
 1

Coordination and Communication of Cooperative Parafoils for

Humanitarian Aid

Pini Gurfil* and Sharoni Feldman†
Faculty of Aerospace Engineering

Technion - Israel Institute of Technology, Haifa 32000, Israel

Moran Feldman‡

Computer Sciences Department, The Open University, Israel

Abstract

In case of a wide-scale disaster, an accurate airdrop of emergency supplies is crucial. In

this paper, we present a novel top-down approach for designing and executing airdrop

missions using guided parafoils. We develop a guidance algorithm and a cooperative task

management method for autonomous handling of faults and exceptional events by the

parafoil group. The autonomous operation is based on inter-parafoil ad-hoc

communication. A parafoil or a number of parafoils can dynamically react to events that

prevent one or more parafoils from successfully completing their mission. Two recovery

methods are presented – Swap, which enables parafoils to dynamically exchange their

targets, and Replace, which gives precedence to prioritized targets over low-priority

targets. The parafoil guidance method, combined with the task management algorithm,

significantly increases the probability of successful airdrop. The small overhead of the

communication layer and the low complexity of the swap and replace recovery

algorithms enable these procedures to run in a distributed environment under real-time

limitations.

* Senior Lecturer. Email: pgurfil@technion.ac.il
† Research Associate. Email: sharoni@aerodyne.technion.ac.il
‡ Graduate Student. Email: feldsh@netvision.net.il

 2

1. Introduction

Multiagent robotics has seen significant progress in recent years. Studies were dedicated

to developing a taxonomy for multiagent robotics [1], designing behavioral-based control

using potential field theory [2], [3] and simulating flocking rules [4].

The ability of multiagent systems to meet complex mission requirements in an arbitrary

theater under partial and uncertain information paved the way for applying multiagent

methodologies to a variety of platforms in the air, ground and sea. Particular airborne

platforms that have gained significant scholarly attention are Unmanned Aerial Vehicles

(UAVs). Recent studies developed UAV cooperative control [5] and coordination [6]

algorithms, while others have designed path planning [7] and task assignment [8]

methods. While the literature on cooperative UAVs is abundant, the reported research

efforts dedicated to developing cooperative parafoils are few [11].

Autonomous parafoils are equipped with sensors (typically GPS receivers and

occasionally an inertial measurement unit) and actuators that enable autonomous

operation and precision landing at designated sites (see e. g. the parafoil developed in the

FastWing project [12]). This ability is critical in times of emergency such as natural

disasters, as it ensures that urgent supplies will reach those in need of immediate support.

Creating a flock of cooperative parafoils rather than a group of independent parafoils

yields a more reliable, fail-safe system, in which one malfunctioning parafoil, pre-

planned to deliver critical assistance (e.g. drinking water), may be replaced by another

parafoil aimed at a target with lesser priority.

This paper presents a novel autonomous distributed task management method that

enables parafoils to exchange landing sites among themselves in real time. As soon as a

parafoil monitoring system predicts that the parafoil is unable to land at its pre-designated

target, the monitoring system initiates a process for reassigning parafoils to targets. This

 3

real-time distributed task management may result in a list of changes in existing pairings

of parafoils and targets.

The distributed task management process utilizes a set of parameters such as the type of

payload and the target priority in addition to the current position, velocity, gliding angle,

wind speed and direction and other specific characteristics of each parafoil. The

distributed task management process is applied autonomously by the parafoils without

any external intervention, thus permitting stand-off release. The infrastructure for the

target reallocation process comprises an ad-hoc communication protocol wherein every

parafoil acts as a session end-point and as a relay that connects all parafoils as long as

they are within transmission range.

An ad-hoc network is a communication network that enables communication among

mobile wireless users without using a fixed set of base stations. Each user acts as a router

(relay), allowing other users to communicate through its mobile communication device.

The communication range of each device is limited; thus, at any given time a user can

exchange packets only with other devices in its receiving/transmitting range. The set of

users is highly dynamic: new users join in while other users may quit or move out of

transmission range. In addition, each node can arbitrarily move and possibly cause loss of

communication with some nodes while creating new connections with other nodes [9].

The main contribution of this work is the development of a novel method aimed at

improving the chances of a successful parafoil airdrop. This method (i) renders the

parafoils release procedure into a fully automatic and autonomous process that fuses

individual parafoils and targets into a set of cooperative entities aimed at fulfilling a

global mission; and (ii) increases the chances for successfully completing a single airdrop

task by creating redundancy based on judicious task management without adding

redundant parafoils.

 4

2. Parafoil Dynamics, Trajectory Design and Guidance

In this section, we outline the flight mechanics of the parafoils and develop reference

trajectories for each parafoil. The reference trajectory is tracked using neighboring

optimal control.

2.1 Dynamical Model

The parafoil dynamical model is written in north-east-down (NED) coordinates, so that x

and y are the north and east positions relative to the target, and h is the altitude above the

surface. Under the assumption of equilibrium glide, the flight-path angle, γ , and the

magnitude of the velocity, V, are constant. Denoting the wind velocity components in the

NED coordinates by xw and yw (we assume that there is no wind shear), and the heading

angle by ψ , the equations of motion assume the form [10]

 () cos cos () ()xx t V t w tγ ψ= + (1)

 () cos sin () ()yy t V t w tγ ψ= + (2)

 () sinh t V γ= (3)

 () tan () /t g t Vψ φ= (4)

In Eq. (4), φ denotes the bank angle, which, at steady state, assumes a constant value, dφ ,

determined by a servo deflection, δ , so that the closed-loop bank angle dynamics are

given by

 () [() (] /dt tφ φ φ δ τ= − +) (5)

where τ is the equivalent time constant of the bank angle control loop.

The constant flight-path angle, γ , appearing in Eqs. (1)-(3), satisfies the relationship [13]

 5

 tan
cos

D

L d

C
C

γ
φ

= − (6)

where DC and LC are the drag and lift coefficient, respectively. Thus, the dynamical

model (1)-(5) includes two control variables: γ and dφ (the servo deflection enables

control of the lift and drag coefficients). Hence, based on Eq. (4), at steady state,

 tan /dg Vψ φ= (7)

2.2 Reference Trajectory Generation

The goal of the trajectory generation algorithm can be formulated as follows: Given

initial position components, 0 0 0 0() , ()x t x y t y= = , an initial altitude, 0 0()h t h= , final

position components, ,f fx y , and the final altitude, () 0fh t = , determine a γ ∗ and a dφ
∗

so that

 () , ()f f f fx t x y t y= = (8)

The trajectory design problem will be solved by transforming the NED velocity

components into the wind frame; this procedure is carried out by defining

 (), ()x yX x w t Y y w t= − = − (9)

The resulting position components are computed by integrating Eq. (9):

0 0

() () () , () () ()
t t

x y
t t

X t x t w d Y t y t w dτ τ τ τ= − = −∫ ∫ (10)

 6

This transforms Eqs. (1) and (2) into

 () cos cos ()X t V tγ ψ= (11)

 () cos sin ()Y t V tγ ψ= (12)

In terms of the new variables, the initial conditions and final conditions, respectively, are

 0 0 0 0,X x Y y= = (13)

and

0 0

() , ()
f ft t

f f x f f y
t t

X x w d Y y w dτ τ τ τ= − = −∫ ∫ (14)

where ft being the flight time in the presence of wind, calculated by integrating Eq. (3),

 0

sinf
ht

V γ ∗= − (15)

It is now required to find two equations for γ ∗ and dφ
∗ . To that end, for these calculations

only, we neglect the transient response of the bank angle, since the servo time constant is

much smaller than the flight time; thus, dφ φ∗≈ and (cf. Eq. (7))

 0
tan() dgt t
V
φψ ψ
∗

= + (16)

To complete the procedure, we integrate Eqs. (11) and (12) with ()tψ as in Eq. (16), and

substitute ft t= . This yields the desired equations for γ ∗ and dφ
∗ :

 7

2

0
tan() cos sin sin

tan
d

f
d

gtVX X
g V

φγ γ ψ ψ
φ

∗
∗ ∗

0 0∗

⎡ ⎤⎛ ⎞
= + + −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
 (17)

2

0
tan() cos cos cos

tan
d

f
d

gtVY Y
g V

φγ γ ψ ψ
φ

∗
∗ ∗

0 0∗

⎡ ⎤⎛ ⎞
= + + +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
 (18)

where fX and fY depend on γ ∗ through Eq. (14). Eqs. (17) and (18) render two

algebraic equations for γ ∗ and dφ
∗ . If a solution exists, then, at ft , Eq. (8) is satisfied, and

the parafoil will reach the target location with a miss distance induced by the servo time

constant. This miss distance is defined by

2 2

() ()f f f f fr x t x y t y⎡ ⎤ ⎡ ⎤∆ = − + −⎣ ⎦ ⎣ ⎦ (19)

The required bank angle is achieved by a proper servo deflection, while the flight-path

angle is determined by changing the parafoil's drag-to-lift ratio (cf. Eq. (6)). The sign of

the initial heading angle is determined according to the quadrant of the final position

relative to the initial position:

 0 0 0sgn() sgn ()()f fx x y yψ ⎡ ⎤= − −⎣ ⎦ (20)

Sample results of the above process are given in Table 1. In this table, the flight time, ft ,

γ ∗ and dφ
∗ are calculated for a group of 10 parafoils, each designated with a different

landing location, in the constant wind field 5 m/sec, 10 m/secx yw w= = and the initial

conditions 0 0 01000m, 2000m, 3000mX Y H= − = − = . The servo time constant

is 0.01sτ = . It is seen that the trajectory design algorithm provides miss distances ranging

from 0.9 m to 5.1 m, depending on the final coordinates.

 8

Case # fx [m] fy [m] γ ∗ [rad] dφ
∗ [rad] [sec]ft fr∆ [m]

1 -1000 -500 -2.3055 0.0048 336.9266 3.5

2 -1000 0 -2.0956 0.0032 288.8697 2.4

3 -1000 500 -2.0087 0.0000106 276.0455 2

4 0 -500 -2.1244 0.0090 293.8917 2.1

5 0 0 -1.8153 0.0089 257.6664 0.9

6 0 500 -1.6558 -0.0014 250.9051 0.4

7 1000 -500 -2.3905 0.0098 366.3415 2.9

8 1000 0 -1.2187 -0.0088 266.3352 1.4

9 1000 500 -1.3332 -0.0026 257.2293 1

10 4000 4000 -0.6779 0.0026 398.6011 5.1

Table 1: Initial flight-path angle and desired bank angle for a group of 10 parafoils with

different landing locations in the presence of a constant wind field

The reference trajectories of the parafoils are shown in Figure 1. The initial position is

designated by an "o" and the final position is designated by an "x".

−1000
0

1000
2000

3000

−2000

0

2000

4000
0

1000

2000

3000

x [m]
y [m]

h
[m

]

Figure 2: Sample parafoil reference trajectories in north-east-down coordinates

 9

2.3 Guidance Algorithm

The purpose of the guidance algorithm is to steer the parafoils to the pre-determined

reference trajectories (as determined by the initial flight-path angle and the steady-state

bank angle) in the presence of initial release errors and perturbations, which cause the

actual trajectory to deviate from the reference trajectory. Let (), (), ()X t Y t h t denote the

coordinates of the actual trajectory, and (), (), ()X t Y t h t∗ ∗ ∗ be a given reference trajectory.

The nominal time-varying flight-heading is denoted by ()tψ ∗ , and the actual heading

angle is ()tψ . Define the state variables deviations

 () () (), () () (), () () (), () () ()X t X t X t Y t Y t Y t h t h t h t t t tδ δ δ δψ ψ ψ∗ ∗ ∗ ∗− − − − (21)

If ()tγ ∗ , *() ()dt tφ φ∗ ≈ are the nominal flight-path and bank angles, respectively, and ()tγ ,

() ()dt tφ φ≈ are the same angles defined for the actual trajectory, the differences

 () () , () ()t t t tδγ γ γ δφ φ φ∗ ∗− − (22)

become control inputs. The trajectory control is performed in closed loop, using the

state-variables differences feedback. The parafoil is steered back to the nominal lateral

and longitudinal coordinates, and the flight-heading angle difference is nullified. The

altitude difference is regulated by an additional bias, so that the final altitude converges

to zero at the given final lateral and longitudinal position.

To derive a closed-loop controller, small deviations from the reference trajectory are

assumed. Linearizing Eqs. (3), (11), (12) about the nominal trajectory yields the linear

time-varying model

 () () () () ()t A t t B t t= +x x u (23)

 10

where () [() () ()]Tt X t Y t tδ δ δψ=x is the state vector and () [() ()]Tt t tδγ δφ=u is the

control vector. The system matrix, ()A t , and the input matrix, ()B t , are given by

2

0 0 cos sin () sin cos () 0
() 0 0 cos cos () , () sin sin () 0

0 0 0 0 (1 tan)

V t V t
A t V t B t V t

g
V

γ ψ γ ψ
γ ψ γ ψ

φ

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗

⎡ ⎤
⎢ ⎥⎡ ⎤− −
⎢ ⎥⎢ ⎥= = −⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ +⎢ ⎥
⎣ ⎦

 (24)

A straightforward approach for designing a closed-loop trajectory controller for system

(23) is neighboring optimal control [14].

Given a cost functional of the form

0

() () () () () ()
ft

T T T
f f fJ t Q t t R t dt t M t= + +∫ x x u u x x (25)

with Q being a 3 3× state penalty matrix, R a 2 2× control weight matrix and fP a 3 3×

terminal weight, a stabilizing feedback minimizing (25) is given by

 1() () ()Tt R B t M t−= −u (26)

where ()M t is a solution of the differential matrix Riccati equation

 1() () () () () () ()T TM t A M t M t A M t B t R B t M t Q−− = + + + (27)

Finally, the differential flight-path angle resulting from Eq. (24) is augmented by a

constant bias, b, guaranteeing that () () () 0f f fh t h t h tδ∗= + = :

 11

 []() cos ()h t V t bδ γ δγ∗= + (28)

To illustrate the performance of the said guidance law, we performed a simulation of the

nominal trajectory described by Case 3 in Table 1 with

0 0 0 05 m, 5 m, 4m, 0.001 radX Y hδ δ δ δψ= = = = . The simulation results are shown in

Figure 3, depicting the three differential position components and the flight-heading

angle. The magnified state variables show the relatively short transient of the closed-loop

control. The feedback regulates the lateral and longitudinal position components and the

flight-heading angle. The altitude regulator is in fact a terminal controller, nullifying the

altitude difference at impact, so that the miss distance is identical to the value given in

Table 1.

 12

0 50 100 150 200 250 300
−1

0

1

2

3

4

5

Time [sec]

δ
x

[m
]

0 50 100 150 200 250 300
−1

0

1

2

3

4

5

Time [sec]

δ
y

[m
]

0 50 100 150 200 250 300
0

2

4

6

8

Time [sec]

δ
h

[m
]

0 50 100 150 200 250 300
−0.2

0

0.2

0.4

0.6

0.8

Time [sec]

δ
ψ

 [r
ad

]

0 1 2 3
−5

0

5

0 5
−5

0

5

0 5
−0.5

0

0.5

1

Figure 4: Guidance using neighboring optimal trajectory control. After a transient of

about 2 s, the X and Y components converge to zero, while the altitude difference is

nullified at impact

 13

3. Parafoils Mission Planning

In this section, we develop mission planning and task management algorithms for the

guided parafoils described in the previous section. This includes a mechanism for target

reassignment. To illustrate the importance of task management, we begin with a simple

motivating example.

3.1 Simple Motivating Example

Assume that the probability of a given parafoil to succeed in an airdrop mission (i.e.,

deliver the payload to the target with some pre-defined allowed miss distance) is p, and

that the probability to fail is 1q p= − . The target of parafoil Ph has the highest priority

and the remaining n-1 parafoils have targets with lower priorities. Let 'q be the

probability that Ph failed in an altitude that still allows a replacement by another parafoil.

We are interested in evaluating the probability that the target of Ph will get the needed

supply. To that end, we distinguish between two cases:

1. There is no communication link between the parafoils. In this case, the probability

that Ph reaches the target is p.

2. There exists a communication link between the parafoils. In this case, the probability

that Ph or a replacing parafoil reach the target is 1'(1)np q q −+ − .

Thus, if there are, e.g., 9 parafoils in the group and 0.9, 0.1, ' 0.1p q q= = = , then the

probability that the parafoil Ph will hit the target in the absence of communication is 0.9,

while the probability that some parafoil will reach the initial target of Ph is 0.981.

This simple example highlights the importance of task management, to be dwelt upon in

the remainder of this section.

 14

3.2 The Interactive Design Tool

The process of planning aerial support to regions hurt by natural disasters requires

detailed planning. During the planning phase, the operation manager (OM) is required to

identify the geographic locations where the survivors concentrate, and the type of support

needed by these survivors. The next stage in the mission planning process is the selection

of the parafoil release coordinates based on the topography, flight corridors, the total

weight of the payload, wind speed and direction, and parafoils state.

To facilitate the mission planning, we have developed an interactive design tool (IDT).

Figure 5 presents a screenshot of the IDT. The OM first identifies the coordinates of

targets that require support and the type of support. This is done by selecting a colored

thumbtack and by fixing it onto the interactive map. It is possible to fix several

thumbtacks in each spot according to the actual needs.

The next step is determining the parafoil release coordinates. Release coordinate are

defined as the center of an airdrop envelop covering a given set of thumbtacks, as shown

in Figure 5. The lines that connect the center of the airdrop envelope to the thumbtacks

indicate that there exists a reference trajectory from the release position to the target. The

radius of the airdrop envelope is computed based on Eqs. (17)-(18) given 0()h t .

In case of airdrop envelope overlap (thumbtacks can be included in more than a single

envelope), the IDT will automatically select the airdrop position that creates the shortest

path for every thumbtack. As the mission design process is iterative, the airdrop position

will be updated automatically according to the OM’s online updates.

 15

Figure 5: Snapshot of the mission planning screen. This interface provides an interactive

design tool for prioritizing target locations in need of various support types and calculate

the airdrop envelopes

3.3 Task Management Algorithm Logic

Every parafoil, iP , carries a single payload, to be delivered to a predefined target (or,

equivalently, a task) iT . A target is characterized by the following attributes:

1. The (,)f fx y coordinates;

 16

2. Required payload: food, water, medical supply and petrol (possibly, more than one

payload can be delivered to a given target);

3. A priority, denoted by ()i iTΠ = Π , where {1, 2,3}iΠ = and 3 denotes the highest

priority.

The main goal of the task management algorithm is to minimize the loss of payload in

case of parafoil failure or fault. A failure of a mechanical element, a failure of the

navigation unit or winds may prevent a parafoil from landing at its predefined target

position. However, even though a parafoil may be unable to accomplish its original

mission, it can divert its gliding direction to a closer target or to a target located at a

different heading. This process is managed by the task management algorithm, depicted

by the state diagram shown in Figure 6.

The task management algorithm, implemented onboard each parafoil, periodically

executes an audit process. This process evaluates the parafoil ability to complete its

original mission. If the audit process determines that the parafoil is unable to complete its

mission, the parafoil will commence on a recovery procedure. This procedure starts with

a Data Collection step (Figure 6), in which the parafoil collects data about other parafoils

with identical payloads. As soon as this step terminates successfully, the parafoil starts

the Swap Planning step (Figure 6). Swap is defined as a bijective permutation of the

targets within a group of parafoils, a permutation that keeps an objective function of the

form

 i
i

J = Π∑ (29)

unchanged.

In some cases, however, it is impossible to swap targets, so low priority targets must be

abandoned in favor of higher priority ones. The Replace procedure is used for finding a

solution for target allocation in such cases instead of the Swap mechanism. We define

 17

Replace as follows: let { }1 2, , ,G nJ J J J= … be the group of possible values of the

objective function J calculated by abandoning a target. Then Replace performs target re-

allocation so that

 * max GJ J= (30)

However, Swap is the preferable procedure, as it overcomes the difficulties of faulty

parafoils without affecting the targets needs.

The Glide state, shown in Figure 6, constantly monitors the trajectory by comparing pre-

calculated reference points on the reference trajectory to the actual trajectory. The Glide

process initiates corrective maneuvers according to Eq. (26). If the deviation of the actual

trajectory relative to the reference trajectory crosses a given threshold (this threshold is

determined by servo saturation), Glide will declare the parafoil as faulty. Another event

that will lead to a declaration of a parafoil as faulty is when Glide gets a malfunction

indication from one of the hardware elements. The type and severity of the fault are

major factors in deciding weather a parafoil will be able to participate in either Swap or

Replace, which in turn depend on the successful termination of the Data Collection

process.

The ability to perform Swap or Replace is evaluated using a unified mechanism – the

potential Swap graph (PSG). Using the ad-hoc communication infrastructure, to be

described shortly, a faulty parafoil collects data from the surrounding parafoils and

calculates *J using the breadth-first search algorithm described in the Appendix.

 18

Figure 6: Task management state diagram

3.4 Swap and Replace Decision Logic

Table 1 presents the basic rules used for deciding whether a given parafoil, rP (whose

target is rT) swaps or replaces a faulty parafoil, fP (whose target is fT).

Swap Replace

Payload The payload of Pr is of the same as the payload of Pf

Priority N/A () < ()r fT TΠ Π

Landing
Pr is capable of changing its heading
and land in the original (,)f fx y of
Pf and vice versa.

Pr is capable of changing its
heading and land in the original
(,)f fx y of Pf.

Alternative
selection

In case that a group of parafoils is able to replace/swap Pf, the task
management process will select the parafoil with the shortest trajectory to

fT .

Table 1: Basic Swap and Replace rules

 19

3.5 Swap and Replace Illustrative Examples

In this section, we will illustrate Swap and Replace using a few simple examples. To

begin, Figure 7 depicts a 2-way and a 3-way parafoil Swap scenarios. In Figure 7-A, the

audit process determines that 1P is unable to complete its mission successfully. A

successful Swap procedure must then exchange between 1T and 2T . This procedure does

not affect the targets, as the two parafoils carry the same type of payload.

Figure 7-B shows a 3-way parafoil swap procedure. As in the previous case, the audit

determines that 1P is unable to complete its mission, and that 2P is unable to swap tasks

with P1 as before; however, it is possible to create a cycle of parafoil diversions that will

successfully satisfy the requirements of each target.

A
P1

P2

P1

P2

T1 T1

T2T2

P1

P2

T1

T2

P3 T3

P1

P2

T1

T2

P3 T3

B

Figure 7: Schematic description of a 2-way and a 3-way parafoil Swap processes. In

each case, the targets get their required supplies, but not by the original parafoils assigned

to those targets.

To illustrate the Replace procedure,

 20

Figure 8 presents two scenarios. A simple case is presented in

Figure 8-A. 1P is unable to complete its mission and Swap in not applicable. In this case,

as 1() 2TΠ = and 2() 2TΠ = , 2T is abandoned in order to supply the more urgent needs of

1T .

Figure 8-B presents a more complicated case wherein a 3-way parafoil Replace is

requiered.

A
P1

P2

P1

P2

T1 T1

T2T2

P1

P2

T1

T2

P3 T3

P1

P2

T1

T2

P3 T3

B

∏=2 ∏=2

∏=1 ∏=1

∏=1

∏=3

∏=2

∏=1

∏=3

∏=2

Figure 8: Schematic description of a 2-way and a 3-way parafoil Replace. This process is

responsible for reassignment of targets in case of parafoil failure that cannot be remedied

using Swap.

In the example presented in Figure 9, an arc x yP P→ indicates that Py can replace Px.

After analyzing this potential Swap graph (PSG), Pf determines its ability to be replaced

by another parafoil or, preferably, to swap targets with another parafoil.

Figure 9-A present the decision-making process after Pf declares itself a faulty parafoil

and completes building the PSG. The following replacements are applicable:

 21

1. P1 will replace Pf as 1))fT TΠ(< Π(. In this case, 1T will be abandoned.

2. A chained replacement procedure where P3 replaces Pf and P4 replaces P3, as

 4 3)))fT T TΠ(< Π(< Π(. In this case, 4T will be abandoned.

The algorithm will prefer the first alternative as the number of diversions in the first case

is 2 and in the second case is 3 and 1 4)) 1.T TΠ(= Π(=

Figure 9-B presents a different situation. Pf declares itself a faulty parafoil, as it cannot

glide and land at its original target. If it can change its target and glide successfully to 2T ,

a cyclic swap process will be initiated so P1 will replace Pf, P5 will replace P1, P2 will

replace P5 and Pf will replace P2. Note that in this case the priority is irrelevant.

Figure 9: Potential Swap graph examples

 22

4. Communication

To purpose of the inter-parafoil communication system is to enable the Swap and

Replace functions discussed above, so that the correct type of support will eventually

reach the pre-designated targets as accurately as possible.

4.1 The Communication Model

The communication system is responsible for transferring applicative data among

parafoils. The communication model is composed of 3 tiers: the Medium Access Control

(MAC) layer, which is based on a 802.11[15] standard; the Metrical Routing Algorithm

(MRA) [1] layer, which runs on top the MAC layer and is responsible for routing

messages between parafoils; and the applicative layer (AL), which is the upper-level of

the communication system and is responsible for the applicative content of the messages

transferred between every two or more nodes (parafoils) which are network members.

4.1.1 Radio Propagation Model (RF)

The RF model is used to quantify radio propagation between any two nodes (parafoils) in

the theater. We assume that the transmitters use isotropic antennae that radiate uniformly

in all directions. This type of antenna is often used as a reference for antenna gain in

wireless systems. It uses the Effective Radiation Power (ERP) formulas, given below.

The loss factor between a transmitting and a receiving node, denoted by loss and

measured in units of dB, assuming RF propagation using a free-space transmission

between two points at a distance d, is given by:

 92.5 20 log()loss d f= + × × (31)

where d is in units of km and the transmission frequency, f, is measured in GHz.

Similarly, the loss factor for RF propagation of antennae that are near the ground is given

by:

)log(20)log(40 HrHtdloss ××−×= (32)

 23

where d is distance between antenna in meters and Ht and Hr is the altitudes of the

transmitter and the receiver in meters, respectively, above the ground.

Similarly to the management of the RF model, it is possible to manage the links

bandwidth and packet transmission rate. The bandwidth required to maintain the

communication links among parafoils is minimal, and does not exceed 1000 bits/second.

4.2 Metrical Routing Algorithm (MRA)

The MRA algorithm [1] is used for connecting the parafoils into communication

networks. It is also used for transferring queries among parafoils, change the tasks of

parafoils and control the information flow.

The MRA attempts to connect the parafoil group },.....,,{ 21 NPPPG = by a minimal set of

rooted trees that preserve geographical distances; viz. distances on the rooted trees are

usually proportional to the distances of NPPP ,.....,, 21 in a given theater.

More formally, let)(tG be the graph at time t wherein each two nodes ji PP , have an

edge in)(tG . The MRA algorithm attempts to cover)(tG by a minimal set of spanning

trees. The rooted trees created by the MRA algorithm can be naturally used for both

distributed computing (of, e.g., the applicative layer) as well as for communication and

data propagation tasks.

4.2.1 The MRA Protocol

The MRA protocol presented herein is a hybrid ad-hoc protocol in the sense that some

traffic control is used to maintain the mapping of the communicating nodes. The small

overhead of the MRA protocol used to maintain the mapping is a worthy investment, as

the MRA is capable of handling successfully a demanding traffic load under a high node

density and fast node movement. The MRA organizes the nodes in rooted trees in order

to find short session paths between nodes on the tree. The algorithm attempts to minimize

the number of trees by fusing separate adjacent trees into a single tree. As long as any

 24

node in one tree is not in transmission range of any node in the other trees, the trees will

function autonomously. As soon as a radio connection is created between two nodes, the

trees will be fused into a single tree.

All nodes run the same protocol implementing the MRA. As nodes may emerge,

disappear and move in or out of range of other nodes, there is need to update the trees. A

primary goal of the algorithm is to identify these changes and adapt the tree structure to

the new state. In the following discussion, we shall present an elaborate description of the

MRA protocol.

The MRA algorithm organizes the nodes in the field in rooted trees. Only nodes that

belong to the same tree can create sessions among themselves. To ensure maximal

connectivity, all nodes will try to organize themselves in a single tree. Every node in the

field has a unique Parafoil-ID (PID) (similar to a phone number or an IP address) and

virtual coordinates that may change depending on the changes in the tree structure. Every

tree is identified by a tree name, which is the PID of the root node.

Nodes periodically send beacons, termed hello messages. Every node that receives a

beacon checks whether the node that sent the beacon belongs to a different tree. If the

nodes belong to different trees, they initiate a fusion process that fuses the separate trees

into a single tree. The fusion protocol should satisfy the following properties:

1. The protocol should not cause active sessions to break;

2. Eventually (assuming no dynamic changes occur) all trees with nodes within

transmission range must fuse into a single tree;

3. When two trees are being fused, most updates should be made to the nodes of the

smaller tree (in terms of the number of nodes);

4. The protocol should maximize the number of nodes that migrate from one tree to

another in every step (yielding parallel fusion);

5. The protocol is fully distributed with no “central'' bottlenecks, namely it is defined at

the level of pairs of nodes.

 25

Initially, every node forms a separate tree of size 1. Every node in the tree can

autonomously migrate to a neighboring tree regardless of the node position in the tree.

The migrating node gets new coordinates in its new tree according to the node’s new

position. Naturally, when a node migrates from one tree to a new tree, it may carry along

its neighboring nodes (since it belongs now to a bigger tree). In the macro view, the

migration of the single nodes resembles a fusion of smaller trees into bigger ones.

Figure 10 illustrates two stages of the tree fusion process: The initial state and the final

organization into trees (assuming no significant node movements occurred during this

process).

Figure 10: Tree formation process

Fusion of two trees is a parallel process, where at any given stage one or more nodes of

the smaller tree join the larger tree, as depicted in Figure 11A and Figure 11B. The

implementation of the mission planning algorithms is based on this tree structure. Every

tree autonomously runs these algorithms as it does not have communication with other

trees. Existence of such communication will initiate a merge process that will result in a

single tree.

 26

Figure 11: Fusion of trees

4.3 Implementing Replace and Swap

The same AL package runs in all parafoils, exchanging the following types of messages:

1. A direct message, which is sent from the source node to a target. Sending a direct

message implies that the source node will be able to identify explicitly the PID of the

target parafoil.

2. A multicast message, which is sent from a source node to a group of nodes that are

identified by a common identifier.

3. A broadcast message, which is sent from a source node to all nodes in the network.

The source node is unaware of the number of nodes that receive this message or the

number of nodes that create the network.

Regardless of the message type, the nodes are unaware of the path that a message passes

on its way from the source to the target nodes. The ad-hoc infrastructure is responsible

for transferring a message transparently to the target node. Moreover, the parafoils do not

have a leading or a managing node. A parafoil assessing that it is unable to complete its

mission, autonomously initiates either Swap or Replace.

Figure 12 shows the messages flow that takes place when a faulty parafoil is looking for a

replacing parafoil. The faulty parafoil (Pf) sends a broadcast message to all parafoils in

the network. In this message Pf indicates its task, priority and own PID. Every parafoil

that receives this message performs the following actions: (i) it continuous the broadcast

 27

process by sending the message to its parent and offspring in the tree (its does not send

the message to the sender to prevent loops) and (ii) it evaluates, according to the target

and its priority, weather it can replace the faulty parafoil. If its target’s priority is higher

or equal to the originator’s target priority, or its own task differs the faulty parafoil’s task,

it discards the message (P2 in Figure 12). If its priority is lower than the originator’s

priority and its task is identical to the originator’s task, then it returns a direct message to

the initiating parafoil (P3 in Figure 12).

In the direct message returned to the originator, the parafoil indicates its target priority

and location and its own PID. The originating parafoil collects the answer messages

arriving from parafoils in the network until the "wait" timeout expires. The expiration of

the timer indicates to the originating parafoil that it should not wait any more for late or

lost messages but rather start analyzing the answers immediately. The analysis of the

answers is aimed at selecting the most suitable parafoil to replace the faulty parafoil.

Pf P1 P2 P3 Pn……..

Details Request
(Broadcast Message)

Potential Parafoil
(Direct Message)

Divert to new target
(Direct Message)

Time
Out

Start
“wait”
Timer

Can be a set of messages
in case of a set of redirections

Figure 12: Alternate parafoil selection process

 28

Note that a search for a replacing parafoil may end with a false result, which means that

the falling parafoil did not find a replacing parafoil.

4.4 Communication Load Analysis

The inter-parafoil communication is divided into two categories: idle time

communication and recovery time communication. The idle time load is created by the

nodes in order to preserve the ad-hoc network. This ensures that when needed, the faulty

parafoil will be able to start Swap or Replace immediately. The idle load on every node

consists of inbound traffic (load on the receiver) and the outbound traffic (load on the

transmitter). Table 2 presents the messages and the frequency of sending and receiving

the idle load messages.

 Inbound Traffic Outbound Traffic

Hello messages
A message is received every
0.04 sec (assuming
maximum 10 neighbors)

Every node transmits a
message every 0.4 sec

Registration messages
A message is received from
up to 5 offspring every 5
sec

Every node transmits a
message every 5 sec

Table 2: Idle time messages and frequency of messages

The recovery from a fault requires the transmission of extra messages in a very short time.

This traffic (presented in Figure 12) consists of the following messages:

1. A single message broadcast , details_request, generated by Pf.

2. A set (< 10) of potential_parafoil direct messages

3. A set (< 10) of divert_to_a_ new_ target direct messages.

The recovery time presents the peak requirements from the communication network and

is generated mostly by Pf and less on the parafoils that participate in the search for a

replacing parafoil. Table 3 presents the maximal calculated load in bytes/second during

idle time and recovery time.

 29

 Idle time traffic Recovery time -
extra traffic Total

Inbound 1800 800 2600

Outbound 170 800 970

Table 3: Maximal inbound and outbound traffic load (bytes/s)

The given numbers represent very moderate requirements that can be satisfied by any

basic radio equipment.

5. Simulation Environment and an Illustrative Example

In this section we provide a short overview of the simulation environment and discuss an

illustrative example for the technology developed in the previous sections.

5.1 Simulation Environment

The simulation environment is based on the Interactive Flexible Ad-Hoc Simulator

(IFAS) [10]. Originally, this simulator was designed to simulate ad-hoc networks. It was

expanded to support cooperative parafoils simulation.

The IFAS was planned to be used for 3D simulations and it thus implements a 3D radio

propagation model, including physical obstacles (such as buildings) that interpose

between transmitters. The simulator includes a set of functions that can be used during

the execution phase to support the online analysis, and hosts a set of tools that can be

used on the output log files created during the run. An important element in the simulator

is the implementation of every parafoil in the theater as a dedicated process. Every

process uses the communication stack to communicate with other processes using the

MRA protocol.

The IFAS provides an interactive, highly visual display wherein the user can view each

simulated node and change its settings. This display includes additional views of

 30

parameters and control data. Figure 13, presents, for example, a part of a window used to

define graphically the wind speed and direction. Figure 14 shows some snapshots from

the main simulation screen.

Figure 13: Wind direction and speed definition

5.2 The Scenario

In Figure 14 we present a scenario of the design, analysis, glide and recovery steps. In

this scenario, we drop 5 parafoils carrying identical payloads required in 5 different

locations. Figure 14-A presents the fist phase of the airdrop process.

 31

Figure 14: Snapshot of airdrop and parafoil recovery scenarios

The OM defines the airdrop position by fixing thumbnails on the target positions. The

number near every thumbtack represents the target priority (the default value is 2). In our

example, 3 targets have priority 2 while the other 2 targets have priorities 1 and 3.

Figure 14-B presents the next step of the dropping design process. The operator marks

the preferred airdrop position, and the simulator analyses the ability of every parafoil to

land at its target location.

 32

Figure 14-C shows the gliding process of the parafoils. The parafoils are presented as

small squares that move along their paths toward the target. Note that the black line does

not really appear on the map and was added to the screenshot. An uninterrupted gliding

process will end when the parafoils reach their targets.

Figure 14-D presents a case where one of the parafoils fails. We define manually on the

simulator screen a fault position. This position is marked by a gray circle. A parafoil that

glides from the airdrop position and enters the gray circle declares itself as a faulty

parafoil and initiates a recovery process. As soon as the simulation is activated, the

parafoils, which are represented by small squares, start moving from the airdrop position

and glide along their trajectory to the target. In our case, the parafoil targeted to the

leftmost target fails. A swap process in not applicable and the only solution for this case

is to abandon one target with the minimal priority.

Figure 15 depicts the 3D trajectories of the failing parafoil, Pf, and the replacing parafoil,

Pr, initially targeted to Tf and Tr , respectively (Pf and Pr are presented also in Figure 14-

C). This figure shows the altitude (h) and the time (t) in seconds of every event. The

parafoils start gliding simultaneously from an altitude of 3000m . Pf fails after 472 s at

an altitude of 1612 mh = . It initiates the Replace process. As the priority of Tf is higher

than the priority of Tr and Pr can replace Pf, Pr diverts its original trajectory at an altitude

of 1808 m to an alternative trajectory that terminates at Tf after 1170 s.

 33

28
30

32
34

36
38

40
42

18

20

22

24

26

28
0

500

1000

1500

2000

2500

3000

x [km]y [km]

h
[m

]

h=0, t=1170 s

P
f

T
f

T
r

h
0
 = 3000 m, t

0
 =0

h = 1612 m, t =472 s

h = 1808m, t =472 s

P
r

Figure 15: Gliding trajectories of the replacing (Pr) and failing (Pf) parafoils. The

replacing parafoil engages the original target of the failing parafoil.

6. Conclusions

In this paper, we presented an innovative approach for handling a humanitarian aid

mission based on a group of autonomous cooperative parafoils. The approach combined a

guidance algorithm, an interactive planning tool used to plan the mission and a task

management logic that upgraded the parafoils from individual entities to a cooperative

system that can autonomously handle unexpected events and failures.

 34

The main conclusion is that by combining a communication layer into the parafoils, the

conservative approach of individual parafoils focused on their predefined targets can be

leveraged to yield a reactive group that is capable of handling unexpected events.

Moreover, within the limits of a high-altitude airdrop mission that uses gliding parafoils

without propulsion, the technology presented here results in significant improvements

and will be useful in humanitarian airdrop missions.

Appendix: The Breadth-First Search Algorithm

The breadth-first search (BFS) algorithm is an uninformed search method that aims to

expand and examine all nodes of a graph systematically in search of a solution. It

exhaustively searches the entire graph without a-priori considering the goal. The

pseudocode of the BFS algorithm, as implemented in our system, is given below.

Input: Graph G= (V, E)

Output: Graph G with its vertices marked by consecutive integers in the order they have

been visited by the BFS traversal. A vertex v with the value 0 indicates that v is unvisited.

count 0←

For each v V∈ do

 If value(v) = 0

 bfs (v)

 endif

endfor

bfs(v) procedure

Visits all unvisited vertices connected to v by a path, and assigns a number in the order

visited using the global variable count.

 35

count ← count +1

add v to queue

while the queue is not empty do

 for each vertex w in V adjacent to the front vertex do

 if w is marked with 0

 count ← count+1

 add w to the queue

 endif

 remove the front vertex from the queue

 endfor

endwhile

Acknowledgments

This research was supported by the European Sixth Framework Program through the

FastWing CL project and by the Gordon Center for Systems Engineering of the Technion.

 36

References

[1] Dudek, G., Jenkin, M., Milios, E., and Wilkes, D., “A Taxonomy for Multiagent
Robotics,” Autonomous Robots, Vol. 3, 1996, pp. 375–397.

[2] Reif, J., and Wang, H., “Social Potential Fields: A Distributed Behavioral Control

for Autonomous Robots,” Robotics and Autonomous Systems, Vol. 27, 1999, pp.
171-194.

[3] Mataric, M. J., “Behavior Based Control: Examples from Navigation, Learning,

and Group Behavior,” Journal of Experimental and Theoretical Artificial
Intelligence , Vol. 9, No. 2-3, April 1997, pp. 323-336.

[4] Reynolds, C. W., “Flocks, Herds, and Schools: A Distributed Behavioral Model,”

Computer Graphics, Vol. 21, 1987, pp. 25–34.

[5] Passino, K., Polycarpou, M., Jacques, D., Pachter, M., Liu, Y., Yang, Y., Flint, M.,

and Baum, M., “Cooperative Control for Autonomous Air Vehicles,” Proceedings
of the Cooperative Control Workshop, Florida, December 2000.

[6] Parunak, H. V. D., Purcell, M., and O’Connell, R., “Digital Pheromones for

Autonomous Coordination of Swarming UAVs,” Proceedings of the AIAA First
Technical Conference and Workshop on Unmanned Aerospace Vehicles, Vol.
3446, 2002.

[7] Cunningham, C. T. and Roberts, R. S., “An Adaptive Path Planning Algorithm

for Cooperating Unmanned Air Vehicles,” Proceedings of the IEEE International
Conference on Robotics and Automation, Seoul, South Korea, May 2001.

[8] Rasmussen, S., Chandler, P., Mitchell, J. W., Schumacher, C., and Sparks, A.,

“Optimal vs. Heuristic Assignment of Cooperative Autonomous Unmanned Air
Vehicles,” Proceedings of the AIAA Guidance, Navigation & Control Conference,
Austin, TX, 2003.

 37

[9] Ben-Asher, Y., Feldman, M., Feldman, S., “Ad-Hoc Routing Using Virtual

Coordinates Based on Rooted Trees”, Proceedings of the SUTC 2006, the IEEE
International Conference on Sensor Networks, Ubiquitous, and Trustworthy
Computing, Taichung, Taiwan July 2006.

[10] Ben-Asher, Y., Feldman, M., Feldman, S., and Gurfil, P., “IFAS: Interactive

Flexible Ad-Hoc Simulator“, Simulation Methods Practice and Theory, Vol. 15,
No. 7, August 2007, pp. 817-830.

[11] Calise, A. J., and Preston, D., "Swarming/Flocking and Collision Avoidance for

Mass Airdrop of Autonomous Guided Parafoils", Proceedings of the AIAA
Guidance, Navigation and Control Conference, San Francisco, CA, August 2005,
Paper AIAA-2005-6477.

[12] Benolol, S., and Zapirain , F., “The FASTWing Project - Parafoil Development

and Manufacturing” 18th AIAA Aerodynamic Decelerator Systems Technology
Conference and Seminar, Munich, Germany, May, 2005, Madrid, Spain.

[13] Phillips, W. F., Mechanics of Flight, Wiley, New York, 2004.

[14] Stengel, R. F., Optimal Control and Estimation, Dover, New York, 1994.

[15] http://standards.ieee.org/getieee802/802.11.html

