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Abstract k-Anonymity is a privacy preserving method for limiting disclosure of private in-
formation in data mining. The process of anonymizing a database table typically involves
generalizing table entries and, consequently, it incurs loss of relevant information. This moti-
vates the search for anonymization algorithms that achieve the required level of anonymiza-
tion while incurring a minimal loss of information. The problem of k-anonymization with
minimal loss of information is NP-hard. We present a practical approximation algorithm that
enables solving the k-anonymization problem with an approximation guarantee of O(ln k).
That algorithm improves an algorithm due to Aggarwal et al. [1] that offers an approxi-
mation guarantee of O(k), and generalizes that of Park and Shim [19] that was limited to
the case of generalization by suppression. Our algorithm uses techniques that we introduce
herein for mining closed frequent generalized records. Our experiments show that the signif-
icance of our algorithm is not limited only to the theory of k-anonymization. The proposed
algorithm achieves lower information losses than the leading approximation algorithm, as
well as the leading heuristic algorithms. A modified version of our algorithm that issues
ℓ-diverse k-anonymizations also achieves lower information losses than the corresponding
modified versions of the leading algorithms.
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1 Introduction

In recent years, there has been a tremendous growth in the amount of personal data that can
be collected and analyzed. Data mining tools are increasingly being used to infer trends and
patterns. Of particular interest are data containing structured information on individuals.
However, the use of data containing personal information has to be restricted in order to
protect individual privacy. Although identifying attributes like ID numbers and names are
never released for data mining purposes, sensitive information might still leak due to linking
attacks that are based on the public attributes, a.k.a quasi-identifiers. Such attacks may join
the quasi-identifiers of a published table with a publicly accessible table like the voters
registry, and thus disclose private information of specific individuals. In fact, it was shown
in [24] that 87% of the U.S. population may be uniquely identified by the combination of
the three quasi-identifiers: birthdate, gender and zipcode. Privacy preserving data mining [3]
has been proposed as a paradigm of exercising data mining while protecting the privacy of
individuals.

One of the most well-studied methods of privacy preserving data mining is k-anonymization,
that was proposed by Samarati and Sweeney [21,22,25]. This method suggests to generalize
the values of the public attributes, so that each of the released records becomes indistinguish-
able from at least k − 1 other records, when projected on the subset of public attributes. As
a consequence, each individual may be linked to sets of records of size at least k in the
released anonymized table, whence privacy is protected to some extent.

The values of the database are modified via the operation of generalization, while keep-
ing them consistent with the original ones. A cost function is used to measure the amount
of information that is lost by the generalization process. The objective is to modify the table
entries so that the table becomes k-anonymous and the information loss (or cost function) is
minimized.

Meyerson and Williams [17] introduced this problem and studied it under the assump-
tion that the table entries may be either left unchanged or totally suppressed. In that setting,
the cost function to be minimized is the total number of suppressed entries in the table.
They proved that the problem is NP-hard by showing a reduction from the k-dimensional
perfect matching problem. They devised two approximation algorithms: One that runs in
time O(n2k) and achieves an approximation ratio of O(k ln k); and another that has a fully
polynomial running time (namely, it depends polynomially on both n and k) and guarantees
an approximation ratio of O(k lnn).

Aggarwal et al. [1] extended the setting of suppressions-only to generalizations by hier-
archical clustering trees. In that setting, each attribute Aj has a corresponding balanced tree,
T (Aj), that describes a hierarchical clustering (or taxonomy) of Aj . Each node of T (Aj)

represents a subset of Aj , the root of the tree is the entire set Aj , the descendants of each
node represent a partition of the subset that corresponds to the ancestor node, and the leaves
correspond to the singleton subsets. Given such a balanced tree, they considered general-
ization operators that may replace an entry in the jth column with any of its ancestors in
T (Aj). Generalization by suppression is a special case of generalization by clustering trees
where all trees are of height 2. They suggested a simple cost function for that setting and
then they devised an approximation algorithm with an approximation ratio of O(k).

Gionis and Tassa [8] improved the first algorithm of [17] by offering an approximation
ratio of O(ln k), rather than O(k ln k), and applying it to a wider class of “proper” general-
ization operators (See Definition 3 herein). That class extends the framework of hierarchical
clustering trees [1] as it allows also unbalanced clustering trees. The results of [8] also apply
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to a wider class of measures of loss of information. However, the runtime of their algorithm
remains O(n2k).

Finally, Park and Shim [19] devised, independently of [8], a similar algorithm that also
provides an approximation ratio of O(ln k). Their algorithm, as opposed to the one in [8],
has a practical runtime, but it applies only to generalizations by suppression, a case which
is too restricted for practical applications.

Another approach to the problem is using heuristical algorithms. There is a multitude
of such algorithms, e.g. the Mondrian algorithm [14] or k-member clustering [5], but the
most prominent heuristical algorithms that were shown to produce the best results in terms
of information loss are the agglomerative algorithm [7,18], sequential clustering [9], and
algorithms that are based on space-filling curves [6].

1.1 Our contributions

The main contribution of this study is a practical anonymization algorithm that guarantees an
approximation ratio of O(ln k) and applies to all proper generalizations and to any monotone
measure of loss of information. Our algorithm is based on the algorithm of Park and Shim
which was restricted to suppressions only. The extension from suppressions only to any
proper generalization is based on techniques that we devise herein for mining generalized
frequent records. Hence, the algorithm that is proposed here is the last step (for now) in the
above described theoretical journey that was made in [17,1,8,19]. An interesting research
problem that naturally arises in wake of this study, is whether this is indeed the last step, or
is it possible to improve the logarithmic approximation ratio.

The significance of our algorithm is not limited to theory only. Our experiments on
several databases using several measures of information loss show that the proposed ap-
proximation algorithm constantly achieves lower information losses than the currently best
known approximation algorithm (the algorithm of [1]) and the above-mentioned heuristical
algorithms. Hence, in terms of achieving minimal information losses, our algorithm appears
to offer the best performance. However, the runtime of the algorithm is larger than that of
the other algorithms, at least for smaller values of k, and it scales badly with respect to the
dimension (the number of attributes). Hence, this disadvantage should be taken into consid-
eration when choosing an anonymization algorithm. We believe that runtime is a secondary
factor in this context, since in typical applications of k-anonymity, the input data is a re-
sult of collection efforts that span a very long time (months and even years). Hence, an
anonymization algorithm that runs few seconds does not offer a meaningful advantage with
respect to an algorithm that runs several hours or even several days. If the output of the
slower algorithm provides anonymized tables with better utility, then that is the algorithm
of choice. It should be noted that while the theoretical time complexity of our algorithm
remains O(n2k), like the algorithms of [17,8], its runtime in practice is much shorter; see
more on that point in Section 4.

As k-anonymity must be enforced together with ℓ-diversity, we propose a general post-
processing procedure that can be applied on the output of any k-anonymization algorithm
in order to convert that output to an ℓ-diverse k-anonymization. Our experiments indicate
that also after the application of that post-processing procedure of ℓ-diversification, the ℓ-
diverse k-anonymizations issued by our algorithm are characterized by lower information
losses than the corresponding anonymizations issued by other leading algorithms.
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1.2 Organization of the paper

In Section 2 we provide the basic definitions and describe the problem of optimal k-anonymity.
In Section 3 we describe the relevant related work; specifically, we discuss the three ap-
proximation algorithms of [1,8,19]. In the subsequent two sections we describe our main
contribution: Section 4 is devoted to our general O(log k)-approximation algorithm for the
problem of k-anonymity; and in Section 5 we describe an algorithm for mining closed fre-
quent generalized records, which is a key ingredient in the approximation algorithm. In
Section 6 we discuss the notion of ℓ-diversity and the importance to enforce it in conjunc-
tion with k-anonymity; we then describe a post-processing procedure that can convert any k-
anonymization to one that respects also ℓ-diversity. In Section 7 we describe our experiments
that demonstrate the advantages of the proposed approximation algorithm. We conclude in
Section 8 with suggested future research directions.

2 Preliminaries

We consider databases that hold information on individuals in some population U . Each
individual is described by r public attributes (a.k.a quasi-identifiers), A1, . . . , Ar , and s pri-
vate attributes, Z1, . . . , Zs (usually it is assumed that s = 1). Each of the attributes consists
of several possible values:

Aj = {aj,l : 1 ≤ l ≤ mj}, 1 ≤ j ≤ r,

and
Zj = {zj,l : 1 ≤ l ≤ nj}, 1 ≤ j ≤ s.

For example, if Aj is gender, then Aj = {M,F}, while if it is the age of the individual, it
is a bounded non-negative natural number. The public database holds all publicly available
information on the individuals in U ; it takes the form

D = {R1, . . . , Rn}, (1)

where Ri ∈ A1×· · ·×Ar, 1 ≤ i ≤ n. The corresponding private database holds the private
information

D′ = {S1, . . . , Sn}, (2)

where Si ∈ Z1 × · · · × Zs, 1 ≤ i ≤ n. The complete database is the concatenation of
those two databases, D||D′ = {R1||S1, . . . Rn||Sn}. We refer to the records of Ri and Si,
1 ≤ i ≤ n, as public and private records, respectively. The jth component of the record Ri

(the (i, j)th entry in the database D) will be denoted Ri(j).

2.1 Generalization

One of the means to anonymize a database is generalization; i.e., replacing the values that
appear in the database with subsets of values, so that each entry Ri(j), 1 ≤ i ≤ n, 1 ≤ j ≤ r,
which is an element of Aj , is replaced by a subset of Aj that includes that element.

Definition 1 Let Aj , 1 ≤ j ≤ r, be finite sets and let Aj ⊆ P(Aj) be a collection of subsets
of Aj . Let D = {R1, . . . , Rn} be a table where each record Ri, 1 ≤ i ≤ n, is taken from
A1 × · · · ×Ar . A table D = {R1, . . . , Rn} is a generalization of D, if Ri ∈ A1 × · · · ×Ar ,
and Ri(j) ∈ Ri(j), for all 1 ≤ i ≤ n and 1 ≤ j ≤ r.
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A special kind of generalization is generalization by suppression, where Aj = Aj∪{Aj}
for all 1 ≤ j ≤ r. Namely, each entry is either left unchanged or is totally suppressed.

There are three main models of generalization. In single-dimensional global recoding,
each collection of subsets Aj is a clustering of the set Aj (in the sense that it consists
of disjoint subsets that cover Aj), and then every entry in the jth column of the database
is mapped to the unique subset in Aj that contains it. As a consequence, every single value
a ∈ Aj is always generalized in the same manner. In local recoding, the collection of subsets
Aj covers the set Aj but it is not a clustering. In that case, each entry in the table’s jth
column is generalized independently to one of the subsets in Aj that includes it. In such a
model, if the age 34 appears in the table in several records, it may be left unchanged in some,
generalized to 30–39, or totally suppressed in other records. Clearly, local recoding is more
flexible and might enable k-anonymity with a smaller loss of information. The third model
is an intermediate one and is called multi-dimensional global recoding. In that model, like
in local recoding, the collection of subsets Aj is a cover of the set Aj (namely, each value
of Aj may be contained in more than one subset in Aj). However, it is a global recoding in
the sense that there exists a global mapping function g : A1 × · · · × Ar → A1 × · · · × Ar

and D = g(D).

In this study we consider the case of local recoding that allows greater flexibility and,
hence, enables achieving k-anonymity with (possibly) smaller information losses. As men-
tioned before, the problem of k-anonymization with minimal loss of information is NP-hard
in the case of local recoding. In the case of single-dimensional global recoding the search
space is much smaller and the problem may be solved optimally [4,13].

Definition 2 A relation ⊑ is defined on A1×· · ·×Ar as follows: If R,R′ ∈ A1×· · ·×Ar ,
then R ⊑ R′ if and only if R(j) ⊆ R′(j) for all 1 ≤ j ≤ r. In that case, we say that
R narrows R′, or equivalently, that R′ generalizes R. Furthermore, R′ @ R means that
R′ ⊑ R and R′ ̸= R.

We will assume hereinafter that the collections of subsets used for generalization, Aj ,
1 ≤ j ≤ r, satisfy the following property [8].

Definition 3 Given an attribute A = {a1, . . . , am}, a corresponding collection of subsets A
is called proper if it includes all singleton subsets {ai}, 1 ≤ i ≤ m, it includes the entire set
A, and it is laminar in the sense that B1 ∩B2 ∈ {∅, B1, B2} for all B1, B2 ∈ A.

As shown in [8, Lemma 3.3], the class of proper generalizations coincides with the class
of generalizations by possibly unbalanced hierarchical clustering trees. (Such a clustering
tree, or a taxonomy, is illustrated in Figure 1.) Hence, our framework in this study extends
the framework that was considered in [1] (i.e., balanced hierarchical clustering trees) and,
in particular, the framework of generalization by suppression [17,19].
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Fig. 1 A hierarchical clustering tree (taxonomy)

2.2 Measures of information loss

The generalization of a record R into some generalized record R has an associated cost in
terms of information loss, denoted d(R). There are several ways of defining that cost; e.g.,
the tree measure [1], the Loss Metric (LM) [12,18], the Ambiguity Metric (AM) [18], or the
entropy measure [8]. For example, the LM measure is defined as follows:

d(R) =
1

r
·

r∑
j=1

|R(j)| − 1

|Aj | − 1
. (3)

If g(D) = {R1, . . . , Rn} is a generalization of D = {R1, . . . , Rn}, then the overall gener-
alization cost is

Π(D, g(D)) :=
1

n
·

n∑
i=1

d(Ri) .

In this study we do not focus on any particular measure. We only assume that the measure
takes the form d(Ri) =

∑r
j=1 d(Ri(j)) (namely, it associates a generalization cost in each

dimension and then adds them up), and that it is monotone:

Definition 4 A measure of information loss, d(·), is called monotone if for any two gener-
alized records R,R

′ ∈ A1 × · · · ×Ar , where R
′ generalizes R, it holds that d(R′

) ≥ d(R).

2.3 k-Anonymization

A k-anonymization of a database D = {R1, . . . , Rn} is a generalization g(D) = {R1, . . . , Rn}
where for all 1 ≤ i ≤ n there exist indices 1 ≤ i1 < i2 < · · · < ik−1 ≤ n, all of which
are different from i, such that Ri = Ri1 = · · · = Rik−1

. The k-anonymization optimization
problem is defined as follows [1,8,17].

Definition 5 Let D = {R1, . . . , Rn} be a database with public attributes Aj , 1 ≤ j ≤ r.
Given collections Aj ⊆ P(Aj), and a measure of information loss Π, find a correspond-
ing k-anonymization, g(D) = {R1, . . . , Rn}, where Ri ∈ A1 × · · · × Ar , that minimizes
Π(D, g(D)).
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3 Previous Approximation Algorithms for k-Anonymization

3.1 Overview

There are three leading approximation algorithms for the problem of k-anonymization with
minimal loss of information.

– Algorithm A: The algorithm by Gionis and Tassa [8] achieves an approximation ratio
of O(ln k). It is currently the best available approximation algorithm in terms of its
approximation guarantee. However, it is impractical since its runtime is O(n2k).

– Algorithm B: Park and Shim [19] proposed a similar algorithm to that of [8]. It offers the
same approximation guarantee, and it has a practical runtime. However, it is restricted
to the case of generalization by suppression.

– Algorithm C: The Forest algorithm of Aggarwal et al. [1] runs in fully polynomial time
and guarantees an approximation ratio of O(k). It is the best approximation algorithm
that is both practical and general (i.e., not restricted to generalization by suppression).

Our contribution in this study is an approximation algorithm that:

– guarantees an approximation ratio of O(ln k) (like Algorithms A and B above);
– is practical (like Algorithms B and C);
– applies to all proper generalization operators and monotone measures of information

loss (like Algorithm A).

Our proposed algorithm relies on the same approach as Algorithms A and B. In this
section we describe those two algorithms (Algorithm A is described in Section 3.4 and
Algorithm B is described in Section 3.5). Our description somewhat differs from that in [8,
19] as our goal here is not only to describe those algorithms but also to set the grounds for
presenting our algorithm in the next section.

3.2 Generalization cost of sets of records

Let M ⊆ D be a subset of records. The closure of M , denoted M , is the minimal generalized
record that generalizes all records in M ,

M = min
⊑

{
Q ∈ A1 × . . .×Ar : R ⊑ Q for all R ∈ M

}
.

The corresponding generalization cost of M , denoted d(M), is defined as the generalization
cost of the closure, i.e., d(M) = d(M).

The following lemma introduces the property of sub-additivity, which will be used later
in our analysis of the algorithms. (That lemma was proved in [8] for two special cases of
generalization cost measures.)

Lemma 1 Assume that all collections of subsets, Aj , 1 ≤ j ≤ r, are proper. Then the
generalization cost is sub-additive in the sense that for all S, T ⊆ A1 × . . .×Ar ,

S ∩ T ̸= ∅ =⇒ d(S ∪ T ) ≤ d(S) + d(T ) .

Proof Denote U = S ∪ T and let

Sj = {s(j) : s ∈ S}, Tj = {t(j) : t ∈ T}, Uj = {u(j) : u ∈ U}
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denote the set of values of the jth attribute, 1 ≤ j ≤ r, that appear in S, T , and U ,
respectively. Let Sj , T j and Uj be the minimal sets in Aj that include Sj , Tj and Uj ,
respectively. Since S ∩ T ̸= ∅, we conclude that Sj ∩ Tj ̸= ∅. Hence Sj ∩ T j ̸= ∅.
But since Aj is proper, we have that Sj ⊆ T j or T j ⊆ Sj . Therefore, Uj = Sj or
Uj = T j . Hence, since d is monotone, whence it attains only non-negative values, we
infer that d(Uj) ≤ d(Sj) + d(T j) for all 1 ≤ j ≤ r. Adding up the last inequalities, we
arrive at the conclusion that d(S ∪ T ) ≤ d(S) + d(T ). �

3.3 Anonymizations, covers, and clusterings

Any k-anonymization of D defines a clustering of D where each cluster consists of all
records that were replaced by the same generalized record. Given a k-anonymization of D,
we can assume that all of its induced clusters are of size between k and 2k − 1. Indeed, if
there exists a cluster of size greater than 2k−1, we may arbitrarily split it into two clusters of
size at least k without increasing the overall information loss, as implied by the monotonicity
of the cost measure.

Definition 6 An [ℓ,m]-cover is a cover γ of D by subsets S ⊂ D of size ℓ ≤ |S| ≤ m. An
[ℓ,m]-clustering is an [ℓ,m]-cover where all subsets are disjoint.

Let Γ[k,2k−1] be the set of all [k, 2k − 1]-covers of D and let P[k,2k−1] be the subset of
all [k, 2k− 1]-clusterings. As discussed above, any optimal k-anonymization corresponds to
a clustering in P[k,2k−1].

Given a [k, 2k − 1]-cover γ ∈ Γ[k,2k−1] of the database D, we define its generalization
cost as:

d(γ) =
∑
S∈γ

d(S) . (4)

Furthermore, if γ ∈ P[k,2k−1] we define its anonymization cost as

ANON(γ) =
∑
S∈γ

|S| · d(S) . (5)

If g(D) is the k-anonymization that corresponds to the [k, 2k−1]-clustering γ, then Π(D, g(D)) =
1
nANON(γ).

Given a database D and a positive integer k, we consider two optimization problems on
P[k,2k−1]. The first one is the [k, 2k − 1]-minimum clustering problem, in which we look
for γ ∈ P[k,2k−1] that minimizes d(γ). The second one is the k-anonymization problem,
in which we look for γ ∈ P[k,2k−1] that minimizes ANON(γ). The following theorem [8,
17] asserts that given an α-approximation algorithm for the [k, 2k−1]−minimum clustering
problem, the k-anonymization problem can be approximated to within a factor of 2α.

Theorem 1 Let α ≥ 1, and let γ be a [k, 2k − 1]-clustering with cost at most α times that
of an optimal solution to the [k, 2k − 1]-minimum clustering problem. Then if we replace
each record R ∈ D with the closure of the cluster in γ to which it belongs, we obtain a
2α−approximation to the optimal k-anonymization problem.
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3.4 The basic O(ln k)-approximation algorithm

We now proceed to describe the approximation algorithm of [8] to the problem of k-anonymization
with minimal loss of information. The two main procedures in that algorithm are described
in Algorithms 1 and 2. Algorithm 1, which will be referred to hereinafter as GEN-COVER,
is the well-known greedy algorithm for approximating the weighted set cover problem.
It receives a database D and a collection C of subsets of D and outputs a cover of D

with subsets from C, that approximates an optimal cover to within O(lnκ(C)), where
κ(C) := max{|S|, S ∈ C}. The approximation algorithm for the optimal k-anonymity
problem, Algorithm 3 (k-ANON hereinafter), starts by invoking GEN-COVER with the spe-
cial collection

C = F[k,2k−1] := {S ⊂ D : k ≤ |S| ≤ 2k − 1} . (6)

Consequently, the resulting cover, γ, is an O(ln k)-approximation to the problem of optimal
[k, 2k − 1]-cover. In the second phase, Algorithm 3 invokes Algorithm 2 which translates
the cover γ to a [k, 2k− 1]-clustering γ0. Finally, that clustering is translated into the corre-
sponding k-anonymization of D.

Algorithm 1 GEN-COVER

A naı̈ve greedy approximation to an optimal cover
Input: Table D, a collection of subsets C ⊆ P(D).
Output: Cover γ of D with subsets from C.
1: Set γ = ∅ and E = ∅.
2: while E ̸= D do
3: for all S ∈ C do
4: Compute the ratio ρ(S) =

d(S)
|S∩(D\E)| .

5: end for
6: Choose S that minimizes ρ(S).
7: E = E ∪ S, γ = γ ∪ {S}, C = C \ {S}.
8: end while

Algorithm 2 Converting a cover to a clustering
Input: An integer k, and a [k, 2k − 1]-cover γ = {S1, . . . , St} of D = {R1, . . . , Rn}.
Output: A [k, 2k − 1]-clustering, γ0, of D.
1: Set γ0 = γ.
2: while γ0 has intersecting subsets do
3: Let Sj , Sl ∈ γ0 be such that Sj ∩ Sl ̸= ∅ and let R ∈ Sj ∩ Sl.
4: if |Sj | > k then
5: Set Sj = Sj \ {R}.
6: else if |Sl| > k then
7: Sl = Sl \ {R}
8: else {|Sj | = |Sl| = k}
9: Remove Sl and Sj from γ0 and replace them with Sj ∪ Sl.

10: end if
11: end while

Theorem 2 The k-anonymization g that is produced by Algorithm k-ANON satisfies

Π(D, g(D)) ≤ 2(1 + ln 2k) ·OPT (D), (7)
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Algorithm 3 k-ANON

k-anonymization via set-cover
Input: Table D, integer k.
Output: Table g(D) that satisfies k-anonymity.
1: Invoke Algorithm 1 with C = F[k,2k−1] (see Eq. (6)).
2: Convert the resulting [k, 2k − 1]-cover γ into a [k, 2k − 1]-clustering, γ0, by invoking Algorithm 2
3: Output the k-anonymization g(D) of D that corresponds to γ0.

where OPT (D) is the cost of an optimal k-anonymization.

Proof Let γ ∈ Γ[k,2k−1] be the cover that is produced by GEN-COVER (Algorithm 1),
and let γOPT be the optimal cover (one that minimizes d(·) in Γ[k,2k−1]). As the greedy
algorithm approximates the optimal solution of the set-cover problem to within a factor of
(1 + ln 2k), we have d(γ) ≤ (1 + ln 2k) · d(γOPT ).

Now, let γ0 be the clustering that is achieved by Algorithm 2. In each iteration of the
algorithm, it performs one of two possible operations — either the deletion of a record
from a subset of the cover, or the unification of two intersecting subsets. As implied by our
monotonicity assumption and by Lemma 1, neither of these operations increases the cost
of the cover, whence d(γ0) ≤ d(γ) ≤ (1 + ln 2k) · d(γOPT ). Finally, by Theorem 1, the
resulting k-anonymization satisfies inequality (7). �

Algorithm k-ANON (Algorithm 3) has an impractical runtime because of its first phase,
GEN-COVER. The runtime of GEN-COVER is O(|C||D|) where C is the input collection
of subsets from which a cover is to be selected. Since Algorithm k-ANON invokes Algo-
rithm GEN-COVER with an input collection of size |C| = O(n2k−1), we end up with an
impractical runtime of O(n2k).

3.5 An improved version using closed frequent generalized records

To improve the runtime of k-ANON, Park and Shim [19] considered the case of general-
ization by suppression only, and introduced the usage of closed frequent itemsets in order
to reduce the size of the collection C, while still guaranteeing the approximation ratio of
2(1 + ln 2k).

They replaced the collection C = F[k,2k−1], that consists of all subsets of D of size
between k and 2k − 1 (see Eq. (6)) with a much smaller collection C = FCF , which we
will describe in Section 4. As the latter collection may have subsets of size greater than
2k − 1, Park and Shim modified the basic algorithm GEN-COVER so that it outputs a cover
consisting of subsets of size between k and 2k−1 only. They prove that each of the possible
outputs of their modified algorithm is also a possible output of the original GEN-COVER

with the original input collection C = F[k,2k−1]. Hence, each of the possible outputs of the
modified algorithm is a cover that approximates the optimal cover to within O(ln k). This, in
turn, implies that the k-anonymizations that are obtained by k-ANON, where the first phase
invokes the modified algorithm instead of GEN-COVER, is also an O(ln k)-approximation
of an optimal k-anonymization.

The runtime of the modified first phase is O(|FCF ||D|), while that of the original al-
gorithm is O(|F[k,2k−1]||D|). Since, typically, |FCF | is much smaller than |F[k,2k−1]| =
O(n2k−1), the modified algorithm is a practical version of k-ANON. However, as men-
tioned above, it is restricted to generalization by suppression only. We proceed to describe



11

the extension of that algorithm for all proper generalizations and any monotone measure of
loss of information.

4 A General O(log k)-Approximation Algorithm for k-Anonymity

In this section we describe a general O(log k)-approximation algorithm for k-anonymity,
which is an adaptation of the algorithm that was proposed in [19] for the case of k-anonymization
by suppression. The structure of our algorithm is similar to the structure of the algorithms
of [8,19] that we described in the previous section. Namely, it too (see Algorithm 5 below),
like Algorithm 3, has two phases: In the first phase it produces a [k, 2k − 1]-cover of D

that approximates the optimal [k, 2k − 1]-cover of D to within an approximation ratio of
O(ln k); it does so by solving a weighted set cover problem using the greedy algorithm.
In the second phase it translates the found [k, 2k − 1]-cover into a [k, 2k − 1]-clustering.
As shown in Theorem 2, that clustering induces a k-anonymization that approximates the
optimal k-anonymization to within O(ln k).

The second phase is identical in both Algorithms 3 and 5; the cover is translated to a
clustering by invoking Algorithm 2. The difference between the two algorithms is in the
first phase. While k-ANON (Algorithm 3) produces the cover by solving a weighted set
cover problem with the collection of subsets F[k,2k−1], Algorithm 5 produces such a cover
by solving a weighted set cover problem with a much smaller collection of subsets. This is
a key issue in rendering the algorithm practical, as we proceed to explain.

The main disadvantage of k-ANON is the runtime of its first phase, GEN-COVER, which
is O(n2k). The modification of that algorithm that we present here (GEN-COVER-CF, Al-
gorithm 4) also produces a cover of D that approximates the optimal [k, 2k − 1]-cover of
D to within an approximation ratio of O(ln k); however, its runtime is significantly re-
duced. Both algorithms, GEN-COVER and GEN-COVER-CF, receive as an input a collec-
tion of subsets, C ⊆ P(D), from which they select the subsets for the cover. The run-
time of both algorithms is bounded by O(|C||D|). Hence, the key idea is to reduce the size
of the input collection C. In the original algorithm GEN-COVER, the input collection is
C = F[k,2k−1] := {S ⊂ D : k ≤ |S| ≤ 2k− 1}, which is of size O(n2k−1). In the modified
algorithm GEN-COVER-CF, the input collection is C = FCF , where FCF contains only
the supports of closed frequent generalized records.

Definition 7 Let Q ∈ A1 × · · · × Ar be a generalized record. Its support is the subset of
records R ∈ D such that R ⊑ Q. Q is called (k-)frequent if its support size is at least k. Q is
called closed if for all generalized records Q′ @ Q, the support of Q′ is strictly smaller than
that of Q.

Generally, the size of FCF is much smaller than that of F[k,2k−1]. Hence, the runtime of
GEN-COVER-CF, which is O(n · |FCF |), is much smaller than that of GEN-COVER, which
is O(n · |F[k,2k−1]|) (even though the theoretical time complexity of the two algorithms is
the same — O(n2k)).

Example. Consider the following database that consists of ten transaction records,

D = {R1 = shoes, R2 = shoes, R3 = shoes, R4 = boots, R5 = boots, R6 = sandals,
R7 = ski-pants, R8 = sport-jackets, R9 = sport-jackets, R10 = sport-jackets} .

Assume that the corresponding generalization taxonomy is as given in Figure 1. If k = 3,
the frequent generalized records and their supports are given in Table 1. The frequent gener-
alized record “clothes” is not closed, since it has the same support as that of the generalized
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record “outdoors” that narrows it. All other five frequent generalized records are closed.
Hence, in this example we have

FCF = {shoes, footwear, sport-jackets, outdoors, clothing} .

(More precisely, FCF contains the supports of those five closed frequent generalized records;
e.g., instead of “shoes” it contains the corresponding support {R1, R2, R3}.) On the other
hand, F[k,2k−1] = F[3,5] includes in this case all subsets of D of cardinality between 3
and 5. The size of that collection is

(
10
3

)
+

(
10
4

)
+

(
10
5

)
= 582, which is much larger. As

an example to the economization of replacing F[k,2k−1] with FCF , consider the subset of
records S = {R1, R2, R3, R4, R5, R6}. It has

(
6
3

)
+
(
6
4

)
+
(
6
5

)
= 41 subsets of sizes between

3 and 5. Of those 41 subsets, 40 subsets have the closure “footwear” (the only exception is
the subset {R1, R2, R3} whose closure is “shoes”). Hence, the closed frequent generalized
record “footwear” is reproduced in F[3,5] 40 times. In FCF , on the other hand, it appears
only once through its support S.

frequent generalized records supports
shoes {R1, R2, R3}

footwear {R1, R2, R3, R4, R5, R6}
sport-jackets {R8, R9, R10}

outdoors {R7, R8, R9, R10}
clothes {R7, R8, R9, R10}
clothing D

Table 1 List of frequent generalized records and the corresponding supports

This change in the input collection of subsets requires us also to modify the algorithm
itself. In GEN-COVER, it was essential that all subsets in the cover are of size between k

and 2k − 1. In GEN-COVER-CF, the input collection of subsets is FCF , and it may include
subsets of any size greater than or equal to k. Hence, whenever the greedily selected subset
S has a size larger than 2k − 1, we randomly select a subset SR ⊂ S of size 2k − 1 at the
most, in which the number of uncovered records is maximized, and then insert that subset
into the cover γ.

The modified algorithm GEN-COVER-CF is given in Algorithm 4. That algorithm is
then used as a procedure in k-ANON-CF, Algorithm 5, which is the approximation algo-
rithm for k-anonymity.

Comment. In the case of suppressions only, as studied in [19], all generalized records
are taken from A1 × · · · × Ar , where Aj = Aj ∪ {∗}. In other words, a generalized record
in that context is an exact record where some of the components are suppressed. Such a
generalized record may be identified with the itemset that consists of all record values that
were not suppressed. For example, if r = 3 and the attributes are (Age, Gender, Zipcode),
then the generalized record (34, ∗, 93412) is identified with the itemset {A−34, Z−93412}
(where the prefixes A and Z are used to identify the attribute from which the following value
was taken). Hence, the terminology and techniques used in [19] are those of itemsets and not
generalized records. Herein, we need to adopt the wider terminology of generalized records,
and apply also more general techniques for mining all closed frequent generalized records.

We proceed to show that GEN-COVER-CF is an appropriate substitute to GEN-COVER,
in the sense that it produces a cover of D that approximates the optimal [k, 2k − 1]-cover
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Algorithm 4 GEN-COVER-CF
A greedy approximation to optimal cover by closed frequent generalized records
Input: Table D; the collection of the supports of all closed frequent generalized records, FCF .
Output: Cover γ of D, where each set has size between k and 2k − 1.
1: γ = ∅ {the current cover}
2: E = ∅ {currently covered records in D}
3: while (E ̸= D) do
4: for all S ∈ FCF do
5: Compute the ratio ρ(S) =

d(S)
min(|S∩(D\E)|,2k−1)

.

6: end for
7: Choose a set S for which ρ(S) is minimized.
8: if (|S| ≤ 2k − 1) then
9: SR ← S {the set is in the right size}

10: else if (|S ∩ (D \ E)| ≥ 2k − 1) then
11: Choose SR ⊆ S ∩ (D \ E) such that |SR| = 2k − 1. {select 2k − 1 uncovered records}
12: else {|S| ≥ 2k and |S ∩ (D \ E)| < 2k − 1}
13: Choose SR ⊆ S such that SR ⊇ S ∩ (D \ E) and |SR| = max(k, |S ∩ (D \ E)|)
14: end if
15: E ← E ∪ SR

16: γ ← γ ∪ {SR}
17: end while
18: return γ

Algorithm 5 k-ANON-CF
k-anonymization via set-cover using closed frequent generalized records
Input: Table D, integer k.
Output: Table g(D) that satisfies k−anonymity
1: Find all closed generalized records that have support of size at least k in D (Algorithm 6).
2: Set FCF to be the set of supports of all the found closed frequent generalized records.
3: Produce a cover γ of D, by using Algorithm 4, with FCF as an input.
4: Convert the resulting [k, 2k − 1]-cover γ into a [k, 2k − 1]-clustering, γ0, by invoking Algorithm 2
5: Output the k-anonymization g(D) of D that corresponds to γ0.

to within O(ln k). Once we show that, we may conclude that k-ANON-CF (Algorithm 5)
produces a k-anonymization that approximates the optimal one to within O(ln k) by arguing
along the same lines as in Theorem 2.

First of all, it is clear that the cover γ produced by GEN-COVER-CF includes only sub-
sets of size between k and 2k−1. It remains to show that γ achieves the same approximation
ratio as GEN-COVER.

Lemma 2 If S and SR are the subsets that are selected in each iteration of GEN-COVER-
CF, then ρ(SR) ≤ ρ(S).

Proof We will prove this claim for every set S and its corresponding subset SR (namely,
not only for sets S that minimize ρ). Since SR ⊆ S then, by monotonicity, d(SR) ≤ d(S).
Furthermore, it is easy to see that in each of the three cases in GEN-COVER-CF, we have

min{|S ∩ (D \ E)|, 2k − 1} = min{|SR ∩ (D \ E)|, 2k − 1} .

This implies that ρ(SR) ≤ ρ(S). �

Given a table D and an integer k, we may apply GEN-COVER on the collection of
subsets of records F[k,2k−1], or we may apply GEN-COVER-CF on the collection FCF . In
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both cases we shall get as an output a cover of D by subsets of records of D whose size
is between k and 2k − 1. The cover that GEN-COVER outputs might differ from the one
that GEN-COVER-CF outputs due to the random selections made by the two algorithms.
(Specifically, in each iteration there may be more than one set that minimizes ρ(·), and the
algorithms randomly select one of them.) However, the following relation holds.

Theorem 3 Every cover that may be produced by GEN-COVER-CF, given FCF , is also a
possible output cover for GEN-COVER, given F[k,2k−1].

Proof Let Cov and CovCF be the sets of all possible output covers that may be produced
by GEN-COVER with F[k,2k−1] and GEN-COVER-CF with FCF , respectively. Consider any
cover γCF ∈ CovCF . We will show that there exists a cover γ ∈ Cov such that γ = γCF .

Let γCF = {S
′R
1 , S

′R
2 , · · · , S

′R
m } where the subscript denotes the selection order by

GEN-COVER-CF. S
′R
i is selected in lines 8-14 of GEN-COVER-CF as a subset of S′

i which
was selected greedily among the subsets in FCF in lines 4-7. We claim that there exists
a cover γ = {S1, S2 . . . Sm} ∈ Cov, where the subscript denotes the selection order of
the subsets by GEN-COVER, in which Si = S

′R
i for 1 ≤ i ≤ m. That will prove that

γCF = γ ∈ Cov. We will prove this claim by induction on the length of prefixes of γCF

that may be found in covers in Cov.
Assume that there exists a cover γ ∈ Cov such that Si = S

′R
i for 1 ≤ i ≤ j − 1,

where 1 ≤ j ≤ m. We will prove that such an assumption implies that there exists a cover
γ′ ∈ Cov for which Si = S

′R
i for 1 ≤ i ≤ j. (The case j = 1, in which the assumption is

empty, is the induction base.) Assume, towards contradiction, that there does not exist such
a cover. We consider two cases:

Case 1. ρ(Sj) < ρ(S
′R
j ): Let S

′′
be the support of Sj in D. Then the closures of S

′′

and Sj coincide, S′′
= Sj , whence d(S

′′
) = d(Sj). Therefore, since S

′′
⊇ Sj , we conclude

that ρ(S
′′
) ≤ ρ(Sj) < ρ(S

′R
j ). Since S′

j is the greedily selected subset at the jth iteration
of GEN-COVER-CF, we have ρ(S

′R
j ) ≤ ρ(S′

j) by Lemma 2. Therefore, ρ(S
′′
) < ρ(S′

j).

Since S
′′

is the support of the generalized record Sj , it is also the support of some closed
generalized record that narrows Sj ; hence, as |S

′′
| ≥ k, we infer that S

′′
∈ FCF . But that

contradicts our assumption that S′
j minimized the value of ρ(·) in FCF at the jth iteration

of GEN-COVER-CF.
Case 2. ρ(Sj) > ρ(S

′R
j ): Since k ≤ |S

′R
j | ≤ 2k−1 and F[k,2k−1] is the collection of all

subsets of D of size between k and 2k − 1, we infer that S
′R
j ∈ F[k,2k−1]. Then we should

have selected S
′R
j instead of Sj at the jth iteration of GEN-COVER, which, ones again, leads

to a contradiction.
We conclude that ρ(Sj) = ρ(S

′R
j ). But S

′R
j ∈ F[k,2k−1], since k ≤ |S

′R
j | ≤ 2k − 1.

Then, if GEN-COVER selected {S1, . . . , Sj−1} until the (j−1)th iteration, it can select S
′R
j

instead of Sj at the jth iteration. Hence, there exists a possible output cover of GEN-COVER

in which the first j selected subsets are S
′R
1 , . . . , S

′R
j−1 and S

′R
j . Setting j = m, where m is

the number of subsets in γCF , yields the desired result that γCF ∈ Cov. �
Finally, combining Theorem 3 and Theorem 2 we arrive at the following conclusion.

Theorem 4 The k-anonymization g that is produced by Algorithm k-ANON-CF satisfies

Π(D, g(D)) ≤ 2(1 + ln 2k) ·OPT (D),

where OPT (D) is the cost of an optimal k-anonymization.
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5 An Algorithm for Mining Closed Frequent Generalized Records

As stated previously, the input to GEN-COVER-CF is the collection C = FCF , where FCF

contains only sets of records, S, whose closure, S, is a closed frequent generalized record.
In this section we describe an algorithm that mines all closed frequent generalized records.

The problem of mining frequent itemsets was first introduced by Agrawal et al. [2].
They proposed an algorithm called Apriori for mining frequent itemsets. Apriori employs a
bottom-up, breadth-first search that enumerates every single frequent itemset. Apriori uses
the downward closure property of itemsets in order to prune the search space. Thus, only the
frequent k-itemsets are used to construct candidate (k + 1)-itemsets. The algorithm starts
by finding all itemsets of size 1 that are frequent, and then generates itemsets of size 2
that are candidate to being frequent. It then scans the table in order to detect which of the
candidates is indeed a frequent itemset. Frequent itemsets of size 2 are joined in order to
create candidate itemsets of size 3, and then another table scan finds the frequent itemsets
among those candidates. This procedure is repeated until no more frequent itemsets are
found.

Subsequent algorithms were devised for mining closed frequent itemsets [11,10,20], but
they too apply only for regular itemsets, and not for generalized itemsets (or records) as we
need here. An algorithm for mining frequent generalized itemsets is also available [23], but
as it is Apriori-based, it suffers from the drawbacks of Apriori (iterated candidate generation
and repeated database scans) and performs poorly in our application.

Here, we deal with structured databases and not with transactional databases. In struc-
tured databases, a generalized itemset is a generalized record. Hence, each itemset is of size
r, where r is the number of quasi-identifiers in the table, and it includes exactly one item
from each of the taxonomies. This distinguishes structured databases from transactional
ones, where itemsets may be of different sizes and may contain any number of items from
each taxonomy. The algorithm that we present here takes advantage of those special charac-
teristics of structured databases, in order to mine efficiently all closed frequent generalized
records.

5.1 Overview of the algorithm

Let D = {R1, . . . , Rn} be a database table with records Ri ∈ A1 × · · · × Ar , 1 ≤ i ≤ n.
For each 1 ≤ j ≤ r, let Aj ⊆ P(Aj) be a proper collection of subsets of Aj (Definition 3).
As implied by [8, Lemma 3.3], such collections form a (possibly unbalanced) hierarchical
clustering tree (or a taxonomy) for Aj . Our goal here is to find all generalized records
Q ∈ A1 × · · · × Ar that are supported by at least k records in D (namely, there are at
least k records Ri ∈ D such that Ri ⊑ Q) and, in addition to that, are closed (Definition 7).

Figure 2(a) illustrates an example of a database with ten records and two attributes
(n = 10, r = 2) and the accompanying taxonomies for each of the two attributes. That
toy example will be used in order to exemplify the operation of the algorithm.

The algorithm starts with the most generalized record, (A1, · · · , Ar), where the jth entry
holds the entire set of possible values for that entry, namely, Aj . That generalized record may
be thought of as the totally suppressed record, (∗, . . . , ∗). It is supported by all records of D
(since every record in D belongs to A1 × · · · × Ar), whence, it is frequent. The algorithm
then starts exploring the search space by narrowing the generalized record in a depth-first
manner. It keeps narrowing the generalized record until it can no longer be narrowed and
still remain frequent. If the current record turns out to be closed, in the sense that all of
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the generalized records that narrow it have smaller supports, it is added to the list of closed
frequent generalized records that the algorithm eventually outputs.

The collection of all generalized records, A1 × · · · ×Ar , forms a lattice, in which there
are many paths, or branches, of narrowing. The algorithm searches all possible branches of
narrowing. However, as the size of the lattice may be large, the algorithm reduces the search
space by implementing two basic ideas.

The first idea exploits the following property of anti-monotonicity: If Q and Q′ are two
generalized records and Q ⊑ Q′, then |support(Q)| ≤ |support(Q′)|. Therefore, if during
the search we reached a record that is infrequent, there is no point in examining the records
that narrow it, since they must be infrequent as well.

The next lemma provides another idea that allows the algorithm to prune branches of
the search space that cannot lead to yet undiscovered closed frequent generalized records.
The basic idea is that once a generalized record X is found to be not closed, namely, one
of the generalized records that narrows it, say X ′, has the same support, we need to process
only that narrowed record X ′ and none of the other generalized records that narrow X.

Lemma 3 Let X be a frequent generalized record, and assume that X ′ @ X. If support(X) =

support(X ′), then X is not closed. Moreover, assume that Y is a generalized record such
that Y @ X and there exists 1 ≤ j ≤ r for which X ′(j) $ Y (j). Then Y is not closed either.

Proof Since X ′ @ X, but the two generalized records have the same support, X is not
closed. Now, consider a generalized record Y = (Y (1), . . . , (Y (r)) as described in the
second part of the lemma. Since Y @ X then

support(Y ) ⊆ support(X) = support(X ′) . (8)

As Aj , 1 ≤ j ≤ r, are proper, one of the following holds for each 1 ≤ j ≤ r:

X ′(j) ⊆ Y (j) , or X ′(j) ⊇ Y (j) , or X ′(j) ∩ Y (j) = ∅ .

We separate our discussion into two cases.
Case 1. Assume that there exists 1 ≤ j ≤ r for which X ′(j) ∩ Y (j) = ∅. In this case,
support(X ′(j))∩support(Y (j)) = ∅, since no record can contain in its jth entry items from
both X ′(j) and Y (j). Consequently, support(X ′) ∩ support(Y ) = ∅, because for any gen-
eralized record Z, support(Z(j)) ⊇ support(Z) for every 1 ≤ j ≤ r. As support(X ′) =
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support(X), we infer that support(X) ∩ support(Y ) = ∅. Finally, in view of (8) we arrive
at the conclusion that support(Y ) = ∅.

Consider now the generalized record

Y ′ = (Y (1), . . . , Y (j − 1), X ′(j), Y (j + 1), . . . , Y (r))

where j is the index for which X ′(j) $ Y (j). As Y ′ @ Y and support(Y ) = ∅, we
conclude that support(Y ′) = ∅. Hence, Y has a proper narrowing, Y ′, that has the same
support. Therefore, Y is not closed. This settles the proof in Case 1.

Case 2. Assume that for all 1 ≤ j ≤ r, X ′(j) ⊆ Y (j) or X ′(j) ⊇ Y (j). Consider the
generalized record Y ′ = (Y ′(1), . . . , Y ′(r)), where:

Y ′(j) =

{
X ′(j) X ′(j) $ Y (j)

Y (j) X ′(j) ⊇ Y (j)
, 1 ≤ j ≤ r .

In other words, Y ′(j) = Y (j) ∩X ′(j) for all 1 ≤ j ≤ r. Therefore,

support(Y ′) = support(Y ) ∩ support(X ′) = support(Y ) .

Hence, we found a generalized record Y ′ @ Y for which support(Y ′) = support(Y ).
Consequently, Y is not closed. This settles the proof in the second case as well. �

Example. Consider the database in Figure 2 and take

X = ({a, b}, {g, h}) , X ′ = ({b}, {g, h}) .

Clearly, X ′ @ X, but they both have the same support, namely {3, 6, 10}. As implied by
Lemma 3, there is no need to process generalized records such as Y = ({a, b}, {g}), since
Y @ X and X ′(1) $ Y (1). Indeed, the support of Y equals that of Y ′ = ({b}, {g}) (the set
of records {6, 10}), whence Y is not closed.

5.2 Efficient computation of supports of generalized records

Each proper collection of subsets, Aj , 1 ≤ j ≤ r, is a hierarchical clustering tree, or a
taxonomy, for the attribute Aj . We will augment the taxonomy structures in a manner that
will allow us to compute the support of any given generalized record efficiently. To that
end, we associate with each leaf in the taxonomy a list that holds the indices of all records
in D that contain the value in that leaf. This way, the union of the lists of all leaves under
a given node in the taxonomy will be the support for that node (in other words, the list
of all records in D that contain a value that appears in that node). Figure 3 illustrates the
augmented taxonomies for the example in Figure 2(b).

Assume next that we wish to compute the support of the generalized record (a1, . . . , ar),
where aj is a node in the taxonomy Aj . Then all we need to do is to intersect the supports
of each of the sets of records that are associated with the r nodes aj . For example, if we
wish to compute the support of the generalized record ({a, b}, {g}), we first compute the
list of records in which the first entry supports the set {a, b}, then we compute the list of
records in which the second entry supports the set {g}, and then intersect the two lists. The
first list is {1, 3, 6, 7, 9, 10} (it is the union of the two lists under the node {a, b} in the first
taxonomy in Figure 3), while the second list is {4, 6, 10}. The support of ({a, b}, {g}) is the
corresponding intersection, {6, 10}.
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Computing the generalized record support in such a manner is much more efficient than
traversing the complete database and inspecting each record. After making one pass over
the entire database, the algorithm needs only to mine these compact taxonomy structures
instead of going again over the actual database.

5.3 The algorithm

Algorithm 6 is the algorithm for mining closed frequent generalized records. It starts by
augmenting the taxonomies with the lists of supports for each leaf in each taxonomy (Step
1). It then prunes from Aj nodes whose support is of size less than k since no generalized
record that includes the corresponding generalized value in its jth entry can be frequent
(Steps 2-4). Then it starts with the most generalized record, (A1, . . . , Ar) = (∗, . . . , ∗)
(which is obviously frequent, but not necessarily closed), and starts traversing the search
space in a depth-first manner. A generalized record will be added to the output list, FCF ,
if it is frequent and closed, i.e., none of its direct narrowings has the same support as it
does. Both checks can be made quickly and easily using the special data structures that were
constructed in Step 1. In order to avoid processing a generalized record more than once, we
keep a hash table (called processed) of all generalized records that were already examined.

Algorithm 6 Mining closed frequent generalized records
Input:

– Database D of n records and r quasi-identifiers
– Minimum support threshold, k
– Taxonomy trees, A1, · · · , Ar

Output: FCF — the list of all closed generalized records of support size at least k.
1: Make a single pass over D and augment the trees A1, · · · , Ar with the supporting record ids.
2: for all 1 ≤ j ≤ r do
3: Remove from Aj all nodes that are supported by less than k records.
4: end for
5: root← (A1, . . . , Ar)
6: processed← ∅
7: FCF ← ∅
8: Call Algorithm 7 with inputs root, k, processed, and FCF .
9: return FCF
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The main function in this algorithm is called in Step 8: That function, which is imple-
mented in Algorithm 7, receives as an input a root generalized record, (a1, . . . , ar), and adds
to the list of closed frequent generalized records all the closed frequent generalized records
that are narrowings of the given root. That function implements the depth-first search, start-
ing from the given root downward.

Algorithm 7 Updating the list of closed frequent generalized records
Input:

– A generalized record, root = (a1, . . . , ar)
– Minimum support threshold, k
– A set of processed generalized records, processed
– A set of closed frequent generalized records, closed

Output: Adding to the given list closed all the closed frequent generalized records that are narrowings of
root.
1: if ((root∈ processed) OR (|support(root)| < k)) then
2: return
3: end if
4: processed← processed ∪ {root}
5: isRootClosed← true
6: for j = 1 to j = r do
7: for all children bj of aj in Aj do
8: new support← support(bj) ∩ support(root)
9: if (|new support| ≥ k) then

10: if (|new support| = |support(root)|) then
11: isRootClosed← false
12: end if
13: new root← (a1, . . . , aj−1, bj , aj+1, · · · , ar)
14: Call Algorithm 7 (recursively) with inputs new root, k, processed, closed;
15: if (isRootClosed = false) then
16: break double loop;
17: end if
18: end if
19: end for
20: end for
21: if (isRootClosed = true) then
22: closed← closed ∪ {root}
23: end if

It starts (Steps 1-3) by checking whether the given root was already processed, or if
its support is of size less than k; in either case it returns without going on further. It then
continues and adds the root to the list of processed generalized records (Step 4) and marks it
as closed (Step 5). The mark of the root as being closed will remain so until we are convinced
otherwise.

Next, we start the loop over all quasi-identifiers (j = 1, . . . , r) (Step 6) and for each
identifier over all the children of aj (Step 7). This double loop scans all generalized records
that are immediate narrowings of the input generalized record. (To this end, a generalized
record X ′ is an immediate narrowing of the generalized record X if X and X ′ coincide
in all entries except for one entry, say the jth entry, in which X ′(j) is an immediate child
of X(j).) We first compute the support of that narrowed record (Step 8). If the support of
that narrowed record is of size less than k (Step 9), there is no need to further process it,
or any of its narrowings, as that generalized record is not frequent. Furthermore, such an
infrequent narrowing does not provide any evidence against our current assumption that the
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input generalized record is closed, since the input generalized record has a support of size
at least k, while the current narrowing has a support of size less than k.

Next (Steps 10-12), if the support of that narrowed record equals that of the input gener-
alized record then we mark the input generalized record as not closed. Then we activate the
depth-first strategy by calling the function, recursively, with that narrowed record as an input.
Finally, if the input generalized record has been established as not closed, we can break out
of the double-loop and not proceed to check the rest of the narrowings. To see why, let us as-
sume that the root is X = (a1, . . . , ar) and assume that aj has in Aj the children b1, . . . , bt.
Assume that while examining the narrowed record X ′ = (a1, . . . , aj−1, b1, aj+1, . . . , ar),
we discovered that X and X ′ have the same support (whence, we set isRootClosed to be
false). Then that means that the support of (a1, . . . , aj−1, bi, aj+1, . . . , ar) for all i > 1 is
empty and so we can break out of the inner loop on the children. Moreover, there is no need
to continue the loop over j since the resulting narrowed records there cannot be closed and
cannot lead to other closed generalized records as implied by Lemma 3.

Finally, at the end of the loop over all immediate narrowings, if the root survived all
checks and proved to be closed, we add it to the list of closed frequent generalized records
(Steps 21-23).

6 Enhancing k-Anonymity by ℓ-Diversity

6.1 About k-anonymity and ℓ-diversity

Several studies have pointed out weaknesses of the k-anonymity model and suggested more
secure measures such as ℓ-diversity [16], t-closeness [15], or p-sensitivity [26]. The main
weakness of k-anonymity is that it does not guarantee sufficient diversity in the private at-
tribute in each equivalence class of indistinguishable records. Namely, even though it guar-
antees that every record in the anonymized table is indistinguishable from at least k − 1

other records, when projected on the subset of quasi-identifiers, it is possible that all of
those records have the same private value. Therefore, an adversary who is capable of lo-
cating his target individual in that block of records, will be able to infer the private value
of that individual. Machanavajjhala et al. [16] proposed the security measure of ℓ-diversity.
They suggested that the private attribute in each block will have at least ℓ “well represented”
values. They offered two interpretations of that measure. In one interpretation, the entropy
of the private values in every block should be at least log ℓ, for some predetermined value
of the parameter ℓ. The other interpretation is that of recursive (c, ℓ)-diversity (see [16] for
its definition). In practice, a simpler interpretation of ℓ-diversity is usually applied [27,28]:
A block is ℓ-diverse if the relative frequency of each of the private values within each block
does not exceed 1/ℓ.

The notion of t-closeness is stronger than ℓ-diversity since it demands that the distri-
bution of the private values within every block of indistinguishable records would be suffi-
ciently close to its general distribution in the table. The notion of p-sensitivity, on the other
hand, relaxes the notion of ℓ-diversity as it only requires each block to have p distinct private
values, but does not impose any condition on their distribution.

It is important to understand that those notions do not and can not replace k-anonymity.
They offer essential enhancements to k-anonymity in the sense that one must require them
in addition to k-anonymity. In accord with this, Truta et al. [26] propose algorithms that
generate tables that are both k-anonymous and p-sensitive, and Wong et al. [27] consider
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the conjunction of k-anonymity with the last interpretation of ℓ-diversity (they call this con-
junction of conditions (1/ℓ, k)-anonymity).

In order to clarify that point, let us focus on the most important notion of the three that
we mentioned above — ℓ-diversity. The diversity of a table is bounded from above by the
number of possible private values (equality holds if and only if the distribution of the private
values is uniform). The diversity of any anonymization of the table is bounded from above
by the diversity of the entire table (equality holds if and only if the distribution in each block
equals the global distribution). Therefore, if the table has a private attribute with a small
number of possible values, all of its anonymizations will respect ℓ-diversity with ℓ that does
not exceed this number. For example, in the case of a binary private attribute, one can aim
at achieving ℓ-diverse anonymizations with ℓ ≤ 2 only. In such a case, if one imposes only
ℓ-diversity, the blocks of indistinguishable records could be of size 2. Such small blocks
do not provide enough privacy for the individuals in them, because if an adversary may be
able to learn the private value of one of those individuals, he may infer that of the other
one as well. If, on the other hand, we demand that such ℓ-diverse anonymizations are also
k-anonymous, for a suitable selection of k, then the adversary would have to find out the
private values of at least k/2 individuals before he would be able to infer the private value
of his target individual.

6.2 Modifying k-anonymizations to meet the ℓ-diversity constraint

As noted in [16], any algorithm for k-anonymization may be enhanced so that it issues k-
anonymized tables that are also ℓ-diverse. The idea is simple: The diversity of the union of
two clusters of records is a convex combination of the diversities of the two clusters (this
is true for all acceptable definitions of diversity). Hence, if there are clusters of records that
violate ℓ-diversity, one can start unifying them until ℓ-diversity is met. Such a procedure,
as explained in [16], will always stop successfully if the target diversity parameter ℓ is a
legitimate one (namely, if the global diversity in D is at least ℓ). Therefore, in order to
convert any algorithm that is designed to achieve only k-anonymity into one that achieves
k-anonymity and ℓ-diversity, it is needed to post-process the output clustering by unifying
clusters that violate ℓ-diversity until all clusters are ℓ-diverse. Herein, we adopt the definition
of diversity from [27,28] (see Definition 8); however, the algorithm that we present later on
can be applied also with other definitions of diversity, such as the entropy-based definition
that was proposed in [16].

Definition 8 Let C = {Ri1 , . . . , Ri|C|} be a cluster of records in D and let C′ := {Si1 , . . . , Si|C|}
be the private values of those records. Let f be the number of occurrences of the most fre-
quent value in C′. Then the diversity of C is div(C) := |C|/f . Let γ = {C1, . . . , Ct} be a
clustering of the records of the table D. Then its diversity is div(γ) := min1≤i≤t div(Ci).

Algorithm 8, that is described below, is a post-processing procedure that may be applied
on top of any algorithm of k-anonymization. Its input is any clustering of the records of the
table D, and a target diversity parameter ℓ ≥ 1. Its output is a coarser clustering in which
all clusters are ℓ-diverse. (By coarser clustering we mean that it is derived from the input
clustering only by means of unifying clusters.) We shall apply Algorithm 8 on clusterings
issued by k-anonymization algorithms, namely, clusterings in which all clusters are of size
at least k. Since the output clustering is coarser than the input clustering, all of the clusters
in it will be of size at least k, and, in addition, they will all be ℓ-diverse.
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First, the algorithm computes the diversities of all clusters in the input clustering γ. It
selects the cluster Cm with minimal diversity. If that cluster is already ℓ-diverse, the clus-
tering is ripe to be output. Otherwise, we look for the best cluster with which Cm can be
unified. Once such a cluster is found, we unify it with Cm and then repeat the procedure
until all clusters are ℓ-diverse.

The algorithm uses a cost function in order to decide about the most profitable unifica-
tion. On one hand, unifying the least diverse cluster with another cluster brings us closer
to meeting the ℓ-diversity requirement. On the other hand, unifying clusters increases the
information loss. It is our goal to achieve a maximal gain towards meeting the ℓ-diversity
requirement, but at the same time we wish to favor unifications that will incur smaller ad-
ditions to the information loss. Hence, we define the cost function as a weighted average
between an information cost and a diversity cost.

Let γ = {C1, . . . , Ct} be a clustering of the records in the table D. For any two clusters
in γ, say Ci, Cj , we let γCi,Cj

=
(
γ \ {Ci, Cj}

)
∪ {Ci ∪ Cj} denote the clustering that

would be obtained from γ if Ci and Cj were unified. Let

costI(Ci, Cj) = ANON(γCi,Cj
)−ANON(γ) (9)

be the added information loss if Ci and Cj were unified; in view of Eq. (5) it equals

|Ci ∪ Cj | · d(Ci ∪ Cj)− |Ci| · d(Ci)− |Cj | · d(Cj) .

The diversity cost, costD(Ci, Cj), is defined as the remaining gap between the diversity of
the unified cluster Ci ∪ Cj and the target level ℓ:

costD(Ci, Cj) = max
{
ℓ− div(Ci ∪ Cj) , 0

}
. (10)

Finally, we define

cost(Ci, Cj) = w · costI(Ci, Cj) + (1− w) · costD(Ci, Cj) , (11)

where w is a weight between 0 and 1 that can be tuned experimentally.

Algorithm 8 A post-processing algorithm to achieve ℓ-diverse anonymizations
Input: A clustering γ = {C1, . . . , Ct} of the records in a table D; a target diversity parameter ℓ ≥ 1.
Output: A coarser clustering that respects ℓ-diversity.
1: Compute div(Ci) for all Ci ∈ γ.
2: Let Cm be the cluster with minimal diversity in γ.
3: if div(Cm) ≥ ℓ then
4: Output γ and stop.
5: end if
6: Compute cost(Ci, Cm) for all Ci ∈ γ \ {Cm}.
7: Find the cluster Ci ∈ γ \ {Cm} for which cost(Ci, Cm) is minimal.
8: Remove Ci and Cm from γ and add to γ the cluster Ci ∪ Cm.
9: Go to Step 2.

It should be noted that by converting our algorithm to an algorithm which issues k-
anonymizations that respect also ℓ-diversity, the logarithmic approximation ratio is no longer
guaranteed. However, the anonymizations issued by our algorithm are characterized not only
by a proven approximation guarantee, but also by lower information losses than those of
other leading k-anonymization algorithms, as demonstrated by our experimental evaluation
(Section 7). Our experiments show that this advantage is maintained also after applying the
ℓ-diversity post-processing.
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7 Experiments

We tested our algorithm versus three algorithms: the Forest algorithm [1], the Agglomerative
algorithm [7], and the Hilbert-curve algorithm1 [6]. We also tested it against the recent
sequential clustering algorithm [9], but as it issues results that are very close to those issued
by the agglomerative algorithm we do not include a separate curve for that algorithm in the
figures below.

The tests were conducted on the following three datasets from the UCI Machine Learn-
ing Repository:

– Adult: The Adult dataset was extracted from the US census Bureau Data Extraction
System. It contains demographic information of a sample of US population with 14
public attributes such as age, education-level, marital-status, occupation, and native-
country. The private information is an indication whether that individual earns more or
less that 50 thousand dollars annually. The Adult data contains 45,222 records after the
records with missing values are removed.

– Nursery: The Nursery dataset was derived from a hierarchical decision model that was
originally developed to rank applications for nursery schools. The Nursery dataset con-
tains 12,960 records after deleting those with missing values. It has 8 quasi-identifier
attributes.

– Coil2000: This dataset used in the CoIL 2000 Challenge contains information on cus-
tomers of an insurance company. The data consists of 86 variables and includes prod-
uct usage data and socio-demographic data derived from zip area codes. The Coil2000
dataset contains 5,822 records after deleting those with missing values. We used the first
9 quasi-identifiers out of the 86 available ones.

We ran each of the three algorithms with seven values of the anonymity parameter, k =

10, 30, 50, 75, 100, 150, 200. The information loss measure that we used in order to compare
the algorithms was the LM measure (see Eq. (3)). We also verified the results on the entropy
measure [8].

All of the algorithms that we tested were implemented in Java and run on a core 2 (R)
quad (Q6600) CPU 2.4 GHz, 8GB of RAM.

7.1 Adult dataset experiments

We created taxonomies for each the categorical attributes in that database, as follows:

1. Taxonomies of height 1 (suppression only): In the three attributes Relationship, Race,
and Sex we used suppression only since those attributes were not rich enough to support
meaningful intermediate levels of generalization.

2. Taxonomies of height 2 (one intermediate level of generalization). Such taxonomies
were applied in the following attributes (for each of those attributes we list the groups of
values in the intermediate level and the number of exact values in each of those groups):

– Workclass: Government (3), Private employment (3), Not employed (2)
– Education: Academic (3), Some school (9), Other education (4).

1 We used a modification of the original algorithm in which we rescale all table attributes, prior to applying
the Hilbert mapping, so that they vary along intervals of the same length. Such a modification improves the
results of the algorithm, especially in cases where the original attributes vary along intervals of sizes that
differ significantly. For a detailed discussion and justification of that modification, the reader is referred to
[9].
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– Marital-status: Married (3), Unmarried (4).
– Occupation: Business (3), Technical (3), Protective (2), Other (6)

3. Taxonomies of height 3:
– Native-country: The first level consists of North America, Central America and Car-

ribean, South America, Europe, and Asia. The second level consists of West (Amer-
icas and the Carribean) and East (Europe and Asia).

In the remaining six attributes that are numeric we used generalization by interval ranges.
The comparison between the various algorithms can be seen in the following figures. Figure
4 compares between the algorithms when run using the LM and entropy (EM) measures.
Figure 5 displays the runtime differences between the algorithms in the case of the LM
measure; the graph for the EM measure is similar.
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Fig. 4 Algorithm score comparison — Adult dataset

As we can see, our anonymization algorithm, k-ANON-CF, provides much better anonymiza-
tions than the Forest algorithm, in consistency with the improvement in the approximation
factor from O(k) (for the Forest algorithm) to O(ln k) (for k-ANON-CF). The informa-
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tion loss in the anonymizations produced by k-ANON-CF are also better than that in the
anonymizations issued by the Agglomerative and modified Hilbert algorithms, which are
heuristical algorithms with no approximation guarantee. This better performance in terms
of information loss is accompanied by slower (but still practical) runtimes.

7.1.1 Scalability

We examined the scalability of k-ANON-CF with respect to two parameters — the size of
the table, n, and the number of attributes r. In the first test we ran the algorithm over four
artificial tables with 30, 60, 90, and 120 thousand records (and 14 quasi-identifiers) that were
generated from the Adult database. According to these experiments we see that the number
of generalized closed frequent itemsets grows roughly linearly with the table size (Figure 6
(a)). We also observe that the runtime of k-ANON-CF grows quadratically with the table
size (Figure 6 (b)). The quadratic growth is due to the fact that the algorithm’s runtime
depends on the number of generalized closed frequent records and the time to compute the
support of each such generalized closed frequent record also depends linearly on the table
size.

In the second test we investigated the dependence of the runtime on the number of
quasi-identifiers and the structure of the generalization hierarchies. To that end, we ran k-
ANON-CF on four versions of the Adult dataset. The first was the original dataset, which
has all 14 public attributes. The second was a reduced version that had 11 public attributes;
we removed attributes fnlwgt, capital-gain and capital-loss. The third dataset had 8 public at-
tributes; we further removed attributes education-num, hours-per-week and native-country.
The fourth dataset had five public attributes; we further removed marital-status, relationship
and race attributes. We also ran the algorithm on the full Adult dataset using “flat” hier-
archies, namely, generalization by suppression only. Figure 7 displays the total algorithm
runtime as a function of k in each of the above described tests. The vast differences in the
running times as a function of the number of public attributes is due to the fact that the num-
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ber of closed frequent generalized records depends exponentially on the number of public
attributes.

7.2 Nursery dataset experiments

We created taxonomies for each of the 8 attributes as follows:

1. Taxonomies of height 1 (suppression only): The hierarchies for attributes form, health,
parents, finance, housing and social were defined as suppression only. The reason for
this is that the values of these attributes are derived from a small domain.

2. Taxonomies of height 2 (one intermediate level of generalization):
– children: 1-2 (2), 3-more (2).
– has nurs: not proper (2), critical (2).

Figure 8 displays the LM-scores achieved by the four algorithms on the Nursery dataset.
Figure 9 displays the runtimes of those algorithms when run on this dataset.

Also here k-ANON-CF provides the best results in terms of information loss. The run-
times of k-ANON-CF here are much better since the Nursery dataset includes only 8 public



27

1

10

100

1000

10000

100000

1000000

0 50 100 150 200

k

T
o

ta
l r

u
n

ti
m

e 
(s

ec
o

n
d

s)

14 atts

11 atts

flat

8 atts

5 atts

Fig. 7 k vs. total runtime — Adult dataset

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 50 100 150 200

k

L
M

 c
o

st

Forest

Hilbert-M

Agglomerative

k-Anon-CF

Fig. 8 Algorithm score comparison (LM) — Nursery dataset

attributes and, as exemplified earlier on the reduced versions of the Adult dataset, the num-
ber of public attributes affects dramatically the overall runtime of the algorithm.

7.3 Coil2000 dataset experiments

We created taxonomies of height 2 (suppressions only) for attributes 3 and 4, taxonomies of
height 3 for attributes 2, 5, 6, 7, 8 and 9, and a taxonomy of height 4 for attribute 1. Figure
10 displays the LM-scores achieved by the four algorithms on this dataset, and Figure 11
displays the corresponding runtimes.
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7.4 ℓ-diversity experiments

In Section 6.2 we described Algorithm 8 that is designed to post-process any anonymization
by means of unifying clusters so that it issues anonymizations that respect ℓ-diversity. When
applied on inputs that are already k-anonymized, it issues outputs that respect k-anonymity
as well as ℓ-diversity. Each of the four algorithms with which we experimented in the pre-
vious sections is designed to produce k-anonymizations only. (The single exception is the
Hilbert curve algorithm [6] that has also a version that achieves ℓ-diverse anonymizations;
however, [6] does not present an algorithm for achieving anonymizations that respect the
conjunction of the two privacy measures.) Coupling them with Algorithm 8 converts them
into algorithms that respect k-anonymity as well as ℓ-diversity.

We tested all those algorithms with the three datasets. In the Adult dataset the private
attribute is binary and the overall diversity in the entire table is 1.33. Hence, as discussed
in Section 6, all anonymizations of that dataset are ℓ-diverse with ℓ ≤ 1.33. In the Nurs-
ery dataset the private attribute has 5 values and the overall diversity is 3. In the Coil2000
dataset, that has no distinguished private attribute, we used the tenth attribute as the private
one. It has 9 values, but the overall diversity is only 3.46.

We ran Algorithm 8 with several values of w in the range 0 ≤ w ≤ 0.75 (recall that
setting w to values closer to 1 diminishes the effect of the diversity factor when deciding
which clusters to unify, see Eq. (11)). We found out that in the range 0.15 ≤ w ≤ 0.75

the sensitivity of the results to w was quite modest. In three of the experiments that we
present below we used w = 0.15: Figure 12 shows the LM information loss on the Adult
dataset, with k = 50, as a function of the constraint diversity parameter ℓ, as achieved
by postprocessing the output of each of the four anonymization algorithms by means of
Algorithm 8. Figure 13 shows a similar graph for the Coil2000 dataset with k = 100, and
Figure 14 shows the results for the Nursery dataset with k = 30. Figure 15 shows the results
in the same setting as the last one (i.e., the Nursery dataset with k = 30), this time using
w = 0. Finally, Figure 16 shows the information losses in the k-ANON-CF algorithm for
the Nursery dataset, for various values of k and ℓ.

As we can see from those figures, also when one imposes ℓ-diversity as an additional
constraint, the k-ANON-CF algorithm usually keeps issuing the smallest information losses.

8 Conclusion

In this study we described a practical and general anonymization algorithm that approxi-
mates optimal k-anonymity to within a guaranteed factor of O(ln k). One of the main ingre-
dients in that approximation algorithm is an algorithm for mining closed frequent general-
ized records. Experiments show that the proposed algorithm provides smaller information
losses than the best known approximation algorithm as well as the best known heuristic
algorithms.

This study raises three theoretical research problems:
(1) To devise approximation algorithms with an approximation guarantee that is smaller

than O(log k), or to prove that the logarithmic approximation factor is optimal.
(2) The logarithmic approximation factor applies only to our basic k-anonymity algo-

rithm; it does not hold for the modified version that satisfies also ℓ-diversity. To the best of
our knowledge, no approximation guarantees were established thus far for algorithms that
are designed to issue ℓ-diverse anonymizations. Can approximation factors be established
for such algorithms?
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(3) Are the assumptions of monotone measures of information loss or proper general-
ization operators essential for the proof of the approximation guarantee? While those two
assumptions are quite natural in this context, they do not always apply. (For example, the
mutual information measure of [9] is a non-monotone measure of information loss.)

Acknowledgements We would like to thank the first two authors of [6], Gabriel Ghinita and Panagiotis
Karras, for providing us the source code of the Hilbert curve mapping.
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