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Recommender systems have become extremely common in recent years, and are utilized in a variety of

domains such as movies, music, news, products, restaurants, etc. While a typical recommender system

bases its recommendations solely on users’ preference data collected by the system itself, the quality of

recommendations can significantly be improved if several recommender systems (or vendors) share their data.

However, such data sharing poses significant privacy and security challenges, both to the vendors and the users.

In this paper we propose secure protocols for distributed item-based Collaborative Filtering. Our protocols

allow to compute both the predicted ratings of items and their predicted rankings, without compromising

privacy nor predictions’ accuracy. Unlike previous solutions in which the secure protocols are executed solely

by the vendors, our protocols assume the existence of a mediator that performs intermediate computations on

encrypted data supplied by the vendors. Such a mediated setting is advantageous over the non-mediated one

since it enables each vendor to communicate solely with the mediator. This yields reduced communication

costs and it allows each vendor to issue recommendations to its clients without being dependent on the

availability and willingness of the other vendors to collaborate.
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1 INTRODUCTION
The explosion of information that is available to users over the World Wide Web was the main

driving force in the emergence of recommendation systems that aim at helping users find their

needles in the haystack [41]. One of the main techniques on which recommendation systems

are based is collaborative filtering (CF) [17]. CF predicts the preferences of users based on the

preferences of the community (rather than on the users’ characteristics). Specifically, CF methods

use large databases that store information regarding rating or purchasing history of users in the

community.

CF is broadly classified into memory-based and model-based approaches. The memory-based

approach is either user-based, in the sense that recommendations for a given user u are derived

from the preferences of users that are similar to u, or item-based, i.e., u is offered items which are

similar to those that he purchased or liked in the past. The item-based approach is more suitable

for deployment in e-commerce sites, due to its better scalability, and, indeed, it is one of the most

widely deployed CF techniques [13].
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Since memory-based approaches utilize all history of data, some of them do not scale well. In

such cases, model-based approaches may be more applicable. In model-based approaches, the past

rating or purchasing data is used to train a compact model, which is then used for prediction. The

model is developed by artificial intelligence techniques (e.g., Bayesian classification) or by linear

algebraic techniques (e.g., SVD). While item-based methods have comparable performance to that

of model-based methods when predicted ratings are the required output, the former methods tend

to show better performance when the required output is the top h items for a given user [13].

Furthermore, item-based recommendations are more easily interpretable to the user.

Instead of basing their recommendations to their clients solely on their own databases, ven-

dors may significantly improve the quality of their recommendations by sharing their user-item

preferential data [8]. However, such sharing poses significant privacy and security challenges.

Indeed, commercial organizations may be reluctant to share their proprietary data about past users’

purchases or ratings as it may serve competing entities. In addition, the users’ privacy might be

hindered if personal information about their past activities which they provided to one commercial

entity would be handed over by that entity to other entities.

Privacy-preserving collaborative filtering (PPCF) enables the practice of CF without leaking

private information. One class of PPCF algorithms is based on techniques such as data perturbation

or generalization. The outputs issued by such algorithms may differ from the outputs of their

non-privacy preserving counterparts, due to the noise that they introduce to the training data.

Another class of PPCF algorithms is based on cryptographic techniques, such as homomorphic

encryption or secret sharing. Employing cryptographic techniques, rather than data perturbation,

offers better privacy-preservation and it enables issuing the same output as in the the underlying

non-privacy preserving algorithm.

Here we offer Secure Multi-party Computation (SMC) protocols for item-based collaborative

filtering in two distributed settings: the vertical distribution case, where each of the collaborating

vendors (denoted V1, . . . ,VK ) offers a different subset of items to the same underlying population

of users, and the horizontal distribution setting, in which V1, . . . ,VK offer the same set of items

but each vendor serves a distinct subset of users. Our protocols in the vertical setting can be used,

say, by a news website and a movie rental website in order to improve their recommendations (for

either news items or movies) to their clients. The protocols in the horizontal setting can be used by

several online bookstores that serve different groups of users (say, each bookstore serves a different

geographical region). In both settings, our protocols are designed for computing predicted ratings

as well as predicted rankings.

While almost all prior art on PPCF concentrated on the case of two vendors only (K = 2), as

we detail in Section 2, a major contribution of our solutions is that they apply for any number of

vendors. Devising a PPCF solution for a general number of vendors is of utmost importance, as

the whole point of collaboration in the context of CF is to increase the training dataset towards

inferring better recommendations. Hence, PPCF solutions that assume only two vendors may be

insufficient in typical scenarios that require the conjoining of more private databases towards

increasing the quality of recommendations. Alas, when dealing with a general numberK of vendors,

hefty theoretical and practical issues arise. We tackle those issues by adopting “the mediated model”

[2, 3]. It is our belief that such a paradigm shift is an essential step towards making PPCF viable

and essential in real-life recommendation systems.

The paper is organized as follows. We begin with a review of related work (Section 2). In Section

3 we discuss the mediated model, and the reasons that we consider it to be a most suitable model for

performing PPCF with a general number K of collaborating vendors. We then provide the necessary

background on item-based CF, distributed scenarios, PPCF and cryptographic methods (Section

4). In Sections 5 and 6 we describe our PPCF protocols in the vertical and horizontal distribution
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scenarios, respectively. We present our experimental evaluation in Section 7, and conclude in

Section 8.

A preliminary version of this work appeared in the 11th ACM Conference on Recommender

Systems [43].

2 RELATEDWORK
Privacy-preserving data mining (PPDM) [1, 28] is the practice of performing data mining on private

data which is distributed among several parties. The goal in such cases is to jointly perform data

mining on the unified corpus of data, while protecting the data records of each of the data owners

from its peers. Application examples include e.g. construction of decision trees [28], clustering [14,

22, 27], association rule mining [24, 44, 53, 57], classification [10, 29, 30, 50], computation on

distributed graphs [4, 5, 7], and distributed constraint optimization problems [18–20, 25, 48, 51, 52].

Privacy-preserving collaborative filtering (PPCF) falls under the umbrella of PPDM. It enables

the practice of CF without leaking private information. We proceed to overview several recent

PPCF works. Interested readers may refer to [9] and [15] for a more comprehensive survey.

Polat and Du [36] discuss how to provide predictions for single items in case of a vertical

distribution scenario with two vendors. They take the user-based approach: for each pair of users

they compute a cosine-like similarity score and then they predict the rating that a user u would

give to item b based on a weighted average of all ratings that were issued for b by any user, where

the users are weighted by their similarity to u.
In another study of theirs, Polat and Du [37] show how to offer top recommendations in both

the horizontal and vertical distribution scenarios without deeply violating the vendors’ privacy.

They concentrate on the case of two vendors, and the case of binary user-item data (namely, did

user u like or not item b). Here too, the approach is user-based, i.e., the recommendations to u are

derived from the items that users similar to u liked.

Jeckmans et al. [21] consider a case of horizontal distribution between two vendors, V1 and V2.
Their CF approach is also user-based: they first build a model of similarity between users, and

then use user neighborhoods in order to compute predicted ratings. They consider an asymmetric

setting in which V2 collaborates with V1 so that V1 can offer to its clients better recommendations,

while V2 does not benefit at all from such a collaboration.

Basu et al. [6] propose algorithms for a privacy-preserving execution of an item-based CF scheme

that is based on the Slope One predictor [26]. Their scheme uses additively homomorphic public-key

encryptions. Their algorithms consist of an offline pre-computation phase and an online prediction

phase. In the online phase, whenever one vendor needs to issue a predicted rating, all parties

collaborate in order to recover the predicted rating. Their timing information, in the order of

seconds, is based on a prediction for a single user and single book. This is after pre-computation in

the order of hours.

The work which is closest to ours is that of Yakut and Polat [55]. To the best of our knowledge, it

is the only other work that deals with item-based CF which is based on the cosine-similarity score.

They concentrate on the case of two vendors and considered the arbitrary distribution scenario. A

main vehicle by which they obtain privacy is by introducing fake ratings into the distributed matrix

of user-item ratings. Hence, as opposed to our algorithms that issue exactly the same outputs as

their non-privacy preserving counterparts, the outputs of the algorithms by Yakut and Polat [55]

are inaccurate, and in order to enhance the privacy, greater levels of noise must be introduced,

what implies a further reduction of accuracy.

The works which we proceed to describe differ from the works described above and from the

present study as they relate to a non-distributed setting, in which a central entity holds the entire

user-item matrix. Those works utilize randomization techniques in order to prevent the server from
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learning private rating information of users, as well as to prevent users from using the predicted

ratings that are presented to them by the CF algorithm in order to infer information on neighboring

users.

The studies of Polat and Du [34, 35] and Polatidis et al. [38] utilize random perturbations on

users’ ratings before they are submitted to the central server. They consider CF algorithms that

are user-based. In [16], which also considers user-based CF, the perturbation is applied on the

similarity scores between users, rather than on the entries of the user-item matrix. The study of

Zhu et al. [59] differs from the above-mentioned studies, as the added random noise is calibrated

towards achieving a certain level of differential privacy [12]. Their CF algorithm is item-based. In

fact, the differential privacy techniques that are presented in [59] are complimentary to ours and

can be implemented on top of the cryptographic methods that we present herein.

3 THE ADVANTAGES OF MEDIATION FOR PPCF
All of the studies that we reviewed in Section 2, except the work of Basu et al. [6], concentrate

on the case of K = 2 vendors. However, in order to perform a more effective CF, larger values of

K may be required. A natural extension of the schemes in those studies to a general K (in order

to enable better recommendations) implies that whenever a vendor wishes to compute predicted

ratings or rankings, all other vendors need to be available and participate in the computation. Such

constant involvement of the vendors is problematic for several reasons. First, those schemes assume

that every pair of vendors must have a permanent channel of communication; such an assumption

may be impractical, and it also entails O(K2) communication costs. Second, if one of the vendors’

servers is down, other vendors may be prevented from issuing recommendations. Third, different

vendors have different recommendation practices, and in the horizontal setting different vendors

may have clienteles of different sizes; such diversities create an imbalance between the vendors’

contribution to the general workload. Also the work of Basu et al. [6], which is the only work so

far that offered a PPCF solution for a general number of vendors, suffers from all three problems

that we described above. (They reduce the communication costs from O(K2) to O(K) by assuming

a circular network that connects all vendors; alas, such an assumption is also impractical, because

it still requires permanent peer-to-peer communication channels between vendors.)

A simple way to address all those issues and allow meaningful PPCF (namely, PPCF that is not

limited to K = 2 vendors only) is to adopt “the mediated model” [2, 3]. In that model, it is assumed

that the agents may be assisted by a third party (or third parties) to whom they may export some

computations. That third party, called a mediator, is trusted to perform the computations honestly,

but at the same time it is not allowed access to private inputs of the agents. The protocols we

suggest in this paper involve a mediator,T . Having such a mediator reduces the need of the vendors

to communicate with each other only to the offline (and infrequent) phase in which a model of

similarity between items is built; in the online phase, where vendors need to issue predicted ratings

and rankings to their clients, each vendor communicates directly vis-à-vis T and does not need to

communicate with other vendors. Such a mediated setting is advantageous over the non-mediated

setting since it entails reduced run-time and communication costs, and each vendor can issue

recommendations to its clients without “bothering” all other vendors each time or be dependent on

their availability and willingness to collaborate. Specifically, if V1 took one day off for whatever

reason, it does not prevent V2 from communicating with T and keep issuing recommendations to

its clients; and if V3 wishes to issue many recommendations, it may work vis-à-vis T as much as it

needs (and pay T accordingly) without affecting V4 who may issue recommendations much less

frequently.
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4 PRELIMINARIES
We provide here the necessary background about item-based CF (Section 4.1), distributed sce-

narios (Section 4.2), PPCF (Section 4.3), and relevant cryptographic building blocks (Section 4.4).

Hereinafter, we use the following notation agreements:

(1) Matrices are denoted by capital letters, e.g. A, and their entries are denoted by A(·, ·). Vectors
are denoted by bold face letters, e.g. r, and their entries are denoted by r(·).

(2) For a positive integerM , [M] := {1, 2, . . . ,M}.
(3) If r is a nonnegative integer then ξ (r ) = 0 if r = 0 and ξ (r ) = 1 otherwise.

(4) If r is a vector and f is any scalar function over the reals, then f (r) will denote the vector in
which f (r)(·) = f (r(·)); namely, if r = (r(1), · · · , r(M)) then f (r) = (f (r(1)), · · · , f (r(M))).

(5) Inner products between vectors will be denoted by ⟨·, ·⟩; the induced norm will be denoted

by ∥ · ∥.
(6) If x and y are two N -dimensional vectors then xy is the vector in which (xy)(n) = x(n) ·y(n),

n ∈ [N ], and xy denotes the scalar

∏N
n=1 x(n)y(n).

4.1 Item-based collaborative filtering
Here we provide a brief introduction to item-based CF [40]. A more comprehensive discussion is

given in [13]. In what follows we introduce detailed mathematical notations which are not standard

in prior art on CF. The reason for doing so is that some details of the recommendation algorithms

are described in prior art only verbally, without using mathematical notations. We decided to

formalize those details by introducing relevant mathematical notations, since such notations enable

us, later on, to describe our PPCF protocols in a succinct and accurate manner.

LetU = {u1, . . . ,uN } be a set of users and B = {b1, . . . ,bM } be a set of items (say, books). The

user-item rating matrix, R, is an N ×M matrix where R(n,m) is the rating thatun gave to bm , a value

which is usually taken from a small range of positive integers, say {1, 2, 3, 4, 5}, and R(n,m) = 0 if

un did not rate bm . Item-based CF consists of two phases: an offline phase, in which the matrix R is

used to learn a model of similarity between items; and an online phase in which that model is used

to predict user ratings or to rank items according to their potential appeal to a given user. (The

offline phase should be repeated periodically in order to update the similarity scores according to

the changes inU , B, and R.)
The similarity model is an M × M symmetric matrix S where S(ℓ,m) is the similarity score

between items bℓ and bm , ℓ,m ∈ [M] := {1, 2, . . . ,M}. Let cm = (R(n,m) : n ∈ [N ]) denote
hereinafter themth column in the user-item rating matrix R,m ∈ [M]. Then the similarity scores

are defined in Definition 4.1.

Definition 4.1. Assume that ℓ,m ∈ [M] and set cℓ |m := cℓ ·ξ (cm); namely, cℓ |m := (cℓ |m(1), . . . , cℓ |m(N ))t
is the projection of the ℓth column of the user-item rating matrix R on the subset of users that rated
both items bℓ and bm . Then the cosine similarity score is

S(ℓ,m) = ⟨cℓ, cm⟩
∥cℓ |m ∥ · ∥cm |ℓ ∥

, (1)

where if cℓ |m = 0 or cm |ℓ = 0, S(ℓ,m) is set to zero.
The similarity scores are used to predict un ’s rating of bm as follows. Let:

• q < M be a preset (typically small) integer.

• Nq(m) be the set of indices of the q nearest neighbors of bm (those with highest S(·,m)).
• N +q (m) := {ℓ ∈ Nq(m) : S(ℓ,m) > 0}.
• sm be the M-dimensional vector for which sm(ℓ) = S(ℓ,m) if ℓ ∈ N +q (m) and sm(ℓ) = 0

otherwise.
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• R(bm) =
[∑

n∈[N ] R(n,m)
]
/
[∑

n∈[N ] ξ (R(n,m))
]
be the average rating given to item bm .

• rn be the nth row of the user-item rating matrix R.

• rn be the vector of un ’s adjusted ratings, i.e. rn(m) = (R(n,m)−R(bm)) · ξ (R(n,m)),m ∈ [M].
Then the predicted rating P(un ,bm) is the weighted average over the adjusted ratings that un made

thus far,

P(un ,bm) := R(bm) +
⟨sm , rn⟩
⟨sm , ξ (rn)⟩

. (2)

The weighted average is taken over at most q items, and it is based only on items that have a

positive similarity to bm . The quotient in Eq. (2) is undefined if the denominator equals zero (i.e., if

none of the items that un had rated in the past is in N +q (m)). In that case, P(un ,bm) is set to R(bm).
(There exist several versions of the similarity score and prediction formula. We focus here on the

version that is suggested in [13] and, by our experiments, performs best. The adjustment of our

protocols to other variants is straightforward.)

Sometimes, instead of showing to un his predicted rating on some item, the goal is to present

to him the h items which are most likely to appeal to him, without predicted ratings. To that end,

one produces a ranking of all items that un had not rated so far in order to extract from it the top

h items, for some h ≥ 1. One approach is to base the ranking on the items’ predicted ratings (Eq.

(2)). However, a simpler ranking procedure produces better results [13, Section 2.3]. Let I (n) be the
subset of indices of items that un already rated. Define for eachm ∈ [M] \ I (n) the score

ŝ(m) =
∑

ℓ∈I (n)∩Nq (m)
S(ℓ,m) . (3)

Namely, ŝ(m) is the sum of similarities between bm and all those items that un already rated and

fall within Nq(m), the q-neighborhood of bm , for some selection of q. Then, the top h items to be

recommended to un are those with the highest value of ŝ(m).

4.2 Distributed scenarios
When the entire corpus of data, namely the user-item rating matrix R, is held by one party, then

that party can compute on its own predictions for future ratings or item rankings. However, it is

beneficial for different parties (or vendors, as we shall refer to them hereinafter) to collaborate and

conjoin their databases in order to better understand the characteristics of items and the likes of

users and, consequently, issue better predictions. Therefore, in such settings, the computation of

the similarity model in the offline phase as well as the computation of predictions in the online

phase must be carried out over a database that is distributed in several sites.

We consider here scenarios in which the user-item rating matrix R is distributed among K
vendors V1, . . . ,VK . The two main distributed scenarios are the following:

Vertical: All vendors serve all users inU but they offer disjoint subsets of items from B. Hence,
each vendor owns a different subset of R’s columns.

Horizontal: All vendors offer all items in B but they serve disjoint subsets of users from U .

Hence, each vendor owns a different subset of R’s rows.
The distributed settings raise the issue of privacy, which we discuss in the next section.

4.3 Privacy preserving collaborative filtering
In the general setting of SMC (Secure Multi-party Computation) [56], n mutually distrustful parties,

P1, . . . , Pn , that hold private inputs, x1, . . . ,xn , wish to compute some joint function on their inputs,

i.e., y = f (x1, . . . ,xn), without revealing any unnecessary information about these inputs, except

for what is logically learned from the output. For example, in case where n parties wish to compute

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article . Publication date: October 2019.



Mediated Secure Multi-Party Protocols for Collaborative Filtering 7

the average of their salaries, the result reveals to each party the average of the other n − 1 parties;
the latter value is not part of the desired output, but it can be inferred by each party given the

computed output and its own input. It is also possible that each party Pi has its own desired output,

yi = fi (x1, . . . ,xn), where fi is a publicly known function. SMC enables the parties to compute the

desired output function (or functions) using an interactive protocol. An SMC protocol is said to

achieve perfect privacy, if each party Pi learns exactly y (or yi ), and whatever can be inferred from

that output and its own input, but it learns nothing else.

In our setting, each vendor wishes to prevent the other parties from inferring information on the

user-item rating information that it holds, because of commercial considerations and the need to

respect its users’ privacy. Hence, it is needed to perform the CF computations in a privacy-preserving

manner.

Ideally, no party (any of the vendors, or the mediator) should gain any information on the

user-item rating matrix R from its view during the execution of our protocols, beyond what can

be inferred from its own input and output. Theoretical results show that such perfect privacy is

achievable for any problem of SMC (by invoking generic solutions such as Yao’s garbled circuit

construction [56]). However, when looking for practical solutions, some relaxations of the notion

of perfect privacy are usually inevitable, provided that the leaked information is deemed benign.

Examples for such studies are numerous and span various domains of distributed computing,

e.g. distributed association rule mining [24, 42, 44, 53, 57], anonymization of distributed datasets

[23, 46, 49, 58], distributed constraint optimization problems [18–20, 25, 47, 48, 51, 52], distributed

graph mining [5] and more. In fact, also all PPCF studies that were reviewed in Section 2 offer

protection to the private data, but that protection is not perfect, in the sense that the protocols

presented there do leak to each participating vendor some information on inputs of other vendors,

beyond just the desired output of the computation.

The protocols that we present here are also privacy-preserving in that sense; namely, they

protect the private data of each vendor, but not perfectly. For each of our protocols we discuss its

privacy-preservation and identify the excess information that they may leak, and explain why such

leakage of information is benign.

Our protocols rely solely on standard cryptographic building blocks, as described in Section 4.4;

this fact offers a significant advantage as they rely on well-founded cryptographic building blocks

and they can be readily implemented on top of standard libraries.

We make here an assumption which is common in PPCF literature: all parties, V1, . . . ,VK and

T , are semi-honest and do not collude. Semi-honesty means that the parties follow the protocols’

specifications but try to extract from their view information on the inputs of their peers. The

assumption of semi-honesty is very common in literature on secure multi-party protocols and

privacy-preserving distributed computations.

Parties that deviate from the protocol’s specifications (in order to gain more information on

other parties’ inputs, or in order to prevent other parties from getting the correct output) are

called in the cryptographic literature malicious. Safeguarding against malicious parties results

in less practical protocols; because of that, and because the assumption of correctly following

the prescribed protocol is justified in practical deployments, the bulk of studies that deal with

multi-party computations, especially those that focus on specific real-life applications, assume

semi-honest parties. (In particular, all studies mentioned above make that assumption.)

4.4 Cryptographic building blocks
In this section we describe the cryptographic tools that will be used by our privacy-preserving CF

protocols.
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Homomorphic encryption. A cipher is called public-key if its encryption function F(·) depends
on one key, ke , which is publicly known, while the corresponding decryption function F−1(·)
depends on a private key kd that is known only to the owner of the cipher, and kd ’s derivation
from ke is computationally hard.

A public-key cipher is called (additively) homomorphic if its plaintext domain is an additive

commutative group, its ciphertext domain is a multiplicative commutative group, and for every

two plaintexts, x1 and x2, F(x1 + x2) = F(x1) · F(x2).
When the encryption function is randomized (in the sense that F(x) depends on x as well as on a

random string), F is called probabilistic. Hence, a probabilistic encryption function is a one-to-many

mapping (every plaintext x has many encryptions y = F(x)), while the corresponding decryption
function is a many-to-one mapping (all possible encryptions y of the same plaintext x are mapped

by F−1(·) to the same x ).
The semantically secure Paillier cipher [33] is a public-key cipher that is both homomorphic and

probabilistic. Its plaintext and ciphertext domains are Zν and Z∗ν 2
, respectively, where the so-called

modulus ν is a product of two large primes, p and q.
In our protocols, V1, . . . ,VK jointly generate the key pair in a homomorphic and probabilistic

encryption function F; they notify T of the encryption key, but keep the decryption key private.

(In order to jointly generate a random key pair, the vendors only need to generate a random bit

string of the same length as the key; this can be done, say, if every vendor chooses its own random

string and then they all engage in a secure summation protocol.)

The encryption function needs to be homomorphic in order to enable arithmetic computations

in the ciphertext domain. It needs to be probabilistic as that property is essential when dealing

with plaintexts that come from a small and publicly known domain (such as binary plaintexts or

rating values, as explained in Section 4.1). Indeed, if we had utilized a deterministic encryption

function then an adversary would have been able to detect occurrences of equal plaintexts and even

deduce some of the plaintexts. A probabilistic encryption function, on the other hand, prevents

such inferences since it creates each time a new and random-dependent ciphertext.

Secure division. Another building block of secure multi-party computation that we shall need is

that of secure division. Tassa and Bonchi [45] considered a setting that involves three parties, P1,
P2 and H . Pi , i = 1, 2, holds a private integer ai , and the goal is to let H recover the real quotient

a1/a2 but not the values of a1 and a2. Towards that end, P1 and P2 jointly generate a random real

number X ∼ Z where Z is the distribution on [1,∞) with probability density function fZ (x) = x−2;
then they jointly generate a random д ∼ U (0,X ), and they send to H the values дai , i = 1, 2, which
H proceeds to divide in order to recover q = a1/a2. The masking multiplier д prevents H from

learning ai , but it can still recover q. The selection of the probability distribution from which д is

drawn is made in order to minimize the information that H can extract from дai on ai . Specifically,
the a-posteriori belief probability of H regarding the value of ai after observing дai is close to
whatever a-priori belief probabilityH had regarding ai prior to seeing дai . (The reader is referred to
[45] for the full analysis and experimentation of this approach.) Here we use this idea as follows: T
holds two encrypted values F(a1) and F(a2) and it wishes to allow a vendor Vk to get the quotient

q = a1/a2 so that no one reveals a1 nor a2. To that end it sends toVk the values bi := F(ai )д , i = 1, 2,
for a random д that was generated as described above. Since F is homomorphic then bi := F(дai ).
Vk decrypts the two received values and gets F−1(bi ) = дai , i = 1, 2, which it then proceeds to

divide in order to get q.
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5 PRIVACY PRESERVING ALGORITHMS FOR THE SCENARIO OF VERTICAL
DISTRIBUTION

Here we deal with the vertical distribution scenario, where each vendor owns a different subset of

R’s columns. In Sections 5.1 and 5.2 we describe the computations and protocols that are performed

in the offline phase and involve all of the vendors V1, . . . ,VK , as well as the mediator T . Then, we
describe the online phase in which a given vendor Vk submits queries to T towards computing the

predicted rating of some user un for an item bm , P(un ,bm), Eq. (2) (Section 5.3), or getting the top h
items for a given user un (Section 5.4). The online phase is carried out solely by Vk and T . Namely,

the participation of all vendors is required only in the offline and less frequent phase.

User ordering. The vendors jointly decide on a random ordering of U , which is kept secret

from T . Namely, even if T knows the ground-set of users,U , it will not know who is the user that

corresponds to a given index n ∈ [N ]. Hereinafter, un denotes the nth user in that ordering.

Item ordering. The vendors jointly decide on a random ordering of the unified item set B. Let
Ik ⊂ [M] denote the subset of indices of Vk ’s items in that ordering, k ∈ [K]. T is notified of Ik ,
k ∈ [K], but apart from that the ordering is kept secret from T . IfMk := |Ik | is the number of items

offered byVk , k ∈ [K], then for everym ∈ Ik , the vector cm (themth column in the user-item rating

matrix R) is known only to Vk .
We note that in order to select those random orderings, all that is needed is to select a common

random seed; such a common random seed can be generated as described in Section 4.4.

5.1 Offline model construction
The split [M] = ⋃K

k=1 Ik induces a split of the similarity matrix S into K2
blocks, S j,k , j,k ∈ [K],

where the dimensions of the block S j,k areMj ×Mk . The K diagonal blocks, Sk,k , k ∈ [K], consist of
similarity scores between pairs of items that are offered by the same vendor. Each Vk can compute

by itself the block Sk,k and send it to T . The computation of S j,k , where j , k , depends on inputs

from Vj and Vk . Protocol 1 enables that computation.

Assume that bℓ is one of the items offered byVj and bm is one ofVk ’s items. Protocol 1 is executed

by Vj , Vk and T towards the goal of T learning S(ℓ,m). The protocol relies on a sub-protocol SSP

for Secure Scalar Product. If x is a vector held by Vj and y is a vector held by Vk , then an execution

of SSP with those two inputs ends with T learning ⟨x,y⟩, and nothing further, while both Vj and
Vk remain oblivious of the input vector of the other vendor.

First, Vj (where j < k) selects a random multiplier дℓ,m (Step 1). Then they execute SSP towards

T receiving z1 = дℓ,m · ⟨cℓ, cm⟩ (Step 2). In Steps 3 and 4 T gets z2 = дℓ,m · ⟨c2ℓ, ξ (cm)⟩ and
z3 = дℓ,m · ⟨ξ (cℓ), c2m⟩. Since z2 = дℓ,m · ∥cℓ |m ∥2 and z3 = дℓ,m · ∥cm |ℓ ∥2, we infer by Eq. (1) that

in Step 5 T recovers S(ℓ,m). (Recall that, as discussed in Section 4.1, if the denominator in that

quotient is zero, a case that occurs when no two users rated both items, the similarity score is set

to zero.)

Secure computation of scalar products of private vectors is a fundamental problem in SMC, as

it serves a basic building block for many other secure protocols (see e.g. [54] and the references

therein). Protocol 1 can be executed with any SSP sub-protocol. We find the protocol of Du and

Zhan [11] most fitting in our context, since their protocol is designed for the mediated setting

which we consider; namely, two parties hold each of the input vectors and the scalar product

goes to a mediator. In addition, because it relies on a mediator, it solves the problem with perfect

security without resorting to expensive cryptographic means, thus implying low computational

and communication costs.
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10 Erez Shmueli and Tamir Tassa

Protocol 1 Computing the similarity score for a single pair of items.

Require: Vj holds the vector cℓ for item bℓ ;
Vk holds the vector cm for item bm .

1: Vj selects a random integer multiplier дℓ,m .
2: T ← z1 := SSP(дℓ,m · cℓ, cm).
3: T ← z2 := SSP(дℓ,m · c2ℓ, ξ (cm)).
4: T ← z3 := SSP(дℓ,m · ξ (cℓ), c2m).
5: T sets S(ℓ,m) := z1/

√
z2z3 if z2z3 , 0, and S(ℓ,m) = 0 otherwise.

Ensure: T gets S(ℓ,m).

Protocol 1 ends with T having the similarity score S(ℓ,m) between a single pair of items offered

by Vj and Vk . Vj and Vk have to perform Protocol 1 in parallel for all ℓ ∈ Ij and m ∈ Ik . That

parallelized version of Protocol 1 has to be run by all

(K
2

)
pairs of vendors.

In case items bℓ and bm were never rated by the same user, then the scalar product that is

computed in Step 2 of Protocol 1 (which is the numerator in Eq. (1), multiplied by дℓ,m ) will be zero.

That is a welcome result, since the similarity score of two items that were never rated by the same

user should indeed be set to zero. However, if those two items were both rated only by a single

user, the similarity score will be maximal. To avoid such a potentially misleading similarity score,

it is favorable to apply Eq. (1) only when the two items in question were rated by at least some

threshold number of users. It is possible to enhance Protocol 1 to incorporate such a modification,

by invoking secure set intersection computations. We omit further details.

Privacy. By using a secure SSP sub-protocol (such as the one in [11]), none of the vendors

may infer any information on inputs of other vendors. As for T , the usage of random multipliers

prevents it from learning the terms in the numerator and denominator of Eq. (1). T does learn the

similarity scores between items, but, owing to the random item ordering, it cannot link those scores

to the relevant pair of items. More formally, assume that T knows the exact item set B, and let S
be theM ×M matrix of similarity scores between them (see Section 4.1). Then at the conclusion

of Protocol 1 T learns P tSP where P is the matrix corresponding to the random ordering of the

item set B. Since P is selected uniformly at random and is kept secret from T , T cannot learn the

similarity scores between any two specific items. But such a permuted matrix does leak to T excess

information on the items such as the distribution of item similarity scores, existence of outlier

items (items that have similarity scores smaller than some threshold σ with more than N1 items, for

some preset threshold N1 < N ), and so forth. Such excess information, however, is of benign nature

since privacy is a notion that is more relevant to the human users than to the items themselves,

and it seems reasonable that such similarities between items can be, most of the time, estimated

quite well just from the features of the items, without seeing private rating data.

Computational and communication costs. In analyzing the computational costs of each of

our protocols we focus only on the time consuming operations of encryption, decryption and

exponentiation. (In what follows we denote the costs of those operations by [Enc], [Dec] and [Exp],
respectively.) Since the SSP protocol of Du and Zhan [11] is based only on operations like additions,

multiplications and random number generations, that have significantly smaller runtimes, the

computational cost of Protocol 1 (which is an offline protocol) is small. As for the communication

cost, it involves, in total, four communication rounds, with an overall exchange of O(M2N ) bits.
A concluding remark. The similarity scores S(ℓ,m) are real-valued and in the next phase they

need to be used in computing predicted ratings and rankings in a privacy-preserving manner. In

doing so, it is necessary to subject them to encryption. Since encryption functions are applied
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on discrete integer domains, T translates all real values s in the matrix S into integer values by

mappings of the form s 7→ ŝ := ⌊Ls + 0.5⌋, where L is a large integer. Since the plaintext domains

of public-key encryption functions are very large (at least O(2512)), there is no problem to choose

a sufficiently large L so that
ŝ
s ≈ L. Such mappings will have a negligible effect on both rating

and ranking computations. Indeed, when computing predicted ratings, both the numerator and

denominator in the quotient on the right hand side of Eq. (2) are (approximately) multiplied by

the same factor L. (It is true that the predicted rating based on the original similarity scores will

differ from that which is based on the rescaled and rounded similarity scores, but if L is chosen

sufficiently large, the difference becomes negligible). Likewise when computing predicted ranking

based on the scores in Eq. (3). In what follows, S(ℓ,m) denote the rescaled and rounded integral

similarity scores.

5.2 In preparation to the online phase
The computation of predicted ratings depends on rn and ξ (rn), see Eq. (2). The vectors rn are

real-valued. We translate them into integer-valued vectors r̂n , where r̂n(m) := ⌊Lrn(m) + 0.5⌋, and
L is a large integer as described in the concluding remark of Section 5.1. Then, in the online phase,

the predicted ratings will be computed as follows:

P(un ,bm) := R(bm) +
1

L
· ⟨sm , r̂n⟩⟨sm , ξ (rn)⟩

. (4)

Up to negligible rounding errors, Eq. (4) issues the same predictions as Eq. (2), while relying only

on integer values.

Protocol 2 is designed so that at its completion T holds an F-encryption of the vectors r̂n and

ξ (rn), for all n ∈ [N ], where F is the homomorphic encryption function that can be decrypted by

the vendors only. Owing to the security of the F-encryption, this protocol keeps the information

owned by the vendors protected from T .

Protocol 2 Conveying to T encryptions of user-rating vectors.

Require: Each Vk , k ∈ [K], holds R(n,m) for all n ∈ [N ] andm ∈ Ik .
1: Each Vk computes for eachm ∈ Ik the average rating of bm , R(bm) =

∑
n∈[N ] R(n,m)∑

n∈[N ] ξ (R(n,m)) .

2: Each Vk computes the adjusted user-item matrix over its items, R(n,m) :=
(
R(n,m) − R(bm)

)
·

ξ (R(n,m)), n ∈ [N ],m ∈ Ik .
3: Each Vk computes R̂(n,m) = ⌊LR(n,m) + 0.5⌋, n ∈ [N ],m ∈ Ik .
4: Each Vk sends to T the matrices (F(R̂(n,m)) : n ∈ [N ],m ∈ Ik ) and (F(ξ (R(n,m))) : n ∈
[N ],m ∈ Ik ).

5: T concatenates the K received matrices.

Ensure: T gets F(r̂n) and F(ξ (rn)), ∀n ∈ [N ].

Privacy. In Protocol 2 only the mediator T gets information. That information is encrypted by

F, and therefore it is protected from T and can only be used, by applying homomorphic arithmetic

later on, to produce other F-encrypted values that will be sent back to the vendors. No party (be it

a vendor, the mediator, or an eavesdropper) receives any part of the user-item matrix R which it

does not own.

Note that practical deployments of our protocols should be enhanced with standard security

mechanisms. In particular, each party should create its own pair of private and public keys, and get

from a Certificate Authority a corresponding certificate. Then, each message must be signed by
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the sender and encrypted under the receiver’s public key. (The cost of such external encryption

is negligible with respect to the encryptions in Protocol 2 since the body of each message can be

encrypted using a symmetric cipher, the cost of which is dramatically smaller than that of public

key ciphers, and then only the symmetric key needs to be encrypted using the receiver’s public key.)

Such standard security layers are essential when implementing any SMC protocol, and they come

on top of the SMC protocol. They are essential in order to prevent eavesdropping, masquerading,

and other well-known attacks on communication systems. In this study we focus only on the SMC

protocols and not on the standard security mechanisms that serve as an external layer of protection.

Computational and communication costs. The computational cost, due to Protocol 2, forVk
is 2NMk [Enc] (Step 4). The protocol includes one communication round with K messages of total

length of 2NMλ bits (where λ denotes the number of bits in encrypted values).

5.3 Computing predicted ratings
In this phase, any vendor Vk , k ∈ [K], can submit a query to T for the predicted rating of a single

user u ∈ U of an item b offered by Vk . Such queries are answered, in a privacy preserving manner,

by Protocol 3. In the protocol we rely upon the following lemma.

Lemma 5.1. Let F be a homomorphic encryption function and let x and y be two N -dimensional
integer vectors. Denote (F(x))y :=

∏N
n=1 F(x(n))y(n). Then (F(x))y = F(⟨x,y⟩).

Proof. The homomorphic property of F implies that

(F(x))y =
N∏
n=1

F(x(n))y(n) =
N∏
n=1

F(x(n) · y(n)) =

= F
(
N∑
n=1

x(n) · y(n)
)
= F(⟨x,y⟩) . □

Protocol 3 begins withVk submitting a query toT (Step 1); the query includes an index n ∈ [N ] of
a userun ∈ U and an indexm ∈ Ik of an item bm thatVk offers. Then,T computes the set N +q (m) (see
Section 4.1); those are the indices {ℓ1, . . . , ℓt } of the t ≤ q items in B \ {bm} (not necessarily from

among those offered by Vk ) that have the highest and positive similarity scores against bm (Step 2).

T then sets sm to be themth column of the similarity matrix, where all entries not corresponding

to the above N +q (m)-items are zeroed (Step 3). Those steps can be carried out just once for each

item, so that the results can be used in future queries for the same item.

In Step 4T selects a random multiplier д (as explained in Section 4.4) that will obfuscate fromVk
the values of the numerator and the denominator in the quotient in Eq. (4), but will enable Vk to

compute that quotient. Recall that, owing to Protocol 2,T has the vectors F(r̂n) and F(ξ (rn)) for un .
Then, relying on Lemma 5.1,T computes in Step 5 the F-encryption x of the scalar product x ′ := д ·∑t

i=1 S(ℓi ,m)r̂n(ℓi ), as well as the F-encryptiony of the scalar producty ′ := д·∑t
i=1 S(ℓi ,m)ξ (rn(ℓi )).

It sends those values to Vk who proceeds to decrypt them (Step 6) and then use them in Eq. (4) to

get the predicted rating (Step 7). (Recall that the average rating for each item bm ,m ∈ Ik , can be

computed by Vk alone and was already computed in Protocol 2.)

Privacy. The only party who receives information in Protocol 3 is Vk . It receives the numerator

and denominator in the quotient in Eq. (4) that determines the desired predicted rating. Since both

values are obfuscated by a random multiplier that T generates, Vk only receives their quotient but

it does not learn the value of neither of them beyond what is implied by that quotient.

Computational and communication costs. The computational cost for T in an execution of

Protocol 3 is 2t[Exp] (Step 5); indeed, only t entries in the vectorд ·sm are nonzero and henceT needs

to perform only t exponentiations for computing each of the scalars x and y. The computational
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Protocol 3 Computing a predicted rating of u ∈ U for an item offered by Vk .

1: Vk sends to T a query (n,m) ∈ [N ] × Ik .
2: T computes the set N +q (m) := {ℓ1, . . . , ℓt }.
3: T sets anM-dimensional vector sm where sm(ℓ) = S(ℓ,m) if ℓ ∈ N +q (m) and sm(ℓ) = 0 otherwise.

4: T selects a random integer multiplier д.
5: T sends to Vk the two scalar values x = F(r̂n)(д ·sm ) and y = F(ξ (rn))(д ·sm ).
6: Vk computes x ′ := F−1(x) and y ′ := F−1(y).
7: Vk sets P(un ,bm) = R(bm) + x ′/Ly ′ if y ′ , 0, and P(un ,bm) = R(bm) otherwise.

Ensure: VK gets P(un ,bm).

cost for Vk is 2[Dec] (Step 6). Since t ≤ q and q is typically a small number (usually less than 20,

see [55, Section 5]), the price of privacy in terms of computational overhead is very small in the

online phase. As for communication, Protocol 3 consists of two rounds (Steps 1 and 5) in each of

which only two scalars are transmitted.

5.4 Computing the most recommended items
Here we discuss the case where in the online phase, instead of showing to the user un predicted

ratings for items that he had not rated so far,Vk presents to him a list of theh items, yet unrated byun ,
which are most likely to appeal to him. In view of our discussion in Section 4.1, such a computation

would be carried out by Vk and T as follows: if I (n) is the subset of indices of items that un already

rated, then Vk will select the h indicesm ∈ Ik \ I (n) for which ŝ(m) =
∑

ℓ∈I (n)∩Nq (m) S(ℓ,m), Eq. (3),
are largest, where S(ℓ,m) are the scaled integral similarity scores that T got as a result of Protocol

1.

Protocol 4 performs that computation in a privacy-preserving manner. It starts by Vk submitting

a query to T (Step 1). In Steps 2-4, T generates an F-encryption of ŝ(m) for allm ∈ Ik , multiplied

by a random integer multiplier д, as described in Section 4.4. Indeed, by Eq. (3) and Lemma 5.1,

and the fact that ξ (rn) is a binary vector with ξ (rn)(ℓ) = 1 if and only if ℓ ∈ I (n), it follows that
x(m) = F (дŝ(m)) for allm ∈ Ik .

Next (Step 5), T computes an Mk -dimensional vector y such that y(m) = F(1) ifm ∈ Ik ∩ I (n)
(namely, if un already rated that item) and y(m) = F(0) ifm ∈ Ik \ I (n).T generates the vector y by

taking the restriction of the vector F(ξ (rn)) (that T received in Protocol 2) to Ik and multiplying

each of its entries by a fresh random encryption of 0. Because F is homomorphic, such an operation

changes only the ciphertext value but not the underlying plaintext. The reason for this seemingly

redundant operation will be clarified below.

Next, T sends a random permutation of the vectors x and y to Vk , who decrypts them into x′
and y′, respectively (Steps 6-7). Hence, x′ holds a permutation of the values дŝ(m), for all items

m ∈ Ik , while y′ holds a corresponding permutation of 0 and 1 values that identify those items

which un had already rated. Since T had scrambled the latter ciphertexts (by multiplying each one

of them with a fresh random encryption of 0), Vk can only distinguish between rated and unrated

items, but it cannot distinguish between items within either one of those two subsets. (If T had

not multiplied each F(ξ (rn)(m)) with a fresh encryption of zero, then Vk would have been able

to reverse engineer the random permutation π by comparing the entries of y with the encrypted

entries of ξ (rn) that it had sent to T earlier in Step 4 in Protocol 2.) Vk proceeds to find the indices

of the h yet unrated items with largest дŝ(m) (and hence also largest ŝ(m)) and sends them to T
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(Step 8). T responds by letting Vk know the original indices of those items (Step 9). Those are the

items to be presented to the user un as the top-h recommended items.

Protocol 4 Computing for un the top h yet unrated items offered by Vk .

1: Vk sends to T a query n ∈ [N ].
2: For eachm ∈ Ik , T defines an M-dimensional vector sm where sm(ℓ) = S(ℓ,m) if ℓ ∈ Nq(m)

and sm(ℓ) = 0 otherwise.

3: T selects a random integer multiplier д.
4: T computes anMk -dimensional vector x where x(m) = F(ξ (rn))(д ·sm ), ∀m ∈ Ik .
5: T computes anMk -dimensional vector y, where y(m) = F(ξ (rn)(m)) · F(0), ∀m ∈ Ik .
6: T generates a secret and random permutation π over Ik and sends to Vk the vectors π (x) and

π (y).
7: Vk computes x′ := F−1(π (x)) and y′ := F−1(π (y)).
8: Vk sends to T the set of indices {m1, . . . ,mh} in which y′(·) = 0 and x′(·) are largest.
9: T sends back to Vk the set of original indices {π−1(m1), . . . ,π−1(mh)} in a new random order.

Ensure: VK gets the indices in Ik \ I (n) of the top h items to be recommended to un .

Privacy. The values of the scores ŝ(m) are hidden from Vk by the random multiplier д. However,
using that mechanism alone would have leaked to Vk the ratios between the scores ŝ(m). In order

to reduce such information leakage (even though the ratio between ŝ(m1) and ŝ(m2) is arguably
non-sensitive), we introduced two additional mechanisms. One is the random permutation π which

prevents Vk from associating a given masked score дŝ(m) to an item bm . The other mechanism is

the ciphertext scrambling thatT did in Step 5, as we explained above. The combination of those two

mechanisms allows Vk and T to find the h items which are yet unrated by un and have the largest

ŝ(m) scores, without disclosing to Vk information on the scores ŝ(m) of the items that it offers.

Computational and communication costs. The computational cost for T in an execution of

Protocol 4 isMkq[Exp] (Step 4). (In Step 5T uses encryptions of zero, F(0).T can compute offline a

pool of such encryptions and then, whenever needed, select such values randomly from that pool.)

The computational cost for Vk is 2Mk [Dec] (Step 7). The protocol consists of four communication

rounds (Steps 1,6,8,9) in which the number of exchanged bits is O(Mkλ), where λ is the number of

bits in encrypted values.

6 PRIVACY PRESERVING ALGORITHMS FOR THE SCENARIO OF HORIZONTAL
DISTRIBUTION

Here we deal with the horizontal distribution scenario. In Section 6.1 we describe the computations

and protocols that are performed in the offline phase. Here, like in the vertical setting, the offline

phase requires the cooperation of all parties – V1, . . . ,VK and T , and it ends with T having the

matrix of item-to-item similarity scores. Then, we describe the online phase in which a vendor

Vk computes, with T ’s assistance, predicted ratings (Section 6.2) or the top-h recommended items

(Section 6.3) in a privacy-preserving manner. The privacy goal and assumptions are as described in

Section 5.

6.1 Offline model construction
That phase starts with the vendors deciding on a random ordering of bothU and B; those orders
are kept secret from T . Assuming that Vk serves Nk users, k ∈ [K], where ∑

k ∈[K ] Nk = N , then

each Vk knows the Nk rows in the user-item rating matrix R that correspond to the Nk users that

it serves. Now, the similarity scores S(ℓ,m), ℓ , m ∈ [M], see Eq. (1), depend on the vectors cm ,
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m ∈ [M], which are the columns of R. While in the vertical setting, each such column was known,

in its entirety, to only one vendor, in the horizontal setting every vendor Vk knows the projection

of all those vectors on its subset of Nk rows. Hence, in order to compute the similarity scores, the

SMC problem which we need to solve is that of secure summation (while in the vertical setting it

was the problem of SSP).

Let us denote the Nk -dimensional vectors known toVk by c(k )m ,m ∈ [M]. Protocol 5 describes the
way in which the similarity scores can be computed securely in this setting. The idea is to compute

the followingM(M − 1)/2 values,
x(ℓ,m) := ⟨cℓ, cm⟩ , 1 ≤ ℓ < m ≤ M , (5)

as well as the followingM(M − 1) values,
y(ℓ,m) := ⟨c2ℓ, ξ (cm)⟩ , 1 ≤ ℓ ,m ≤ M . (6)

Given those 3M(M − 1)/2 values, we have, by Eq. (1),

S(ℓ,m) = x(ℓ,m)
y(ℓ,m)1/2y(m, ℓ)1/2

, 1 ≤ ℓ < m ≤ M .

As each of the terms x(ℓ,m) and y(ℓ,m) can be expressed as a sum of K addends, where each

addend is known to a single vendor, that computation can be carried out by invoking a secure

summation protocol. To reduce the leakage of information to T , the vendors select for each pair

of items, 1 ≤ ℓ < m ≤ M , an independent random integer multiplier дℓ,m so that T recovers the

values X (ℓ,m) = дℓ,mx(ℓ,m), 1 ≤ ℓ < m ≤ M , and Y (ℓ,m) = дℓ,my(ℓ,m), 1 ≤ ℓ , m ≤ M . That

way, T cannot learn the values x(ℓ,m) and y(ℓ,m) but it can compute S(ℓ,m). As in the vertical

setting, once T gets S(ℓ,m), ℓ,m ∈ [M], it translates it into a matrix of integers by replacing each

entry σ in that matrix with ⌊Lσ + 0.5⌋.

Protocol 5 Computing the matrix of item similarity scores.

Require: Each Vk , k ∈ [K], holds a projection c(k)m of each of R’s columns, cm , on the subset of Nk
users that it serves,m ∈ [M].

1: V1, . . . ,Vk select

(M
2

)
independent random integer multipliers дℓ,m for each pair of items

1 ≤ ℓ < m ≤ M .

2: Each Vk computes X (k)(ℓ,m) = дℓ,m · ⟨c(k )ℓ
, c(k )m ⟩, 1 ≤ ℓ < m ≤ M .

3: Each Vk computes Y (k )(ℓ,m) = дℓ,m · ⟨(c(k )ℓ
)2, ξ (c(k )m )⟩, 1 ≤ ℓ ,m ≤ M .

4: V1, . . . ,VK engage in a secure summation protocol for computing random additive shares in

X (ℓ,m) := ∑K
k=1X

(k )(ℓ,m), 1 ≤ ℓ < m ≤ M , and Y (ℓ,m) := ∑K
k=1 Y

(k )(ℓ,m), 1 ≤ ℓ ,m ≤ M .

5: Each Vk sends its shares in those 3M(M − 1)/2 sums to T .
6: T adds the shares and recovers X (ℓ,m), 1 ≤ ℓ < m ≤ M , and Y (ℓ,m), 1 ≤ ℓ ,m ≤ M .

7: T computes S(ℓ,m) = X (ℓ,m)/
√
Y (ℓ,m)Y (m, ℓ) for all 1 ≤ ℓ < m ≤ M .

Ensure: T gets S(ℓ,m).

We note that the offline phase in both the vertical and horizontal settings requires each pair of

vendors to communicate between themselves. Interestingly, in the horizontal setting it is possible to

carry out the offline phase in a manner that requires each vendor to communicate only with a single

designated vendor, say V1. Such a modification reduces the communication cost from O(K2) to
O(K). Such a relaxation of the communication requirements may allow larger numbers of vendors,

K , to cooperate in the privacy-preserving distributed computation. To achieve that goal, we may

modify Protocol 5 by replacing Steps 1 and 4-6 in it with the following ones:
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• Step 1’: V1 selects
(M
2

)
independent random integer multipliers дℓ,m for each pair of items

1 ≤ ℓ < m ≤ M and sends them to V2, . . . ,VK .
• Step 4’: Each Vk sends to V1 the values {E(X (k )(ℓ,m)) : 1 ≤ ℓ < m ≤ M} and {E(Y (k )(ℓ,m)) :
1 ≤ ℓ ,m ≤ M}, where E is a probabilistic homomorphic encryption function for which the

encryption key is public but the decryption key is known only to T .
• Step 5’:V1 will then send toT the values {∏K

k=1 E(X (k )(ℓ,m)) = E(X (ℓ,m)) : 1 ≤ ℓ < m ≤ M}
and {∏K

k=1 E(Y (k )(ℓ,m)) = E(Y (ℓ,m)) : 1 ≤ ℓ ,m ≤ M}.
• Step 6’: T decrypts and recovers X (ℓ,m), 1 ≤ ℓ < m ≤ M , and Y (ℓ,m), 1 ≤ ℓ ,m ≤ M .

In addition to the above mentioned advantages in terms of communication costs, such a variant

of Protocol 5 may be used to hide from all vendors, apart fromV1, the number K and identity of the

other vendors.

Privacy. None of the vendors learns any information during either of the two variants of

Protocol 5, since they only engage in a secure summation sub-protocol (using either secret sharing

in the basic Protocol 5, or E-encryptions in the modified version, where E is a cipher that can

be decrypted only by T ). T is the only party that receives information, but owing to the usage of

random multipliers, it can only deduce the desired similarity scores, but not the numerators and

denominators in the quotients that define them.

Computational and communication costs. The computational complexity of Protocol 5 is

low since it does not involve any of the costly operations ([Enc], [Dec], [Exp]). The above described
modification of Protocol 5, on the other hand, imposes a computational cost of 1.5M(M −1)[Enc] on
each vendor and a computational cost of 1.5M(M−1)[Dec] onT . As for the communication costs, the

modified Protocol 5 consists of three rounds (Steps 1’,4’,5’) in which the number of communicated

bits is O(KM2λ). (Recall that, as in Section 5, λ denotes the number of bits in encrypted values.)

6.2 Online computation of predicted rating
In this phase, any vendor Vk , k ∈ [K], can submit a query to T for the predicted rating of a user

un ∈ U that it serves for an item b ∈ B. Such queries are answered, in a privacy preserving manner,

by Protocol 6. Here, F denotes a probabilistic homomorphic encryption function for which Vk
knows the key pair while T knows only the encryption key. (Note that in the vertical setting it was

essential that all vendors use the same encryption function F. However, in the horizontal setting,

each vendor may have its own encryption function F. Therefore, there is no need for collaboration

between the vendors in that regard.)

The protocol begins with Vk submitting a query to T (Step 1); the query includes an index

m ∈ [M] of an item bm ∈ B and two encrypted vectors: F(rn) – an encryption of un ’s row in the

user-item rating matrix R, and F(ξ (rn)) – an encryption of the boolean vector that indicates which

items that particular user rated in the past. The protocol continues just like Protocol 3.

The privacy analysis and computational and communication costs analysis of Protocol 6 are

similar to those of Protocol 3.

6.3 Online computation of the top h recommended items
In order to letVk get the top-h yet unrated items for a userun that it serves, one can apply Protocol 4

with the following modifications: (a) In Step 1, instead of sending toT the user’s index,Vk sends the

two encrypted vectors of that user, F(rn) and F(ξ (rn)). (b) Since in the horizontal setting Vk offers

all items, then Mk = M and Ik = [M]; hence, the vectors x and y (Steps 4-5) are M-dimensional,

and the permutation π (Step 6) is over [M].
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Protocol 6 Computing predicted ratings of u ∈ U for an item.

1: Vk sends to T an item indexm ∈ [M] and two encrypted vectors, F(rn) and F(ξ (rn)).
2: T computes the set N +q (m) := {ℓ1, . . . , ℓt }.
3: T sets anM-dimensional vector sm where sm(ℓ) = S(ℓ,m) if ℓ ∈ N +q (m) and sm(ℓ) = 0 otherwise.

4: T selects a random integer multiplier д.
5: T sends to Vk the two scalar values x = F(r̂n)(д ·sm ) and y = F(ξ (rn))(д ·sm ).
6: Vk computes x ′ := F−1(x) and y ′ := F−1(y).
7: Vk sets P(un ,bm) = R(bm) + x ′/Ly ′ if y ′ , 0, and P(un ,bm) = R(bm) otherwise.

Ensure: VK gets P(un ,bm).

7 EXPERIMENTS
Hypotheses. Our evaluation seeks to validate the following research hypotheses:

• Applying PPCF protocols (such as ours) in distributed settings can significantly increase the

accuracy of recommendations.

• Our PPCF protocols, which base their security on cryptographic means, offer significantly

more accurate recommendations than those offered by state of the art protocols that achieve

privacy preservation by introducing random noise.

• The runtime of our PPCF protocols is feasible for practical use.

Experimental setting. All experiments were run on a 13-inch MacBook Pro with a 3.0GHz dual-

core Intel Core i7 CPU and 16GB of RAM. The algorithms were implemented in Java as an extension

to the open source LibRec library1.
Datasets. We used four publicly available datasets:MovieLens 100K,MovieLens 1M,MovieLens
20M, and FilmTrust. Table 1 reports their main characteristics: number of users N , number of items

M , number of ratings numR, density (%) D := numR
NM × 100, and the rating scale.

Table 1. Dataset characteristics

dataset N M numR density scale

MovieLens 100K 943 1682 10
5

6.30% [1,5]

MovieLens 1M 6040 3706 10
6

4.47% [1,5]

MovieLens 20M 138000 27000 2 · 107 0.54% [1,5]

FilmTrust 1508 2071 35497 1.14% [0.5,4]

Methodology. In each experiment we randomly split the numR input ratings into training (70%)

and testing (30%) sets. We then simulated a vertical or horizontal distribution between K vendors

by randomly splitting the complete user-item matrix R into K (almost) equal-sized sub-matrices

as follows. If R is of dimensions N × M , we split it in the vertical distribution scenario into K
matrices of (almost equal) dimensions N ×Mk , whereMk ∈ {⌊M/K⌋, ⌈M/K⌉}, k ∈ [K], while in the

horizontal case the K matrices are of dimensions Nk ×M , where Nk ∈ {⌊N /K⌋, ⌈N /K⌉}, k ∈ [K].
We then ran the PPCF protocols on this distributed data and computed the performance of the

resulting recommender system when trying to predict the ratings or rankings of the testing data

from the training data. We repeated this process ten times, each time with new and independent

random choices. Finally, we report the average performance over those ten runs.

1
http://www.librec.net
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Experiment 1. In this experiment we demonstrate the benefits that PPCF protocols, such as ours,

bring to the collaborating vendors. Towards that end, we split the complete user-item matrix R into

K sub-matrices, as described above. In each distribution scenario, each of the K vendors used only

the training data in its sub-matrix in order to predict the testing data entries in its sub-matrix. Then,

we computed the resulting mean absolute error (MAE) over all testing entries in all sub-matrices.

The left side of Figure 1 shows the resulting errors as obtained on each of our datasets, in the

vertical distribution scenario, for K = 1, 2, 4, 8, 16, 32. As expected, basing predictions on training

datasets of smaller sizes (as is the case when K increases) results in higher error levels. The case

K = 1 corresponds to the centralized setting in which the entire matrix is owned by a single vendor;

in that case, the resulting MAE is minimal. The case of K = 32 shows the highest MAE. If the

K = 32 vendors had utilized our protocols, instead of working solitarily, then the MAE would

decrease to the same level as shown for K = 1, since our protocols issue exactly the same results as

those which would be obtained if all data was owned by a single entity.

The corresponding graphs for the horizontal distribution scenario are depicted on the right side

of Figure 1, where K = 1, 2, 4, 8, 16, 32, 64, 128, 256. Similarly to the vertical case, basing predictions

on training datasets of smaller sizes (as is the case when K increases) results in higher error levels.

Interestingly however, in two of the examined datasets – FilmTrust and MovieLens 1M – the

error increases relatively slowly in comparison to the vertical case, suggesting that collaboration

between the vendors provides a significant merit only when the private datasets are of small sizes

(namely, when K in our example is high). One possible explanation for this difference could be that

it is easier to model the system by examining a dataset representing a small number of users for

whom the complete data regarding the entire set of items is available, than by examining a dataset

representing all users for which data is given only with respect to a subset of the itemset.
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Fig. 1. Prediction errors in distributed scenarios with no collaboration — vertical (left) and horizontal (right)

In the next two experiments, we compare the performance of our protocols for predicted ratings

(Experiment 2) and predicted rankings (Experiment 3) to the protocol of Yakut and Polat [55] (YP),

which is the only other item-based PPCF protocol that is directly comparable to ours.

As stated earlier, our protocols for predicted ratings and rankings, in both distribution scenar-

ios, issue the very same outputs as the basic non-private recommendation algorithm that they

implement; namely, the privacy mechanisms do not alter the functionality of the recommendation

algorithm. The protocol of YP, on the other hand, achieves privacy by adding noise to the data.

One of the tools which YP utilizes in order to offer privacy is by having each vendor add some

fraction of fake ratings into its sub-matrix. The fake ratings replace only unrated entries in the

matrix R and the relevant performance parameter in this context is the percentage p of fake ratings.

Specifically, if in the vertical distribution scenario Vk has a sub-matrix of dimensions N × Mk
and of the NMk entries, only numRk are actual ratings, then Vk replaces p% of the remaining

NMk − numRk entries with fake ratings, k = 1, 2; similarly for the horizontal distribution scenario.
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The value of the fake ratings can be set in several ways. One of the suggestions made in [55], which

we adopt herein, is that each Vk uses the global mean rating over all rated entries in its sub-matrix.

The manner in which fake ratings are added in the YP protocol implies that the results of the

vertical split coincide with the results of the horizontal split, as is the case with our protocols.

Since the YP protocol is designed for the case of K = 2 only, Experiments 2 and 3 are carried out

on splits of the user-item matrices into two random sub-matrices.

Experiment 2. We compared the accuracy of our Protocols 3 and 6 for predicting ratings to

that of YP. We applied our protocols for each of the testing entries and then computed the MAE

over all testing entries (in both sites ofV1 andV2). We did a similar test with the prediction protocol

YP, with several values of p (the percentage of fake ratings). Finally, we used a baseline algorithm

that simply predicts for each user u and item b that P(u,b) = R(b), where R(b) is the average rating
given to item b. Figure 2 shows the resulting errors as obtained on each of our datasets. (Recall that

the shown values are averaged over ten random and independent runs.)

As can be seen, the accuracy of YP with p = 0 coincides with that of our Protocols 3 (in the

vertical distribution scenario) and 6 (horizontal), but such a version of YP is non-private. Increasing

p to higher values that would provide better hiding of each vendor’s data results in higher errors,

that in the two MoviLens datasets even became higher than that of the naïve (and perfectly secure)

item-mean predictor. To summarize, our protocols, which base their security on cryptographic

means, rather than randomization, offer higher security than YP; in addition, the output of our

protocols (as opposed to YP) fully coincides with the non-secure algorithm.
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Fig. 2. Rating prediction: FilmTrust (top), MovieLens 100K (bottom left) and MovieLens 1M (bottom right)

Experiment 3. Next, we compared the quality of ranking as offered by our Protocol 4, to the

quality of rankings which are derived from computing predicted ratings, by either our Protocols

3 and 6, or by YP [55]. The comparison is made by the AUC (Area Under the Receiver Operating

Curve) measure; AUC values range from 0.5 (worst) to 1 (best).

Let Ik,n denote the set of items offered byVk which un had rated, and their corresponding entries

in R were selected for training. We follow the usual practice of generating rankings over all items

in the complement set, I ck,n := Ik \ Ik,n , and then comparing that ranking to the baseline ranking,
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in which all items in I ck,n which un had rated are considered positive and all other items in I ck,n
are considered negative. Specifically, for eachm ∈ I ck,n we computed three scores: its predicted

rating by Protocols 3 and 6, its predicted rating by YP, and the score ŝ(m), Eq. (3), by which Protocol

4 ranks. By thus we get three sequences of scores which induce three rankings over I ck,n . We

compared each of those rankings to the above described baseline ranking. Letting Ek,n denote

the AUC value obtained for one of those three rankings, we finally compute the average value

E =
(∑

2

k=1
∑N

n=1 Ek,n

)
/2N . Figure 3 shows the average of E, for each of the three scoring functions,

over ten random runs. As can be seen, Protocol 4, which is designed for issuing rankings, issues

significantly better rankings than rankings based on the predicted ratings of either our Protocols 3,

or YP.
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Fig. 3. Ranking prediction: FilmTrust (top), MovieLens 100K (bottom left) and MovieLens 1M (bottom right)

Experiment 4.We conclude with runtime experimentation. We measured the cryptographic

overhead on both the mediator T and a typical vendor Vk in the offline and online phases. Specif-

ically, we measured the overhead due to the privacy-induced costly operations of encryption,

decryption, exponentiation (representing products in the plaintext domain) and multiplications

(representing sums in the plaintext domain). For encryption we used the Paillier cryptosystem [33]

implemented in Java2. Table 2 shows the runtime overheads in each of the four datasets, when they

are distributed evenly and vertically among K = 5 vendors
3
, in hours(h), minutes(m), seconds(s),

and miliseconds(ms).

In the offline phase, we focus only on Protocol 2. We ignore Protocol 1 for two reasons. First, the

actual runtime depends on the selection of the SSP sub-protocol. Second, if one chooses the SSP

protocol of Du and Zhan [11], which is most fitting in our setting, then it involves no cryptographic

operations, and hence the privacy-induced overhead is negligible. (Namely, the runtime of Protocol

1 is on par with that of a non-secure protocol for computing the similarity scores.) Protocol 2

entails cryptographic overhead only on the vendors, as they need to encrypt their matrix entries.

2
www.csee.umbc.edu/∼kunliu1/research/Paillier.html

3
The times in the Rating column are independent of K . Those in the Offline and Ranking columns are inversely proportional

to K , under the assumption of even distribution.
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The overhead is considerable. In the three datasets apart from the largest one, MovieLens 20M,

the offline computation time takes from 14.5 minutes up to 3.4 hours. However, as that phase is

run only once in a period (say, once a week), and since the required computations can be easily

parallelized, such overhead is reasonable.

In the largest dataset, MovieLens 20M, the situation is different. A direct application of Protocol

2 would take several days. Hence, for datasets of such dimensions, we perform the following

economization. The values that Vk has to encrypt in Protocol 2 are R̂(n,m) (see its definition in

Step 3 of Protocol 2) and ξ (R(n,m)), for all n ∈ [N ],m ∈ Ik . But 99.46% of those values are just zero,

as implied by the sparsity of theMovieLens 20M dataset (see Table 1). While we stressed earlier

the importance of using a probabilistic encryption function that would hide from T the pattern of

plaintexts underneath the encryption, performing such a large number of repeated encryptions is

too extreme. (A direct application of Protocol 2 would encrypt the value zero 1.48 · 109 times, since

that is the number of zeros in the matrices R̂(n,m) and ξ (R(n,m)) for each vendor in the vertical

distribution scenario that we consider for that dataset.)

In order to dramatically decrease the runtime, we created, for each vendor, a “dictionary” of√
2NMk random and independent encryptions of zero. Then, whenever we had to create a random

encryption of zero, we selected two elements from the dictionary and multiplied them (where the

selection was made uniformly at random). That way, we were able to generate the needed number

of zero encryptions, with negligible probability of obtaining the same ciphertext twice. Since the

cost of multiplication is much smaller than that of encryption, the resulting runtime was reduced

to only 48 minutes. (This runtime is marked in the table by (*), in order to indicate that it was

achieved with the above described economization.)

For the online phase, we used q = 80. (Recall that q is the size of the item-neighborhoods which

are used in predicting ratings and rankings.) The overhead for predicting ratings (Protocol 3) is

negligible. The overhead for ranking (Protocol 4) is much larger, since for ranking, it is needed

to compute a score for all items (while in rating a score needs to be computed only for a single

item). But despite the fact that the runtimes for computing rankings are high (few seconds in the

three smaller datasets and over one minute, in total, in the largest dataset), such runtimes are no

show-stoppers for three reasons: (a) The computations ofT as well as those ofVk can be parallelized

so that by dedicating several machines for performing the costly cryptographic operations it is

possible to reduce the computation time. (b) Presenting the top h recommended items for a user

may be a service which is offered at the initiation of the vendor (as opposed to one that is triggered

by a demand of the user). In such a case, once the vendor identifies a user as an active consumer

who should be presented with such recommendations, it may start this computation and present

the issued recommendations to the user when they become available. (c) Vk may define upfront

for un a subset of items Ik (n) ⊂ Ik that could be of interest for him (say, based on his history

or demographics) and then notify T of that subset. Then, T could compute x(m) and y(m) only
form ∈ Ik (n). The resulting runtime, for both T and Vk , will consequently reduce by a factor of

Mk/|Ik (n)|.
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Table 2. Cryptographic runtime overheads in the vertical setting

Dataset Offline Rating Ranking

Vk T Vk T Vk
MovieLens 100K 14.5m 13.1ms 5.1ms 2.6s 1.7s

MovieLens 1M 3.4h 15.8ms 5.1ms 5.8s 3.8s

MovieLens 20M 48m(*) 15.1ms 5.1ms 42.8s 34s

FilmTrust 37.2m 13.4ms 5.1ms 3.3s 2.1s

In the horizontal scenario, the offline phase is much faster as it involves no costly operations

(see the discussion of Protocol 5); we therefore ignore it. Table 3 shows the runtime overheads in

the online phase for each of the four datasets, when they are distributed evenly and horizontally

among K = 5 vendors. The runtime for computing predicted ratings is the same as in the vertical

setting. On the other hand, when computing predicted ranking, the runtimes in the horizontal

scenario differ from those in the vertical scenario by a factor of K = 5. The manners which we

discussed above for dealing with the non-negligible runtimes for producing predicted rankings are

relevant in this setting as well; hence, computing predicted ranking is feasible also in this setting.

Table 3. Cryptographic runtime overheads in the horizontal setting

Dataset Rating Ranking

T Vk T Vk
MovieLens 100K 13.1ms 5.1ms 13s 8.5s

MovieLens 1M 15.8ms 5.1ms 29s 19s

MovieLens 20M 15.1ms 5.1ms 214s 170s

FilmTrust 13.4ms 5.1ms 16.5s 10.5s

8 CONCLUSION
We devised herein secure multi-party protocols for executing item-based PPCF over distributed

datasets, for both the vertical and horizontal distributed settings. Our protocols rely on a mediator.

Such a mediator is essential since, without it, the different vendors would need to constantly be

online and be ready to serve requests by other vendors. Our protocols issue exactly the same results

as their non-privacy preserving counterparts, and they protect each vendor’s data from other

vendors as well as from the mediator. Our protocols rely solely on existing cryptographic arsenal;

this offers a significant advantage as they can be readily implemented on top of standard libraries.

We note that the offline phase, in either of the distribution scenarios, is applied on the current

snapshot of the user-item matrix R. It may be repeated periodically (say, once a week) in order to

update the similarity scores according to the changes in the user set U , item set B or the user-item

matrix R. Even though computations from a previous offline phase can be used for the next offline

phase (for example, all entries in R that were not changed do not need to be encrypted again), we

suggest to run all computations in the offline phase from scratch. By doing so, the mediator cannot

compare its view in one offline phase to its view in a previous offline phase in order to extract

inferences on the differences that occurred in R, since the encryption functions are probabilistic.

The runtimes which we reported in Section 7 show that such a practice is clearly feasible and there

is no point in exercising economizations that may jeopardize privacy.

This study suggests several future research directions:
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(a) Generalizing our protocols to deal with an arbitrary distribution setting (i.e, not a purely

vertical or a purely horizontal split).

(b) Examining the applicability of our techniques to other CF algorithms, such as matrix

factorization-based algorithms and their extensions (e.g. the one in [39]) and compare their perfor-

mance to that of existing privacy-preserving matrix factorization algorithms, such as the ones in

[32] and [31].

(c) Enhancing our protocols so that they offer a high level of privacy even if some of the interacting

parties do not act honestly, or collude. As explained in Section 5, there are substantial reasons to

accept the assumption that all parties involved are semi-honest. However, a corrupted mediator T
may bribe one of the vendors and thus obtain the decryption key of the encryption function F; by
doing so, T may reveal private information of all vendors. We deem this option highly improbable,

since if T cheats it risks losing the trust vested in it, and then losing the reputation on which its

business or public status depend. But it is still worthwhile to add such defense mechanisms, if

only to increase the trust of the vendors in the security of the system. Hence, in future work we

intend to split the role of T into k distinct and independent mediators, T1, . . . ,Tk , and enhance our

protocols by secret sharing techniques, so that the recovery of the final rating or ranking results

requires a collaboration of all k mediators, or of k ′ mediators, where 1 < k ′ < k (the latter option

increases the robustness of the system). These settings may significantly reduce the chances of

corruption since it would be then necessary for k ′ mediators to collaborate in attempting to gain

access to private information of the vendors. To the best of our knowledge, none of the existing

PPCF studies had addressed such concerns and offered corresponding remedies.
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