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Abstract—The study of combinatorial problems with
a submodular objective function has attracted much at-
tention in recent years, and is partly motivated by the
importance of such problems to economics, algorithmic
game theory and combinatorial optimization. Classical
works on these problems are mostly combinatorial in na-
ture. Recently, however, many results based on continuous
algorithmic tools have emerged. The main bottleneck of
such continuous techniques is how to approximately solve
a non-convex relaxation for the submodular problem at
hand. Thus, the efficient computation of better fractional
solutions immediately implies improved approximations
for numerous applications. A simple and elegant method,
called “continuous greedy”, successfully tackles this issue
for monotone submodular objective functions, however,
only much more complex tools are known to work for
general non-monotone submodular objectives.

In this work we present a new unified continuous greedy
algorithm which finds approximate fractional solutions for
both the non-monotone and monotone cases, and improves
on the approximation ratio for many applications. For
general non-monotone submodular objective functions,
our algorithm achieves an improved approximation ratio
of about 1/e. For monotone submodular objective func-
tions, our algorithm achieves an approximation ratio that
depends on the density of the polytope defined by the
problem at hand, which is always at least as good as the
previously known best approximation ratio of 1 − 1/e.
Some notable immediate implications are an improved
1/e-approximation for maximizing a non-monotone sub-
modular function subject to a matroid or O(1)-knapsack
constraints, and information-theoretic tight approxima-
tions for Submodular Max-SAT and Submodular Wel-
fare with k players, for any number of players k.

A framework for submodular optimization problems,
called the contention resolution framework, was introduced
recently by Chekuri et al. [11]. The improved approxi-
mation ratio of the unified continuous greedy algorithm
implies improved approximation ratios for many prob-
lems through this framework. Moreover, via a parameter
called stopping time, our algorithm merges the relaxation
solving and re-normalization steps of the framework, and
achieves, for some applications, further improvements.
We also describe new monotone balanced contention
resolution schemes for various matching, scheduling and
packing problems, thus, improving the approximations
achieved for these problems via the framework.

I. INTRODUCTION

The study of combinatorial problems with submod-
ular objective functions has attracted much attention
recently, and is motivated by the principle of economy
of scale, prevalent in real world applications. Moreover,

submodular functions are commonly used as utility
functions in economics and algorithmic game theory.
From a theoretical perspective, submodular maximiza-
tion plays a major role in combinatorial optimization
since many optimization problems can be represented as
constrained variants of submodular maximization. Two
such well studied problems are Max-Cut and Max-
k-Cover [22], [23], [26], [28], [29], [31], [40], [41],
[46]. In this paper, we consider the basic problem of
maximizing a non-negative submodular function1 f :
2N → R+ over a ground set N under the constraint that
the solution must belong to a down-monotone family2

of subsets I ⊆ 2N . This basic (constrained) submodular
maximization problem generalizes the above two men-
tioned classic combinatorial optimization problems.

The techniques used to compute approximate solu-
tions to various (constrained) submodular maximization
problems can be partitioned into two main approaches.
The first approach is combinatorial in nature, and is
mostly based on local search techniques and greedy
rules. This approach has been used as early as the late
70’s for maximizing monotone submodular functions
under the constraint that the solution should be an
independent set of one of several specific matroids
[12], [20], [24], [25], [27], [32], [42], [43]. Lately,
this approach has been extended to include both non-
monotone submodular objective functions [16], [19],
[21], [48] and additional constraint sets I [37] (e.g.,
independent sets of matroids intersection). Though for
some problems this approach yields the current state of
the art solutions [37], or even tight results [45], these
solutions are usually tailored for the specific structure of
the problem at hand, making extensions quite difficult.

The second approach for approximating (constrained)
submodular maximization problems overcomes the
above obstacle. This approach resembles a common
paradigm for designing approximation algorithms and
is composed of two steps. In the first step, a fractional
solution is found for a relaxation of the problem. In

1A function f : 2N → R is submodular if for every A ⊆ B ⊆ N
and e ∈ N : f(A∪{e})−f(A) ≥ f(B∪{e})−f(B). An equivalent
definition is that for every A,B ⊆ N : f(A)+ f(B) ≥ f(A∪B)+
f(A ∩B).

2A family of subsets I ⊆ 2N is down-monotone if B ∈ I and
A ⊆ B imply A ∈ I. Note that many natural families of subsets I
are down-monotone, e.g., families induced by matroid and knapsack
constraints.



the second step, the fractional solution is rounded to
obtain an integral one while incurring only a small loss
in the objective. This approach has been used to obtain
improved approximations to various problems [7], [9]–
[11], [34], [36]. Most notable of these results is an
asymptotically tight approximation for maximizing a
monotone submodular function given a single matroid
constraint [7], [42], [43]. Two issues arise when using
this approach. First, since the objective function is not
linear, it is not clear how to formulate a relaxation which
can be solved or even approximated efficiently. Second,
given a fractional solution, one needs a rounding proce-
dure which outputs an integral solution without losing
too much in the objective function.

Let us elaborate on the first issue, namely how to find
good fractional solutions to (constrained) submodular
maximization problems. The standard relaxation for
such a problem has a variable for every element of the
groundsetN taking values from the range [0, 1]. As with
linear programming relaxations, the family I is replaced
by a set of linear inequality constraints on the variables
which define a down-monotone polytope3 P . Unlike the
linear case, the formulation of an objective function for
the relaxation is not obvious. A good objective function
is a continuous extension of the given integral objective
f which allows for efficient computation of a good
fractional solution. The extension commonly used to
overcome this difficulty, in the context of (constrained)
submodular maximization problems, is the multilinear
extension of f , denoted by F . The multilinear extension
F (x) for any x ∈ [0, 1]N is the expected value of f
over a random subset R(x) ⊆ N . Each element e ∈ N
is chosen independently to be in R(x) with probability
xe. Formally, for every x ∈ [0, 1]N , F (x) , E[R(x)] =∑

S⊆N f(S)
∏

e∈S xe

∏
e/∈S(1 − xe). Such relaxations

are very common since first introduced by [6] (see [7],
[36], [47], [48] for several additional examples).

Even though the objective function defined by the
multilinear extension is neither convex nor concave, it
is still possible to efficiently compute an approximate
feasible fractional solution for the relaxation, assum-
ing its feasibility polytope P is down monotone and
solvable4. The first method proposed for computing
such a solution is the continuous greedy method [6].
It is simple and quick, and its analysis is rather short
and intuitive. However, it is only known to work for
the multilinear extensions of monotone5 submodular

3A polytope P ⊆ [0, 1]N is down-monotone if x ∈ P and 0 ≤
y ≤ x imply y ∈ P .

4A polytope P is solvable if linear functions can be maximized
over it in polynomial time. Using the ellipsoid algorithm, one can
prove P is solvable by giving a polynomial-time algorithm that given
x determines whether x ∈ P .

5A function f : 2N → R is monotone if A ⊆ B ⊆ N implies
f(A) ≤ f(B).

functions f . For non-monotone functions f and specific
polytopes, other methods are known for solving the
multilinear extension, e.g., for a constant number of
knapsack constraints [36] and for a single matroid [21],
[48]. These methods use extensions of the local search
approach, as opposed to the simple continuous greedy
method, making the analysis quite involved. Recently,
three algorithms for the non-monotone case and general
down-monotone solvable polytopes were suggested by
[11]. Similarly to [21], [36], these three algorithms are
also based on extensions of the local search approach.
The best of the three (with respect to its approximation
guarantee) uses a simulated annealing technique [21].
Therefore, these algorithms, and especially the best of
the three, have quite a complex analysis.

A. Our Results

We present a new unified continuous greedy al-
gorithm which finds approximate fractional solutions
for both the non-monotone and monotone cases, and
improves on the approximation ratio for many applica-
tions. For general non-monotone submodular objective
functions, our algorithm achieves an improved approx-
imation ratio of about 1/e. For monotone submodular
objective functions, our algorithm achieves an approxi-
mation ratio that depends on the density of the polytope
defined by the problem at hand, which is always at least
as good as the previously known best approximation
ratio of 1 − 1/e. Some notable applications are an
improved 1/e-approximation for maximizing a non-
monotone submodular function subject to a matroid or
O(1)-knapsack constraints, and tight approximations for
Submodular Max-SAT and Submodular Welfare with
k players, for any number of players k.

It turns out that the unified continuous greedy al-
gorithm works very well with a framework presented
by [11] for solving submodular optimization problems
via a relaxation. Naı̈vely plugging our algorithm into
the framework, immediately produces improved results
due to its approximation ratio. Moreover, we prove that
a careful use of our algorithm can further improve
the framework’s performance. We also show how to
extend the framework to various scheduling, matching
and packing problems, thus, improving upon the current
best known results for these problems.

1) Measured Continuous Greedy: Though our algo-
rithm is quite intuitive, it is based on a simple but
crucially useful insight on which we now elaborate.
The continuous greedy algorithm of [7] starts with an
empty solution and at each step moves by a small δ
in the direction of a feasible point x ∈ P . Let y be
the current position of the algorithm. Then x is chosen
greedily (hence the name ”continuous greedy”) by solv-
ing x = argmax {w(y) · x | x ∈ P} where the weight



vector w(y) ∈ RN is w(y)e = F (y ∨ 1e) − F (y), for
every e ∈ N . Thus, x is chosen according to the resid-
ual increase of each element e, i.e., F (y ∨ 1e)−F (y).
However, one would intuitively expect that the step
should be chosen according to the gradient of F (y).
Our unified algorithm compensates for the difference
between the residual increase of elements at point y,
and ∇F (y), by distorting the direction x as to mimic
the value of ∇F (y). This is done by decreasing xe,
for every e ∈ N , by a multiplicative factor of 1 − ye.
Therefore, our unified continuous greedy algorithm is
called measured continuous greedy.

The measured continuous greedy algorithm, unlike
local search based algorithms [11], has a parameter
called stopping time. The stopping time controls a trade-
off between two important properties of the fractional
solution found by the algorithm. The first property is
the value of the solution: a larger stopping time implies
a better fractional solution. The second property is how
much slack does the fractional solution has: a smaller
stopping time implies more slack (refer to Section I-A3
for uses of the second property).

For monotone submodular objectives, the dependance
of the approximation ratio on the stopping time T is
identical for both our algorithm and the continuous
greedy algorithm of [7]. This is somewhat counter intu-
itive, since our algorithm makes a somewhat “smaller”
step in each iteration (recall that the movement in
direction e is reduced by a multiplicative factor of
1−ye). This seems to suggest that the known continuous
greedy algorithm is a bit wasteful. The smaller steps
of our algorithm prevent this waste, keep its fractional
solution within the polyope for a longer period of time,
and thus, allow the use of larger stopping times.

The following two theorems quantify the guaran-
teed performance of the measured continuous greedy
algorithm for non-monotone and monotone submodular
functions. We denote by OPT the optimal integral solu-
tion. Note that the first claim of Theorem I.2, x/T ∈ P ,
repeats, in fact, the guarantee of the continuous greedy
algorithm of [7]. However, the second claim of the same
theorem enables us to obtain improved approximation
guarantees for several well studied problems. This prop-
erty states that one can use stopping times larger than
1. The maximal stopping time that can be used depends
on the density of the underlaying polytope6 (notice that
the density resembles the width parameter used by [3]).

Theorem I.1. For any non-negative submodular func-
tion f : 2N → R+, down-monotone solvable polytope
P ⊆ [0, 1]N and stopping time T ∈ [0, 1], the measured

6Let
∑

e∈N ai,exe ≤ bi denote the ith inequality constraint
of the polytope. The density of P is defined by: d(P) =
min1≤i≤m

bi∑
e∈N ai,e

.

continuous greedy algorithm finds a point x ∈ [0, 1]N

such that F (x) ≥ [Te−T − o(1)] · f(OPT ) and
x/T ∈ P .

Theorem I.2. For any normalized monotone submod-
ular function f : 2N → R+, down-monotone solvable
polytope P ⊆ [0, 1]N and stopping time T ≥ 0, the
measured continuous greedy algorithm finds a point
x ∈ [0, 1]N such that F (x) ≥ [1−e−T−o(1)]·f(OPT ).
Additionally,

1) x/T ∈ P .
2) Let TP = − ln(1− d(P) + nδ)/d(P).

Then, T ≤ TP implies x ∈ P .

Theorem I.2 gives an approximation ratio of 1 −
e−TP ≈ 1 − (1 − d(P))1/d(P). In some cases one
can get a cleaner approximation ratio of exactly 1 −
(1− d(P))1/d(P) by guessing the most valuable single
element of OPT (the technique of guessing the most
valuable single element of OPT is not new, and can be
found, e.g., in [7]). The following theorem examplifies
that. A binary polytope P is a polytope defined by
constraints with only {0, 1} coefficients.

Theorem I.3. Given a binary down-monotone solvable
polytope P with a bounded TP and a normalized
monotone submodular function f : 2N → R+, there is
a polynomial time algorithm outputting a point x ∈ P
with F (x) ≥ [1− (1− d(P))1/d(P)] · f(OPT ).

2) Main Applications: Theorems I.1, I.2 and I.3
immediately provide improved approximations for var-
ious problems. We elaborate now on a few of these,
starting with the non-monotone case. Theorem I.1, gives
an improved (1/e − o(1))-approximation for finding a
fractional solution for any down-monotone and solvable
polytope P . Examples of some well-studied problems
for which this provides improved approximation are
maximization of a non-monotone submodular function
f over a single matroid [11], [21], [48] and over
O(1) knapsack constraints [11], [33], [36]. For both we
provide an improved approximation of about 1/e. Note
that both problems are known to have an approximation
of roughly ≈ 0.325 [11] via the technique of [21].

For the monotone case, Theorems I.2 and I.3 are
used to immediately obtain improved approximations
for various problems. Most notable is the well studied
Submodular Welfare problem (refer to [7], [8], [13]–
[15], [17], [18], [30], [38], [44], [47], [48] for previous
results on Submodular Welfare and additional closely
related variants of the problem). The above theorems
provide tight approximations for any number of players
k, which exactly matches the (1−(1− 1/k)

k
)-hardness

result [47], [48]. This improvement is most significant
for small values of k. Another problem we consider
is Submodular Max-SAT. Submodular Max-SAT is a



Table I
MAIN APPLICATIONS.

Problem \ Constraint This Paper Previous Result Hardness*

Matroid (non-monotone) 1/e− o(1) ≈ 0.325 [11] ≈ 0.478 [21]
O(1)-Knapsacks (non-monotone) 1/e− ε ≈ 0.325 [11] 1/2**

Submodular Welfare (k players) 1− (1− 1/k)k max
{
1− 1

e
, k
(2k−1)

}
[7], [14] 1− (1− 1/k)k [48]

Submodular Max-SAT 3/4 2/3*** [2] 3/4 [48]
* All hardness results are for the value oracle model, and are information theory based.
** Can be derived from the method of [48].
*** The results of [2] were achieved independently of ours.

generalization of both Max-SAT and Submodular Wel-
fare with two players, in which a monotone submodular
function f is defined over the clauses of a CNF formula,
and the goal is to find an assignment maximizing
the value of f over the set of satisfied clauses. For
Submodular Max-SAT we get a 3/4 approximation.
The above is summarized in Table I.

3) Framework Extension: As previously mentioned,
though the rounding approach to (constrained) sub-
modular maximization problems is flexible, there are
two issues that need addressing. The first one is to
approximately solve a relaxation for the problem, and
the other is to round the fractional solution. Building
upon [3], [11] proposes a general contention resolution
framework for rounding fractional solutions. Intuitively,
the scheme works as follows. First, an approximate frac-
tional solution x is found for the multilinear extension
relaxation. Second, x is re-normalized, and a random
subset of elements is sampled according to probabilities
determined by x. Third and last, some of the sampled
elements are discarded to ensure feasibility.

The first step can be performed by any algorithm for
finding approximate fractional solutions for the multi-
linear relaxation. Let α be its approximation guarantee.
The re-normalization factor and the decision which
elements to discard are determined by a constraint
specific contention resolution scheme. Formally, a (b, c)-
balanced contention resolution scheme for a constraint
family I is an algorithm that gets a vector x ∈ bP(I)
(where P(I) is the convex hull of I), picks a random
set R(x) according to probabilities determined by x,
and then outputs a set S ∈ I obeying Pr[e ∈ S|e ∈
R(x)] ≥ c for every e ∈ N . If the contention resolution
scheme is monotonic, i.e., the probability of e to be in S
only increases when elements are removed from R(x),
then the framework guarantees αbc approximation for
maximizing a submodular function subject to the con-
straint family I. One advantage of this framework is the
ease by which it deals with intersections of constraints
of different types (e.g., matroids, knapsack constraints
and matchoids).

We extend the framework of [11] by showing that

finding a fractional solution for the relaxation and
the re-normalization step, can both be done simulta-
neously using the measured continuous greedy algo-
rithm. Equipped with this observation, we can replace
the expression αbc for the approximation ratio with
an improved one for both the non-monotone and the
monotone cases. The improvement achieved by the new
expression is most significant for small values of b, as
can be seen by applications such as k-sparse packing.

The idea behind our method is to use b as the stopping
time of Theorems I.1 and I.2, hence, directly getting
a re-normalized fractional solution (as both theorems
ensure). The following theorem presents the improved
expressions for the approximation ratio and its proof is
deferred to a full version of this paper.

Theorem I.4. If there is a monotone (b, c)-balanced
contention resolution scheme for I, then there is an
approximation of

(
e−bbc− o(1)

)
for maxS∈I{f(S)}

assuming f is non-negative and submodular, and an
approximation of

(
(1− e−b)c− o(1)

)
assuming f is

monotone.

Note that the results of Theorem I.4 are better then the
(αbc)-approximation of [11]. This is true, since for the
non-monotone case e−b > 0.325 for every b ∈ (0, 1],
and for the monotone case 1 − e−b ≥ (1 − 1/e)b for
every b ∈ (0, 1].

For example, consider the k-sparse packing problem
presented by [3], who provided an approximation of
(e − 1)/(e2 · k) − o(1) in case f is monotone. Using
Theorem I.4 we can improve this approximation factor
and obtain a guarantee of 1/(e · k) − o(1) (details are
deferred to a full version of this paper). In fact, we
are able to improve the approximation guarantee for
any constraint family I which contains, for example,
constraints for the intersection of k matroids or k-
matchoids. Additional details regarding such problems
are deferred to a full version of this paper.

We also note that a simple proof of the framework
which does not use the FKG inequality, but rather relays
on a coupling argument of random subsets, can be
presented. We defer details of this proof to a full version
of this paper.



4) Balanced Contention Resolution Schemes: We
provide monotone balanced contention resolution
schemes for various matching, scheduling and packing
problems. Using these schemes and Theorem I.4, we
are able to improve the known approximation ratios for
these problems. A comprehensive list of our schemes
and the problems for which they provide improvement
is deferred to a full version of this paper.

Two notable examples for such problems are job
interval selection with k-identical machines and a lin-
ear objective function, and broadcast scheduling with
a monotone submodular objective function. For job
interval scheduling with k-identical machines, and a
linear objective function, we get an approximation ratio
approaching 1 for large values of k. The previously
best approximation ratio for this problems approaches
1 − e−1 for large k’s [5]. For broadcast scheduling
with a monotone submodular objective function, we get
an approximation ratio of 1/4. This matches the best
known approximation for the linear variant [4].

II. PRELIMINARIES

In addition to the multilinear extension, we make
use of the Lovász extension (introduced in [39]). Let
Tλ(z) be the set of elements whose coordinate in z is at
least λ. The Lovász extension of a submodular function
f : 2N → R is defined as f̂(x) =

∫ 1

0
f(Tλ(x))dλ.

This definition can also be interpreted in probabilistic
terms as the expected value of f over the set Tλ(x),
where λ ∼ Unif [0, 1]. Beside its use in relaxations for
minimization problems, the Lovász extension can also
be used to lower bound the multilinear extension via the
following theorem.

Theorem II.1 (Lemma A.4 in [48]). Let F (x) and f̂(x)
be the multilinear and Lovász extensions, respectively,
of a submodular function f : 2N → R. Then, F (x) ≥
f̂(x) for every x ∈ [0, 1]N .

For two vectors x, y ∈ [0, 1]N , we use x ∨ y and
x ∧ y to denote the coordinate-wise maximum and
minimum, respectively, of x and y (formally, (x∨y)e =
max{xe, ye} and (x ∧ y)e = min{xe, ye}). We also
make use of the notation ∂eF (x) = F (x∨1e)−F (x∧
1ē), where 1e and 1ē are the characteristic vectors of
the sets {e} and N −{e}, respectively. The multilinear
nature of F yields the following useful observation,
relating these terms to each other.

Observation II.2. Let F (x) be the multilinear exten-
sion of a submodular function f : 2N → R. Then, for
every e ∈ N ,

∂eF (x) =
F (x ∨ 1e)− F (x)

1− xe
=

F (x)− F (x ∧ 1ē)

xe
.

Consider a down-monotone polytope P ⊆ [0, 1]N de-
fined by positive sign constraints (x ≥ 0) and additional
m inequality constraints. Let

∑
e∈N ai,exe ≤ bi denote

the ith inequality constraint. The density of P is defined
by: d(P) = min1≤i≤m

bi∑
e∈N ai,e

. Since P is a down
monotone polytope within the hypercube [0, 1]N , one
can assume all coefficients ai,e and bi are non-negative,
and 0 < d(P) ≤ 1. Further details on the properties of
the density are deferred to a full version of this paper.

Given a matroid M = (N , I), its matroid polytope
P(M) is the convex-hall of all its independent sets. The
polytope P(M) is down-monotone since the family of
independent sets I is down-monotone. Also, P(M) is
solvable because the greedy algorithm can be used to
maximize a linear function over P(M). The following
theorem shows that it is possible to round a fractional
point in P(M) without any loss, even when the ob-
jective function is a general non-negative submodular
function. This theorem is based on the method of [1].

Theorem II.3 (Lemma A.8 in [48]). Given a matroid
M = (N , I), a point x ∈ P(M) and a submodular
function f : 2N → R+ with its multilinear extension
F : [0, 1]N → R+, there is a polynomial time al-
gorithm, called pipage rounding, outputting a random
independent set S ∈ I such that E[f(S)] ≥ F (x).

The explicit representation of both submodular func-
tions and matroids might be exponential in the size of
their ground set. The standard way to bypass this dif-
ficulty is to assume access to these objects via oracles.
For a submodular function f : 2N → R+, given a set
S ⊆ N , the oracle returns the value of f(S).7 For a
matroid M = (N , I), given a set S ⊆ N , the oracle
answers whether S ∈ I.

In some proofs we use the value W defined as
W , n · maxe∈N f(e). We assume throughout the
paper that {e} ∈ I for every element e ∈ N . Any
element which violates this assumption belongs to a
non-feasible solution, and can be removed. It is clear
that this assumption implies f(S) ≤W ≤ n · f(OPT ),
for every set S ⊆ N .

III. MEASURED CONTINUOUS GREEDY

In this section we describe the unified measured
continuous greedy algorithm that works for both non-
monotone and monotone cases. We analyze it for
general non-monotone submodular functions and then
refine the analysis to get improved results for monotone
submodular functions. The parameter T of the algorithm
is the stopping time mentioned in Theorems I.1 and I.2.

7Such an oracle is called value oracle. Other, stronger, oracle types
for submodular functions are also considered in the literature, but the
value oracle is probably the most widely used.



Algorithm 1: MeasuredContGreedy(f,P, T )
// Initialization

1 Set: n← |N|, δ ← T (⌈n5T ⌉)−1.
2 Initialize: t← 0, y(0)← 1∅.
// Main loop

3 while t < T do
4 foreach e ∈ N do
5 we(t)← F (y(t) ∨ 1e)− F (y(t)).

6 I(t)← argmax{x · w(t) | x ∈ P}.
7 foreach e ∈ N do
8 ye(t+ δ)← ye(t) + δIe(t) · (1− ye(t)).

9 t← t+ δ.

10 Return y(T ).

It is important to note the differences of Algorithm 1
with respect to the known continuous greedy algorithm
of [6]. As mentioned before, we distort the direction y
which the algorithm goes to at each step. This can bee
seen in line 8 of Algorithm 1 as we multiply Ie(t) with
1− ye(t). There are a few technical issues to consider:

1) The way δ is defined implies that δ−1 has two
properties: it is at least n5, and it is dividable by
T−1. The last property guarantees that after Tδ−1

iterations, t will be exactly T .
2) In some applications, the calculation of we(t) can

be done efficiently. In cases where it is not true,
we(t) can be estimated by averaging its value for
enough independent random samples of R(y(t)).
This is a standard practice (see, e.g., [7]), and we
omit details from this extended abstract.

Due to space limitations, many proofs of this section
are deferred to the full version of this paper.

A. Analysis for Non-Monotone f

In this subsection we analyze the measured continu-
ous greedy algorithm for general non-negative submod-
ular functions, and prove Theorem I.1.

Lemma III.1. For every T ≥ 0, Algorithm 1 produces
a solution x such that x/T ∈ P .

The following two lemmata give together a lower
bound on the improvement achieved by the algorithm
in each iteration. This lower bound is stated explicitly
in Corollary III.4.

Lemma III.2. For every time 0 ≤ t < T ,
∑

e∈N (1 −
ye(t)) · Ie(t) · ∂eF (y(t)) ≥ F (y(t)∨ 1OPT )−F (y(t)).

Lemma III.3. Consider two vectors x, x′ ∈ [0, 1]N

such that for every e ∈ N , |xe−x′
e| ≤ δ. Then, F (x′)−

F (x) ≥
∑

e∈N (x′
e−xe) ·∂eF (x)−O(n3δ2) ·f(OPT ).

Corollary III.4. For every time 0 ≤ t < T ,

F (y(t+ δ))− F (y(t)) ≥
δ · [F (y(t) ∨ 1OPT )− F (y(t))]−O(n3δ2) · f(OPT ).

Proof: Follows from Lemmata III.2 and III.3.
The last corollary gives a lower bound in terms of

F (y(t) ∨ 1OPT ). To make this lower bound useful, we
need to lower bound the term F (y(t)∨ 1OPT ). This is
done by the following two lemmata.

Lemma III.5. Consider a vector x ∈ [0, 1]N . Assuming
xe ≤ a for every e ∈ N , then for every set S ⊆ N ,
F (x ∨ 1S) ≥ (1− a)f(S).

Lemma III.6. For every time 0 ≤ t ≤ T and element
e ∈ N , ye(t) ≤ 1− (1− δ)t/δ ≤ 1− e−t +O(δ).

Proof: We prove the first inequality by induction
on t. For t = 0, the inequality holds because ye(0) =
0 = 1 − (1 − δ)0/δ . Assume the inequality holds for
some t, let us prove it for t+ δ.

ye(t+ δ) = ye(t)(1− δIe(t)) + δIe(t)

≤ 1− (1− δ)t/δ + δIe(t)(1− δ)t/δ

≤ 1− (1− δ)(t+δ)/δ.

We now derive the second inequality:

1− (1− δ)t/δ ≤ 1− e−t(1− δ)t

≤ 1− e−t +O(δ),

where the last inequality holds since t ∈ [0, T ].

Corollary III.7. For every time 0 ≤ t < T ,

F (y(t+ δ))− F (y(t)) ≥
δ · [e−t · f(OPT )− F (y(t))]−O(n3δ2)f(OPT ).

Proof: By Lemma III.6, every coordinate in y(t)
is at most 1− e−t +O(δ). Therefore, by Lemma III.5,
F (y(t) ∨ 1OPT )] ≥ [e−t − O(δ)] · f(OPT ). Plugging
this into Corollary III.4 completes the proof.

At this point we have a lower bound on the improve-
ment achieved in each iteration in terms of t, f(OPT )
and F (y(t)). In order to complete the analysis of the
algorithm, we need to a lower bound on the value of
F (y(t)) for every time t. Let g(t) be defined as follows:
g(0) = 0 and g(t+ δ) = g(t) + δ[e−tf(OPT )− g(t)].
The next lemma shows that a lower bound on g(t) also
gives a lower bound on F (y(t)).

Lemma III.8. For every time 0 ≤ t ≤ T ,

g(t) ≤ F (y(t)) +O(n3δ) · tf(OPT ).

The function g is given by a recursive formula, thus,
evaluating it is not immediate. Instead, we show that the
function h(t) = te−t · f(OPT ) lower bounds g within
the range [0, 1].



Lemma III.9. For every 0 ≤ t ≤ T ≤ 1, g(t) ≥ h(t).

Corollary III.10. For T ∈ [0, 1],

F (y(T )) ≥ [Te−T − o(1)] · f(OPT ).

Proof: Recall that δ ≤ n−5, hence, O(n3δ) = o(1).
Apply Lemmata III.8 and III.9 to complete the proof.

Theorem I.1 now follows immediately from
Lemma III.1 and Corollary III.10.

B. Analysis for Monotone f

In this subsection we analyze the measured contin-
uous greedy algorithm for normalized monotone sub-
modular functions, and prove Theorem I.2. The proof
of Theorem I.3 builds on the proofs in this subsection
and is deferred to a full version of this paper. Observe
that we can use all claims of Subsection III-A because a
normalized monotone submodular function is a specific
case of a non-negative submodular function.

Our proof has two parts. In the first part we mod-
ify the proof from Subsection III-A to show that
F (y(T )) ≥ [(1−eT )−o(1)] ·f(OPT ). This part essen-
tially reproduces the result Calinescu et al. [7] achieve
using their continuous greedy algorithm. However, we
are able to show that Algorithm 1 achieves the same
bound when making a somewhat “smaller” step in each
iteration. The novel part of the proof is the second part
showing that if P is a packing polytope and T ≤ TP ,
then y(T ) ∈ P . Let us begin with the first part of
the proof. The following observation logically replace
Lemma III.5.

Observation III.11. Consider a vector x ∈ [0, 1]N ,
then for every set S, E[f(R(x) ∪ S)] ≥ f(S).

Proof: Follows from the monotonicity of f .
Using Observation III.11 instead of Lemma III.5

in the proof of Corollary III.7, we get the following
improved corollary.

Corollary III.12. For every time 0 ≤ t < T ,

F (y(t+ δ))− F (y(t)) ≥
δ · [f(OPT )− F (y(t))]−O(n3δ2) · f(OPT ).

We now define g̃(t), the counterpart of g from Sub-
section III-A, as follows: g̃(0) = 0 and g̃(t + δ) =
g(t)+δ[f(OPT )−g(t)]. Using g̃, we get the following
counterpart of Lemma III.8.

Lemma III.13. For every time 0 ≤ t ≤ T ,

g̃(t) ≤ F (y(t)) +O(n3δ)tf(OPT ).

Let h̃(t) be the function h̃(t) = (1− e−t) · f(OPT ).
h̃ is the counterpart of h, and using it we can write

the following counterparts of Lemma III.9 and Corol-
lary III.10.

Lemma III.14. For every 0 ≤ t ≤ T , g̃(t) ≥ h̃(t).

Corollary III.15. F (y(T )) ≥ [1 − e−T − o(1)] ·
f(OPT ).

Proof: Recall that δ ≤ n−5, hence, O(n3δ) · T =
O(n−2) · T = o(1). Apply Lemmata III.13 and III.14
to complete the proof.

The first part of the proof is now complete. We are left
to prove that if T ≤ TP , then y(T ) ∈ P . Consider some
general constraint

∑
e∈N aexe ≤ b of P . We assume

ae > 0 for some e ∈ N , otherwise, the constraint holds
always and can be ignored. Let Ite = δ ·

∑t/δ−1
i=0 Ie(δ ·i),

i.e., Ite is the scaled sum of Ie over all times up to t.

Lemma III.16.
∑

e∈N ae · ITe ≤ Tb.

Lemma III.17. For every time 0 ≤ t ≤ T ,

ye(t) ≤ 1− e−It
e +O(δ) · t.

The following lemma is a mathematical observation
needed to combine the last two lemmata.

Lemma III.18. Let c1, c2 > 0, and let z1, z2 be two
variables whose values obey c1z1 + c2z2 = s for
some constant s. Then, c1(1 − e−z1) + c2(1 − e−z2)
is maximized when z1 = z2.

The following lemma upper bounds the left hand side
of our general constraint

∑
e∈N ae · xe ≤ b at time T .

Lemma III.19. Let N ′ ⊆ N be the set of elements with
a strictly positive ae. Then,∑
e∈N ′

ae · ye(T ) ≤
b

d(P)
· (1− e−Td(P) +O(δ) · T ).

Proof: By Lemma III.17:∑
e∈N ′

ae · ye(T ) ≤
∑
e∈N ′

ae · (1− e−IT
e +O(δ) · T )

≤
∑
e∈N ′

ae(1− e−IT
e ) +O(δ)Tb/d(P).

The second term of the right hand side is independent
of the values taken by the ITe ’s, therefore, we can upper
bound the entire right hand side by assigning to the ITe ’s
values maximizing the first term. Let us determine these
values.

Since the summand is an increasing function of
ITe , the sum

∑
e∈N ′ ae · ITe should have its maximal

value, which is Tb by Lemma III.16. By Lemma III.18,
the maximum is attained when ITe is identical for all
elements e ∈ N ′.

It can be easily seen that the sole solution satisfying
these conditions is ITe = Tb/

∑
e∈N ′ ae. Plugging this



into the previous bound on
∑

e∈N ′ ae · ye(T ), we get:∑
e∈N ′

ae · ye(T ) ≤∑
e∈N ′

ae · (1− e−Tb/
∑

e∈N′ ae) +O(δ) · Tb/d(P) =

(1− e−Tb/
∑

e∈N′ ae) ·
∑
e∈N ′

ae +O(δ) · Tb/d(P).

Let us denote by Σ ,
∑

e∈N ′ ae. The first term of the
last expression can now be rewritten as Σ(1−e−Tb/Σ),
and its derivative by Σ is:

d[S(1− e−Tb/Σ)]

dΣ
= (1− e−Tb/Σ)− S · Tb

S2
e−Tb/Σ

≥ 1− eTb/Σ · e−Tb/Σ = 0.

Hence, increasing the value of Σ only worsens the
bound we have on

∑
e∈N ′ ae · ye(T ). Plugging Σ =

b/d(P), which is an upper bound on Σ, we get:∑
e∈N ′

ae · ye(T ) ≤

(1− e−Tb/(b/d(P))) · b/d(P) +O(δ) · Tb/d(P) =
b

d(P)
· (1− e−Td(P) +O(δ) · T ).

The lemma now follows.
As long as the upper bound proved in the last lemma

is at most b, the constraint
∑

e∈N aexe ≤ b is not
violated. The next corollary shows that if T ≤ TP , then
this is the case.

Corollary III.20. Given that T ≤ TP , y(T ) ∈ P .

Proof: Consider an arbitrary constraint∑
e∈N aexe ≤ b of P . By Lemma III.19,∑

e∈N
ae · ye(T ) ≤∑

e∈N ′

ae · ye(TP) ≤

b

d(P)
· (1− e−TPd(P) +O(δ) · TP) =

b

d(P)
· (1− eln(1−d(P)+nδ) +O(δ) · TP) =

b

d(P)
· (d(P)− nδ +O(δ) · TP) ≤ b.

Therefore, y(T ) ∈ P .
Theorem I.2 now follows from Lemma III.1 and

Corollaries III.15 and III.20.

IV. MAIN APPLICATIONS

This section describes the immediate applications of
the measured continuous greedy algorithm. Additional
applications involving our algorithm and the framework
of [11] are deferred to a full version of this paper.

A. Non-Monotone Applications

Consider the problem of maximizing a non-monotone
submodular function subject to a matroid constraint.
Formally, given a matroid M = (N , I) and a non-
negative submodular function f : 2N → R+, the goal
is to find an independent set S ∈ I maximizing f(S).

Theorem IV.1. There is a polynomial time (1/e−o(1))-
approximation algorithm for maximizing a general non-
negative submodular function subject to a matroid con-
straint.

Proof: Apply Theorem I.1 to P(M) with stopping
time T = 1 to obtain x ∈ P(M) such that F (x) ≥
[1/e− o(1)] · f(OPT ). Theorem II.3 states that x can
be rounded to produce a random independent set S in
M where: E[f(S)] ≥ [e−1 − o(1)] · f(OPT ).

Consider the problem of maximizing a non-monotone
submodular function subject to a constant number of
knapsack constraints. Formally, we are given a ground
set N , a set of d knapsack constraints over this ground
set (d is a constant) and a non-negative submodular
function f : 2N → R+. The objective is to find a
set S ⊆ N satisfying all knapsack constraints and
maximizing f(S).

Let P be the polytope defined by the d knapsack
constraints and the cube [0, 1]N . Observe that P is
a down monotone solvable polytope. The following
theorem shows that it is possible to round fractional
points in P .

Theorem IV.2 (Theorem 2.6 in [35]). Suppose there
is a polynomial time α-approximation algorithm for
finding a point x ∈ P maximizing F (x). Then, for every
constant ε > 0, there is a polynomial time random-
ized (α− ε)-approximation algorithm for maximizing a
general non-monotone submodular function subject to
d knapsack constraints.

Corollary IV.3. For any constant ε > 0, there is a
polynomial time (1/e− ε)-approximation algorithm for
maximizing a general non-negative submodular function
subject to knapsack constraints.

Proof: Apply Theorem I.1 to P with stopping time
T = 1 to obtain x ∈ P such that F (x) ≥ [1/e− o(1)] ·
f(OPT ). The corollary now follows by Theorem IV.2.

B. Monotone Applications

Consider the Submodular Welfare and Submodular
Max-SAT problems. Both problems are generalized by
the (d, r)-Submodular Partition Problem. A (d, r)-
partition matroid (considered by [2]) is a matroid de-
fined over a groundset N = N1 ∪ . . . ∪ Nm, where
|Ni| = r for every 1 ≤ i ≤ m. A set S ⊆ I is



independent if it contains up to d elements of each
subsetNi. In the (d, r)-Submodular Partition problem,
given a (d, r)-partition matroid M and a normalized
monotone submodular function f , the goal is to find an
independent set S maximizing f(S).

Observation IV.4. Let M be a (d, r)-partition matroid,
then P(M) is a binary down-monotone solvable poly-
tope with density d(P(M)) = d/r.

Lemma IV.5. There is a polynomial time (1 −
(1 − d/r)r/d)-approximation algorithm for the (d, r)-
Submodular Partition problem.

Proof: Apply Theorem I.3 and Observation IV.4 to
P(M) to obtain x ∈ P(M) such that F (x) ≥ [1− (1−
d/r)r/d] · f(OPT ). Theorem II.3 states that x can be
rounded to produce a random independent set S in M
where: E[f(S)] ≥ [1− (1− d/r)r/d] · f(OPT ).

In the Submodular Welfare problem there are k
players and n elements E . Each player is associated with
a normalized monotone submodular utility function fi.
The objective is to partition the elements among the
players, and maximize the total utility of the players
for the items that were assigned to them. Formally, we
need to partition E into: E1, E2, . . . , Ek (where Ei is the
set of elements assigned to player i), and maximize∑k

i=1 fi(Ei).

Observation IV.6. The Submodular Welfare prob-
lem with k players is a special case of the (1, k)-
Submodular Partition problem.

Corollary IV.7. There is a polynomial time 1 − (1 −
1/k)k-approximation algorithm for the Submodular
Welfare problem with k players.

In the Submodular Max-SAT problem we are given
a CNF formula and a normalized monotone submodular
function over the set of clauses in the formula. The goal
is to find an assignment ϕ to the variables maximizing
the value of f over the set of clauses satisfied by ϕ.

Observation IV.8. There is an α-approximation
for Submodular Max-SAT if and only if (1, 2)-
Submodular Partition has.

Corollary IV.9. There is a polynomial time 3/4-
approximation algorithm for the Submodular Max-
SAT problem.
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maximization over multiple matroids via generalized
exchange properties,” Mathematics of Operations Re-
search, vol. 35, no. 4, pp. 795–806, 2010.

[38] B. Lehmann, D. Lehmann, and N. Nisan, “Combinatorial
auctions with decreasing marginal utilities,” in EC ’01,
2001, pp. 18–28.

[39] L. Lovász, “Submodular functions and convexity,” in
Mathematical Programming: the State of the Art,
A. Bachem, M. Grötschel, and B. Korte, Eds. Springer,
1983, pp. 235–257.

[40] M. Mitzenmacher and E. Upfal, Probability and Comput-
ing: Randomized Algorithms and Probabilistic Analysis.
New York, NY, USA: Cambridge University Press, 2005.

[41] R. Motwani and P. Raghavan, Randomized algorithms.
New York, NY, USA: Cambridge University Press, 1995.

[42] G. Nemhauser and L. Wolsey, “Best algorithms for ap-
proximating the maximum of a submodular set function,”
Math. Oper. Res., vol. 3, no. 3, pp. 177–188, 1978.

[43] G. Nemhauser, L. Wolsey, and M. Fisher, “An analysis of
approximations for maximizing submodular set functions
- i,” Math. Prog., vol. 14, no. 1, pp. 265–294, 1978.

[44] N. Nisan and I. Segal, “The communication requirements
of efficient allocations and supporting prices,” Journal of
Economic Theory, vol. 129, pp. 192–224, 2006.

[45] M. Sviridenko, “A note on maximizing a submodular
set function subject to knapsack constraint,” Operations
Research Letters, vol. 32, pp. 41–43, 2004.

[46] L. Trevisan, G. B. Sorkin, M. Sudan, and D. P.
Williamson, “Gadgets, approximation, and linear pro-
gramming,” SIAM J. Comput., vol. 29, pp. 2074–2097,
April 2000.
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