the block B3 in the
matrix of coefficients M̂ is Θ(N (k−1)(k−2)/2), though the constant α(k) may be
somewhat improved.

Table 1 includes for each value of k, 5 ≤ k ≤ 8, the maximal value of N for
which the original condition, (25), and the improved one, (30), still holds when
the secret to be shared is an AES key (namely, q is of size 128 bits). The figures
in the table demonstrate the exponential drop in the capacity of the scheme, N ,
when k increases. However, this should not be worrisome because n and k in
any plausible real-life application are usually small. In the unlikely scenario of k
and N so large that condition (30) fails to hold for any prime q of the size of the
secret to be shared, we may always go back to the random allocation strategy
that was described in the previous section.



k Condition (25) Condition (30)

5 N ≤ 5497 N ≤ 1234795
6 N ≤ 296 N ≤ 3637
7 N ≤ 56 N ≤ 200
8 N ≤ 19 N ≤ 38

Table 1. Values of k and N that satisfy conditions (25) and (30)

4 An ideal scheme for the disjunctive hierarchical secret
sharing problem

As described in the Introduction, Simmons [16] studied a closely related hierar-
chical secret sharing problem, where the conjunction of threshold conditions is
replaced by a disjunction (compare (1) to (7)). His solution to the problem was
not ideal. Using the ideal secret sharing scheme that we presented herein for the
conjunctive version of the problem, we may get an ideal secret sharing scheme
also for the disjunctive version.

Karchmer and Wigderson [11] introduced monotone span programs as a linear
algebraic model of computation for computing monotone functions. A monotone
span program (MSP hereinafter) is a quintuple M = (F,M,U , φ, e) where F is a
field, M is a matrix of dimensions a× b over F, U = {u1, . . . , un} is a finite set,
φ is a surjective function from {1, . . . , a} to U , which is thought of as labeling of
the rows of M , and e is some target row vector from Fb. The MSP M realizes
the monotone access structure Γ ⊂ 2U when V ∈ Γ if and only if e is spanned
by the rows of the matrix M whose labels belong to V. The size of M is a, the
number of rows in M . Namely, in the terminology of secret sharing, the size of
the MSP is the total number of shares that were distributed to all participants
in U . An MSP is ideal if a = n.

If Γ is a monotone access structure over U , its dual is defined by Γ ∗ = {V :
Vc /∈ Γ}. It is easy to see that Γ ∗ is also monotone. In [10] it was shown that if
M = (F,M,U , φ, e) is a MSP that realizes a monotone access structure Γ , then
there exists a MSP M∗ = (F,M∗,U , φ, e∗) of the same size like M that realizes
the dual access structure Γ ∗. Hence, an access structure is ideal if and only if
its dual is.

Returning to the disjunctive hierarchial access structure that was studied by
Simmons, (7), we claim the following straightforward proposition.

Proposition 2. Let U =
⋃m

i=0 Ui and k = {ki}m
i=0 be as in Definition 1. Let

Γ be the corresponding disjunctive access structure as defined in (7). Then Γ ∗

is the conjunctive access structure that is defined in Definition 1 with thresholds
k∗ = {k∗i }m

i=0 where k∗i = |⋃i
j=0 Uj | − ki + 1, 0 ≤ i ≤ m.

Since the conjunctive hierarchial access structure is ideal, at least over fields
that are sufficiently large, we conclude the following.

Corollary 2. The disjunctive access structure (7) is ideal.
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