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Abstract. Submodular maximization and set systems play a major role
in combinatorial optimization. It is long known that the greedy algo-
rithm provides a 1/(k + 1)-approximation for maximizing a monotone
submodular function over a k-system. For the special case of k-matroid
intersection, a local search approach was recently shown to provide an
improved approximation of 1/(k+ δ) for arbitrary δ > 0. Unfortunately,
many fundamental optimization problems are represented by a k-system
which is not a k-intersection. An interesting question is whether the local
search approach can be extended to include such problems.
We answer this question affirmatively. Motivated by the b-matching and
k-set packing problems, as well as the more general matroid k-parity prob-
lem, we introduce a new class of set systems called k-exchange systems,
that includes k-set packing, b-matching, matroid k-parity in strongly base
orderable matroids, and additional combinatorial optimization problems
such as: independent set in (k + 1)-claw free graphs, asymmetric TSP,
job interval selection with identical lengths and frequency allocation on
lines. We give a natural local search algorithm which improves upon the
current greedy approximation, for this new class of independence sys-
tems. Unlike known local search algorithms for similar problems, we use
counting arguments to bound the performance of our algorithm.
Moreover, we consider additional objective functions and provide im-
proved approximations for them as well. In the case of linear objective
functions, we give a non-oblivious local search algorithm, that improves
upon existing local search approaches for matroid k-parity.

1 Introduction

The study of combinatorial problems with submodular objective functions has
attracted much attention recently, and is motivated by the principle of economy
of scale, prevalent in real world applications. Additionally, submodular max-
imization plays a major role in combinatorial optimization since many opti-
mization problems can be represented as constrained variants of submodular
maximization. Often, the feasibility domain of such a variant is defined by a set



system. A set system (N , I) is composed of a ground set N and a collection
I ⊆ 2N of independent sets. For a constrained problem defined by (N , I), I is
the collection of feasible solutions. Here is the known hierarchy of set systems:

k-intersection ⊆ k-circuit bound ⊆ k-extendible ⊆ k-system.

A set system belongs to the k-intersection class if it is the intersection of k
matroids defined over a common ground set. The class of k-circuit bound contains
all set systems in which adding a single element to an independent set creates at
most k circuits (i.e., the resulting set contains at most k minimally dependent
subsets). Recall that in a matroid, adding an element to an independent set
creates at most a single circuit. Therefore, adding an element to an independent
set in a k-intersection system closes at most k circuits, one per matroid. The
class of k-extendible, intuitively, captures all set systems in which adding an
element to an independent set requires throwing away at most k other elements
from the set (in order to keep it independent). This generalizes k-circuit bound
because in k-circuit bound we need to throw at most one element per circuit
closed (i.e., up to k elements). The class of k-system contains all set systems
in which for every set, not necessarily independent, the ratio of the sizes of the
largest base of the set to the smallest base of the set is at most k (a base is a
maximal independent subset).

Motivated by well studied problems such as matroid k-parity (which general-
izes matroid k-intersection, k-set packing, b-matching and k-dimensional match-
ing) as well as independent set in (k+1)-claw free graphs, we propose a new class
of set systems which we call k-exchange systems. This class is general enough
to capture various well studied combinatorial optimization problems, includ-
ing matroid k-parity in strongly base orderable matroids, the other problems
listed above, and additional problems such as: job interval selection with identi-
cal lengths, asymmetric traveling salesperson and frequency allocation on lines.
Note that these last 3 problems, like independent set in (k+1)-claw free graphs,
do not belong to the k-intersection class. On the other hand, we show that this
class has a rich enough structure to enable us to present two local search algo-
rithms with provable improved approximation guarantees for submodular and
linear functions, respectively. Additionally, we relate the k-exchange class to
the notion of strongly base orderable matroids, and show how it relates to the
existing set systems hierarchy.

1.1 Our Results

Given a k-exchange system (N , I) and a function f : 2N → R+, we provide
approximation guarantees for the problem of finding an independent set S ∈ I
maximizing f(S) for several types of objective functions. The main application
we consider is strongly base orderable matroid k-parity. This problem has two
important special cases: b-matching and k-set packing.

Many interesting applications are k-exchange systems for small values of k,
For example, the well studied b-matching problem is 2-exchange (but not 2-
intersection) system. This lets us improve the best approximation of 1/3 by



[15] to about 1/2 for the case of a normalized monotone submodular f , and
the best approximation of 0.0657 by [17] to about 1/4 for the case of a general
non-negative (not necessarily monotone) submodular f .

The types of objective functions considered in this work are: normalized
monotone submodular, general non-negative (not necessarily monotone) sub-
modular, linear and cardinality. Table 1 summarizes these results and the ap-
proximation ratio achieved for each application considered in this work.

We present 2 local search algorithms for maximizing submodular and linear
objectives, respectively, subject to k-exchange systems. Our first algorithm is
a very natural local search algorithm which is essentially identical to the algo-
rithm of Lee et al. [26]. However, unlike the analysis of [26] which uses matroid
intersection techniques, our analysis goes through a counting argument applied
to an auxiliary graph. Our second algorithm yields improved results for the spe-
cial case of linear objective functions, and is based on non-oblivious local search
techniques employed by Berman [2] for the case of (k+ 1)-claw free graphs. This
algorithm is guided by an auxiliary potential function, which considers the sum
of the squared weights of the elements in the independent set.

It should be noted that as in previous local search algorithms, e.g., [26], the
time complexity of our algorithms is exponential in k, thus, k is assumed to be
a constant. As mentioned, k is indeed a small constant in our applications (refer
to Table 1 for exact values of k).

1.2 Related Work

Extensive work has been conducted in recent years in the area of optimizing sub-
modular functions under various constraints. We mention here the most relevant
results. Historically, one of the very first problems examined was maximizing a
monotone submodular function over a matroid. Several special cases of matroids
and submodular functions were studied in [10, 18, 19, 22, 25] using the greedy
approach. Recently, the general problem with an arbitrary matroid and an ar-
bitrary submodular function was given a tight approximation of (1 − 1/e) by
Calinescu et al. [7]. A matching lower bound is due to [31, 32].

The problem of optimizing a normalized, monotone submodular function
over the intersection of k matroids was considered by Fisher et al. [15] who gave
a greedy algorithm with an approximation factor of 1/(k + 1), and state that
their proof extends to the more general class of k-systems using the outline of
Jenkyns [22] (the extended proof is explicitly given by Calinescu et al. [7]). For
k-intersection systems, this result was improved by Lee et al. [26] to 1/(k+δ), for
any constant δ > 0, while using a local search approach that exploits exchange
properties of the underlying combinatorial structure. However, for optimizing a
monotone submodular function over k-circuit bound and k-extendible set sys-
tems, the current best known approximation is still 1/(k + 1) [15].

Maximization of non-monotone submodular functions under various con-
straints has also attracted considerable attention in the last few years. The basic
result in this area is an approximation factor of 2/5, given by Feige et al. [12],
for the unconstrained variant of the problem. This was recently improved twice,



Table 1. k ≥ 2 is a constant, δ > 0 is any given constant and β = 1/(α−1 + 1),
where α is the best known approximation for unconstrained maximization of a
non-negative submodular function (α ≥ 0.42 see [13]).
f : NMS - normalized monotone submodular, NS - general non-negative sub-
modular, L - linear, C - cardinality.

Maximization Problem f k This Paper Previous Result

k-exchange NMS

k

1/(k + δ) 1/(k + 1) [15]
NS (k − 1)/(k2 + δ) β/(k + 2 + 1/k) [17]
Lb 2/(k + 1 + δ) 1/k [22]
Ca 2/(k + δ) 1/k [22]

Main Applications

s.b.o.matroid k-parity NMS
k

1/(k + δ) 1/k [15]
NS (k − 1)/(k2 + δ) β/(k + 2 + 1/k) [17]
Lb 2/(k + 1 + δ) 1/k [22]

b-matching NMS
2

1/(2 + δ) 1/3 [15]
NS 1/(4 + δ) β/4.5 [17]

k-set packing NMS
k

1/(k + δ) 1/(k + 1) [15]
NS (k − 1)/(k2 + δ) β/(k + 2 + 1/k) [17]

Additional Applications

independent set in
(k + 1)-claw free graphs

NMS
k

1/(k + 1 + δ) 1/k [15]
NS (k − 1)/(k2 + δ) β/(k + 2 + 1/k) [17]

job interval selection
identical lengths

NMS 2 1/(2 + δ) 1/3 [30]
NS 3 2/(9 + δ) 3β/16 [17]

asymmetric traveling
salesperson

NMS
3

1/(3 + δ) 1/4 [30]
NS 2/(9 + δ) 3β/16 [17]

frequency allocation on
lines

NMS

3

1/(3 + δ) 1/4 [15]
NS 2/(9 + δ) 3β/16 [17]
L 1/(2 + δ) 1/3 [22]
C 2/(3 + δ) 1− 1/e [35]

a The result applies for k ≥ 3.
b For k = 2, we also have a PTAS (see Corollary 1).

using a generalization of local search, called simulated annealing, by Gharan
and Vondrák [16] and then by Feldman et al. [13]. Chekuri et al. [9] gave a
0.325 approximation for optimization over a matroid. This was very recently
improved to roughly e−1 ≈ 0.368 by Feldman et al. [14]. When optimizing over
the intersection of k matroids, the current best result is (k − 1)/(k2 + δ), and
is due to Lee et al. [26]. A technique for using monotone submodular optimiza-
tion for non-monotone submodular problems is given by [17]. Gupta et al. [17]
use their technique to convert the greedy algorithm into an algorithm achieving
an approximation ratio of 1/((α−1 + 1)(k + 2 + 1/k)) for k-system, where α is
the best know approximation for unconstrained maximization of a non-negative
submodular function (α ≥ 0.42, see [13]).

In the case of maximizing a linear objective function over k matroid con-
straints, an approximation of 1/k was given by Jenkyns [22] using a greedy al-
gorithm. This was improved by [26] who gave an approximation of 1/(k−1 + δ),
for any constant δ > 0, using the same local search techniques as in the mono-



tone submodular case. For the more general k-circuit bounded and k-extendible
set systems, the current best known approximation is only 1/k [22] (as in the
monotone submodular case this result is given for k-system). Hazan et al. [20]
give a hardness result of Ω(log k/k) that applies to this case.

Among the applications we consider, the most general is matroid k-parity in
strongly base orderable matroids. The matroid k-parity problem, described in
detail in Definition 3, is related to the matroid k-matching, which is a common
generalization of matching and matroid intersection problems. In this problem,
we are given a k-uniform hypergraph H = (V, E) and a matroid M defined on
the vertex set V of H. The goal is to find a matching S in H such that the set of
elements covered by the edges in S are independent inM. The matroid k-parity
problem corresponds to the special case in which the edges of H are disjoint. It
can be shown that matroid matching in a k-uniform hypergraph is reducible to
matroid k-parity as well, and thus the two problems are equivalent [27].

If the matroid M is given by an independence oracle, there are instances of
matroid matching problem (and hence also matroid parity) for which obtaining
an optimal solution requires an exponential number of oracle calls, even when
k = 2 and all weights are 1 [28, 23]. These instances can be modified to show that
matroid parity is NP-complete (via a reduction from MaxClique) [34]. In the
unweighted case, Lovász [28] obtained a polynomial time algorithm for matroid
2-matching in linear matroids. More recently, Lee et al. [27] gave a PTAS for
matroid 2-parity in arbitrary matroids, and a k/2+ ε approximation for matroid
k-parity in arbitrary matroids.

In the weighted case, it can be shown (see [7]) that the greedy algorithm
provides a k-approximation. Although this remains the best known result for
general matroids, some improvement has been made in the case of k = 2 for re-
stricted classes of matroids. Tong et. al give an exact polynomial time algorithm
for weighted matroid 2-parity in gammoids [37]. This result has recently been
extended by Soto [36] to a PTAS for the class of all strongly base orderable ma-
troids, which strictly includes gammoids. Additionally, Soto shows that matroid
2-matching remains NP-hard even in this restricted case.

An important special case of matroid 2-parity in strongly base orderable
matroids is the b-matching problem, in which we are given a maximum degree
for each vertex in a graph and seek a collection of edges satisfying all vertices’
degree constraints. Many exact algorithms were given for maximum weight linear
b-matching problem with an improving dependence of the time complexity on
the maximal value of b (see, e.g., [33, 29, 1]). Mestre [30] gave a linear time
approximation algorithm for this problem, and Kalyanasundaram and Pruhs
[24] considered an online version of it.

Another important special case of both strongly base orderable matroid k-
parity is the k-set packing problem. For linear objective functions, this problem
has been considered extensively. For cardinality objective, 2/(k+ δ) approxima-
tion was already given by Hurkens and Schrijver [21], and this approximation
ratio was extended relatively recently to general linear functions by Berman [2],



building on an earlier work by Chandra and Halldórsson [8], in the more general
context of (k + 1)-claw free graphs.
Organization. Section 2 contains formal definitions and a description of the re-
lationship of k-exchange systems to existing set systems. In Section 3 we present
our main applications. Section 4 contains our local search algorithms and anal-
yses for the case of submodular and linear objective function functions. Due to
space limitations, the analysis for the cardinality and non-monotone submodular
objective functions is omitted from this extended abstract.

2 Preliminaries

Let N be a given ground set and I ⊆ 2N a non-empty, downward closed col-
lection of subsets of N . We call such a system (N , I) an independence system.
We use the standard terminology for discussing independence systems. Given an
independence system (N , I) we say that a set S ⊆ N is independent if S ∈ I,
and call the inclusion-wise maximal independent sets in I bases.

Algorithmically, an independence system (N , I) might not be given explicitly
since the size of I might be exponential in the size of the ground set. There-
fore, we assume access to an independence oracle that given S ⊆ N deter-
mines whether S ∈ I. Given an independence system (N , I), and a function
f : 2N → R+, we are concerned with the problem of finding a set S ∈ I that
maximizes f . In particular, we consider a variety of restricted classes of func-
tions f . In the most restricted setting, f(S) = |S| is simply the cardinality of S.
A natural generalization is the weighted, or linear case in which each element
e ∈ N is assigned a weight w(e), and f(S) =

∑
e∈S w(e). More generally we con-

sider submodular function f . A function f : 2N → R+ is submodular if for every
A,B ⊆ N : f(A) + f(B) ≥ f(A ∩B) + f(A ∪B). Equivalently, f is submodular
if for every A ⊆ B ⊆ N and e ∈ N : f(A ∪ {e}) − f(A) ≥ f(B ∪ {e}) − f(B).
Additionally, a submodular function f is monotone if f(A) ≤ f(B) for every
A ⊆ B ⊆ N , and normalized if f(∅) = 0.

The description of a submodular function f might be exponential in the size
of the ground set. In this paper we assume the value oracle model for accessing
f , in which an algorithm is given access to an oracle that returns f(S) for a
given set S ⊆ N . This is the model commonly used throughout the literature.

The greedy algorithm provides a k-approximation for maximum weighted
independent set in all k-systems. Unfortunately, even the more restricted vari-
ants of k-systems, such as k-extendible and k-circuit bounded systems, appear
too weak to obtain similar (or potentially stronger) results for local search algo-
rithms. With this goal in mind, we propose the following new class of indepen-
dence systems, which we call k-exchange systems:

Definition 1 (k-exchange system). An independence system (N , I) is a k-
exchange system if, for all S and T in I, there exists a multiset Y = {Ye ⊆
S \ T | e ∈ T \ S} such that:

(K1) |Ye| ≤ k for each e ∈ T \ S.



(K2) Every e′ ∈ T \ S appears in at most k sets of Y .
(K3) For all T ′ ⊆ T \ S, (S \ (

⋃
e∈T ′ Ye)) ∪ T ′ ∈ I

The following theorem follows immediately from the definitions of k-extendible
and k-exchange systems.

Theorem 1. Every k-exchange system is a k-extendible system.

Mestre shows that the 1-extendible systems are exactly matroids [30]. We
can provide a similar motivation for k-exchange systems in terms of strongly
base orderable matroids, which derive from work by Brualdi and Scrimger on
exchange systems [6, 4, 5].

Definition 2 (strongly base orderable matroid [5]). A matroidM is strongly
base orderable if for all bases S and T of M there exists a bijection π : S → T
such that for all S′ ⊆ S, (T \ π(S′)) ∪ S′ is a base.

If we restrict S′ to be a singleton set in this definition—thus considering only
single replacements—we obtain a well-known result of Brualdi [3] that holds for
all matroids. In a strongly base orderable matroid, we require additionally that
any set of these individual replacements can be performed simultaneously to
obtain an independent set. This simultaneous replacement property is exactly
what we want for local search, as it allows us to extend the local analysis for
single replacements to larger replacements needed by our algorithms.

The following theorem is easily obtained by equating Ye in Definition 1 with
the singleton set {π(e)}, where π is as in Definition 2.

Theorem 2. An independence system (N , I) is a strongly base orderable ma-
troid if and only if it is a 1-exchange system.

The cycle matroid on K4 is not strongly base orderable, and so provides an
example of a matroid that is not a 1-exchange system. Conversely, it is possible
to find examples of 2-exchange systems that are not 2-circuit bounded.

3 Applications

In this section, we discuss some applications of k-exchange systems. Due to space
constraints, we describe only the application for strongly base orderable matroid
k-parity. This problem generalizes our other two main applications: k-set packing
and b-matching.

Definition 3. In the matroid k-parity problem, we are given a collection E of
disjoint k-element subsets from a ground set G and a matroid (G,M) defined on
the ground set. The goal is to find a collection S of subsets in E maximizing a
function f : E → R+, subject to the constraint that

⋃
S ∈ M.

We consider matroid k-matching in the special case in which the given matroid
is strongly base orderable. For clarity, we use calligraphic letters to denote sets
of sets from the partition E and capital letters to denote sets of elements from
V , (including, in particular, each of the sets in E). Then, matroid k-parity can
be expressed as the independence system (E , I) where I = {S ⊆ E :

⋃
S ∈ M}.



Algorithm 1: LS-k-EXCHANGE((N , I), f, ε, p)

1 e← argmax {f ({e}) | e ∈ N}.
2 S ← {e}.
3 Let G = (I, E) be the p-exchange graph of (N , I) and εn = ε/|N |.
4 while ∃(S → T ) ∈ E such that f(T ) ≥ (1 + εn) f(S) do S ← T .
5 Output S.

Theorem 3. Strongly base orderable matroid k-parity is a k-exchange system.

Proof. Consider two solutions S, T ∈ I. We must have
⋃
S and

⋃
T in M. Let

π :
⋃
S →

⋃
T be the bijection guaranteed by Definition 2, and for any set E ∈ S

define YE = {A ∈ T : A ∩ π(E) 6= ∅}. The sets in E are disjoint and contain at
most k elements. Since π is a bijection, we must therefore have |YE | ≤ k for all
E ∈ S and each A ∈ T appears in at most k sets YE . Thus, Y satisfies Properties
(K1) and (K2). Consider a set C ⊆ S, and let S ′ = (S \

⋃
{YE : E ∈ C}) ∪ C.

From the definition of π we have (
⋃
S \π(

⋃
C))∪

⋃
C ∈ M, and

⋃
S ′ is a subset

of this set, so
⋃
S ′ ∈M and hence S ′ ∈ I, showing that (K3) is satisfied.

4 Combinatorial Local Search Approximation Algorithms

Let us define a directed graph representing improvements considered by our local
search algorithms:

Definition 4. Given a k-exchange system (N , I), S, T ∈ I, and p ∈ N, T is
p-reachable from S if the following conditions are satisfied:

1. |T \ S| ≤ p.
2. |S \ T | ≤ (k − 1)p+ 1.

Definition 5. Given a k-exchange system (N , I), and p ∈ N, the p-exchange
graph of (N , I) is a directed graph G = (I, E) where (S → T ) ∈ E if and only if
T is p-reachable from S.

Our algorithms are local search algorithms starting from a vertex in G and
touring the graph arbitrarily until they find a sink vertex S. The algorithms
than output S.
The start point of the algorithms is the singleton of maximum value. It is impor-
tant to note that this start point is an independent set. Otherwise, the element
of the singleton does not belong to any independent set (recall that (N , I) is
monotone), and therefore, can be removed from (N , I).

Algorithm 1 attempts to maximizing the objective function itself while tour-
ing G. In the case of a linear f , and k > 2, we can improve the approximation
ratio of algorithm by using the following technique. Since f is linear, we can
assign weights w(e) = f({e}) for each element e ∈ N and express f(S) as∑
e∈S w(e). We construct a new linear objective function w2(S) =

∑
e∈S w(e)2,



Algorithm 2: NON-OBLIVIOUS-LS-k-EXCHANGE((N , I), f, ε)

1 e← argmax {w(e) | e ∈ N}.
2 S ← {e}.
3 Let G = (I, E) be the k-exchange graph of (N , I) and εn = ε/|N |.
4 while ∃(S → T ) ∈ E such that w2(T \ S) ≥ (1 + εn)w2(S \ T ) do S ← T .
5 Output S.

and use this function to guide our search. This is the idea behind Algorithm 2.
Note that in this algorithm, we always search in the k-exchange graph, rather
than the p-exchange graph for some given p.

The graph G, like the set I, might be exponential. However, standard tech-
niques can be used to show that the algorithms terminate in polynomial time.

Theorem 4. For any constants k, 0 < ε < k and p ∈ N, Algorithms 1 and 2
terminate in polynomial time.

4.1 Analysis of Algorithm 1

Our analysis of Algorithm 1 proceeds by considering a particular subset of im-
provements considered by the algorithm in line 4. Let (N , I) be a k-exchange
system, and let S ∈ I be the independent set produced by Algorithm 1 and
T ∈ I be any other independent set. We construct the following bipartite graph
GS,T = (S \ T, T \ S,E), where E = {(e, e′) | e ∈ T \ S, e′ ∈ Ye}. Note that
Properties (K1) and (K2) imply that the maximum degree in GS,T is at most k.

The following theorem is a key ingredient in the analysis of Algorithm 1,
allowing us to decompose GS,T into a collection of paths, from which we will ob-
tain the improvements considered in our analysis. Like GS,T , its use is restricted
only to the analysis itself, as no actual construction of P(G, k, h) is needed.

Theorem 5. Let G be an undirected graph whose maximum degree is at most
k ≥ 2. Then, for every h ∈ N there exists a multiset P(G, k, h) of simple paths
in G and a labeling ` : V × P(G, k, h)→ {∅, 1, 2, . . . , h} such that:

1. For every P ∈ P(G, k, h), the labeling ` of the nodes of P is consecutive and
increasing with labels from {1, 2, . . . , h}. Vertices not in P receive label ∅.

2. For every P ∈ P(G, k, h) and v in P , if degG(v) = k and `(v, P ) /∈ {1, h},
then at least two of the neighbors of v are in P .

3. For every v ∈ V and label i ∈ {1, 2, . . . , h}, there are n(k, h) = k · (k− 1)h−2

paths P ∈ P(G, k, h) for which `(v, P ) = i.

Note for condition 2, v might be an end vertex of a path P , but still have a label
different from 1 and h. This might happen since paths might contain less than
h vertices and start with a label different from 1.

Due to space constraints we omit the full proof of Theorem 5, but let us pro-
vide some intuition as to why the construction of P(G, k, h) is possible. Assume



that the degree of every vertex in G is exactly k and that G’s girth is at least
h. Construct the multiset P(G, k, h) in the following way. ¿From every vertex
u ∈ V , choose all possible paths starting at v and containing exactly h vertices.
Number the vertices of these paths consecutively, starting from 1 up to h. First,
note that all these paths are simple since the girth of G is at least h and all
paths contain exactly h vertices. Second, the number of paths starting from u
is: n(k, h) = k · (k − 1)h−2, since all vertices have degree of exactly k. Third,
the number of times each label is given in the graph is exactly n · n(k, h). Since
the number of vertices at distance i, 1 ≤ i ≤ h, from each vertex u is identical,
the labels are distributed equally among the vertices. Thus, the number of paths
in which a given vertex u appears with a given label, is exactly n(k, h). This
concludes the proof of the theorem in case G has the above properties.

Applying Theorem 5 to GS,T with h = 2p, gives a multiset P(GS,T , k, 2p) of
simple paths inGS,T and a labeling ` : (S4T )×P(GS,T , k, 2p)→ {∅, 1, 2, . . . , 2p}
with all the properties guaranteed by Theorem 5. We use P(GS,T , k, 2p) to con-
struct a new multiset P ′ of subsets of vertices of GS,T . For each path in P ∈ P
that contains at least one vertex from T 3, we add (P ∪N(P )) to P ′, where N(P )
is the set of all vertices in GS,T neighboring some vertex in P . Intuitively, P ′ is
the collection of all paths in P(GS,T , k, 2p) with an extra “padding” of vertices
from S that surround P , excluding “paths” composed of a single vertex from S.

Lemma 1. Every vertex e ∈ T \S appears in 2p · n(k, 2p) sets of P ′, and every
vertex e′ ∈ S \ T appears in at most 2 ((k − 1)p+ 1) · n(k, 2p) sets of P ′.

Proof. By property 3 of Theorem 5, every e ∈ T \ S appears in n(k, 2p) paths
of P(GS,T , k, 2p) for every possible label. Since there are 2p possible labels,
the number of appearances is exactly 2p · n(k, 2p). In the creation of P ′ from
P(GS,T , k, 2p), no e ∈ T\S is added or removed from any path P ∈ P(GS,T , k, 2p),
thus, this is also the number of appearances of every e ∈ T \ S in P ′.

Let e′ ∈ S \ T . By the construction of P ′, a set in P ′ that contains e′ must
contain a vertex e ∈ T \S where (e, e′) ∈ E (e is a neighbor of e′ in GS,T ). Every
such neighboring vertex e, by the first part of the lemma, appears in exactly
2p · n(k, 2p) sets in P ′. Therefore, the number of appearances of e′ in sets of P ′
is at most: degGS,T

(e′) · 2p · n(k, 2p) ≤ 2pk · n(k, 2p) (recall that the maximum
degree of GS,T is at most k). Furthermore, `(e′, P ) 6= {1, 2p}, by property 2
of Theorem 5, e′ has at least two neighbors in T \ S which belong to P itself.
Hence, P ∪N(P ) ∈ P ′ should be counted only once while in the above counting
it was counted at least twice. The number of such P ∈ P(GS,T , k, 2p) is exactly
2(p− 1) · n(k, 2p) (by property 3 of Theorem 5). Removing the double counting
from the bound, we can conclude that for every e′ ∈ S\T , the number of sets in P ′
it appears in is at most 2pk·n(k, 2p)−2(p−1)·n(k, 2p) = 2 ((k − 1)p+ 1)·n(k, 2p).

Note: The proof of Theorem 6 assumes each vertex e′ ∈ S \T appears in exactly
2 ((k − 1)p+ 1) · n(k, 2p) sets in P ′. This can be achieved by adding “dummy”
sets to P ′ containing e′ alone.

3 Note that this implies that this vertex is from T \ S since GS,T does not contain
vertices from S ∩ T .



We are now ready to state our main theorem. In the proof, we use of the
following two technical lemmata from [26]:

Lemma 2 (Lemma 1.1 in [26]). Let f be a non-negative submodular function
of N . Let S′ ⊆ S ⊆ N and let {T`}t`=1 be a collection of subsets of S \ S′
such that every elements of S \ S′ appears in exactly k of these subsets. Then,∑t
`=1 [f(S)− f(S \ T`)] ≤ k (f(S)− f(S′)).

Lemma 3 (Lemma 1.2 in [26]). Let f be a non-negative submodular function
of N . Let S ⊆ N , C ⊆ N and let {T`}t`=1 be a collection of subsets of C \ S
such that every elements of C \ S appears in exactly k of these subsets. Then,∑t
`=1 [f(S ∪ T`)− f(S)] ≥ k (f(S ∪ C)− f(S)).

Theorem 6. For every T ∈ I and every submodular f :

f(S ∪ T ) +

(
k − 1 +

1

p

)
· f(S ∩ T ) ≤

(
k +

1

p
+ kε

)
· f(S) .

Proof. Note that by construction, the symmetric difference of S4P ′ is an in-
dependent set, for any P ′ ∈ P ′ and furthermore f(S4P ′) p-reachable from S.
Since Algorithm 1 terminated with S, it must be the case that S is approximately
“locally optimal”, and therefore,

f(S4P ′) < (1 + εn) f(S) . (1)

for all P ′ ∈ P ′. By submodularity of f , the fact that S \ P ′ ⊆ S4P ′ and the
fact that all vertices in S ∩ P ′ do not belong to either S \ P ′ or S4P ′, we get:

f(S ∪ P ′)− f(S4P ′) ≤ f(S)− f(S \ P ′) . (2)

Adding Inequalities 1 and 2 gives:

f(S ∪ P ′)− (1 + εn) f(S) ≤ f(S)− f(S \ P ′) . (3)

Inequality 3 holds for every P ′ ∈ P ′. Summing over all such sets yields:∑
P ′∈P′

[f(S ∪ P ′)− f(S)]− εn|P ′|f(S) ≤
∑
P ′∈P′

[f(S)− f(S \ P ′)] . (4)

Now, we note that any given P ′ contains only vertices from S4T . Thus, In-
equality 4 is equivalent to:∑
P ′∈P′

[f(S ∪ (P ′ ∩ (T \ S)))− f(S)]− εn|P ′|f(S)

≤
∑
P ′∈P′

[f(S)− f(S \ (P ′ ∩ (S \ T )))] .

(5)

By Lemma 1 (and the note after it), each vertex in S \ T appears in exactly
2 ((k − 1)p+ 1) · n(k, 2p) sets in P ′, while every vertex of T \ SALG appears in



exactly 2p ·n(k, 2p) sets in P ′. Thus, applying Lemma 2 to the right of Inequality
5 and Lemma 3 to the left gives:

2p · n(k, 2p)(f(S ∪ T )− f(S))− εn|P ′|f(S) ≤
2 ((k − 1)p+ 1)n(k, 2p) (f(S)− f(S ∩ T )) .

Rearranging terms and using the definition of εn we obtain:

f(S ∪ T ) +

(
k − 1 +

1

p

)
f(S ∩ T ) ≤

(
k +

1

p

)
f(S) +

ε|P ′|
2p · n(k, 2p)|N |

f(S) .

(6)

Finally, we note every set in P ′ ∈ P ′ contains at least 1 vertex from GS,T ,
and, by Lemma 1, every vertex in GSALG,T appears in exactly 2p · n(k, 2p)
or 2 ((k − 1)p+ 1) · n(k, 2p) sets of P ′ (depending on whether the vertex is
in T \ SALG or SALG \ T ). Therefore, in the worst case |P ′| ≤ |SALG4T | ·
2n(k, 2p) max{p, (k − 1)p+ 1} ≤ 2|N |n(k, 2p)kp.

By setting 1/p+kε ≤ δ and using basic properties of monotone submodular and
linear functions we obtain the following.

Corollary 1. Given a set function f : 2N → R+ and any δ > 0, Algorithm 1 is
a 1/(k + δ) approximation algorithm if f is a normalized monotone submodular
function and a 1/(k − 1 + δ) approximation algorithm if f is a linear function.

4.2 Analysis of Algorithm 2

The analysis of Algorithm 2 closely follows Berman’s analysis for (k + 1)-claw
free graphs [2]. Like the analysis of Algorithm 1, this analysis also considers a
subset of the possible improvements considered by the algorithm. Here, however,
we consider improvements of the following form. Consider a k-exchange system
(I,N ) and linear objective function f : N → R+ and let S be the solution pro-
duced by Algorithm 2, and let T be any independent set in I. For each element
x ∈ S, let Px be the set of all elements e ∈ T such that x = arg maxy∈Ye f(y).
For elements e ∈ S∩T , we define Ye = {e}, so Pe = {e}. Then, P = {Px}x∈S is a
partition of T . We consider improvements Px∪N(Px) where N(Px) =

⋃
e∈Px

Ye.
Note that for all y ∈ N(Px), we have f(y) ≤ f(x). The following theorem from
Berman’s analysis allows us to relate the value of f2 to that of f .

Lemma 4. For all x ∈ S and e ∈ Px, f2(e)−f2(Ye\{x}) ≥ f(x)·(2f(e)−f(Ye)).

We now prove our main theorem regarding Algorithm 2.

Theorem 7. k+1+ε
2 f(S) ≥ f(T ).

Proof. For each element x ∈ S we consider the improvement Px ∪ N(Px). By
construction, the symmetric difference of S4(Px ∪ N(Px)) is an independent
set, for any x ∈ S, and moreover, S4(Px ∪N(Px)) is k-reachable from S. Since



Algorithm 2 terminated, producing solution S, it must be the case that S is
approximately “locally optimal”, and therefore f2(Px) < (1 + εn)f2(N(Px)) for
each x ∈ S. Combining this with the fact that x ∈ Ye for all e ∈ Px, we have:

w2(Px) ≤ (1 + εn)w2(N(Px) ≤ w(x)2 +
∑
e∈Px

w2(Ye \ {x}) + εnw
2(N(Px)) . (7)

Rearranging Inequality 7 using w2(Px) =
∑
e∈Px

w(e)2 we obtain:∑
e∈Px

w(e)2 − w2(Ye \ {x}) ≤ w(x)2 + εnw
2(N(Px)) . (8)

Applying Lemma 4 to each term on the left of Inequality (8) gives
∑
e∈Px

w(x) ·
(2w(e)−w(Ye)) ≤ w(x)2 +εnw

2(N(Px)). Dividing both sides by w(x) and using
the fact that w(y) ≤ w(x) for every y ∈ N(Px) we obtain:∑

e∈Px

(2w(e)− w(Ye)) ≤ w(x) + εnw(N(Px)) . (9)

Inequality 9 gives us a lower bound on w(x) for every x ∈ S. Summing all of
these inequalities, we obtain∑

x∈S
[w(x) + εnw(N(Px))] ≥

∑
x∈S

∑
e∈Px

[2w(e)− w(Ye)] . (10)

We note that
∑
x∈S w(x) = w(S), and Px is a partition of T , so Inequality 10 is

equivalent to:

w(S) +
∑
x∈S

εnw(N(Px)) ≥
∑
e∈T

[2w(e)− w(Ye)] = 2w(T )−
∑
e∈T

w(Ye)

≥ 2w(T )− k
∑
x∈S

w(x) = 2w(T )− k · w(S) , (11)

where the second inequality follows from (K2). Since Px is a partition of T , we
have

∑
x∈S εnw(N(Px)) ≤

∑
e∈T w(Ye) ≤ εnkw(S), by (K2). Using the defini-

tion of εn and the fact that k < |N |, we have εnkw(S) ≤ εw(S). Rearranging
Inequality (11) using this observation we obtain k+1+ε

2 w(S) ≥ w(T ).

Corollary 2. Algorithm 2 is a 2/(k+ 1 + δ) approximation algorithm for max-
imizing a linear function f : 2N → R+ for any δ > 0.

Proof. Follows immediately from Theorem 7 by choosing ε = δ and T = OPT .

5 Open Questions

The k-coverable class intersects the k-intersection class, and for both classes the
same results are achieved by Algorithm 1, though different insights are used to



analysis each case. Finding a common generalization of both classes admitting a
uniform analysis is an intriguing question. A more concrete question is whether
there is an exact algorithm for maximizing a linear function over the 2-coverable
class (analogously to Edmonds exact algorithm for 2-intersection [11]). Finally,
it would be interesting to see whether Algorithm 2 can be applied to monotone
submodular functions. In the submodular case, we no longer have weights to
square in the non-oblivious potential function, but one possible approach is to
consider the sum of the squared marginals of the submodular function.
Acknowledgements: The last author thanks Julián Mestre and Allan Borodin
for providing comments on a preliminary version of the paper.
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26. J. Lee, M. Sviridenko, and J. Vondrák. Submodular maximization over multiple
matroids via generalized exchange properties, 2009. To appear in Mathematics of
Operations Research.

27. J. Lee, M. Sviridenko, and J. Vondrak. Matroid matching: the power of local
search. In STOC, pages 369–378, 2010.

28. L. Lovász. The matroid matching problem. In L. Lovász and V. T. Sós, editors,
Algebraic Methods in Graph Theory, Amsterdam, 1981.

29. A. B. Marsh, III. Matching algorithms. PhD thesis, The Johns Hopkins University,
1979.

30. J. Mestre. Greedy in approximation algorithms. In ESA, pages 528–539, 2006.
31. G. Nemhauser and L. Wolsey. Best algorithms for approximating the maximum of

a submodular set function. Math. Oper. Res., 3(3):177–188, 1978.
32. G. Nemhauser, L. Wolsey, and M. Fisher. An analysis of approximations for max-

imizing submodular set functions - i. Math. Prog., 14(1):265–294, 1978.
33. W. Pulleyblank. Faces of matching polyhedra. PhD thesis, Deptartment of Com-

binatorics and Optimization, University of Waterloo, 1973.
34. A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Springer,

2003.
35. H. Simon. Approximation algorithms for channel assignment in cellular radio

networks. In J. Csirik, J. Demetrovics, and F. Gcseg, editors, Fundamentals of
Computation Theory, volume 380 of Lecture Notes in Computer Science, pages
405–415. Springer Berlin / Heidelberg, 1989.

36. J. A. Soto. A simple PTAS for weighted matroid matching on strongly base or-
derable matroids. To appear in LAGOS, 2011.

37. P. Tong, E. L. Lawler, and V. V. Vazirani. Solving the weighted parity problem for
gammoids by reduction to graphic matching. Technical Report UCB/CSD-82-103,
EECS Department, University of California, Berkeley, Apr 1982.


