
Max-Sum Goes Private

Tamir Tassa
The Open University

Ra’anana, Israel
tamirta@openu.ac.il

Roie Zivan
Ben-Gurion University of the Negev

Beer-Sheva, Israel
zivanr@bgu.ac.il

Tal Grinshpoun
Ariel University

Ariel, Israel
talgr@ariel.ac.il

Abstract
As part of the ongoing effort of designing secure
DCOP algorithms, we propose P-MAX-SUM, the
first private algorithm that is based on MAX-SUM.
The proposed algorithm has multiple agents pre-
forming the role of each node in the factor graph, on
which the MAX-SUM algorithm operates. P-MAX-
SUM preserves three types of privacy: topology pri-
vacy, constraint privacy, and assignment/decision
privacy. By allowing a single call to a trusted coor-
dinator, P-MAX-SUM also preserves agent privacy.
The two main cryptographic means that enable this
privacy preservation are secret sharing and homo-
morphic encryption. Our experiments on structured
and realistic problems show that the overhead of
privacy preservation in terms of runtime is reason-
able.

1 Introduction
The Distributed Constraint Optimization Problem (DCOP) is
a general model for distributed problem solving that has a
wide range of applications in multi-agent systems. Many al-
gorithms for solving DCOPs have been proposed. Complete
algorithms [Modi et al., 2005; Petcu and Faltings, 2005b;
Gershman et al., 2009] are guaranteed to find the optimal so-
lution, but because DCOPs are NP-hard, these algorithms re-
quire exponential time in the worst case. Thus, there is grow-
ing interest in incomplete algorithms, which may find subop-
timal solutions but run quickly enough to be applied to large
problems or real-time applications [Maheswaran et al., 2004;
Zhang et al., 2005; Zivan et al., 2014; Teacy et al., 2008].

The MAX-SUM algorithm [Farinelli et al., 2008] is an in-
complete, GDL-based, algorithm that has drawn considerable
attention in recent years, including being proposed for multi-
agent applications such as sensor systems [Teacy et al., 2008;
Stranders et al., 2009] and task allocation for rescue teams in
disaster areas [Ramchurn et al., 2010]. Agents in MAX-SUM
propagate cost/utility information to all neighbors. This con-
trasts with other inference algorithms such as ADPOP [Petcu
and Faltings, 2005a], in which agents only propagate costs up
a pseudo-tree structure.

One of the main motivations for solving constraint prob-
lems in a distributed manner is that of privacy. The term pri-

vacy is quite broad, a fact that gave rise to several categoriza-
tions of the different types of privacy [Greenstadt et al., 2007;
Grinshpoun, 2012; Léauté and Faltings, 2013]. In this paper
we relate to the categorization of Léauté and Faltings [2013]
that distinguish between agent privacy, topology privacy, con-
straint privacy, and assignment/decision privacy.

Most studies that evaluated distributed constraint algo-
rithms in terms of privacy considered either search algo-
rithms or complete inference algorithms. Some examples
are Maheswaran et al. [2006] who proposed the VPS frame-
work that was initially used to measure the constraint privacy
loss in SyncBB and OptAPO. Later, VPS was also applied
to DPOP and ADOPT [Greenstadt et al., 2006]. Doshi et
al. [2008] proposed to inject privacy-loss as a criterion to
the problem solving process. Some previous work was also
directed towards reducing constraint privacy loss. Several
privacy-preserving versions of DPOP were proposed in the
past [Greenstadt et al., 2007; Silaghi et al., 2006] including a
recent study by Léauté and Faltings [2013] that proposed sev-
eral versions of DPOP that provide strong privacy guarantees.
Another recent paper [Grinshpoun and Tassa, 2014] devises a
variation of SyncBB that preserves constraint privacy.

In this paper we propose the first private algorithm that
is based on MAX-SUM. The proposed algorithm, P-MAX-
SUM, has multiple agents preforming the role of each node in
the factor graph, on which the MAX-SUM algorithm operates.
Using secret sharing and homomorphic encryption, the agents
may execute the nodes’ role without revealing the content of
the messages they receive or the details of the computation
they perform and the messages that they generate. Thus, the
proposed algorithm prevents agents from revealing the iden-
tity of other agents with which their neighbors are constrained
(topology privacy), the costs their neighbors assign to value
assignments (constraint privacy), or the assignment selection
of their neighbors (assignment/decision privacy). By allow-
ing a single call to a trusted coordinator, P-MAX-SUM can
also preserve agent privacy.

2 Preliminaries
A Distributed Constraint Optimization Problem (DCOP) [Hi-
rayama and Yokoo, 1997] is a tuple 〈A,X ,D,R〉 where
A is a set of agents A1, A2, . . . , An, X is a set of
variables X1, X2, . . . , Xm, D is a set of finite domains
D1, D2, . . . , Dm, and R is a set of relations (constraints).

Each variable Xi takes values in the domain Di, and it is
held by a single agent. Each constraint C ∈ R defines a non-
negative cost for every possible value combination of a set of
variables, and is of the form C : Di1 × · · · ×Dik → R+ :=
[0,∞), for some 1 ≤ i1 < · · · < ik ≤ m.

A value assignment is a pair including a variable and a
value from that variable’s domain. A complete assignment
consists of value assignments to all variables in X . The ob-
jective is to find a complete assignment of minimal cost.

For simplicity, we make the common assumption that each
agent holds exactly one variable, i.e., n = m. We let
n denote hereinafter the number of agents and the num-
ber of variables. For the same reasons we also concentrate
on binary DCOPs, in which all constraints are binary, i.e.,
they refer to exactly two variables. Such constraints take
the form Ci,j : Di × Dj → R+. These assumptions
are customary in DCOP literature (e.g., [Modi et al., 2005;
Petcu and Faltings, 2005b]).

Each DCOP induces a graph G = (V,E) where V = X ,
and an edge connects the nodes Xi, Xj ∈ V if there is a con-
straint C ∈ R that is defined on Di×Dj . The corresponding
factor graph is a bipartite graph G′ = (V ′, E′) which is de-
fined as follows.

• V ′ has two types of nodes: (a) variable nodes –
X1, . . . , Xn, and (b) function nodes – for each e =
(Xi, Xj) ∈ E there is a node Xe in V ′.

• E′ contains an edge that connects Xi with Xe if and
only if e is an edge in G which is adjacent to Xi.

Knowledge Assumptions. We make the following com-
monly used assumptions (see, e.g. [Léauté and Faltings,
2013]): A variable and its domain are known only to its owner
agent and to the agents owning neighboring variables. In ad-
dition, a constraint is fully known to all agents owning vari-
ables in its scope, and no other agent knows anything about
the constraint (not even its existence).

We describe a variant of our protocol that maintains also
agent privacy. For this variant we make also the additional
assumption that each agent knows all agents that own a vari-
able that is a neighbor of their own variable in the constraint
graph, but does not know any of the other agents, not even
their existence.

Communication Assumptions. Here too we make the
standard communication assumptions (see, e.g. [Modi et al.,
2005]): Each agent can send messages to any of its neigh-
boring agents. The communication system is resilient in the
sense that messages do not get lost and they are received by
their intended recipient in the same order that they were sent
out.

2.1 The Max-Sum algorithm
The MAX-SUM algorithm performs synchronous steps (itera-
tions) that in each of them a couple of messages are sent along
each edge of G′ in both directions. Let us consider the edge
that connects Xi with Xe, where e = (Xi, Xj). The mes-
sages, in both directions, will be vectors of dimension |Di|
and they will be denoted by either Qk

i→e or Rk
e→i, depending

on the direction, where k is the index of the synchronous step.

If x is one of the elements in Di then its corresponding entry
in the message will be denoted by Qk

i→e(x) or Rk
e→i(x).

In the first step all messages are zero. After completing the
kth step, the messages in the next step will be as follows. Fix-
ing a variable node Xi and letting Ni be its set of neighbors,
then for each Xe ∈ Ni, Xi will send to Xe the vector

Qk+1
i→e :=

∑
Xf∈Ni\{Xe}

Rk
f→i . (1)

Fixing a function node Xe, where e = (Xi, Xj), then for
each x ∈ Di,

Rk+1
e→i(x) := min

y∈Dj

[
Ci,j(x, y) +Qk

j→e(y)
]
, (2)

while for each y ∈ Dj ,

Rk+1
e→j(y) := min

x∈Di

[
Ci,j(x, y) +Qk

i→e(x)
]
. (3)

Finally, after completing a preset number K of steps, each
variable node Xi computes Mi :=

∑
Xe∈Ni

RK
e→i and then

selects x ∈ Di for which Mi(x) is minimal.
In order to prevent the entries in the messages from

growing uncontrollably, it is customary to reduce from
each entry in each message Qk+1

i→e, where e = (Xi, Xj),
the value αk+1

i,j := (
∑

x∈Di
Qk+1

i→e(x))/|Di| or αk+1
i,j :=

minx∈Di
Qk+1

i→e(x). (The latter option ensures that all mes-
sage entries always remain nonnegative.)

3 The P-Max-Sum algorithm
It can be shown that a naı̈ve execution of MAX-SUM may
reveal private information. For example, assume that agent
Ai is the only neighbor of agent Aj . The function e be-
tween them is represented by the node Xe and the messages
Rk

e→i include costs that are derived only from the constraint
between them. Thus,Ai can learn thatAj has no other neigh-
bors. In caseAj has additional neighbors, the messagesRk

e→i
include costs of constraints that Aj has with its other neigh-
bors. Thus, Ai may learn information that should not be re-
vealed to it. To avoid such leakage of information, it is imper-
ative to hide from each nodeXi (which is controlled by agent
Ai) the content of the messages it receives from its neighbors
in Ni. To achieve that, any message Qk

i→e or Rk
e→i (where

e = (Xi, Xj)) will be split into two random additive shares
that will be held by Ai and Aj . Each of these shares, on its
own, does not reveal any information on the underlying mes-
sage. Our secure protocols will take as input those shares,
but they will make sure that none of the interacting agents re-
veal the value of the complementing share so that it remains
oblivious of the value of the underlying message. Moreover,
the classic MAX-SUM dilemma of “which agent controls the
function nodeXe?” becomes irrelevant since the operation of
Xe will be jointly performed by Ai and Aj .

Let p be a very large integer and let Zp be the additive
group modulo p. Then each of the entries in any of the mes-
sages Qk

i→e or Rk
e→i will be treated by our secure protocols

as an element in Zp. As will be clarified later, p will be of the
size of typical moduli of public-key cryptosystems. (Usually,
modern public-key cryptography uses moduli of size 1024

bits.) Let c denote an upper bound on the entries of all mes-
sages Qk

i→e and Rk
e→i. Applying the procedure described at

the end of Section 2.1 usually prevents an overflow from a
standard double-precision arithmetic, namely, it guarantees
that all entries remain bounded by c = 264. However, as we
work in very large arithmetic size (modulo p), all we need to
assume is that all entries in all messages remain bounded by
some constant c� p. (So, if log2 p ≈ 1024, we may assume
that, say, log2 c ≈ 950.)

Let Xi and Xj be two variable nodes that are connected
through a constraint edge e = (Xi, Xj), and let w denote one
of the entries in one of the messages that are sent between
the corresponding two agents in step k (namely, one of the
four messages Qk

i→e, Rk
e→i, Q

k
j→e, or Rk

e→j). Then the two
agents Ai and Aj will engage in a secure protocol that will
provide each of them a random element in Zp, denoted si and
sj , such that si + sj = w (where all additions hereinafter are
modulo p, unless stated otherwise). The sharing procedure
will be carried out for all entries in all messages indepen-
dently (namely, the selection of random shares for one entry
will be independent of the selection of shares in other entries,
or the selection of shares in the same entry in another syn-
chronous step).

For any 0 ≤ k ≤ K let us denote by Mk the set of all
messages that are transmitted along the edges of G′ in the
kth synchronous step. Eqs. (1)–(3) describe how each of the
messages in Mk+1 is computed from the messages in Mk.
Let Xi, Xj be two nodes in V that are connected through an
edge e = (Xi, Xj). Then each message Qk

i→e will be split to
two random additive shares as follows:

Qk
i→e = Sk,i

i→e + Sk,j
i→e ; (4)

the first share will be known only to Ai and the second one
only to Aj . Similar sharing will be applied to messages that
emerge from function nodes; i.e.,

Rk
e→i = Sk,i

e→i + Sk,j
e→i . (5)

(Recall that the messages and the shares in Eqs. (4) and (5)
are vectors in Z|Di|

p .)
Now, let Sk denote the set of all shares of Mk. Then we

should devise a secure computation protocol that will take us
from Sk to Sk+1. In doing so we shall assume that all agents
are curious-but-honest. Namely, their honesty implies that
they will follow the protocol and will not collude, but they
will try to use their legal view in the secure protocols in order
to extract private information on constraints of other agents.

We proceed to describe our secure protocols, starting with
the initial creation of shares in step k = 0. Then, in the main
body of our work, we describe the computation of shares in
the progression between successive steps, i.e., the computa-
tion of Sk+1 from Sk. Finally, we discuss the secure com-
putation of assignments from the shares that were obtained in
the last step.

3.1 Initialization
For k = 0 all messages are zero. To create random shares of
all those vectors, every pair of neighboring agents, sayAi and
Aj , generate the initial splitting to random shares. To create

a splitting as in Eq. (4), Ai and Aj create jointly a random
vector S0,i

i→e ∈ Z|Di|
p , that will be Ai’s share, and then they

set S0,j
i→e = −S0,i

i→e asAj’s share. Similar initial splitting will
be used for the zero message R0

e→i in Eq. (5).

3.2 Progression
Here we describe the protocols that allow the agents to com-
pute Sk+1 from Sk. We begin with a preliminary discussion
about homomorphic encryption and its usage in our protocols.

Using homomorphic encryption
An additive homomorphic encryption is an encryption func-
tion E : ΩP → ΩC where ΩP and ΩC are the domains
of plaintexts and ciphertexts, respectively, ΩP is an addi-
tive group, ΩC is a multiplicative group, and E(x + y) =
E(x) · E(y) for all x, y ∈ ΩP . Examples for such ciphers are
Benaloh [1994] and Paillier [1999] ciphers.

In our secure protocols we assume that every agent has a
public key additive homomorphic cryptosystem. The encryp-
tion of messages under the cryptosystem of agent Ai will be
denoted Ei, 1 ≤ i ≤ n. It will be used by agents Aj that
are constrained with Ai in order to send encrypted messages
to Ai; the private decryption key of Ei will be known only
to Ai. In addition, we assume that every set of agents of the
form A−i := {Aj : 1 ≤ j ≤ n, j 6= i} has an additive ho-
momorphic cryptosystem, in which the encryption function
is denoted Fi. The private key in Fi is known to all agents
in A−i (namely, to all agents except for Ai). That encryption
will be used by the neighbors of Ai in G in order to convey
messages between them. Since the topology of the graph is
private, the neighbors ofAi do not know each other and hence
they will send those messages throughAi; the encryption will
guarantee that Ai cannot recover those messages.

Letting m(Ei) and m(Fi) denote the moduli of Ei and Fi

respectively, 1 ≤ i ≤ n, then a good selection of p (the size
of the domain Zp in which all shares take value) would be
p = min{m(Ei),m(Fi) : 1 ≤ i ≤ n}.

Computing shares in messages that emerge from a
variable node
Fix a variable node Xi. As discussed earlier, for each
Xe ∈ Ni (namely, a function node adjacent to the vari-
able node Xi in G′), Xi needs to send to Xe the vector
Qk+1

i→e :=
∑

Xf∈Ni\{Xe}R
k
f→i (see Eq. (1)). Let us denote

t := |Ni| and let 1 ≤ j1 < j2 < · · · < jt ≤ n be the
indices of all variables that are constrained with Xi so that
Ni = {Xe` : 1 ≤ ` ≤ t}, where e` = (Xi, Xj`). Let us
concentrate on one of the function nodes adjacent to Xi, say
Xe1 . Then

Qk+1
i→e1

=

t∑
`=2

Rk
e`→i . (6)

We start by dealing with the case t ≥ 2. In that case, the
sum on the right-hand side of Eq. (6) is non-empty. Each of
the vectors in the sum on the right-hand side of Eq. (6) is
shared between Ai and Aj` , 2 ≤ ` ≤ t. Therefore, the two
shares in Qk+1

i→e1
:= Sk+1,i

i→e1
+ Sk+1,j1

i→e1
(see Eq. (4)) can be

computed as follows:

• The share that Ai will get, denoted Sk+1,i
i→e1

, is the sum of
the t−1 shares thatAi has for the t−1 messagesRk

e`→i,
2 ≤ ` ≤ t. Ai can compute it on its own.

• The share that Aj1 will get, Sk+1,j1
i→e1

, is the sum of the
t−1 shares thatAj2 , . . . , Ajt have in step k for the t−1
messages Rk

e`→i, 2 ≤ ` ≤ t. This is done in a secure
manner as described in Protocol 1 below.

Protocol 1 describes the process of share generation in
messages that emerge from a fixed variable node, Xi. Let
Sk,i
e`→i and Sk,j`

e`→i be the shares that Ai and Aj` hold, respec-
tively, in Rk

e`→i, 1 ≤ ` ≤ t. Those shares will be the inputs
that Ai and its neighbors Aj` , 1 ≤ ` ≤ t, bring to Protocol 1.
The output toAi will be the shares Sk+1,i

i→e`
for each 1 ≤ ` ≤ t.

The output to the neighboring agent Aj` , 1 ≤ ` ≤ t, will be
Sk+1,j`
i→e`

, which is the complement share in Qk+1
i→e`

.
In Steps 1-3 of Protocol 1, all neighbors send to Ai their

shares, encrypted with Fi, to prevent Ai from recovering
them. (The encryptionFi(·) is applied independently on each
of the |Di| components of the share Sk,j`

e`→i.) The subsequent
loop in Steps 4-8 describes the interaction ofAi vis-a-vis each
of the neighboring agents Aj` , 1 ≤ ` ≤ t. In Step 5, Ai com-
putes its share in Qk+1

i→e`
. In Step 6, Ai sends to Aj` a mes-

sage W` where, owing to the additive homomorphic property
of Fi, W` = Fi(

∑
1≤`′ 6=`≤t S

k,j`′
e`′→i). Hence, Aj` recovers in

Step 7 its share Sk+1,j`
i→e`

=
∑

1≤`′ 6=`≤t S
k,j`′
e`′→i as required.

Protocol 1 Computing shares in messages that emerge from
a variable node
1: for ` = 1, . . . , t do
2: Aj` sends to Ai the encryption of its share Fi(S

k,j`
e`→i).

3: end for
4: for ` = 1, . . . , t do
5: Ai computes Sk+1,i

i→e`
←

∑
1≤`′ 6=`≤t S

k,i
e`′→i.

6: Ai computes W` :=
∏

1≤`′ 6=`≤t Fi(S
k,j`′
e`′→i) and sends it to

Aj` .
7: Aj` sets Sk+1,j`

i→e`
← F−1

i (W`).
8: end for

Note that if the graph topology was not private, then each
of the neighbors Aj` of Ai could have obtained its share
Sk+1,j`
i→e`

if all other neighboring agents of Ai would have sent
their shares directly toAj` , in the clear, without involvingAi.
However, such a course of action would reveal to each neigh-
bor of Ai the entire neighborhood of Ai. The solution that
we suggest here hides the topology by using Ai as a proxy
for those messages. Using encryption hides the content of the
sent shares from Ai. Using homomorphic encryption allows
Ai to perform the computation in Step 6 and then send to Aj`
just a single message. Without the homomorphic property Ai

would have needed to send all t − 1 messages to Aj` , thus
revealing to Aj` the number of Ai’s neighbors.

We now attend to the case where t = 1. In such a case
Qk+1

i→e1
is zero. Here, Steps 1-3 are redundant (but are still

carried out in order to hide from Aj1 the fact that it is the sin-
gle neighbor of Ai). Then, instead of Step 5 in Protocol 1, Ai

will generate a new random share for itself, denoted Sk+1,i
i→e1

.
Then, in Step 6, Ai will set W1 := Fi(−Sk+1,i

i→e1
). Hence,

Aj1 will recover in Step 7 the share Sk+1,j1
i→e1

= −Sk+1,i
i→e1

as
required, obliviously of the fact that t = 1.

In view of the discussion at the end of Section 2.1, Proto-
col 1 must be augmented by a post-processing procedure in
which every pair of neighbors Ai and Aj compute αk+1

i,j and
then Aj decreases αk+1

i,j from its share Sk+1,j
i→e . We omit the

details of that procedure due to lack of space.

Computing shares in messages that emerge from a
function node
Fix a function node Xe, where e = (Xi, Xj). Eqs. (2)–(3)
describe the messages emerging from Xe. Those messages
consist of |Di|+|Dj | scalars, thatAi andAj have to share be-
tween themselves. Let us concentrate on one of those scalars,
say Rk+1

e→i(x) for some x ∈ Di. The secure multiparty prob-
lem that Ai and Aj are facing is as follows: if sk,i(y) and
sk,j(y) are the two scalar additive shares that Ai and Aj hold
in Qk

j→e(y), for some y ∈ Dj , then they need to get two
random additive shares sk+1,i(x) and sk+1,j(x) so that

sk+1,i(x)+sk+1,j(x) = min
y∈Dj

[
Ci,j(x, y) + sk,i(y) + sk,j(y)

]
(7)

where all additions are modulo p, but when computing the
minimum in Eq. (7), the numbers in the brackets are viewed
as nonnegative integers.

Such computations can be carried out with perfect privacy
using Yao’s garbled circuit protocol [Yao, 1982]. However,
implementing Yao’s protocol for each entry in each transmit-
ted message emerging from a function node in each of the al-
gorithm’s steps is impractical due to the hefty computational
toll of that protocol. Therefore, we proceed to describe a
much simpler and more efficient protocol that Ai and Aj can
execute for carrying out the same secure computation. Pro-
tocol 2, which we describe below, is not perfectly secure as
it leaks some excessive information. But, as we argue later
on, that excessive information is benign and of no practical
use; on the other hand, the gain in efficiency (in comparison
to a solution that relies on Yao’s garbled circuit protocol) is
enormous since choosing Protocol 2 makes the difference be-
tween a theoretical solution and a practical one.

Protocol 2 Computing shares in messages that emerge from
a function node
1: Ai sends to Aj the value Ei(sk,i(y)) for all y ∈ Dj .
2: Aj selects uniformly at random a scalar integer r ∈ [0, p−c−1].
3: Aj computesW (y) := Ei(sk,i(y))·Ei(Ci,j(x, y)+s

k,j(y)+r)
for all y ∈ Dj .

4: Aj sends a permutation of {W (y) : y ∈ Dj} to Ai.
5: Ai computes E−1

i (W (y)) = Ci,j(x, y)+s
k,i(y)+sk,j(y)+r

for all y ∈ Dj .
6: Ai computes w := miny∈Dj E

−1
i (W (y)).

7: Ai generates a random share for itself sk+1,i(x) ∈ Zp.
8: Ai sends to Aj the value w′ = w − sk+1,i(x).
9: Aj computes sk+1,j(x) = w′ − r.

In Step 1 of Protocol 2, Ai sends to Aj an encryption of
its share sk,i(y) for all y ∈ Dj . It uses its own encryption
function Ei so that Aj will not be able to recover Ai’s private
shares. However, as Ei is homomorphic, Aj can perform the
needed arithmetics on the received shares.

In Step 2, Aj selects at random a masking scalar r ∈
[0, p−c−1] which will be used to protect private information
from Ai, as we shall see shortly. (Recall that c is a publicly
known upper bound on all entries in all messages.) Then, the
computation in Step 3 results, for each y ∈ Dj , in a value
W (y) that equals Ei(w(y)) where

w(y) := Ci,j(x, y) + sk,i(y) + sk,j(y) + r , (8)

owing to the additive homomorphism of Ei. Since sk,i(y) +
sk,j(y) = Qk

j→e(y), the value of w(y) in Eq. (8) equals the
corresponding argument in the minimum on the right-hand
side of Eq. (2),

m(y) := Ci,j(x, y) +Qk
j→e(y) ,

shifted by the random mask r. In Step 4, Aj sends all W (y),
y ∈ Dj , to Ai but it randomly permutes them so that Ai will
not be able to associate any value of W (y) to any assignment
y ∈ Dj . After Ai decrypts the received values it recovers in
Step 5 all values w(y), y ∈ Dj .

Let us now examine w(y). As discussed above, it equals
m(y) + r. Since m(y) is an integer in the range [0, c] (by
our assumption) and as r ∈ [0, p − c − 1], then w(y) equals
m(y) + r, where the sum is in the usual sense of a sum
of integers. Namely, even though all sums in our discus-
sion are sums modulo p, in this particular case, the equal-
ity holds in the stronger sense of sum of integers. Hence,
miny∈Dj [m(y) + r], which is the value w that Ai computes
in Step 6, equals r + miny∈Dj m(y) (where, again, the latter
sum is a regular sum of integers, and not just a modular sum).
Next, Ai generates for itself a random share sk+1,i(x) ∈ Zp

(Step 7) and sends to Aj the value w′ = w − sk+1,i(x) (Step
8), where the subtraction is modulo p. Finally, Aj computes
its share in Step 9, sk+1,j(x) = w′− r, where once again the
subtraction is modulo p. As a result, Ai and Aj end up with
random shares, sk+1,i(x) and sk+1,j(x) respectively, whose
sum modulo p equals miny∈Dj

m(y), as required.
We now turn to discuss the privacy provided by Protocol

2. The only information that Aj receives in the course of
the protocol is the encryption of Ai’s shares by Ei. Assum-
ing that Ei is based on a strong key, then Protocol 2 provides
computational privacy against Aj . As for Ai, it gets all val-
ues m(y) + r, y ∈ Dj . The usage of the random shift r
ensures that in very high probability, 1 − 2c

p−c , Ai can learn
absolutely no information on m(y), while in probability 2c

p−c
it may learn either a lower or an upper bound on m(y) for
some y ∈ Dj . (We omit further discussion here; the inter-
ested reader is referred to [Tassa and Bonchi, 2014, Theo-
rem 4.1].) In addition, the usage of the secret permutation,
which Aj selects, prevents Ai from associating any value of
m(y)+r to any particular y ∈ Dj . However, Ai may sort the
valuesm(y)+r in a non-decreasing order and find the correct
differences between consecutive entries in the corresponding

ordering ofm(y). In addition, it may compute any function of
those differences, such as the variance of the sequence m(y).
We consider this leakage of information completely benign,
and certainly a modest price to pay for a fully practical secure
implementation of this part of the P-MAX-SUM algorithm.

3.3 Termination
After completing K iterations, the sum of the last incoming
messages from all function nodes that are adjacent to Xi is
Mi :=

∑t
`=1R

K
e`→i (recall that Ni = {Xe` : 1 ≤ ` ≤ t},

where e` = (Xi, Xj`)). Then, Ai needs to assign Xi the
value xi for which the corresponding entry in Mi is minimal.
RK

e`→i = SK,i
e`→i + SK,j`

e`→i where SK,i
e`→i is held by Ai and

SK,j`
e`→i is held by Aj` . We proceed to describe Protocol 3 that

performs that computation securely.
In Steps 1-3, all agents that are connected to Ai send to it

an Fi-encryption of their share in the last message sent from
their respective function node to Xi. Then, in Step 4, Ai

selects a random masking scalar r ∈ [0, p − c − 1], defines
Sr = (r, . . . , r) ∈ Z|Di|

p , and computes

M̂ := Fi(Sr) ·
t∏

`=1

Fi(S
K,j`
e`→i) · Fi(

t∑
`=1

SK,i
e`→i) .

Owing to the homomorphic property of Fi, the vector M̂
equalsFi(Sr+

∑t
`=1 S

K,j`
e`→i+

∑t
`=1 S

K,i
e`→i) = Fi(Sr+Mi),

where Mi is as defined above. In Steps 5-6, Ai sends a se-
cret and random permutation of the entries of M̂ to one of
its neighbors who proceeds to decrypt it and notify Ai of the
index h in which a minimum was obtained. Finally (Step 7),
Ai assigns to Xi the value x ∈ Di in which Sr + Mi (and
consequently also Mi) was minimal.

We omit a discussion of the privacy of Protocol 3 due to
space limitations.

Protocol 3 Computing the best assignment for Xi

1: for ` = 1, . . . , t do
2: Aj` sends to Ai the encryption of its share Fi(S

K,j`
e`→i).

3: end for
4: Ai selects Sr = (r, . . . , r) ∈ Z|Di|

p , where r ∈ [0, p −
c − 1], and computes M̂ = Fi(Sr) ·

∏t
`=1 Fi(S

K,j`
e`→i) ·

Fi(
∑t

`=1 S
K,i
e`→i).

5: Ai selects a secret random permutation π on Di and sends
π(M̂) to Aj1 .

6: Aj1 decrypts the entries of the received vector and informs Ai

of the index h of the minimal entry.
7: Ai assigns to Xi the value that was mapped by π to h.

4 Privacy analysis (overview)
Our proposed algorithm preserves three types of privacy:
topology privacy (by using the homomorphic encryption
functions Fi), constraint privacy, and assignment/decision
privacy (by using the homomorphic encryption functions Ei,
secret sharing, random maskings and random permutations).
In the version presented in the paper, the algorithm does not

preserve agent privacy due to the need for generating the pri-
vate keys in the encryption functions Fi. This problem can
be resolved by the use of a trusted coordinator that intervenes
only in the initialization stage. Each agent Ai will tell the
coordinator who are its neighbors. The coordinator can then
create key pairs for Fi and send them to all ofAi’s neighbors,
for all 1 ≤ i ≤ n.

There exist several complete privacy-preserving DCOP al-
gorithms. While there is no point to compare their efficiency
to that of P-MAX-SUM (for obvious scaling problems of
complete algorithms), it is interesting to observe their pri-
vacy features. The algorithm P-SyncBB [Grinshpoun and
Tassa, 2014] preserves constraint and topology privacy, but
not agent or decision privacy. As for the study of Léauté and
Faltings [2013], they presented a sequence of three privacy-
preserving versions of DPOP: P-DPOP(+), P3/2-DPOP(+),
and P2-DPOP(+). All three versions preserve agent privacy
and partial topology privacy. The least private and most ef-
ficient version, P-DPOP(+), preserves constraint and deci-
sion privacy only partially, as it may leak related information.
P3/2-DPOP(+) preserves decision privacy fully but it still re-
spects constraint privacy only partially. The last version, P2-
DPOP(+) (most private, least efficient), preserves constraint
and decision privacy fully.

5 Efficiency analysis
We analyze here the computational cost of P-MAX-SUM.
We focus on analyzing the induced cost in the progression
steps, since both initialization and termination steps are per-
formed only once. In addition, we count only encryption and
decryption operations, since the other performed operations
(random numbers’ generation, additions, multiplications, and
computing minima) have computational costs which are few
orders of magnitude smaller than those of the cryptographic
operations. Let us fix an agent Ai and assume that it has t
neighboring agents. Let us also denote the costs of encryp-
tion and decryption by Ce and Cd, respectively. Finally, let
d̂ := max1≤j≤n |Dj | denote the size of the largest variable
domain. Then, Protocol 1 involves t concurrent encryptions
(Steps 1-3) followed by t non-concurrent decryptions (Step
7). Hence, the non-concurrent runtime of Protocol 1 for Ai

in any given synchronous step is Ce + tCd. As for Protocol
2, Ai has to run it vis-a-vis each of its neighbors. In Step 1 it
performs up to d̂ encryptions vis-a-vis each of its t neighbors.
Hence, the non-concurrent runtime of that step is bounded by
td̂Ce. Then, in Step 3 all neighboring agents have to per-
form up to d̂ encryptions, concurrently. Finally, Step 5 entails
up to td̂ non-concurrent decryptions. Hence, the overall non-
concurrent runtime for Ai due to Protocol 2 in any given step
is bounded by (t+ 1)d̂Ce + td̂Cd. Letting t̂ denote the max-
imal degree of a node in the graph G, we conclude that the
overall runtime of the P-MAX-SUM algorithm is (roughly)
bounded by

(
Ce · [(t̂+ 1)d̂+ 1] + Cd · t̂(d̂+ 1)

)
·K, where

K is the number of synchronous steps.
We note that the runtime of P-MAX-SUM is independent

of n, the number of agents. However, it does depend on the

maximal degree of a node in the constraint graph.
To realize the actual time it will take P-MAX-SUM to run

we followed the simulated time approach [Sultanik et al.,
2008] by measuring the time of atomic operations performed
in the algorithm and then counting the non-concurrent times
these operations are performed. We measured the runtimes of
the encryption and decryption operations by averaging mul-
tiple runs of the common Java implementation of the Paillier
cryptosystem1 on a hardware comprised of an Intel i7-4600U
processor and 16GB memory. Our tests show that Ce takes at
most 2 msec, while Cd takes at most 3 msec.

There are a number of indications that MAX-SUM per-
forms best in the first few iterations of its run [Zivan and
Peled, 2012; Zivan et al., 2014]. The experiments presented
by Zivan et al. [2014] indicate this phenomenon on various
benchmarks. We reproduced these experiments to investigate
the number of iterations required for MAX-SUM to find a so-
lution of high quality on realistic and structured benchmarks,
where privacy is expected to be important, as well as on uni-
form random problems.

The results were conclusive. The best solutions for rela-
tively large graph coloring problems (including 100 agents,
three colors in each domain and constraint density of 0.05)
and meeting scheduling problems (including 90 agents, 20
meetings among them)2 were found within the first 5 and
10 iterations, respectively. Thus, all iterations following the
tenth iteration in each run were redundant. For uniform ran-
dom problems, the average result was also the best after a
small number of iterations. However, occasionally, the explo-
ration in further iterations revealed higher quality solutions.
That been said, the fact that MAX-SUM is not guaranteed to
converge indicates the need for the use of the anytime frame-
work as proposed by Zivan et al. [2014]. The privacy preserv-
ing methods presented in this paper can be used to generate a
private version of the anytime framework. A comprehensive
discussion of those issues is delayed to the full version of this
paper due to space limitations.

Considering the limited number of needed iterations along
with the overhead of its cryptographic operations, P-MAX-
SUM needs at most a few seconds to complete the run of
a large-scale structured or realistic problem. For instance,
a graph coloring problem with 100 agents takes about 0.5
seconds, while a common meeting scheduling problem takes
about 5 seconds. Such running times are clearly acceptable
considering the privacy preservation requirement.

A detailed efficiency analysis (computational and commu-
nication costs), comparing P-MAX-SUM to the original non-
private MAX-SUM algorithm, is omitted due to space limita-
tions.

6 Conclusion
One of the most important motivations for solving a problem
distributively is preserving the privacy of agents. Therefore,
a number of recent studies proposed private versions of exist-
ing DCOP-solving algorithms. Yet, no such study was based

1http://www.csee.umbc.edu/˜kunliu1/
research/Paillier.html

2For more details on the setup see [Zivan et al., 2014].

on the MAX-SUM algorithm, which has recently been in the
focus of both algorithmic and applicative DCOP research.

In this paper we proposed P-MAX-SUM, a privacy-
preserving version of MAX-SUM. The proposed algorithm
preserves topology, constraint and assignment/decision pri-
vacy. It may be enhanced to preserve also agent privacy by
issuing a single call to a trusted coordinator.

In future work we shall extend P-MAX-SUM so that it
handles non-binary constraints. We also plan to devise sim-
ilar privacy-preserving versions to extensions of MAX-SUM,
e.g., BOUNDED-MAX-SUM [Rogers et al., 2011] and MAX-
SUM ADVP [Zivan and Peled, 2012].

References
[Benaloh, 1994] J. C. Benaloh. Dense probabilistic encryp-

tion. In Workshop on Selected Areas of Cryptography,
pages 120–128, 1994.

[Doshi et al., 2008] P. Doshi, T. Matsui, M. C. Silaghi,
M. Yokoo, and M. Zanker. Distributed private constraint
optimization. In WI-IAT, pages 277–281, 2008.

[Farinelli et al., 2008] A. Farinelli, A. Rogers, A. Petcu, and
N. R. Jennings. Decentralised coordination of low-power
embedded devices using the Max-Sum algorithm. In AA-
MAS, pages 639–646, 2008.

[Gershman et al., 2009] A. Gershman, A. Meisels, and
R. Zivan. Asynchronous forward bounding. Journal of
Artificial Intelligence Research, 34:25–46, 2009.

[Greenstadt et al., 2006] R. Greenstadt, J. Pearce, and
M. Tambe. Analysis of privacy loss in distributed con-
straint optimization. In AAAI, pages 647–653, 2006.

[Greenstadt et al., 2007] R. Greenstadt, B. Grosz, and M. D.
Smith. SSDPOP: improving the privacy of DCOP with
secret sharing. In AAMAS, pages 171:1–171:3, 2007.

[Grinshpoun and Tassa, 2014] T. Grinshpoun and T. Tassa.
A privacy-preserving algorithm for distributed constraint
optimization. In AAMAS, pages 909–916, 2014.

[Grinshpoun, 2012] T. Grinshpoun. When you say (DCOP)
privacy, what do you mean? In ICAART, pages 380–386,
2012.

[Hirayama and Yokoo, 1997] K. Hirayama and M. Yokoo.
Distributed partial constraint satisfaction problem. In CP,
pages 222–236, 1997.

[Léauté and Faltings, 2013] T. Léauté and B. Faltings. Pro-
tecting privacy through distributed computation in multi-
agent decision making. Journal of Artificial Intelligence
Research, 47:649–695, 2013.

[Maheswaran et al., 2004] R. T. Maheswaran, J. P. Pearce,
and M. Tambe. Distributed algorithms for DCOP: A
graphical-game-based approach. In PDCS, pages 432–
439, 2004.

[Maheswaran et al., 2006] R. T. Maheswaran, J. P. Pearce,
E. Bowring, P. Varakantham, and M. Tambe. Privacy loss
in distributed constraint reasoning: A quantitative frame-
work for analysis and its applications. JAAMAS, 13:27–60,
2006.

[Modi et al., 2005] P. J. Modi, W. Shen, M. Tambe, and
M. Yokoo. ADOPT: asynchronous distributed constraints
optimizationwith quality guarantees. Artificial Intelli-
gence, 161:149–180, 2005.

[Paillier, 1999] P. Paillier. Public-key cryptosystems based
on composite degree residuosity classes. In Eurocrypt,
pages 223–238, 1999.

[Petcu and Faltings, 2005a] A. Petcu and B. Faltings. Ap-
proximations in distributed optimization. In CP, pages
802–806, 2005.

[Petcu and Faltings, 2005b] A. Petcu and B. Faltings. A scal-
able method for multiagent constraint optimization. In IJ-
CAI, pages 266–271, 2005.

[Ramchurn et al., 2010] S. D. Ramchurn, A. Farinelli, K. S.
Macarthur, and N. R. Jennings. Decentralized coor-
dination in robocup rescue. The Computer Journal,
53(9):1447–1461, 2010.

[Rogers et al., 2011] A. Rogers, A. Farinelli, R. Stranders,
and N. R. Jennings. Bounded approximate decentralised
coordination via the Max-Sum algorithm. Artificial Intel-
ligence, 175(2):730–759, 2011.

[Silaghi et al., 2006] M. C. Silaghi, B. Faltings, and
A. Petcu. Secure combinatorial optimization simulating
DFS tree-based variable elimination. In ISAIM, 2006.

[Stranders et al., 2009] R. Stranders, A. Farinelli, A. Rogers,
and N. R. Jennings. Decentralised coordination of contin-
uously valued control parametersusing the Max-Sum algo-
rithm. In AAMAS, pages 601–608, 2009.

[Sultanik et al., 2008] E. Sultanik, R. N. Lass, and W. C.
Regli. DCOPolis: a framework for simulating and deploy-
ing distributed constraint reasoning algorithms. In AAMAS
(demos), pages 1667–1668, 2008.

[Tassa and Bonchi, 2014] T. Tassa and F. Bonchi. Privacy
preserving estimation of social influence. In EDBT, pages
559–570, 2014.

[Teacy et al., 2008] W. T. L. Teacy, A. Farinelli, N. J. Grab-
ham, P. Padhy, A. Rogers, and N. R. Jennings. Max-Sum
decentralised coordination for sensor systems. In AAMAS,
pages 1697–1698, 2008.

[Yao, 1982] A. C. Yao. Protocols for secure computation. In
FOCS, pages 160–164, 1982.

[Zhang et al., 2005] W. Zhang, Z. Xing, G. Wang, and
L. Wittenburg. Distributed stochastic search and dis-
tributed breakout: properties, comparishon and applica-
tions to constraints optimization problems in sensor net-
works. Artificial Intelligence, 161:55–88, 2005.

[Zivan and Peled, 2012] R. Zivan and H. Peled. Max/min-
sum distributed constraint optimization through value
propagation on an alternating DAG. In AAMAS, pages
265–272, 2012.

[Zivan et al., 2014] R. Zivan, S. Okamoto, and H. Peled. Ex-
plorative anytime local search for distributed constraint
optimization. Artificial Intelligence, 212:1–26, 2014.

