
Optimal Preemptive Scheduling
for General Target Functions

Leah Epstein1 and Tamir Tassa2

1 School of Computer Science, The Interdisciplinary Center, Herzliya, Israel. ??

lea@idc.ac.il.
2 Department of Mathematics and Computer Science, The Open University, Ramat
Aviv, Tel Aviv, and Department of Computer Science, Ben Gurion University, Beer

Sheva, Israel. tamirta@openu.ac.il.

Abstract. We study the problem of optimal preemptive scheduling with
respect to a general target function. Given n jobs with associated weights
and m ≤ n uniformly related machines, one aims at scheduling the jobs
to the machines, allowing preemptions but forbidding parallelization, so
that a given target function of the loads on each machine is minimized.
This problem was studied in the past in the case of the makespan. Gon-
zalez and Sahni [7] and later Shachnai, Tamir and Woeginger [12] devised
a polynomial algorithm that outputs an optimal schedule for which the
number of preemptions is at most 2(m − 1). We extend their ideas for
general symmetric, convex and monotone target functions. This general
approach enables us to distill the underlying principles on which the
optimal makespan algorithm is based. More specifically, the general ap-
proach enables us to identify between the optimal scheduling problem
and a corresponding problem of mathematical programming. This, in
turn, allows us to devise a single algorithm that is suitable for a wide
array of target functions, where the only difference between one target
function and another is manifested through the corresponding mathe-
matical programming problem.

1 Introduction

We are interested in the problem of optimal preemptive scheduling with respect
to a general target function. The data in such problems consists of:

– n jobs, J = {Ji}1≤i≤n, where job Ji has a weight wi and w1 ≥ w2 ≥ · · · ≥
wn > 0.

– m machines, M = {Mj}1≤j≤m, m ≤ n, where machine Mj has speed sj and
1 = s1 ≥ s2 ≥ · · · ≥ sm > 0.

If a job of weight w runs on a machine of speed s, its processing time will be w/s.
A non-preemptive schedule of the jobs to the machines is a function σ : J →M.

?? The research of this author supported in part by Israel Science Foundation grant
250/01.

In such schedules, once a job started its process on a given machine, it is executed
continuously until completion. We, however, are interested here in preemptive
schedules, where a job’s execution may be terminated and then resumed later,
possibly on a different machine.

Definition 1. A preemptive schedule is a vector σ = (σ1, . . . , σm) where σj is
the schedule on Mj, 1 ≤ j ≤ m. The machine schedule σj takes the form of
a pair of sequences, σj = (τj , ηj), where τj is a sequence of strictly increasing
times, 0 = τj,0 < τj,1 < · · · < τj,kj

, and ηj is a sequence of indices, i.e.,
ηj = (ηj,1, . . . , ηj,kj) where ηj,k ∈ {0, 1, . . . , n} for all 1 ≤ k ≤ kj. Such a schedule
means that Mj processes Jηj,k

in time interval [τj,k−1, τj,k), for all 1 ≤ k ≤ kj,
unless ηj,k = 0 in which case Mj is idle during the corresponding time interval.

The schedule is legal if the same job is never scheduled to be processed at
the same time by two different machines (namely, parallelization is forbidden).
The schedule is complete if for every given job, the sum over all machines of its
processed parts amounts to its weight, i.e.,

∑

(j,k): ηj,k=i

(τj,k − τj,k−1) · sj = wi for all 1 ≤ i ≤ n . (1)

Hereinafter we consider only complete and legal schedules.
For a given schedule, σ, we let λ(σ) = (λ1, . . . , λm) denote the corresponding

vector of loads, where λj := τj,kj is the time in which Mj finishes running under
the schedule σ. One usually seeks schedules that minimize the value of some
target function of the loads,

f(σ) = f(λ(σ)) = f(λ1, . . . , λm) , (2)

where f is typically a convex, symmetric and monotonically non-decreasing func-
tion with respect to its arguments.

For a given target function f , we let fopt denote its optimal value, i.e., fopt =
minσ f(σ). The usual choice is the makespan, f = max. This case was studied
in [11, 10, 7, 12, 5]. Liu and Yang [11] introduced bounds on the cost of optimal
schedules. Horvath, Lam and Sethi proved that the optimal cost is indeed the
maximum of those bounds by constructing an algorithm that uses a large number
of preemptions. Gonzalez and Sahni [7] devised a polynomial algorithm that
outputs an optimal schedule for which the number of preemptions is at most
2(m − 1). This number of preemptions was shown to be optimal in the sense
that there exist inputs for which every optimal schedule involves that many
preemptions. This algorithm was later generalized and simplified for jobs of
limited splitting constraints by Shachnai, Tamir and Woeginger [12]. In this
paper we extend the ideas of [12] for general symmetric, convex and monotone
target functions. This general approach offers several benefits over the study
of the particular makespan problem. By looking at the problem from a more
general perspective, we are able to distill the underlying principles on which
the algorithm of [12] is based. This approach enables us to identify between the

optimal scheduling problem and a problem of mathematical programming. This,
in turn, allows us to devise a single algorithm that is suitable for a wide array
of target functions, where the only difference between one target function and
another is manifested through the corresponding mathematical programming
problem. Lastly, this approach facilitates the presentation and analysis of the
algorithm.

The paper begins with a study of properties of optimal schedules, Section
2. We show that when the target function is convex, symmetric and monotone,
there always exist optimal schedules of a relatively simple structure. Specifi-
cally, there always exist optimal schedules where the loads on faster machines
are greater than or equal to the loads on slower machines and there are no idle
times, Proposition 1. As a consequence of this characterization of (some) optimal
schedules, we define a mathematical program (i.e., a problem of minimizing a
multivariate target function in a bounded polyhedron) whose solution is the set
of machine loads of an optimal schedule, Theorem 1. Section 3 is then dedicated
to the presentation and analysis of Algorithm 1. This algorithm receives as an
input a set of machine loads from the polyhedron that corresponds to the equiv-
alent mathematical program, and it outputs a complete and legal preemptive
schedule with those machine loads. Hence, if one runs this algorithm with the
set of machine loads that solved the mathematical program, one gets an opti-
mal preemptive schedule to the original problem, Theorem 3. In Appendix A we
illustrate the algorithm with an example.

The problem of finding an optimal preemptive schedule is therefore separated
into two independent stages. In the first stage we write down the corresponding
mathematical program and solve it. In that mathematical program we aim at
minimizing the function (2) in a bounded polyhedron in Rm that reflects a set
of linear constraints that manifest our demand for completeness and legality of
the schedule. After solving this mathematical program, we face an algorithmic
problem: finding a preemptive schedule whose loads equal the solution of the
mathematical program. This is achieved by Algorithm 1. This second stage is
general in the sense that it is independent of the choice of the target function.

After presenting and studying the general algorithm, we derive explicit results
for specific target functions, Section 4. In Section 4.1 we devise a polynomial time
algorithm for the solution of the mathematical program when the target function

is the `p-norm, f(λ1, . . . , λm) =
(∑m

j=1 λp
j

)1/p

, 1 ≤ p < ∞. This target function
was studied in the past in the non-preemptive setting [1, 6]. We show that by
taking the limit p ↑ ∞ the algorithm solves also the makespan minimization
problem and that the minimal makespan of optimal preemptive schedules agrees
with the value that was derived in [7, 12]. In Section 4.2 we continue to explore

the threshold cost function, f(λ1, . . . , λm) =
m∑

j=1

max(λj , c) where c > 0 is some

constant threshold, and devise a polynomial time algorithm for its solution. This
target function was also studied in the past for non-preemptive scheduling [2–
4]. We note that an algorithm due to Hochbaum and Shanthikumar [8] may be
applied in order to solve the mathematical program in polynomial time whenever

the target function is separable, i.e., f(λ1, . . . , λm) =
∑m

j=1 g(λj). It should be
noted that even though the `p-norm target function, with p < ∞, and the
threshold target function, are separable, the algorithms that we offer for these
cases are simpler and more efficient than the general algorithm in [8]. More
details are given in the full version.

As a concluding remark we recall that the non-preemptive versions of the
above problems are typically strongly NP-hard. Approximation schemes for the
makespan problem were given by Hochbaum and Shmoys [9]. The papers [1, 6]
offer approximations schemes for a wide class of target functions, including the
`p-norms.

Most of the proofs are omitted from the body of the text; they may be found
in the full version of this paper.

2 Properties of Optimal Schedules

In this section we derive some qualitative properties of optimal schedules for
general symmetric and monotone target functions.

Proposition 1. There exist optimal schedules in which the loads λj are mono-
tonically non-increasing and there are no holes (i.e., no idle times on a machine
after which it resumes processing).

Hereinafter we concentrate only on optimal schedules that comply with Propo-
sitions 1. We define the weight on Mj as µj = sjλj . Namely, the weight on
machine Mj under a schedule σ represents the total weight of job parts that are
scheduled by σ to be processed on Mj . We also define the following:

Wk =





∑k
j=1 wj 1 ≤ k ≤ m− 1

∑n
j=1 wj k = m

. (3)

With these definitions, we state the following key proposition.

Proposition 2. In optimal schedules that comply with Proposition 1

k∑

j=1

µj ≥ Wk , 1 ≤ k ≤ m− 1 while
m∑

j=1

µj = Wm . (4)

Proof. As the inequality in (4) is just the completeness requirement, we focus
on proving the inequality in (4) for an arbitrary value of 1 ≤ k ≤ m− 1. Let R`

be defined as the union of all time intervals in which exactly ` of the k largest
jobs, Jk := {Ji}1≤i≤k, are running. Namely, if t ∈ R`, there exists a subset of `
jobs {Ji1 , . . . , Ji`

} ⊂ Jk that are scheduled to run on ` machines at time t, while
the remaining k − ` jobs in Jk are not being processed at that time. In view
of Proposition 1, the entire schedule is embedded in the time interval [0, λ1).

We break up this interval into a disjoint union [0, λ1) =
⋃k

`=0 R`. Proposition 1
implies that

k⋃

`=j

R` ⊂ [0, λj) , 1 ≤ j ≤ k . (5)

Let r` denote the amount of work that was done on the k largest jobs during R`.
Then, as the schedule is complete,

∑k
`=1 r` = Wk. On the other hand, since the

schedule is legal, r` may not exceed the duration of R` times the sum of speeds of
the ` fastest machines, i.e., r` ≤ S` ·|R`|, where hereinafter S` =

∑`
j=1 sj . Hence,

by (5), Wk ≤
∑k

`=1

(∑`
j=1 sj

)
· |R`| =

∑k
j=1 sj ·

(∑k
`=j |R`|

)
≤ ∑k

j=1 sjλj =
∑k

j=1 µj . ¤

Finally, we state our main result.

Theorem 1.

fopt = min
Ω

f

(
µ1

s1
, . . . ,

µm

sm

)
(6)

where Ω ⊂ (R+)m is the bounded polyhedron of all nonnegative weights µj that
satisfy the legality and completeness constraints (4).

Proof. Let fmin denote the minimum of the optimization problem (6) under
the constraints in (4) (This optimization problem is a mathematical program
to which we refer henceforth as MP). fmin is well defined since f is convex and
Ω, the domain in which the minimum is sought, is closed and convex. Propo-
sition 2 imply that fopt ≥ fmin. Since Algorithm 1 in the next section pro-
duces a complete and legal preemptive schedule with weights {µj}1≤j≤m for any
(µ1, . . . , µm) ∈ Ω, we infer that fopt = fmin. ¤

3 An Optimal Scheduling Algorithm for a General Target
Function

In this section we present and analyze an algorithm that, given a legal and
complete allocation of weights to machines, {µj}1≤j≤m ∈ Ω, finds a preemptive
schedule of the jobs to the machines that agrees with those weights. Hence, if
we call that algorithm with a solution of the mathematical program MP, we get
in return an optimal preemptive schedule.

3.1 The Algorithm

Let {µj}1≤j≤m ∈ Ω be a set of nonnegative weights that satisfy the conditions
in (4). Let

λj =
µj

sj
, Λj =

j∑

k=1

λk , 1 ≤ j ≤ m and Λ0 = 0 . (7)

Next, we define the following state functions on [0, Λm): a potential function

Ψ(x) =
m∑

j=1

sj · χ[Λj−1,Λj)(x) where χI(x) =
{

1 x ∈ I
0 x /∈ I

, (8)

a timing function

Θ(x) =
{

x− Λj−1 if x ∈ [Λj−1, Λj) for some 1 ≤ j ≤ m
0 otherwise , (9)

and an indicator function

Γ (x) =
{

j if x ∈ [Λj−1, Λj) for some 1 ≤ j ≤ m
0 otherwise (10)

(see Figures 1-3).
Those three functions will always be examined as a triplet, along some in-

terval [a, b): the value of the indicator function Γ (x) will indicate the machines
under consideration; the range of values of Θ(x) along that interval will indicate
the time segments on which we focus; and the corresponding integrals of the
potential function Ψ represents the work that can be done by the corresponding
machines in the corresponding time segments. For example, let us consider the
state functions in Figures 1-3. They represent a problem with 4 machines, of
speeds 1, 0.8, 0.6 and 0.3, where the allocated loads are 10, 8, 6 and 3 (e.g., the
length of the schedule on M3 is 6 time units). Consider the interval [9, 12). Then,
looking at Γ 1 and Θ1, this interval corresponds to time segment [9, 10) on M1

and time segment [0, 2) on M2. The corresponding integral
∫ 10

9
Ψ1(x)dx gives

the amount of work that can be accomplished by M1 in time segment [9, 10),
and

∫ 12

10
Ψ1(x)dx gives the amount of work that can be accomplished by M2 in

time segment [0, 2).
Algorithm 1 produces a preemptive schedule σ of J on M such that the

weight on machine Mj equals µj . The jobs are scheduled one by one, from the
largest to the smallest. We schedule a job by associating with it an interval
[a, b) ⊂ [0, Λm) such that

∫ b

a
Ψ(x)dx equals the weight of that job, and Θ(x) is

injective along that interval (in order to avoid parallelization). The main idea
is to always schedule the next job to the slowest possible machine in the latest
possible time; namely, we aim at finding an interval [a, b) ⊂ [0, Λm) with the
maximal a that can still accommodate that job. Once we found such an interval,
we record the resulting schedule of the job by looking at the values of Γ and Θ
along [a, b). Then, we have to mark the interval as being occupied. Instead of
doing that, we simply remove that interval from the graphs of the three state
functions and left shift the ”tail” of those graphs, [b,∞), by b − a, in order to
close the gap that was created by this removal.

In carrying out the above procedure, we define for each point a the point
b = End(a) that stands for the maximal point b such that Θ(x) is injective on
[a, b]. As Θ(x) has a very simple piecewise linear form and it retains that form
after each ”cut-and-shift” operation that corresponds to scheduling a job, it is
very simple to compute the function b = End(a).

Algorithm 1 1. Initialize Ψ , Θ and Γ according to (7)–(10).
2. i = 1 (current job number).
3. Define End(a) for all a ∈ [0, Λm) in the following manner:

End(a) = min(a+Λj−Λj−1, Λj+1) ∀a ∈ [Λj−1, Λj) , 1 ≤ j ≤ m , (11)

where, for the sake of the last interval, we take Λm+1 = Λm.
4. Find the maximal value of a for which

∫ b=End(a)

a

Ψ(x)dx = wi . (12)

5. Decompose the interval [a, b) into a disjoint union of intervals,

[a, b) =
⋃̀
r=1

[ar−1, ar) (13)

where a0 = a, a` = b, Γ is constant along [ar−1, ar), say Γ |[ar−1,ar) = jr,
and j1 < j2 < · · · < j`.

6. Compute

wi,r =
∫ ar

ar−1

Ψ(x)dx , 1 ≤ r ≤ ` . (14)

7. Break up Ji into ` parts, {Ji,r}1≤r≤`, where the weight of Ji,r is wi,r, 1 ≤
r ≤ `.

8. Schedule Ji,r to run on Mjr in time interval [Θ(ar−1), Θ(ar)) , 1 ≤ r ≤ `.
9. Remove the interval [a, b) from Ψ , Θ and Γ . More specifically, apply on all

three functions the following operator:

U[a,b)Φ := Φ · χ[0,a) + Lb−a

{
Φ · χ[b,∞)

}
, (15)

where Ld is the d-left shift operator, i.e., LdΦ(x) = Φ(x + d).
10. Update m to indicate the number of discontinuities in the modified timing

function Θ and set Λj, 1 ≤ j ≤ m, to be the corresponding jth discontinuity.
11. i = i + 1.
12. If i > n stop. Else go to Step 3.

The reader is referred to Appendix A where the algorithm is exemplified.

3.2 Analysis

In this section we prove the validity of the algorithm. Hereinafter, whenever
necessary to distinguish between two subsequent rounds, we use the superscript
i to denote the values of the algorithm variables during the ith round in the
algorithm, 1 ≤ i ≤ n. Namely, Ψ i(x), Θi(x) and Γ i(x) are the three state
functions during the ith round (before they are being updated in Step 9), mi is
the number of discontinuities of Θi(x) while {Λi

j}1≤j≤mi are those discontinuities

(with Λi
0 = 0), and Endi(a) is the function that is defined in (11) at the ith

round. We also define Ωi = [0, Λi
mi) to be the support of the state functions in

round i, Ωi
j = [Λi

j−1, Λ
i
j), 1 ≤ j ≤ mi, be the decomposition of Ωi into intervals

of continuity of Θi(x), and λi
j = |Ωi

j |.
The timing function and its continuity intervals play a significant role in the

analysis of Algorithm 1. The next two lemmas provide important information
about Θi(x).

Lemma 1. (i) The timing function is linear on each continuity interval, i.e.,

Θi(x) =
{

x− Λi
j−1 if x ∈ Ωi

j for some 1 ≤ j ≤ mi

0 otherwise . (16)

(ii) λi
j, 1 ≤ j ≤ mi, form a non-increasing sequence for all i.

Assume that round i∗ was the first round in which we selected in Step 4 a
value of a with Endi∗(a) = Λi∗

mi∗ (namely, this is the first round in which the
sliding window went all the way to the right end point of the current support,
[0, Λi∗

mi∗), of the three state functions). It is not hard to see that, as the jobs
are ordered in a non-increasing order according to their weight, the same will
happen in all subsequent rounds, i.e., Endi(a) = Λi

mi for all i ≥ i∗. We refer to
the first i∗−1 rounds in the execution of the algorithm as Phase 1, while rounds
i∗ through n constitute Phase 2. With this terminology, we proceed as follows.

Lemma 2. During Phase 1 the number of Θi-continuity intervals always de-
creases by one. Namely, for all i, 1 ≤ i ≤ i∗, mi = m − i + 1. Consequently,
Phase 1 lasts no more than m− 1 rounds.

The next fundamental proposition is crucial for the justification of Algorithm 1.

Proposition 3. In all rounds, the set of values of a that satisfy requirement
(12) in Step 4 of the algorithm is nonempty and it has a maximum.

Theorem 2. Algorithm 1 generates a complete and legal schedule.

Proof. The algorithm is well defined in view of Lemma 1 and Proposition 3. This
implies the completeness of the resulting schedule since each job is assigned time
shares on the machines that enable its completion. The schedule is legal since
End(a) is defined so that the timing function Θi(x) is one-to-one along the
interval [a,End(a)). ¤

In view of all of the above, we reach our final statement regarding Algorithm 1.

Theorem 3. Algorithm 1 outputs an optimal preemptive schedule when the in-
put µ = (µ1, . . . , µm) is a solution of the corresponding mathematical program
MP, namely, when it minimizes (6) under (4).

It may be shown that the number of preemptions that are enforced by the
algorithm is bounded by 2(m − 1). This was shown to be minimal for some
inputs for the makespan minimization problem [7].

4 Examples of Target Functions

4.1 The `p-Norm

Here we present a polynomial time algorithm that constructs an optimal solution
µ = (µ1, . . . , µm) to MP where f is the `p-norm. The run time of the algorithm
is O(m2). After presenting the algorithm, we prove that its output, µ, is in Ω
and that it is a minimal point in Ω. Even though this section concentrates on
1 < p < ∞, the results presented herein apply equally to p = 1 and p = ∞ by
taking the corresponding limit. Moreover, when p = ∞, we recover an explicit
expression for the optimal makespan that was derived in [7].

Algorithm 2 1. Set t = 0 and kt = 0 (at each stage kt equals the number of
values µj that were already determined).

2. For every kt + 1 ≤ k ≤ m, compute

qk = (Wk −Wkt)/Sp[kt + 1 : k] where Sp[a : b] =
b∑

j=a

s
p/(p−1)
j . (17)

and set kt+1 to be the (minimal) value of k for which qk is maximal.
3. For all kt + 1 ≤ j ≤ kt+1, set

µj = s
p/(p−1)
j · (Wkt+1 −Wkt)/Sp[kt + 1 : kt+1] . (18)

4. If kt+1 < m set t = t + 1 and go to Step 2.

We note that the algorithm solves also the extremal cases p = 1 and p = ∞.
When p = ∞, the powers p/(p− 1) need to be understood as 1. As for p = 1, let
b denote the number of machines of maximal speed, i.e., sj = 1 for 1 ≤ j ≤ b and
sj < 1 for b < j ≤ m. When p ↓ 1, the powers p/(p−1) ↑ ∞. Hence, s

p/(p−1)
j = 1

for 1 ≤ j ≤ b and zero for b < j ≤ m. As a consequence, by (18), the machines
which are not among the fastest, Mj , b < j ≤ m, will be assigned nothing,
µj = 0, and the entire weight will be spread among the b fastest machines. The
manner in which the total weight will be spread among those machines depends
on the data but is insignificant because the `1-norm does not distinguish between
such assignments. Such schedules are of-course optimal.

Lemma 3. Let µ = (µ1, . . . , µm) be the solution that Algorithm 2 returned and
let {ki}0≤i≤t+1 be the corresponding sequence of indices that were identified dur-
ing the execution of the algorithm. Then µ ∈ Ω. Namely, it satisfies (4). More-
over, the set of indices for which (4) holds with equality is exactly {ki}1≤i≤t.

Next, we claim that µ is optimal for 1 < p < ∞.

Theorem 4. Let µ′ = {µ′j}1≤j≤m be an optimal solution of MP where 1 < p <
∞. Then µ′ = µ.

The optimality of µ for p = ∞ is a direct consequence of Lemma 4 as the
makespan is the limit of the `p-norms when p ↑ ∞. In this case, we may even
derive an explicit expression for the optimal makespan. The solution µ that
Algorithm 2 outputs satisfies max1≤k≤m

Wk

Sp[1:k] = µ1

s
1+ 1

p−1
1

≥ µ2

s
1+ 1

p−1
2

≥ · · · ≥
µm

s
1+ 1

p−1
m

. When p = ∞, this translates into max1≤k≤m
Wk

S∞[1:k] = max1≤k≤m
Wk

Sk
=

µ1
s1
≥ µ2

s2
≥ · · · ≥ µm

sm
; here, as before, Sk =

∑k
j=1 sj . Therefore, the optimal

makespan is max
(

µ1
s1

, . . . , µm

sm

)
= max1≤k≤m

Wk

Sk
, as the result of [7].

4.2 Threshold Cost Functions

Here we study the target function f(µ1, . . . , µm) =
∑m

j=1 max
(

µj

sj
, c

)
. This case,

also known as extensible bin packing [2–4], describes a scenario in which a fixed
payment is due up-front for c time units in each machine, whether they have
been used or not, and, in addition, to any excessive time that was used beyond
the fixed threshold in any of the machines.

Algorithm 3 computes an optimal solution µ ∈ Ω to MP when the target
function f is as above. Here, as before, Sk =

∑k
j=1 sj and Wk is as in (3).

Algorithm 3 1. Set µk = 0 for all 1 ≤ k ≤ m and W = Wm =
∑n

j=1 wj.
2. If W ≤ c · s1 set µ1 = W and stop.
3. Set µ1 = max {c · s1,max1≤k≤m(Wk − c · Sk + c · s1)} ,W = W − µ1.
4. For k = 2 to k = m do:

(a) If W > c · sk then µk = c · sk and W = W − c · sk.
(b) Else µk = W and W = 0.

Theorem 5. The solution µ that Algorithm 3 produces gives a minimum to the
threshold cost function in Ω.

References

1. N. Alon, Y. Azar, G. Woeginger, and T. Yadid. Approximation schemes for schedul-
ing on parallel machines. Journal of Scheduling, 1:1:55–66, 1998.

2. E. G. Coffman, Jr. and George S. Lueker. Approximation algorithms for extensible
bin packing. In Proceedings of the Twelfth Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA-01), pages 586–588, 2001.

3. P. Dell’Olmo, H. Kellerer, M. G. Speranza, and Zs. Tuza. A 13/12 approximation
algorithm for bin packing with extendable bins. Information Processing Letters,
65(5):229–233, 1998.

4. P. Dell’Olmo and M. G. Speranza. Approximation algorithms for partitioning small
items in unequal bins to minimize the total size. Discrete Applied Mathematics,
94:181–191, 1999.

5. T. Ebenlendr and J. Sgall. Optimal and online preemptive scheduling on uniformly
related machines. In Proceedings of the 21st Annual Symposium on Theoretical
Aspects of Computing Science (STACS-04), LNCS 2996:199-210, 2004.

6. L. Epstein and J. Sgall. Approximation schemes for scheduling on uniformly related
and identical parallel machines. Algorithmica, 39(1):151–162, 2004.

7. T. Gonzalez and S. Sahni. Preemptive scheduling of uniform processor systems.
Journal of the ACM, 25(1):92–101, 1978.

8. D. S. Hochbaum and J. G. Shanthikumar. Convex separable optimization is not
much harder than linear optimization. Journal of the ACM, 37(4):843–862, 1990.

9. D. S. Hochbaum and D. B. Shmoys. A polynomial approximation scheme for
scheduling on uniform processors: using the dual approximation approach. SIAM
Journal on Computing, 17(3):539–551, 1988.

10. E. C. Horvath, S. Lam, and R. Sethi. A level algorithm for preemptive scheduling.
Journal of the ACM, 24(1):32–43, 1977.

11. J. W. S. Liu and A. T. Yang. Optimal scheduling of independent tasks on hetero-
geneous computing systems. In Proceedings ACM National Conference, volume 1,
pages 38–45. ACM, 1974.

12. H. Shachnai, T. Tamir, and G. J. Woeginger. Minimizing makespan and preemp-
tion costs on a system of uniform machines. In Proc. of the 10th Annual European
Symposium on Algorithms (ESA2002), pages 859–871, 2002.

A An Example

Consider a scenario with m = 4 machines, the speeds of which are (s1, s2, s3, s4) =
(1, .8, .6, .3). Assume that the set of job weights dictates machine loads
(λ1, λ2, λ3, λ4) = (10, 8, 6, 3) (when p = 2 and the global minimum of the `2-
norm in Ω coincides with the global minimum in Rm, it may be shown that
the machine loads indeed relate to each other like the machine speeds). Then
the three state functions will be initially as described in Figures 1-3. There are
m1 = 4 jump discontinuities in the timing function, Θ1(x), at (Λ1

1, Λ
1
2, Λ

1
3, Λ

1
4) =

(10, 18, 24, 27).
We proceed to describe the scheduling of the first job. Assume that w1 = 9.

It is not hard to see that the window in which it fits, Step 4, is [5, 15) (i.e.,
a = 5). The values of the indicator and timing functions, Γ 1 and Θ1, along this
window imply that J1 will be scheduled to run on M2 in time interval [0, 5)
and on M2 in [5, 10). After scheduling J1 we remove the occupied time slots
by applying the cut-and-shift operator U[5,15). The function Θ2(x) has m2 = 3
jump discontinuities at (Λ2

1, Λ
2
2, Λ

2
3) = (8, 14, 17).

Next, assume that the second job is of size w2 = 7. Here, the value of a in
Step 4 is a = 1 and the corresponding window is [1, 9). Therefore, the values
of Γ 2 and Θ2 along this interval imply that J2 will be scheduled to run on M3

during [0, 1), on M1 during [1, 5) and on M2 during [5, 8). After applying U[1,9),
Θ3(x) has m3 = 2 jump discontinuities at (Λ3

1, Λ
3
2) = (6, 9).

We note that if w3 < 0.9, then J3 will mark the beginning of Phase 2 and the
corresponding window will be completely within the last interval of continuity
of Θ3; in that case m4 = m3 = 2. If, on the other hand, w3 ≥ 0.9, m4 = 1 and
then J4 will be the first job in Phase 2.

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Fig. 1. Γ 1(x)

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

Fig. 2. Ψ1(x)

0 5 10 15 20 25 30
0

2

4

6

8

10

12

Fig. 3. Θ1(x)

