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1.1 Introduction

In this chapter we study fundamental results on maximizing a special class of functions called
submodular functions under various combinatorial constraints. The study of submodular functions
is motivated both by their many real world applications and by their frequent occurrence in more
theoretical fields such as economy and algorithmic game theory. In particular, submodular func-
tions and submodular maximization play a major role in combinatorial optimization as several
well known combinatorial functions turn out to be submodular. A few examples of such func-
tions include cuts functions of graphs and hypergraphs, rank functions of matroids and covering
functions. We discuss some of these examples further in the following.

Let us begin by providing basic notation used throughout the chapter. We then give two
definitions of submodular functions and prove that they are equivalent. Let N = {u1, u2, . . . , un}
be a ground set of elements. For a set A and an element u ∈ N we denote the union A ∪ {u} by
A+ u. Similarly, we denote A \ {u} as A− u. The following is the first definition of submodular
functions.

Definition 1.1. (Submodular function: Definition 1) A function f : 2N → R≥0 is submodular if:

f(A) + f(B) ≥ f(A ∩B) + f(A ∪B) ∀A,B ⊆ N . (1.1)

In many cases it is more convenient to use the following (equivalent) definition.

Definition 1.2. (Submodular function: Definition 2) A function f : 2N → R≥0 is submodular if:

f(A+ u)− f(A) ≥ f(B + u)− f(B) ∀A ⊆ B ⊆ N , u ∈ N \B . (1.2)

The second definition illustrates an important property of submodular functions known as
diminishing returns. Informally, Definition 1.2 states that adding an element to a larger set results
in smaller marginal increase in the value of f (compared to adding the element to a smaller set).
This property makes submodular functions natural candidates for modeling production profit
(returns), utility functions, accuracy of a learning algorithm, etc.

We now prove that the above two definitions are indeed equivalent.

Lemma 1.1. Definition 1.1 and Definition 1.2 are equivalent.

R-1-1
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Proof. Assume f satisfies Definition 1.1, and consider arbitrary sets A ⊆ B ⊆ N and element
u ∈ N \B. By applying Definition 1.1 with A+u and B, and observing that (A+u)∪B = B+u
and (A+ u) ∩B = A, we get

f(A+ u) + f(B) ≥ f((A+ u) ∪B) + f((A+ u) ∩B) = f(B + u) + f(A) .

Rearranging the terms yields that f satisfies Definition 1.2.
On the other hand, assume that f satisfies Definition 1.2, and consider arbitrary sets A,B ⊆ N .

Our objective is to show that f(A)+f(B) ≥ f(A∪B)+f(A∩B). We prove this claim by induction
on |A ∪ B| − |A ∩ B|. If |A ∪ B| − |A ∩ B| = 0 (which implies A = B), then the claim is trivial.
Next, suppose that |A ∪B| − |A ∩B| = k, and let us assume without loss of generality that there
exists an element u ∈ A \B. Then,

f(A) + f(B) = [f(A)− f(A− u)] + [f(A− u) + f(B)]

≥ [f(A)− f(A− u)] + [f((A ∪B)− u) + f(A ∩B)] (1.3)

≥ [f(A ∪B)− f((A ∪B)− u)] + [f((A ∪B)− u) + f(A ∩B)] (1.4)

= f(A ∪B) + f(A ∩B) ,

where Inequality (1.3) follows by the induction hypothesis, and inequality (1.4) follows by applying
Definition 1.2.

Recall that this chapter deals with algorithms maximizing submodular functions subject to
combinatorial constraints. In addition to being submodular, the function to be maximized often
has additional natural properties that can be used by the algorithm and often lead to an improved
performance.

Definition 1.3. Consider a function f : 2N → R≥0.

• f is monotone if f(A) ≤ f(B) for every two sets A ⊆ B ⊆ N .

• f is symmetric if f(A) = f(N \A) for every set A ⊆ N .

• f is normalized if f(∅) = 0.

The following lemma provides basic properties of submodular functions used throughout the
chapter. These properties follow quite easily from the definition of submodularity, and thus, we
leave the proof of most of them to the reader. In this lemma, and in the rest of the chapter, we use
the shorthand f(u | A) to denote f(A + u) − f(A) (i.e., the marginal increase in f(A) following
the addition of u to A).

Lemma 1.2 (Basic properties). Let f, g : 2N → R≥0 be submodular functions, and let B ⊆ N be
a subset of N . Then,

1. For every c ∈ R≥0, h(A) = c · f(A) is a submodular function.

2. h(A) = f(A) + g(A) is a submodular function.

3. h(A) = f(A ∩B) is a submodular function.

4. h(A) = f(N \A) is a submodular function.

5. If f is monotone and c ∈ R≥0, then h(A) = min{f(A), c} is a monotone submodular function.

6.
∑

u∈B f(u | A) ≥ f(B ∪A)− f(A).
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Proof. We only prove here Property 6. The proof relies on the frequently used idea of a telescopic
sum. Let B = {u1, . . . , uk}.

f(B ∪A)− f(A) =
k∑
i=1

f(ui | A ∪ {u1, . . . , ui−1}) ≤
k∑
i=1

f(ui | A) ,

where the equality follows by a telescopic sum, and the inequality follows by the submodularity of
f .

1.1.1 Examples of Submodular Functions

In this section we survey briefly several important submodular functions.

Additive function, Budget additive: Suppose each ui ∈ N is associated with a weight wi ≥ 0.
Then, it is easy to see that the function f(A) =

∑
ui∈Awi is a normalized monotone submodular

function. A slight generalization of this idea is captured by the following function, called budget
additive.

f(A) = min

∑
ui∈A

wi, b

 (Budget additive function) (1.5)

Budget additive functions are used, for example, to model the amount of money a buyer (with
budget b ≥ 0) is willing to pay for a set of items. Lemma 1.2 shows that these function are also
normalized, monotone and submodular.

Coverage function: Let E = {e1, . . . , em} be a set of elements. Let S = {s1, . . . , sn} be a
collection of subsets of E (i.e., si ⊆ E). We define f : 2S → Z≥0 to be a function assigning for
every subcollection of subsets the the total number of elements covered by subsets of this collection.
Formally,

f(A) =

∣∣∣∣∣∣
⋃
si∈A

si

∣∣∣∣∣∣ (Coverage function) (1.6)

It is easy to see that f is normalized and monotone. Additionally, f is also submodular since,
for every A ⊆ B ⊆ S and s ∈ S \B,

f(A+ s)− f(A) =

∣∣∣∣∣∣
e ∈ E | e ∈ s \

 ⋃
si∈A

si


∣∣∣∣∣∣

≥

∣∣∣∣∣∣
e ∈ E | e ∈ s \

 ⋃
si∈B

si


∣∣∣∣∣∣ = f(B + s)− f(B) .
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Cut function: Let G = (V,E) be a directed graph with capacities ce ≥ 0 on the edges. For
every subset of vertices A ⊆ V , let δ(A) = {e = uv | u ∈ A, v ∈ V \A}. The cut capacity function
is defined as the total capacity of edges that cross the cut (A, V \A). Formally,

f(A) =
∑
e∈δ(A)

ce (Cut function) (1.7)

Clearly f is normalized, and for undirected graphs it is also symmetric. Additionally, f is
submodular for every graph since, for every A ⊆ B ⊆ V and r ∈ V \B,

f(A+ r)− f(A) =
∑

e∈δ(A+r)

ce −
∑
e∈δ(A)

ce

=
∑

e=rv|v∈V \A

ce −
∑

e=ur|u∈A

ce

≥
∑

e=rv|v∈V \B

ce −
∑

e=ur|u∈B

ce (1.8)

=
∑

e∈δ(B+r)

ce −
∑

e∈δ(B)

ce = f(B + r)− f(B) ,

where Inequality (1.8) follows since we have both {e = rv|v ∈ V \B} ⊆ {e = rv|v ∈ V \A} and
{e = ur|u ∈ A} ⊆ {e = ur|u ∈ B}.

Rank function: Let {a1, . . . , am} be a set of vectors in Rn. For a subset A ⊆ {a1, . . . , am} we
define the rank of A as the dimension of the vector space spanned by the vectors in A. Let,

f(A) = rank(A) (Independent set rank function) (1.9)

The function f is a normalized monotone submodular function, where submodularity follows by
basic properties of linear algebra. In fact, this function is a special case of a more general family
of matroid rank functions (which is outside the scope of this chapter). Informally, matroids are
important combinatorial objects generalizing of the notion of linear independence of vector spaces.
Matroids and submodular functions are closely related. In particular, each matroid is associated
with a submodular rank function.

1.1.2 Maximizing Submodular Functions

Let f : 2N → R≥0 be a non-negative submodular function. The basic problem we discuss in this
chapter is maximizing the function f subject to a (possibly empty) set of constraints. Formally,
let I be the set of subsets of N obeying the constraint. We are interested in the following problem.

max f(A)
s.t. A ∈ I ⊆ 2N

(1.10)

We denote by OPT ∈ I a feasible subset with maximum value, and look for algorithms that
can find a set whose value approximates the optimal value f(OPT ). Below we survey briefly
important special cases of this problem, however, we first consider two technical issues with the
above problem. First, we note that we restrict ourselves to non-negative functions. This restriction
is necessary since we will be looking for algorithms with a multiplicative approximation ratio for
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this problem. Moreover, as seen by the above examples, many important submodular functions
are normalized and monotone, which implies that they are also non-negative.

The second technical issue is that the representation of a general submodular function might be
exponential in the size |N | of the ground set (we reserve n throughout the chapter to denote this
size). To deal with this issue the algorithms we present assume access to a procedure that given
any subset A ⊆ N returns the value f(A). Such a procedure is called value oracle. In many cases
we measure the complexity of algorithms by the number of oracle queries they performs. To obtain
the real time complexity one needs to take into account the time complexity of the value oracle
itself, as well as the time required for additional calculations performed by the algorithm. However,
counting the number of value oracle queries is a clean measure that in many cases represents (and
dominates up to poly-logarithmic terms) the actual time complexity of the algorithm.

As promised, we now survey special cases of the above basic problem.

Maximum coverage problem: Consider the coverage function (1.6). The maximum coverage
problem is the problem of maximizing f(A) subject to the constraint |A| ≤ k when f is a cov-
erage function and k is a parameter. In other words, given a set of elements and a collection of
subsets of these elements, we are looking for a sub-collection of k subsets maximizing the number
of covered elements. The constraint that allows A to be of size at most k is called a cardinal-
ity constraint. Section 1.2.1 discusses in details algorithms for maximizing general non-negative
submodular functions subject to a cardinality constraint.

Maximum cut problem: Consider the cut function (1.7). The maximum cut problem is the
problem of maximizing f(A) when f is a cut function. In other words, given a (possibly directed)
graph G = (V,E) with capacities on its edges we are interested in finding a subset A of the vertices
that maximizes the total capacity of the edges crossing the cut (A, V \ A). The maximum cut
problem is a special case of the more general unconstrained submodular maximization problem in
which one looks for an arbitrary set maximizing a given non-negative submodular function. We
discuss this problem in details in Section 1.2.2.

Submodular welfare: In the Submodular Welfare problem there is a set of items, N SW, that
we would like to allocate to a set of k buyers. Each buyer i is associated with a monotone
submodular function fi : 2N

SW → R≥0 representing her utility from each subset of items. The
problem is to partition the items between the buyers so as to maximize the total welfare measured
as
∑k

i=1 fi(Ai), where Ai is the subset of items allocated to buyer i. At first sight, it looks like
this problem is not a special case of the general problem (1.10). To see that SW can, in fact, be
presented as a special case of this general problem, consider an instance of SW, and let us define a
new ground set N = N SW × {1, 2, . . . , k}, where N SW is the ground set of the SW instance and k is
the number of buyers in this instance. Intuitively, each element (u, i) of N should be understood
as corresponding to assigning item u to buyer i. Using this interpretation, the objective function
of the SW instance can be formulated as

f(A) =
k∑
i=1

fi({u ∈ N SW : (u, i) ∈ A}) ∀ A ⊆ N .

It is not difficult to verify that the above function f is non-negative, monotone and submodular
whenever the utility functions of the buyers have these properties. Additionally, the requirement of
SW that each element is assigned to at most one buyer can be captured by the general problem (1.10)
by choosing I = {A ⊆ N : |A∩ ({u}×{1, 2, . . . , k})| ≤ 1 ∀u ∈ N SW}, which means that a solution
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is feasible if and only if it contains at most one pair (u, i) involving every given element u ∈ N SW.
We discuss the Submodular Welfare problem further in Sections 1.2.3, 1.3.2 and 1.3.3.

1.1.3 Organization

In Section 1.2 we discuss basic discrete (combinatorial) algorithms for maximizing submodular
functions subject to various constraints. In Section 1.2.1 we discuss maximization subject to a
cardinality constraint. In Section 1.2.2 we discuss the unconstrained submodular maximization
problem. Finally, in Section 1.2.3 we discuss a discrete algorithm for the submodular welfare
problem.

In Section 1.3 we discuss continuous methods that are based on extensions of submodular
functions to the n-dimensional cube. We discuss the basic properties of these extensions in Sec-
tion 1.3.1. Section 1.3.2 and Section 1.3.3 describe basic algorithms obtaining fractional solutions
which approximately maximize these extensions. Rounding these fractional solutions to obtain
integeral solutions is discussed both in Sections 1.3.2 and 1.3.4. Finally, Section 1.3.5 describes a
method for obtaining inapproximability results for submodular maximization problems which is
based on similar techniques.

1.2 Discrete Greedy Algorithms

In this section we present discrete (combinatorial) algorithms for three submodular maximization
problems: maximizing a submodular function subject to a cardinality constraint, unconstrained
submodular maximization and submodular welfare.

1.2.1 Cardinality Constraint

One of the first submodular maximization problems that was considered is the problem of maximiz-
ing a non-negative monotone submodular function subject to a cardinality constraint. More specif-
ically, in this problem the input is a non-negative monotone submodular function f : N → R≥0
and an integer k between 1 and n. The objective of the problem is to find a set A of size at most
k maximizing f .

A natural greedy algorithm for this problem starts with the empty set, and then adds elements
to it in k iterations. In each iteration the algorithm adds to its current solution the single element
increasing the value of this solution by the most (i.e., the element with the largest marginal value
with respect to the current solution). In the context of submodular maximization this simple
algorithm is usually referred to simply as “the greedy algorithm”. A formal statement of the
greedy algorithm is given as Algorithm 1. It is important to note that Algorithm 1 denotes by
Ai the solution produced at the end of iteration i. The use of a different variable for the solution
produced at the end of each iteration is not necessary for the algorithm, but is convenient for the
analysis.

The approximation ratio of the greedy algorithm is 1 − 1/e ≈ 0.632 [1], and this turns out to
be the best approximation ratio possible for the problem [2]. Here we give only the analysis of
the approximation ratio of the greedy algorithm. More information about the matching hardness
result can be found in Section 1.3.5.

Theorem 1.3 (Due to [1]). The greedy algorithm is a (1− 1/e)-approximation algorithm for max-
imizing a non-negative monotone submodular function subject to a cardinality constraint.
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Algorithm 1: The Greedy Algorithm(f, k)

1 Let A0 ← ∅.
2 for i = 1 to k do
3 Let ui be the element of N maximizing f(ui | Ai−1).
4 Let Ai ← Ai−1 + ui.

5 return Ak

Proof. Observe that, for every 1 ≤ i ≤ k,

f(ui | Ai−1) ≥ max
u∈OPT

f(u | Ai−1) ≥
∑

u∈OPT f(u | Ai−1)
k

≥ f(OPT ∪Ai−1)− f(Ai−1)

k
≥ f(OPT )− f(Ai−1)

k
,

where the first inequality follows since the element ui is chosen as the element with the largest
marginal contribution with respect to Ai−1, the second inequality holds by an averaging argument
since OPT contains at most k elements and the third inequality follows from the submodularity
of f (Lemma 1.2, Property 6). Finally, the last inequality follows from the monotonicity of f .

Recall that Ai = Ai−1 + ui, and hence, f(ui | Ai−1) = f(Ai)− f(Ai−1). Plugging this equality
into the previous inequality gives

f(Ai)− f(Ai−1) ≥
f(OPT )− f(Ai−1)

k
.

The last inequality states that f(Ai) improves over f(Ai−1) by at least 1/k of the gap between
f(Ai−1) and OPT . Intuitively, it is clear that combining this inequality for all 1 ≤ i ≤ k should
give a lower bound on f(Ak) (and thus, also on the approximation ratio of the greedy algorithm).
To derive this bound formally we rearrange the last inequality as follows.

f(OPT )− f(Ai) ≤ (1− 1/k) ·
[
f(OPT )− f(Ai−1)

]
.

Combing the last inequality for every 1 ≤ i ≤ k gives

f(OPT )− f(Ak) ≤ (1− 1/k)k ·
[
f(OPT )− f(A0)

]
Finally, we rearrange again and get:

f(Ak) ≥ f(OPT )− (1− 1/k)k ·
[
f(OPT )− f(A0)

]
≥ (1− 1/e) · f(OPT ) ,

where the second inequality follows from the non-negativity of f and since (1− 1/k)k ≤ 1/e.

The greedy algorithm is often used in practice also when the submodular objective function f
is not monotone. However, from a theoretical point of view the greedy algorithm has no constant
approximation guarantee in this case. This is demonstrated, for example, by a non-negative
submodular function f : 2N → R≥0 defined as follows.

f(A) =

{
|A| if un 6∈ A ,

2 otherwise .
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It can be verified that f is a non-negative (non-monotone) submodular function. The value of f
for every set is |A| unless the set contains un. If the set contains un then its value is 2, regardless
of the presence of other elements in the set.

Assume the greedy algorithm is faced with the above function f and some value 2 ≤ k < n.
In the first iteration of the greedy algorithm the element un has a marginal gain of 2, which is
larger than the marginal gains of the other elements. Hence, the greedy algorithm takes the “bait”
and adds un to its solution. This means that un remains in the solution of the greedy algorithm
until the end, and thus, the value of this solution is 2 (notice that this is true even if one tries to
improve the greedy algorithm by allowing it to stop as soon as no element has a positive marginal
contribution). On the other hand, the optimal solution can take any k elements other than un and
get a value of k. Thus, the approximation ratio of greedy is at most 2/k.

The non-constant approximation ratio of the greedy algorithm for non-monotone functions
motivated [3] to suggest a randomized version of the greedy algorithm called Random Greedy.
Intuitively, Random Greedy tries to avoid “baits” by introducing randomization into the elements
selection logic. A formal statement of Random Greedy appears as Algorithm 2.

Algorithm 2: Random Greedy(f, k)

1 Let A0 ← ∅.
2 for i = 1 to k do
3 Let Mi = arg maxB:|B|≤k

{∑
u∈B f(u | Ai−1)

}
.

4 with probability (1− |Mi|/k) do Ai ← Ai−1.
5 otherwise Let ui be a uniformly random element of Mi, and set Ai ← Ai−1 + ui.

6 return Ak

Random Greedy finds in every iteration the set M of size at most k maximizing the total
marginal contribution of the elements in the set with respect to the current solution. Then, the
algorithm adds at most one element of M to its current solution. The algorithm picks the element
to be added in such a way that every element of M has a probability of exactly 1/k to be added
to the solution. Notice that this implies that, when |M | < k, there is a positive probability that
the solution of the algorithm is unchanged by the iteration. This might be considered wasteful,
however, avoiding this wastefulness does not improve the theoretical guarantee of the algorithm
as far as we know.

Lemma 1.4. For every 0 ≤ i ≤ k, E[f(Ai ∪OPT )] ≥ (1− 1/k)i · f(OPT ).

Proof. Consider any 1 ≤ j ≤ k, and let Ej−1 be an arbitrary possible choice for the random
decisions of Random Greedy during its first j − 1 iterations. In the first part of this proof we
implicitly condition on Ej−1 all the expectations and random quantities (i.e., we fix the random
choices of the algorithm in the first j − 1 iterations, and consider the distribution induced by its
remaining random choices). Since Aj−1 is now deterministic, we get

E[f(Aj ∪OPT )]− f(Aj−1 ∪OPT ) =
1

k

∑
u∈Mj

f(u | Aj−1 ∪OPT )

≥ 1

k
[f(Mj ∪Aj−1 ∪OPT )− f(Aj−1 ∪OPT )]

≥ −1

k
f(Aj−1 ∪OPT ) ,
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where the equality follows since each element of Mj is added to the solution with probability 1/k,
the first inequality follows by submodularity and the last inequality follows by the non-negativity
of f . Rearraning the last inequality yields

E[f(Aj ∪OPT )] ≥
(

1− 1

k

)
· f(Aj−1 ∪OPT ) .

We now remove the implicit conditioning on Ej−1. Taking an expectation over all the possible
ways to choose Ej−1, the last inequality yields

E[f(Aj ∪OPT )] ≥
(

1− 1

k

)
· E[f(Aj−1 ∪OPT )] .

Combining the above inequality for every 1 ≤ j ≤ i implies the lemma since A0 ∪ OPT =
∅ ∪OPT = OPT .

We are now ready to analyze the approximation ratio of Random Greedy.

Theorem 1.5 (Due to [3]). Random greedy is a 1/e-approximation algorithm for maximizing a
non-negative submodular function subject to a cardinality constraint. If f is monotone the approx-
imation ratio of random greedy is 1− 1/e.

Proof. As in the proof of Lemma 1.4, consider any 1 ≤ i ≤ k, and let Ei−1 be an arbitrary possible
choice for the random decisions of Random Greedy during its first i− 1 iterations. The following
inequality implicitly condition on Ei−1 in the expectation and random quantities Observe that

E[f(ui | Ai−1)] =

∑
u∈Mi

f(u | Ai−1)
k

≥
∑

u∈OPT f(u | Ai−1)
k

≥ f(Ai−1 ∪OPT )− f(Ai−1)

k
,

where the first inequality follows from the definition of Mi as the set that maximizes the total
marginal contribution, and the second from the submodularity of f . We now remove the implicit
conditioning on Ei−1. Taking an expectation over all the possible ways to choose Ei−1, the last
inequality yields

E[f(ui | Ai−1)] ≥
E[f(Ai−1 ∪OPT )]− E[f(Ai−1)]

k
≥ (1− 1/k)i−1 · f(OPT )− E[f(Ai−1)]

k
,

where the second inequality is due to Lemma 1.4. Note that if f is monotone then f(Ai−1∪OPT ) ≥
f(OPT ), and thus, in this case we get the same bound as in Theorem 1.3. Hence, if we continued
the analysis for monotone f we would have got the same bound of 1− 1/e as in Theorem 1.3.

For non-monotone functions, we observe that E[f(ui | Ai−1)] is the expected increase in f(Ai)
compared to f(Ai−1), and thus, the last inequality gives a lower bound on the improvement in
the expected value of the algorithm’s solution in each iteration. This bound is given in terms of
f(OPT ) and the expected value of the current solution. The reminder of the proof “translates”
this lower bound into an explicit lower bound on the expected value of the algorithm’s solution
after any given number of iterations. More specifically, we prove by induction that E[f(Ai)] ≥
i
k · (1−

1
k )i−1 · f(OPT ). For i = 0, this is true since f(A0) ≥ 0 = 0

k · (1−
1
k )−1 · f(OPT ).1 Assume

1For k = 1 the term (1 − 1/k)−1 is undefined. However, one can verify that Random Greedy is in fact optimal
for k = 1.
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now that the claim holds for every 0 ≤ i′ < i, and let us prove it for i > 0.

E[f(Ai)] = E[f(Ai−1)] + E[f(ui | Ai−1)] ≥ E[f(Ai−1)] +
(1− 1/k)i−1 · f(OPT )− E[f(Ai−1)]

k

=

(
1− 1

k

)
· E[f(Ai−1)] +

(1− 1/k)i−1

k
· f(OPT )

≥
(

1− 1

k

)
·

[
i− 1

k
·
(

1− 1

k

)i−2
· f(OPT )

]
+

(1− 1/k)i−1

k
· f(OPT )

=
i

k
·
(

1− 1

k

)i−1
· f(OPT ) .

Plugging i = k into the above claim yields the theorem.

E[f(Ak)] ≥
k

k
· (1− 1/k)k−1 · f(OPT ) ≥ 1/e · f(OPT ) .

When the function f is monotone both greedy and random greedy achieve an approximation
ratio of 1−1/e. It can also be verified that both algorithms require O(n) value oracle queries in each
one of their k iterations, and thus, require O(nk) queries in total. In the case of Random Greedy
using O(n) value oracle queries in each iteration is a bit wasteful. More specifically, Random
Greedy queries the marginal contributions of all the elements in order to construct all of M , and
then chooses a uniformly random element out of M (note that when f is monotone, we can assume
M always contains exactly k elements). Instead, one can query the marginal contributions of a
random subset of the elements, and use it to recover, with high enough probability, at least one
element of M (i.e., to find an element whose marginal contribution, with respect to the current
solution, is among the top k marginal contributions). This is the idea behind Algorithm 3, which
we term here Sample Greedy, originally suggested independently by [4] and [5].

Algorithm 3: Sample Greedy(f, k, ε)

1 Let A0 ← ∅.
2 for i = 1 to k do

3 Let Bi be a uniformly random subset of N of size
⌈
n·ln(1/ε)

k

⌉
.

4 Let ui be the element of Bi maximizing f(ui | Ai).
5 Let Ai ← Ai−1 + ui.

6 return Ak

Sample Greedy has a parameter ε ∈ [e−k, 1− 1/e] controlling a tradeoff between the number of
value oracle queries used by the algorithm and the quality of its output. This tradeoff is captured
by the following theorem.

Theorem 1.6 (Due to [4, 5]). Sample Greedy is a (1 − 1/e − ε)-approximation algorithm for
maximizing a non-negative monotone submodular function subject to a cardinality constraint which
uses O(n ln(1/ε)) value oracle queries.2

2Observe that the restriction of ε to the range [e−k, 1 − 1/e] is not an issue because Theorem 1.6 gives no
approximation guarantee for ε > 1− e−1, and its guarantee for the number of value oracle queries is no better than
that of Random Greedy for ε < e−k.
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The analysis of the number of value oracle queries used by Sample Greedy is quite straight-
forward, and thus, we concentrate on proving its approximation ratio. However, we would like
to direct the reader’s attention to the fact that the number of queries used by Sample Greedy
is independent of k, which is quite surprising. The following lemma lower bounds the expected
improvement in the value of the solution of Sample Greedy after every given iteration.

Lemma 1.7. For every 1 ≤ i ≤ k, E[f(ui | Ai−1)] ≥ (1− ε) · f(OPT )−E[f(Ai−1)]
k .

Proof. Let Ei−1 be an event specifying the random decisions of Sample Greedy up to iteration i−1
(including). If the lemma holds conditioned on every given event Ei−1, then it holds also uncondi-
tionally. Hence, in the rest of the proof we fix an event Ei−1 and prove the lemma conditioned on
this event. For simplicity, all the probabilities, expectations and random quantities in the proof
are implicitly conditioned on Ei−1. In particular, note that the set Ai−1 is now deterministic since
it is fully determined by Ei−1.

Let v1, v2, . . . , vk be the k elements with the largest marginal contributions with respect to
Ai−1, sorted in a non-increasing marginal contribution order. Additionally, let Xj be an indicator
for the event that Sample Greedy selects vj in its i-th iteration (i.e., ui = vj). Using this notation
and the linearity of the expectation, it is possible to lower bound E[f(ui | Ai−1)] as follows.

E[f(ui | Ai−1)] ≥ E

 k∑
j=1

Xj · f(vj | Ai−1)

 =
k∑
j=1

E[Xj ] · f(vj | Ai−1) .

Recall that ui is selected as the element with the highest marginal contribution in Bi; hence,
when multiple elements of v1, v2, . . . , vk belong to Bi, Sample Greedy selects the element with the
lowest index among them. This implies that E[Xi] = Pr[ui = vj ] is a non-increasing function of
j. Consider now the sum on the rightmost hand side of the above inequality. Every term of this
sum is a multiplication of two non-increasing functions of j: E[Xj ] and f(vj | Ai−1). Thus, by
Chebyshev’s sum inequality, this rightmost hand side can be bounded by

E[f(ui | Ai−1)] ≥
k∑
j=1

E[Xj ] ·
∑k

j=1 f(vj | Ai−1)
k

. (1.11)

Next, observe that,

k∑
j=1

E[Xj ] = Pr[{v1, v2, . . . , vk} ∩Bi 6= ∅] ≥ 1−
(

1− k

n

)⌈n·ln(1/ε)
k

⌉
≥ 1− ε .

The first equality follows since one of variables Xj is 1 if and only if {v1, v2, . . . , vk}∩Bi 6= ∅, and
the first inequality follows since the probability of choosing an element from {v1, v2, . . . , vk} when
the sample set Bi is chosen with repetitions is smaller than this probability when the set is chosen
with no repetitions. Plugging the last inequality into Inequality (1.11) yields

E[f(ui | Ai−1)] ≥ (1− ε) ·
∑k

j=1 f(vj | Ai−1)
k

.

The lemma now follows by observing that the definition of the vj ’s and the submodularity and
monotonicity of f imply together

k∑
j=1

f(vj | Ai−1) ≥
∑

u∈OPT
f(u | Ai−1) ≥ f(OPT ∪Ai−1)− f(Ai−1) ≥ f(OPT )− f(Ai−1) .
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We are now ready to prove the approximation ratio of Sample Greedy.

Proof of the Approximation Ratio of Sample Greedy. Let us denote α = (1 − ε)/k. Then, by
Lemma 1.7, for every 1 ≤ i ≤ k,

E[f(Ai)− f(Ai−1)] = E[f(ui | Ai−1)] ≥ α[f(OPT )− E[f(Ai−1)]] .

Rearranging gives

f(OPT )− E[f(Ai)] ≤ (1− α) · [f(OPT )− E[f(Ai−1)]] .

Combining the above inequality for every 1 ≤ i ≤ k yields

f(OPT )− E[f(Ak)] ≤ (1− α)k · [f(OPT )− E[f(A0)]] ≤ (1− α)k · f(OPT ) ,

where the last inequality follows from the non-negativity of f . Rearranging once more, we get

E[f(Ak)] ≥
[
1− (1− α)k

]
· f(OPT ) ≥ (1− e−k·α) · f(OPT )

= (1− eε−1) · f(OPT ) ≥ (1− 1/e− ε) · f(OPT ) ,

where the last inequality holds for every ε ∈ [0, 1].

1.2.2 Unconstrained Maximization

Perhaps the simplest variant of a submodular maximization problem is unconstrained submodular
maximization, which is a problem asking to maximize a submodular function subject to no con-
straints on the feasible subset we may choose. When the function f is monotone the solution is
trivial—simply take all elements to the solution. However, the problem is non-trivial when the
function is non-monotone. We present in this section two algorithms for the problem. Amazingly,
the first algorithm does not even evaluate the function. It simply takes each element to its solution
with probability 1/2. We prove that this algorithm achieves an approximation ratio of 1/4. This
result is due to [6], but the proof we present here for this result is different from the original proof
of [6]. The advantage of the proof we present is that it provides us with some basic tools that are
used later for analyzing the second algorithm. The second algorithm itself is a greedy algorithm
which was shown to have an approximation ratio of 1/2 by [7]. A matching inapproximability
result, showing that no polynomial time algorithm can achieve an approximation ratio of 1/2 + ε
for any constant ε > 0, was proved by [6].

Let us begin with the analysis of the first algorithm. Recall that this algorithm simply takes
every element to the solution with probability 1/2, independently. For the analysis’s purpose we
give a more verbose description of this algorithm as Algorithm 4. While reading Algorithm 4 it is
important to recall that u1, u2, . . . , un is some (arbitrary) ordering of the elements of N .

Notice that the algorithm maintains two random solutions. The values of these solutions after
i iterations are denoted by Xi and Yi. It can be easily seen that Xi and Yi always agree on the
first i elements, and thus, at the end of the execution Xn = Yn. To analyze the performance of
the algorithm we need some additional notation. Let OPTi , (OPT ∪ Xi) ∩ Yi. By the above
discussion, we have OPT0 = OPT and OPTn = Xn = Yn. Similarly, let OPT = N \OPT and let
OPT i , (OPT ∪Xi) ∩ Yi, then OPT 0 = OPT and OPTn = Xn = Yn.

One can view f(OPTi), f(OPT i), f(Xi) and f(Yi) as functions of i. The following lemma
takes this point of view and bounds the expected decrease of value in OPTi and OPT i when i
increases by the total expected increase in the values of Xi and Yi.
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Algorithm 4: Random Sample(f)

1 Let X0 ← ∅, Y0 ← N .
2 for i = 1 to n do
3 with probability 1/2 do Xi ← Xi−1 + ui, Yi ← Yi−1.
4 otherwise Xi ← Xi−1, Yi ← Yi−1 − ui. // Also done with probability 1/2.

5 return Xn (or equivalently Yn).

Lemma 1.8. For every 1 ≤ i ≤ n,

E[f(OPTi−1)− f(OPTi) + f(OPT i−1)−f(OPT i)] ≤ (1.12)

E[f(Xi)− f(Xi−1) + f(Yi)− f(Yi−1)] ,

where the expectations are taken over the random choices of the algorithm.

Proof. Notice that it suffices to prove Inequality (1.12) conditioned on any event of the form
Xi−1 = Ai−1 for which the probability that Xi−1 = Ai−1 is non-zero (notice that this can only
happen when Ai−1 ⊆ {u1, u2, . . . , ui−1}). Fix such an event. The rest of the proof implicitly
assumes everything is conditioned on this event. Note that, due to the conditioning, the random
variables Yi−1, OPTi−1 and OPT i−1 become deterministic.

If ui /∈ OPT (and, hence, ui ∈ OPT ), then

E[f(Xi)− f(Xi−1) + f(Yi)− f(Yi−1)]

=
1

2
[f(Xi−1 + ui)− f(Xi−1) + f(Yi−1 − ui)− f(Yi−1)]

≥ 1

2

[
f(OPT i−1)− f(OPT i−1 − ui) + f(OPTi−1)− f(OPTi−1 + ui)

]
= E[f(OPTi−1)− f(OPTi) + f(OPT i−1)− f(OPT i)] .

To see that the inequality follows by submodularity notice that Xi−1 ⊆
[
(OPT ∪Xi−1) ∩ Yi−1

]
−

ui = OPT i−1 − ui and OPTi−1 = (OPT ∪Xi−1) ∩ Yi−1 ⊆ Yi−1 − ui (since ui /∈ OPT ).
The proof that the lemma holds also when ui ∈ OPT is similar, and is, therefore, omited.

The performance of the algorithm easily follows from Lemma 1.8.

Theorem 1.9 (Due to [6]). Algorithm 4 is a randomized linear time 1/4-approximation algorithm
for the unconstrained submodular maximization problem. If the function f is symmetric, in ad-
dition to being submodular, then the algorithm is a 1/2-approximation algorithm.

Proof. Summing up the inequality in Lemma 1.8 for every 1 ≤ i ≤ n we get

n∑
i=1

E[f(OPTi−1)−f(OPTi)+f(OPT i−1)−f(OPT i)] ≤
n∑
i=1

E[f(Xi)−f(Xi−1)+f(Yi)−f(Yi−1)] .

The above sum is telescopic. Collapsing it yields

E[f(OPT0)− f(OPTn) + f(OPT 0)− f(OPTn)] ≤ E[f(Xn)− f(X0) + f(Yn)− f(Y0)]

Using the non-negativity of f , and recalling the values of OPT0, OPTn, OPT 0 and OPTn, we
obtain

E[f(Xn)] = E[f(Yn)] ≥ 1

4

(
f(OPT ) + f(OPT ) + f(∅) + f(N )

)
≥ 1

4
· f(OPT ) .
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If f is also symmetric then f(OPT ) = f(OPT ), and the right hand side of the above inequality
can be improved to 1/2 · f(OPT ).

We next present a 1/2-approximation algorithm for unconstrained submodular maximization.
The algorithm is formally described in Algorithm 5.

Algorithm 5: Double Greedy(f)

1 Let X0 ← ∅, Y0 ← N .
2 for i = 1 to n do
3 Let ai ← max{f(Xi−1 + ui)− f(Xi−1), 0}.
4 Let bi ← max{f(Yi−1 − ui)− f(Yi−1), 0}.
5 with probability ai/(ai + bi)

* do Xi ← Xi−1 + ui, Yi ← Yi−1.
6 otherwise Xi ← Xi−1, Yi ← Yi−1 − ui. // Done with probability bi/(ai + bi).

7 return Xn (or equivalently Yn).
* If ai = bi = 0, we assume ai/(ai + bi) = 1.

Like in the previous algorithm, Xi and Yi are random variables denoting the two solutions
maintained by the algorithm after i iterations. The behavior of these random variables is very
similar to their behavior in Algorithm 4, except that now the decision whether to add the element
ui to Xi−1 or to remove it from Yi−1 is done with probabilities that depend on the function f . The
analysis of the algorithm requires the random variable OPTi, which is defined exactly like in the
analysis of Algorithm 4.

The following lemma plays the same role as Lemma 1.8.

Lemma 1.10. For every 1 ≤ i ≤ n,

E[f(OPTi−1)− f(OPTi)] ≤
1

2
· E [f(Xi)− f(Xi−1) + f(Yi)− f(Yi−1)] , (1.13)

where the expectations are taken over the random choices of the algorithm.

Proof. Again, notice that it suffices to prove Inequality (1.13) conditioned on any event of the
form Xi−1 = Ai−1 for which the probability that Xi−1 = Ai−1 is non-zero (recall that this can
only happen when Ai−1 ⊆ {u1, u2, . . . , ui−1}). Fix such an event. The rest of the proof implicitly
assumes everything is conditioned on this event. Notice that, as before, due to the conditioning,
the random variables Yi−1 and OPTi−1 become deterministic once we fix the event. Moreover, the
values ai, bi also become deterministic when we do it. We claim that

E [f(Xi)− f(Xi−1) + f(Yi)− f(Yi−1)] (1.14)

=
ai

ai + bi
(f(Xi−1 + ui)− f(Xi−1)) +

bi
ai + bi

(f(Yi−1 − ui)− f(Yi−1)) =
a2i + b2i
ai + bi

.

The first equality follows by definition. To see why the second equality holds observe that, by
submodularity, f(Xi−1 + ui)− f(Xi−1) + f(Yi−1 − ui)− f(Yi−1) ≥ 0 since Xi−1 ⊆ Yi−1 − ui. This
means that f(Xi−1+ui)−f(Xi−1) < 0 implies ai/(ai+bi) = 0 and f(Yi−1−ui)−f(Yi−1) < 0 implies
bi/(ai+bi) = 0.
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Let us now analyze the expected change in OPTi. If ui /∈ OPT , then OPTi−1 − ui = OPTi−1.
Thus,

E[f(OPTi−1)− f(OPTi)] =
ai

ai + bi
· [f(OPTi−1)− f(OPTi−1 + ui)]

≤ ai
ai + bi

· [f(Yi−1 − ui)− f(Yi−1)] ≤
aibi
ai + bi

,

where the first inequality follows by the submodularity of f as OPTi−1 = (OPT ∪Xi−1)∩ Yi−1 ⊆
Yi−1− ui (since ui /∈ OPT ). On the other hand, if ui ∈ OPT then OPTi−1 + ui = OPTi−1. Thus,

E[f(OPTi−1)− f(OPTi)] =
bi

ai + bi
· [f(OPTi−1)− f(OPTi−1 − ui)]

≤ bi
ai + bi

· [f(Xi−1 + ui)− f(Xi−1)] ≤
aibi
ai + bi

,

where the first inequality follows by again the submodularity of f as Xi−1 ⊆ (OPT ∪ Xi−1) ∩
Yi−1 − ui = OPTi−1 − ui.

The lemma follows by combining the last two inequalities with Inequality (1.14) since, for every
a, b ∈ R, 2ab ≤ a2 + b2.

Using Lemma 1.10 the next theorem follows easily.

Theorem 1.11 (Due to [7]). Algorithm 5 is a randomized linear time 1/2-approximation algorithm
for the unconstrained submodular maximization problem.

Proof. Summing up Lemma 1.10 for every 1 ≤ i ≤ n gives

n∑
i=1

E[f(OPTi−1)− f(OPTi)] ≤
1

2
·
n∑
i=1

E[f(Xi)− f(Xi−1) + f(Yi)− f(Yi−1)] .

The above sum is telescopic. Collapsing it, we get

E[f(OPT0)− f(OPTn)] ≤ 1

2
· E[f(Xn)− f(X0) + f(Yn)− f(Y0)] ≤

E[f(Xn) + f(Yn)]

2
.

Recalling that OPT0 = OPT and OPTn = Xn = Yn, we obtain E[f(Xn)] = E[f(Yn)] ≥ f(OPT )/2.

1.2.3 The Submodular Welfare Problem

In this section we design a simple 1/2-approximation algorithm for the Submodular Welfare prob-
lem. The algorithm is very natural. It begins with the empty assignment. Then, in each iteration it
assigns a yet unassigned item to the buyer for whom the item has the largest marginal contribution.
A formal statement of this algorithm is given as Algorithm 6.

Theorem 1.12 (Due to [8]). Algorithm 6 is a 1/2-approximation algorithm for the Submodular

Welfare problem.
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Algorithm 6: The Greedy Algorithm for Submodular Welfare({fi}ki=1)

1 Ai ← ∅, for each i = 1, . . . , k.
2 for i = 1 to n do
3 Let j be the player maximizing fj(ui | Aj).
4 Let Aj ← Aj + ui

5 return {Aj}kj=1

Proof. Let Aij be the set of items allocated by the algorithm to buyer j out of items u1, . . . , ui. Let

OPT ij be the set of items allocated by the optimal solution to buyer j out of items ui+1, ui+2, . . . , un.
For every 1 ≤ i ≤ k we claim that the following inequality holds.

k∑
j=1

[
fj(A

i
j)− fj(Ai−1j )

]
≥

k∑
j=1

[
fj(A

i−1
j ∪OPT i−1j )− fj(Aij ∪OPT ij )

]
. (1.15)

Let us explain why this is the case. Assume that the algorithm allocated item i to buyer j, while
OPT allocated item i to buyer j∗. Note that this means that on the left hand side of the last
inequality only the j-th term may be none zero, while on the right hand side only terms j and
j∗ may be non-zero. Moreover, the monotonicity of fj guarantees that the j-th term on the right
hand side is non-positive. Thus, it is enough to prove the following.

fj(A
i
j)− fj(Ai−1j ) = fj(ui | Ai−1j ) ≥ fj∗(ui | Ai−1j∗ )

≥ fj∗(ui | Ai−1j∗ ∪OPT
i
j∗) ≥ fj∗(Ai−1j∗ ∪OPT

i−1
j∗ )− fj∗(Aij∗ ∪OPT ij∗),

where the first inequality follows since j maximizes fj(ui | Aj), and the second inequality follows
by submodularity. Finally the last inequality holds as an equality when j 6= j∗ because in this
case Ai−1j∗ = Aij∗ and OPT i−1j∗ = OPT ij∗ + ui. When j = j∗ the last inequality still holds because
its left hand side is non-negative by the monotonicity, and its right hand side is 0.

Summing up Inequality (1.15) for 1 ≤ i ≤ n, and using the non-negativity of each fj , we get:

k∑
j=1

fj(Aj) ≥
k∑
j=1

[fj(A
n
j )− fj(A0

j )]

≥
k∑
j=1

fj(OPT
0
j ∪A0

j )−
k∑
j=1

fj(OPT
n
j ∪Anj ) =

k∑
j=1

fj(OPTj)−
k∑
j=1

fj(Aj) ,

which concludes the proof.

The following observation shows that the above analysis of Algorithm 6 cannot be improved.

Observation 1.13. The approximation ratio of Algorithm 6 is exactly 1/2 even when there are
only two buyers.

Proof. Consider a ground set with only two elements, N = {u1, u2}. The utility of buyer 1 is
equal to 1 if he is assigned at least one of the elements, and 0 if he is assigned no elements. The
utility of buyer 2 is 1 if he is assigned u1, and 0 otherwise. Formally, the utility functions of both
players are:

f1(A) = min{|A|, 1} ∀ A ⊆ N and f2(A) = |A ∩ {u1}| ∀ A ⊆ N .
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One can observe that, given the empty assignment, the marginal contribution of adding u1 to buyer
1 is 1, and no other assignment of a single element to any user has a larger marginal contribution.
Hence, Algorithm 6 might assign u1 to buyer 1 in its first iteration;3 in which case, regardless of
the assignment of u2, buyer 1 ends up with a utility of 1 and buyer 2 ends up with no utility,
leading to a total utility of 1. On the other hand, the optimal assignment assigns u1 to buyer 2
and u2 to buyer 1, which leads to a total utility of 2.

1.2.4 Notes and Open Questions

Cardinality constraint: The greedy algorithm (Algorithm 1) and its analysis are due to [1].
Random Greedy (Algorithm 2) and its analysis are due to [3]. Finally, the faster Sample Greedy
(Algorithm 3) is due to [5] and, independently, [4].

Unlike in the case of the greedy algorithm, the approximation ratio of Random Greedy is
not optimal. A much more involved algorithm by [3] achieves an improved approximation ratio
of 1/e + 0.004 for the same problem. On the other hand, a hardness result by [9] shows that
no algorithm can achieve an approximation ratio better than 0.491 for the problem using only a
polynomial number of value oracle queries. Arguably, one of the the most important open questions
related to the results discussed in this chapter is closing this gap. The unnatural state of the art
approximation ratio of 1/e + 0.004 due to [3] can probably be improved. On the other hand, it is
unclear whether the corresponding inapproximability result of 0.491 of [9] is tight or not.

An additional interesting question is whether one can get deterministic algorithms achieving
the same bounds. Buchbinder and Feldman [10] designed a deterministic variant of Random
Greedy achieving the same approximation ratio of 1/e. A different technique was used by [11] to
get a deterministic (1− 1/e−ε)-approximation algorithm for maximizing a non-negative monotone
submodular function subject to a cardinality constraint which uses only O((n/ε) log(n/ε)) value
oracle queries. Later, Buchbinder et al. [4] developed two incomparable randomized (1/e − ε)-
approximation algorithms for objective functions that are not necessarily monotone. One algorithm
is based on the technique of [11] and uses O(k

√
(n/ε) ln(k/ε) + (n/ε) ln(k/ε)) value oracle queries,

while the other is a slight variation of Sample Greedy requiring O( n
ε2

ln(1/ε)) value oracle queries.
The cardinality constraint is also related to the strict cardinality constraint which allows only

sets of size exactly k. For monotone objective functions the two constraints are equivalent since one
can increase to k the size of any set whose size is smaller than k by adding to it arbitrary elements,
and this never decreases the value of the set. For non-monotone objectives, however, the strict
cardinality constraint seems to be more difficult. The 0.491 inapproximability result of [9] applies
also to maximizing a non-negative submodular function subject to a strict cardinality constraint,
but the best approximation ratio known for this problem is only 1/e− o(1) [12].

Unconstrained: The random sample algorithm (Algorithm 4) is due to [6]. The double greedy
algorithm (Algorithm 5) is due to [7]. It is known that no polynomial time algorithm for the
unconstrained submodular maximization can have an approximation ratio of 1/2+ε for any constant
ε > 0 [6], and a deterministic algorithm achieving the optimal approximation ratio of 1/2 for the
problem was presented in [10].

Algorithm 4 is non-adaptive in the sense that the list of the sets on which it queries the value
oracle is chosen before the first query is made. Feige et al. [6] showed that the approximation ratio
of 1/4 achieved by this algorithm is optimal for non-adaptive algorithms that are also required to

3The exact behavior of the algorithm in this case depends on the tie breaking rules used to implement it. If one
wants to avoid this, f1 should be replaced with f1(A) = min{|A|, 1}+ ε · |A ∩ {u1}| for an arbitrary small constant
ε > 0.
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return one of the sets whose value they queried. If the algorithm is allowed to return a different
set, then an improved 1/3-approximation non-adaptive algorithm exists [6].

Submodular Welfare The greedy algorithm presented for Submodular Welfare (Algorithm 6) is
due to [8]. In fact, [8] designed a greedy algorithm for the much more general problem of maximizing
a monotone submodular function with matroid constraints. The best inapproximability result for
SW shows that no polynomial time algorithm can achieve an approximation ratio of 1−(1−1/k)k+ε
for any constant ε > 0 [13], and thus, for general k, no polynomial time algorithm can achieve
an approximation ratio of 1 − 1/e + ε. The large gap between this inapproximability result and
the approximation ratio of the greedy algorithm motivated Călinescu et al. [14] to develop the
Continuous Greedy algorithm, which yields (1−1/e)-approximation for SW. We discuss this in more
details in Sections 1.3.2 and 1.3.3.

1.3 Continuous Methods

Many results for submodular maximization problems are based on a continuous relaxation of these
problems knowns as the multilinear relaxation. This section surveys a few of the most important
results based on this relaxation, and is organized as follows. Sections 1.3.1 gives definitions and
preliminary results necessary for the other sections. Sections 1.3.2 and 1.3.3 describe algorithms
for obtaining approximately optimal fractional solutions for the multilinear relaxation. Rounding
of these fractional solutions is discussed both in Sections 1.3.2 and 1.3.4. Finally, Section 1.3.5
describes a method for obtaining inapproximability results for submodular maximization problems
which is based on similar techniques.

1.3.1 Definitions and Preliminaries

The sets of 2N (or {0, 1}N ) can be naturally identified with points of the [0, 1]N cube by identifying
each set A ⊆ N with its characteristic vector (which we denote here by 1A). For linear functions
this gives a natural way to extend any function from {0, 1}N to the cube [0, 1]N . However, finding
the right extension for submodular functions is more difficult. One useful extension of submodular
functions is the Lovász extension defined as follows.

Definition 1.4. (The Lovász extension) Given a vector x ∈ [0, 1]N and a scalar λ ∈ [0, 1], let
Tλ(x) = {u ∈ N | xu ≥ λ} be the set of elements in N whose coordinate in x is at least λ. Then,

f̂(x) =

∫ 1

λ=0
f(Tλ(x))dλ .

Definition 1.4 can also be interpreted in probabilistic terms as the expected value of f over the
set Tλ(x), where λ is selected uniformly at random from the range [0, 1].

The following lemma proves an important property of the Lovász extension. One way to prove
this lemma is via the equality, which follows from the work of [15], between the Lovász extension
of a submodular function and another extension known as the convex closure. However, the proof
we give here is based on a proof originally given by [3].

Lemma 1.14. Let f : 2N → R be a submodular function, and let f̂ be its Lovász extension. For
every x ∈ [0, 1]N , let Dx denote an arbitrary distribution over {0, 1}N such that Pr[u ∈ Dx] = xu
for every u ∈ N (i.e., its marginals agree with x). Then, f̂(x) ≤ EA∼Dx [f(A)].
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Proof. Let us denote by xi the coordinate of x corresponding to element ui. Assume without loss
of generality that x1 ≥ x2 ≥ . . . ≥ xn is a non-increasing series (this can always be guaranteed by
choosing the right order for the elements), and let Bi = {u1, u2, . . . , ui}. Let A be a random set
distributed according to the distribution Dx, and let us denote by Yi an indicator for the event
that ui ∈ A. Then,

EA∼Dx [f(A)] = E

[
f(∅) +

n∑
i=1

Yi · f(ui | A ∩Bi−1)

]
≥ E

[
f(∅) +

n∑
i=1

Yi · f(ui | Bi−1)

]

= f(∅) +
n∑
i=1

E [Yi] · f(ui | Bi−1) = f(∅) +
n∑
i=1

xi · f(ui | Bi−1)

= (1− x1) · f(∅) +

n−1∑
i=1

(xi − xi+1) · f(Bi) + xn · f(N ) = f̂(A) ,

where the inequality follows from submodularity and the last equality is true since our assumption
that x1 ≥ x2 ≥ · · · ≥ xn implies that Tλ(x) = Bi for every λ ∈ (xi+1, xi] (except for the cases
i = 0 and i = n for which the correct ranges are (x1, 1] and [0, xn], respectively).

Remark: Recall that f̂(x) was defined as the expected value of f over the distribution of the
set Tλ(x) when λ is chosen uniformly at random from the range [0, 1]. One can observe that the
marginals of this distribution agree with x. Hence, Lemma 1.14 can be interpreted as claiming
that, among all the distributions Dx whose marginals agree with x, the distribution defining f̂(x)
is the one with the minimum expected value.

Another important extension of submodular functions is the multilinear extension.

Definition 1.5. (The multilinear extension) Given a vector x ∈ [0, 1]N , let R(x) denote a random
subset of N containing every element u ∈ N independently with probability xu. Then,

F (x) = E[R(x)] =
∑
A⊆N

(f(A) · Pr[R(x) = A]) =
∑
A⊆N

(
f(A) ·

∏
u∈A

xu ·
∏
u/∈A

(1− xu)

)
.

The explicit formula for the multilinear extension makes it clear that, as suggested by its name,
the multilinear extension is a multilinear function4. The multilinear extension is central to all the
results presented in the remaining sections of this chapter. By definition F (x) is the expected
value of f over the distribution of the random set R(x). Since the marginals of this distribution
agree with x, we get by Lemma 1.14 the following immediate corollary.

Corollary 1.15. Let f : 2N → R be a submodular function, and let f̂ and F be its Lovász and
multilinear extensions, respectively. Then, for every x ∈ [0, 1]N , F (x) ≥ f̂(x).

We conclude this section with an additional notation which is used heavily in the next sections.
For two vectors x, y ∈ [0, 1]N , we use x ∨ y to denote the coordinate-wise maximum of x and y
(formally, (x ∨ y)u = max{xu, yu} for every u ∈ N ).

1.3.2 Continuous Greedy

Recall that the problems we are interested in fall into the framework of maximizing a given non-
negative submodular function f : 2N → R≥0 subject to a (possibly trivial) constraint. Denoting by

4A multilinear function is a polynomial function in which the degree of every variable is at most 1.
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I the collection of subsets of N obeying the constraint, this class of problems can be formulated
as follows.

max f(A)
s.t. A ∈ I ⊆ {0, 1}N (1.16)

An important relaxation of the general problem (1.16), called the multilinear relaxation, is
obtained by replacing f with its multilinear extension F and I with a convex body P which is
contained in the cube [0, 1]N on the one hand, and contains the characteristic vectors of the sets
in I on the other hand. Formally, the relaxation we get is

max F (x)
s.t. x ∈ P ⊆ [0, 1]N

(1.17)

Remark: Usually the natural relaxation P of the constraint is a polytope. However, this is not
necessary for the results we present, and thus, we allow P to be an arbitrary convex body.

Given a relaxation in the form of (1.17), one can attempt to approximate the original (integral)
problem by first finding an approximate solution for the relaxation, and then rounding this solution
without loosing too much in the objective. Note that this approach is similar to the standard
approach for linear optimization problems in which the algorithm first solves a linear programming
(LP) relaxation of the problem, and then rounds the fractional solution obtained.

The Continuous Greedy algorithm is analogous to the LP solver in the above approach. In
other words, given a relaxation in the form of (1.17), Continuous Greedy finds a fractional solution
whose value approximates the value of the optimal integral solution. This fractional solution can
then be rounded by various methods discussed later in this section and in Section 1.3.4. It is
interesting to note that unlike LP solvers, the output of Continuous Greedy only approximates
the value of the optimal integral solution. This is unavoidable, as is shown later in this section.
Continuous Greedy assumes that P is solvable meaning that one can optimize linear functions over
it.5

We are now ready to describe Continuous Greedy. Continuous Greedy maintains a solution
that evolves during the time interval [0, 1]. The solution starts at time 0 as the empty solution,
i.e., 1∅. At every time point t ∈ [0, 1) the algorithm calculates a weight vector w(t) ∈ Rn whose
value for each element u ∈ N is wu(t) = F (x ∨ 1{u}) − F (x). In other words, wu(t) is the gain
that the algorithm can get by increasing the coordinate of u in its solution to be 1. The algorithm
then finds a vector x(t) in P maximizing the linear objective function w(t) · x(t) defined by these
weights. Intuitively, x(t) tells Continuous Greedy which coordinates should be increased at the
current time. The algorithm uses this information by adding an infinitesimal fraction of x(t) to
its current solution. A formal statement of Continuous Greedy is given as Algorithm 7.

Algorithm 7: Continuous Greedy(f, P )

1 Let y(0)← 1∅.
2 foreach t ∈ [0, 1) do
3 For each u ∈ N , let wu(t)← F (y(t) ∨ 1{u})− F (y(t)).

4 x(t)← arg maxx∈P {w(t) · x}.
5 Increase y(t) at a rate of dy(t)

dt = x(t).

6 return y(1)

5Continuous Greedy can also be used when one can only approximately maximize linear functions over P , but
this translates into a poorer guarantee on its output.
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Naturally, the above continuous formulation of Continuous Greedy cannot be implemented in
polynomial time. However, there is a discretized version of Continuous Greedy that has the same
guarantee (up to low order terms that can be removed by an appropriate preprocessing step) and
can be implemented efficiently. The discretization involves two main steps. First, instead of having
a continuous time, the algorithm advances time in small steps. Second, instead of calculating
wu(t) by evaluating the multilinear extension F exactly (which might require exponential time),
the algorithm approximates wu(t) = F (y(t) ∨ 1{u})− F (y(t)) = E[f(R(y(t) ∨ 1{u}))− f(R(y))] by
averaging a polynomial number of samples from the distribution of the random quantity f(R(y(t)∨
1{u}))− f(R(y)).

The continuous version of Continuous Greedy is cleaner, and thus, we give here only its analysis
and leave out the technical details of how to apply this analysis to the discretized version of the
algorithm. Unfortunately, the analysis of the continuous version is not completely formal since
it involves integration of various functions, and we implicitly assume that these functions are
integrable. The reader should keep in mind, however, that this issue goes away when the analysis
is applied to the discretized version since the above integrations are then replaced by finite sums.
Călinescu et al. [14] proved the following guarantee for Continuous Greedy.

Theorem 1.16 (Due to [14]). Let f be a non-negative monotone submodular function, and let
P is a solvable convex body. Then, Continuous Greedy outputs a vector y(1) ∈ P such that
F (y(1)) ≥ (1− 1/e) · f(OPT ), where OPT is a solution in I maximizing f(OPT ).

Proof. Recall that x(t) is a vector inside P for every time t ∈ [0, 1). Hence, y(1) =
∫ 1
t=0 x(t)dt is a

convex combination of vectors in P , and thus, belongs to P by the convexity of P . Additionally,
by the chain rule,

dF (y(t))

dt
=
∑
u∈N

(
dyu(t)

dt
· ∂F (y)

∂yu

∣∣∣∣
y=y(t)

)
=
∑
u∈N

(
xu(t) · ∂F (y)

∂yu

∣∣∣∣
y=y(t)

)
.

Recall, now, that F is multilinear. Thus, its partial derivative with respect to a single coor-
dinate is equal to the difference between the value of the function for two different values of this
coordiante over the difference between the values. Plugging this observation into the previous
inequality yields (for t < 1)

dF (y(t))

dt
=
∑
u∈N

(
xu(t) · ∂F (y)

∂yu

∣∣∣∣
y=y(t)

)

=
∑
u∈N

(
xu(t) ·

F (y(t) ∨ 1{u})− F (y(t))

1− yu(t)

)
≥
∑
u∈N

xu(t) · wu(t) = x(t) · w(t) .

Next, note that one possible candidate to be x(t) is 1OPT since P contains the characteristic
vectors of all the feasible sets. Hence, x(t) · w(t) ≥ 1OPT · w(t). Plugging this into the previous
inequality gives

dF (y(t))

dt
≥ x(t) · w(t) ≥ 1OPT · w(t) =

∑
u∈OPT

[F (y(t) ∨ 1{u})− F (y(t))] (1.18)

=
∑

u∈OPT
E[f(R(y(t) ∨ 1{u}))− f(R(y(t)))] ≥ E[f(R(y(t) ∨ 1OPT ))− f(R(y(t)))]

= F (y(t) ∨ 1OPT )− F (y(t)) ≥ f(OPT )− F (y(t)) ,
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where the penultimate inequality holds by the submodularity of f and the last inequality holds by
its monotonicity.

Inequality 1.18 is a differential inequality with respect to the function F (y(t)). Solving this
inequality for the initial condition F (y(0)) ≥ 0 gives

F (y(t)) ≥ (1− e−t) · f(OPT ) .

The theorem now follows by plugging t = 1 into the last inequality.

Rounding the output of Continuous greedy: We consider next the problem of rounding the
output of Continuous Greedy. In particular, as an illustrative example, let us consider rounding
for Submodular Welfare (SW). Recall that we have already shown (in Section 1.1.2) an embedding
for SW into the general problem (1.16). The natural multilinear relaxation for the embedded form
of SW is as follows.

max F (x) = E[
∑k

i=1 fi({u ∈ N SW : (u, i) ∈ R(x)})]
s.t.

∑k
i=1 x(u,i) ≤ 1 ∀ u ∈ N SW

x(u,i) ≥ 0 ∀ u ∈ N SW, 1 ≤ i ≤ k
Notice that every fractional solution for this relaxation splits each item fractionally among the

k buyers, so that the total fractions of all the buyers add up to at most 1. This means that one can
round such a solution x by assigning each item u ∈ N SW, independently, to at most one user where
the probability that u is assigned to user 1 ≤ i ≤ k is exactly x(u,i). Let us denote the random
output of this rounding process by Rd(x) (the subscript d standards for “dependent” because, unlike
in R(x), here there is a dependency between the rounded values of all the coordinates corresponding
to the same item u). The following lemma shows that this rounding does not loose in expectation.

Lemma 1.17. For every vector x ∈ [0, 1]N obeying
∑k

i=1 x(u,i) ≤ 1 for every item u ∈ N SW,

F (x) = E[
∑k

i=1 fi({u ∈ N SW : (u, i) ∈ Rd(x)})].
Proof. For every given buyer 1 ≤ i ≤ k, every item u ∈ N SW is assigned to i with probability
x(u,i) both by Rd(x) and by R(x). Moreover, in both cases this assignment is independent of the
assignment of the other items of N SW. Hence, for every buyer i, {u ∈ N SW : (u, i) ∈ Rd(x)} has the
same distribution as {u ∈ N SW : (u, i) ∈ R(x)}. The observation now follows by the linearity of the
expectation since:

F (x) = E

[
k∑
i=1

fi({u ∈ N SW : (u, i) ∈ R(x)})

]
=

k∑
i=1

E[fi({u ∈ N SW : (u, i) ∈ R(x)})]

=

k∑
i=1

E[fi({u ∈ N SW : (u, i) ∈ Rd(x)})] = E

[
k∑
i=1

fi({u ∈ N SW : (u, i) ∈ Rd(x)})

]
.

In conclusion, one can get a (1 − 1/e)-approximation algorithm for SW, which improves on the
greedy approach described in Section 1.2.3, using the following two steps. First, use Continuous
Greedy to get a fractional solution y for the multilinear relaxation of SW such that F (y) is at least
(1 − 1/e) times the value of the best assignment. Then, round y randomly and output Rd(y). By
the last lemma, the expected value of this random assignment is equal to F (y); and thus, the
approximation ratio of this algorithm is indeed (1− 1/e).
Remark: The approximation ratio of the above algorithm matches the inapproximability result
of [13] for SW with general k values. Thus, the guarantee of Continuous Greedy cannot be improved
in general since any such improvement (except for a low order terms improvement) will violate the
result of [13].
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1.3.3 Measured Continuous greedy

This section presents a variant of continuous greedy, called Measured Continuous Greedy and
originally suggested by [16], that has several advantages over the original algorithm. The first
advantage is the ability of Measured Continuous Greedy to achieve an improved approximation in
some cases (although, as discussed above, the approximation ratio of Continuous Greedy cannot be
improved for the general case). Intuitively, the improved approximation of Measured Continuous
Greedy is based on the following observation. The analysis of Continuous Greedy shows that the
solution that it maintains at time t has value of at least (1−e−t)·f(OPT ). This guarantee improves
as t grows, and thus, it is best to let the algorithm run for as long as possible. Unfortunately,
Continuous Greedy cannot run after time t = 1 since this might result in an infeasible solution.
Measured Continuous Greedy tries to avoid this problem by increasing the coordinates of its
solution slower, which can sometimes allow it to reach larger values of t. Algorithm 8 is a formal
statement of Measured Continuous Greedy. The parameter T is the amount of time we let the
algorithm run.

Algorithm 8: Measured Continuous Greedy(f, P, T )

1 Let y(0)← 1∅.
2 foreach t ∈ [0, T ) do
3 For each u ∈ N , let wu(t)← F (y(t) ∨ 1{u})− F (y(t)).

4 x(t)← arg maxx∈P {w(t) · x}.
5 Increase y(t) at a rate of dy(t)

dt = (1− y(t)) · x(t).

6 return y(T )

It is not obvious from the description of Measured Continuous Greedy that y(t) is always within
[0, 1]N . The following lemma proves a stronger claim which we use later on.

Lemma 1.18. For every time t ∈ [0, T ] and element u ∈ N , yu(t) ≤ 1− e−t < 1.

Proof. Since x(t) is always in P ⊆ [0, 1]N , yu(t) obeys the differential inequality

dyu(t)

dt
= (1− yu(t)) · xu(t) ≤ 1− yu(t) .

Using the initial condition yu(0) = 0, the solution for this differential inequality is yu(t) ≤ 1 −
e−t.

Let us now analyze the approximation guarantee of Measured Continuous Greedy.

Lemma 1.19. Let f be a non-negative monotone submodular function, and let P be a solvable
convex body. Measured Continuous Greedy outputs a vector y(T ) such that F (y(T )) ≥ (1− e−T ) ·
f(OPT ), where OPT is a solution in I maximizing f(OPT ).

Proof. By the chain rule,

dF (y(t))

dt
=
∑
u∈N

(
dyu(t)

dt
· ∂F (y)

∂yu

∣∣∣∣
y=y(t)

)
=
∑
u∈N

(
(1− yu(t)) · xu(t) · ∂F (y)

∂yu

∣∣∣∣
y=y(t)

)
.

As F is multilinear, its partial derivative with respect to a single coordinate is the difference
between the value of the function for two different values of this coordinate over the difference
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between the values. Plugging this observation into the previous inequality yields

dF (y(t))

dt
=
∑
u∈N

(
(1− yu(t)) · xu(t) · ∂F (y)

∂yu

∣∣∣∣
y=y(t)

)

=
∑
u∈N

(
(1− yu(t)) · xu(t) ·

F (y(t) ∨ 1{u})− F (y(t))

1− yu(t)

)
=
∑
u∈N

xu(t) · wu(t) = x(t) · w(t) .

The rest of the proof is completely analogous to the corresponding part in the proof of Theo-
rem 1.16, and is, thus, omitted.

The values of T for which the output of Measured Continuous Greedy is feasible depend on
the properties of the convex body P . In fact the output of Measured Continuous Greedy might
not be feasible even for T = 1. We demonstrate this issue by studying the values of T for which
Measured Continuous Greedy outputs a feasible solution when given the multilinear relaxation of
SW. As a consequence, we get an improved approximation algorithm for SW.

Lemma 1.20. Given the multilinear relaxation of SW and T = −k ln(1− 1/k), Measured Contin-
uous Greedy outputs a feasible solution of value at least [1− (1− 1/k)k] · f(OPT ).

Proof. Fix an arbitrary item u ∈ N SW. We need to prove that
∑k

i=1 y(u,i)(T ) ≤ 1. For every
1 ≤ i ≤ k and time t ∈ [0, T ) we have

dy(u,i)(t)

dt
= (1− y(u,i)(t)) · x(u,i)(t) .

Solving this differential equation for y(u,i)(t) and plugging the initial condition y(u,i)(0) = 0 yield

y(u,i)(t) = 1− e−
∫ t
τ=0 x(u,i)(τ)dτ . (1.19)

Notice that the sum
∑k

i=1

∫ T
0 x(u,i)(τ)dτ is at most T since

∑k
i=1 x(u,i)(t) ≤ 1 for every time

t ∈ [0, T ). Additionally, the function 1 − e−x is concave. Combining these observations with
Equation (1.19) gives

k∑
i=1

y(u,i)(T ) =

k∑
i=1

[1− e−
∫ T
τ=0 x(u,i)(τ)dτ ] ≤ k[1− e−k−1·

∑k
i=1

∫ T
τ=0 x(u,i)(τ)dτ ]

≤ k[1− e−k−1·T ] = k[1− eln(1−1/k)] = 1 ,

where the penultimate equality follows by plugging in the value of T . It remains to analyze the
quality of the solution y(T ) outputted by Measured Continuous Greedy. By Lemma 1.19,

F (y(T )) ≥ (1− e−T ) · f(OPT ) = [1− ek ln(1−1/k)] · f(OPT ) = [1− (1− 1/k)k] · f(OPT ) .

Lemma 1.17 shows that the fractional solution obtained by Lemma 1.20 can be efficiently
rounded without any loss in the objective, yielding a (1− (1− 1/k)k)-approximation algorithm for
SW. The approximation ratio of this algorithm matches (up to low order terms) the inapproxima-
bility result of [13] for any given value of k. For general values of k this result does not improve
over the (1 − 1/e)-approximation algorithm presented in Section 1.3.2, however, for small values
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of k the improvement is significant. For example, for k = 2 the improved approximation ratio is
1 − (1 − 1/2)2 = 0.75, whereas the algorithm presented previously achieves, even for this case, an
approximation ratio of only (1− 1/e) ∼= 0.632.

An additional advantage of Measured Continuous Greedy is its ability to handle well non-
monotone functions. A convex body P ⊆ [0, 1]N is called down-closed if decreasing the coordinates
of a vector inside it (while keeping them non-negative) can never take the vector outside of P .
Formally, P is down-closed if, for every two vectors x, y ∈ [0, 1]N , x ≤ y and y ∈ P imply x ∈ P .
We prove the following result for down-closed convex bodies.

Theorem 1.21 (Due to [16]). Let f be a non-negative submodular function, and let P be a solvable
down-closed convex body. Then, for T = 1 Measured Continuous Greedy outputs a vector y(1) ∈ P
such that F (y(1)) ≥ 1/e · f(OPT ), where OPT is a solution in I maximizing f(OPT ).

Proof. Recall that x(t) is a vector inside P for every time t ∈ [0, 1], and thus, since P is down-
closed, (1−y(t))·x(t) also belongs to P . Hence, y(1) =

∫ 1
t=0(1−y(t)·x(t))dt is a convex combination

of vectors in P , and therefore, belongs to P by the convexity of P .
Let us now analyze the value of F (y(1)). Repeating the proof of Lemma 1.19 we get

dF (y(t))

dt
= x(t) · w(t) .

As before, one possible candidate to be x(t) is 1OPT since P contains the characteristic vectors of
all the feasible sets. Hence, x(t) · w(t) ≥ 1OPT · w(t). Plugging this into the previous inequality
gives

dF (y(t))

dt
= x(t) · w(t) ≥ 1OPT · w(t) =

∑
u∈OPT

[F (y(t) ∨ 1{u})− F (y(t))]

≥ F (y(t) ∨ 1OPT )− F (y(t)) ≥ f̂(y(t) ∨ 1OPT )− F (y(t)) ,

where f̂ is the Lovász extension of f , the penultimate inequality holds by the submodularity of f
and the last inequality holds by Corollary 1.15. To lower bound the term f̂(y(t)∨1OPT ) we recall
that by Lemma 1.18 every coordinate of y(t) is upper bounded by 1− e−t. Hence,

f̂(y(t) ∨ 1OPT ) =

∫ 1

λ=0
f(Tλ(y(t) ∨ 1OPT ))dλ ≥

∫ 1

λ=1−e−t
f(Tλ(y(t) ∨ 1OPT ))dλ = e−t · f(OPT ) .

Plugging the last inequality into the previous one gives

dF (y(t))

dt
≥ e−t · f(OPT )− F (y(t)) ,

which is a differential inequality with respect to the function F (y(t)). Solving this inequality for
the initial condition F (y(0)) ≥ 0 gives

F (y(t)) ≥ te−t · f(OPT ) .

Finally, the theorem follows by plugging t = T = 1 into the last inequality.

Theorem 1.21 sets T to 1. Like in the monotone case, it is often possible to get a feasible
output also for other values of T . However, this does not seem to be beneficial for non-monotone
functions as the formula te−t used by the proof of Theorem 1.21 to determine the approximation
ratio of Measured Continuous Greedy attains its maximal value at t = 1.
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Implementation of Measured Continuous Greedy requires discretization, which reduces the
approximation ratio by a low order term. Like in the case of Continuous Greedy, this loss in
the approximation ratio can be fixed by an appropriate preprocessing for monotone objective
functions. However, this is not known to be the case for non-monotone functions. Hence, for
polynomial time implementations of Measured Continuous Greedy, the guarantee of Theorem 1.21
should be reduced from 1/e ·f(OPT ) to (1/e−o(1)) ·f(OPT ), where o(1) is a term which diminishes
when n = |N | increases.

1.3.4 Contention Resolution Schemes

Contention resolution schemes, originally proposed by [17], are a framework for rounding fractional
solutions under submodular and linear objective functions. As such, contention resolution schemes
play important role in many submodular maximization algorithms that are based on the standard
algorithmic scheme of first finding an approximately optimal fractional solution and then rounding
it. Moreover, contention resolution schemes found uses also outside the world of submodular
maximization (see, e.g., [18, 19, 20]).

We begin the presentation of the contention resolution schemes framework with some defini-
tions.

Definition 1.6. (Contention Resolution Scheme) A contention resolution scheme (CRS) for a
given down-closed body6 P ⊆ [0, 1]N is a (possibly random) function πx : 2N → 2N , where x ∈ P
and A ⊆ N that satisfies that for every x ∈ P and A ⊆ N :

1. πx(A) ⊆ A.

2. The characteristic vector of πx(A) always belongs to P .

Intuitively, we think of πx(R(x)) as a random rounding for the fractional point x ∈ P . Notice
that this is indeed a rounding in the sense that it gets as input a possibly fractional point x ∈ P
and outputs a set corresponding to an integral point in P . Given this point of view, we can think
of the parameter x of the CRS as informing the CRS about the distribution of its other parameter,
and allowing it to choose a response for every given input set which yields a good (in some sense)
rounding overall. To get some guarantee on the quality of the rounding induced by a CRS, we
first need to define additional properties of CRSs.

Definition 1.7. Let P ⊆ [0, 1]N be a down-closed body and let π be a CRS for P .

• π is c-balanced (for c ∈ [0, 1]) if Pr[u ∈ πx(R(x))] ≥ c · xu for every element u ∈ N and
vector x ∈ P .

• π is monotone if Pr[u ∈ πx(A)] ≥ Pr[u ∈ πx(B)] whenever x ∈ P and A ⊆ B ⊆ N .

It is immediate that a c-balanced CRSs can be used for rounding solutions under a linear
function objective as follows. Let f : 2N → R≥0 be a non-negative linear function, and let F be
its the natural extension. Then, E[f(πx(R(x)))] ≥ c · F (x) for every x ∈ P . We are interested
in proving a similar claim for a non-negative submodular function f and its multilinear extension
F . Unfortunately, requiring the CRS to be c-balanced is not enough even when f is a monotone
function. This is demonstrated by the example described in Figure 1.1. Notice that in this
example π is (1/2)-balanced (at least for the x given in this figure) since Pr[u ∈ πx(R(x))] = Pr[v ∈
πx(R(x))] = 1/4 = xu/2 = xv/2. However, E[f(πx(R(x)))] = 1/4 6≥ F (x)/2 = 3/8.

6It is usually assumed that P is a down-closed polytope, however, this assumption is not essential for the results
we present in this section.



1.3 CONTINUOUS METHODS R-1-27

Instance CRS
N = {u, v} πx(∅) = ∅
f(A) = min{|A|, 1} ∀ A ⊆ N πx({u}) = ∅
P = [0, 1]N πx({v}) = ∅
x = (1/2, 1/2) πx({u, v}) = {u, v}

Figure 1.1: An example of a c-balanced CRS for which E[f(πx(R(x)))] ≥ c · F (x) is not true.

The problem, intuitively, is that the CRS π described by Figure 1.1 is an unnatural choice for
a rounding scheme. We expect a rounding scheme to be more liberal in removing elements when
there are more elements in its input set (and thus, the set is more likely to violate down-closed
constraints). However, the behavior of π is quite the opposite. Namely, π keeps elements only when
its input set contains both u and v. This intuitive idea is formalized by the monotonicity property
in Definition 1.7 (which is violated in this example). Assuming both properties of Definition 1.7
(c-balance and monotonicity) allow us to obtain the desired result for submodular functions.

Theorem 1.22 (Due to [17]). Let f : 2N → R≥0 be a non-negative monotone submodular function.
Let π be a monotone c-balanced CRS for a down-closed body P . Then, E[f(πx(R(x)))] ≥ c · F (x)
for every x ∈ P .

Proof. Let A ∼ R(x) be a random set distributed like R(x), and for every 1 ≤ i ≤ n let Xi be an
indicator for the event that ui ∈ πx(A), and let Bi = {u1, . . . , ui}. Using this notation we get for
every 1 ≤ i ≤ n:

EA∼R(x)[f(πx(A) ∩Bi)−f(πx(A) ∩Bi−1)] = E[Xi · f(ui | πx(A) ∩Bi−1)]
≥ E[Xi · f(ui | A ∩Bi−1)] = E[Pr[ui ∈ πx(A)] · f(ui | A ∩Bi−1)]
≥ E[Pr[ui ∈ πx(A)]] · E[f(ui | A ∩Bi−1)]
≥ cxui · E[f(ui | A ∩Bi−1)] .

The first inequality follows by submodularity since πx(A) ⊆ A. The second inequality follows by
the FKG inequality since Pr[ui ∈ πx(A)] is a non-increasing function of A due to the monotonicity
of π and f(ui | A∩Bi−1) is also a non-increasing function of A due to the submodularity of f . The
final inequality follows since π is c-balanced. Summing up the above inequality for all 1 ≤ i ≤ n
we get

EA∼R(x)[f(πx(A))] = E[f(πx(A) ∩Bn)] = f(∅) +

n∑
i=1

EA∼R(x)[f(πx(A) ∩Bi)− f(πx(A) ∩Bi−1)]

≥ f(∅) +

n∑
i=1

cxui · E[f(ui | A ∩Bi−1)] ≥ c · F (x) ,

where the last inequality holds since the non-negativity of f guarantees that f(∅) ≥ c · f(∅).

There is an extension of Theorem 1.22 for non-monotone submodular functions. The only
difference between this extension and the original theorem is that it requires the output of the
CRS to go through an additional post-processing step which might remove from it additional
elements.
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Theorem 1.23 (Due to [17]). Let f : 2N → R≥0 be a non-negative submodular function. Let π be
a monotone c-balanced CRS for a down-closed body P . Then, there exists a CRS π′ which can be
efficiently computed (given that π can) such that E[f(π′x(R(x)))] ≥ c · F (x) for every x ∈ P .

We do not prove Theorem 1.23 in this survey. However, we would like to point out that π′ is very
simple. It first apply π, and then it simply scans the elements left in some predetermined order,
and removes every element whose marginal contribution to the subset of the elements scanned so
far is negative.

Contention Resolution Scheme for matchings: At this point we would like to give an
example of a CRS and analyze its properties. The down-closed body of our example CRS is the
natural relaxation of matching. More formally, given a graph G = (V,E), we define the polytope
P to be

(P )
∑

u∈δ(a) xu ≤ 1 ∀ a ∈ V
xu ≥ 0 ∀ u ∈ E ,

where δ(a) stands for the set of edges emanating from node a. Notice that P is indeed a down-
closed body. The CRS we define for P is given by Algorithm 9. The technique used by this CRS
was first given by [16] (see also [21] for more details). It is important to keep in mind while reading
Algorithm 9 and its analysis that the ground set here is the set of edges E, and thus, we use the
term “edge” to denote the elements of this ground set.

Algorithm 9: CRS for Matching(x,A)

1 Let B be a subset of A containing every edge u of A with probability (1− e−xu)/xu,
independently.

2 Let C ← ∅.
3 For each u ∈ B: Add u to C only if no other edge of B shares a node with u.
4 return C.

Note, for example, that if two edges in B share a node, then both of them are not added to C,
although it is possible that one of them could be added without violating the matching constraint.
This unnatural behavior is necessary to guarantee the monotonicity of the CRS (see Lemma 1.24).
One can verify that Algorithm 9 is indeed a CRS for P , i.e., it always outputs a subset of the
edges in its input set, and the edges in the output subset form a legal matching. The next lemma
analyzes the properties of this CRS.

Lemma 1.24. Algorithm 9 is a monotone e−2-balanced CRS.

Proof. Observe that every edge of A is copied to B with a probability independent of the mem-
bership of other edges in A. Hence, given that an edge u belongs to A, adding other edges to A
can only increase the probability that some edge adjacent to u ends up in B. Since u belongs to
output set C if and only if it is in B and no other edge of B shares a node with it, we get that
adding other edges to A can only decrease the probability of u to belong to the output set. Thus,
by definition, the CRS defined by Algorithm 9 is monotone.

It remains to analyze the balance of this CRS. Consider an arbitrary edge u ∈ E. We assume
in the rest of the proof that A ∼ R(x), and our objective is to show that Pr[u ∈ C] ≥ e−2 ·xu. The
probability that u ends up in B is

Pr[u ∈ B] = Pr[u ∈ A] · 1− e−xu
xu

= 1− e−xu .
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Polytope Balance Reference

Matching Polytope (b, e−2b)-balanced [16]

Matroid Polytope (b, (1− e−b)/b)-balanced [17]

The natural relaxation of a knapsack
(1− ε, 1− ε)-balanced7 [17]

constraint

The natural relaxation of “Independent
(b, e−b)-balanced [21]

set in an interval graph”

Table 1.1: The parameters of a few known CRSs. All the CRSs in this table are monotone and
can be calculated efficiently.

Let a and b denote the two end nodes of u. Since the probability of every edge to get to B is
independent, the probability that no other edge hitting a is in B is∏

v∈δ(a)−u

Pr[v 6∈ B] =
∏

v∈δ(a)−u

(1− Pr[v ∈ B]) =
∏

v∈δ(a)−u

e−xv = e−
∑
v∈δ(a)−u xv ≥ exu−1 ,

where the inequality holds since x belongs to the polytope P . Similarly, we get that with probability
at least exu−1 no edge hitting b belongs to B. As these events are independent (no edge other than
u hits both a and b), we get

Pr[u ∈ C] = Pr[e ∈ B] ·

 ∏
v∈δ(a)−u

Pr[v 6∈ B]

 ·
 ∏
v∈δ(b)−u

Pr[v 6∈ B]


≥ (1− e−xu) · (exu−1)2 ≥ (exu − 1) · e−2 ≥ xu · e−2 .

In the last proof we used the fact that
∑

u∈δ(a) xu ≤ 1 for every vector x ∈ P and node
a ∈ V . Observe that we would have gotten a better balance guarantee if we had

∑
u∈δ(a) xu ≤ b

for some b ∈ (0, 1). In other words, the balance of the CRS improves when x ∈ bP . This common
phenomenon motivates the following definition.

Definition 1.8. ((b, c)-balanced CRS) A CRS π for a down-closed body P ⊆ [0, 1]N is (b, c)-
balanced (for b, c ∈ [0, 1]) if Pr[u ∈ πx(R(x))] ≥ c · xu for every element u ∈ N and vector x ∈ bP .

A slight modification of the proof of Lemma 1.24 shows that the CRS given as Algorithm 9 is
in fact (b, e−2b)-balanced for every b ∈ [0, 1]. The parameters of a few other known CRSs are given
by Table 1.1. One can derive from these CRSs new CRSs for more involved constraints using the
following important lemma.

Lemma 1.25. (Combining CRSs) Let π1 be a monotone (b, c1)-balanced CRS for a down-closed
body P1, and let π2 be a monotone (b, c2)-balanced CRS for a down-closed body P2. Then, there is a
monotone (b, c1c2)-balanced CRS π for P1 ∩P2. Moreover, π can be computed efficiently whenever
π1 and π2 can be computed efficiently.

Proof. For every vector x ∈ P1 ∩ P2, we define πx(A) = π1x(A) ∩ π2x(A). One can verify that π
is indeed a CRS whenever π1 and π2 are CRSs. To see that π is monotone, consider two sets

7ε can be any constant greater than 0. The use of this CRS requires a pre-processing step whose time complexity
depends on ε.
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A ⊆ B ⊆ N , an element u ∈ A and some vector x ∈ P1 ∩ P2. Since π1x(A) and π2x(A) are
independent when A is deterministic, the monotonicity of π1 and π2 implies

Pr[u ∈ πx(A)] = Pr[u ∈ π1x(A) ∩ π2x(A)] = Pr[u ∈ π1x(A)] · Pr[u ∈ π2x(A)]

≥ Pr[u ∈ π1x(B)] · Pr[u ∈ π2x(B)] = Pr[u ∈ π1x(B) ∩ π2x(B)] = Pr[u ∈ πx(B)] .

It remains to analyze the balance of π. Let A be a set distributed like R(x). By the monotonicity
of π1 and π2, the probabilities of the two events u ∈ π1x(A) and u ∈ π2x(A) are both non-increasing
in A. Hence, by the FKG inequality, for every vector x ∈ bP and element u such that xu > 0,

Pr[u ∈ πx(R(x))] = xu · Pr[u ∈ πx(A) | u ∈ A] = xu · Pr[u ∈ π1x(A) ∧ u ∈ π2x(A) | u ∈ A]

≥ xu · Pr[u ∈ π1x(A) | u ∈ A] · Pr[u ∈ π2x(A) | u ∈ A]

=
1

xu
· Pr[u ∈ π1x(R(x))] · Pr[u ∈ π2x(R(x))] ≥ xu · c1c2 .

To complete the proof that π is (b, c1c2)-balanced we observe that the inequality Pr[u ∈ πx(R(x))] ≥
xu · c1c2 is trivial for an element u such that xu = 0.

Using Lemma 1.25 it is easy to derive CRSs for relaxations of very involved constraints. For
example, plugging CRSs from Table 1.1 into Lemma 1.25 can yield a monotone (b, e−4b − ε)-
balanced CRS for a relaxation of a constraint allowing a set of edges only if it is a legal matching
in two different graphs (over the same set of edges) and also obeys some knapsack constraint.

Finally, once we have a monotone (b, c)-balanced CRS for a solvable down-closed convex body
P which is a relaxation of some constraint, it is possible to get an approximation algorithm for
this constraint as summarized by the following theorem.

Theorem 1.26. Let P be a solvable down-closed convex body, and let π be a monotone (b, c)-
balanced CRS for it. Then,

• There is a cb-approximation algorithm for maximizing a linear function over the integral
points of P .

• There is a (cbe−b)-approximation algorithm for maximizing a submodular function over the
integral points of P .

• There is a c(1 − e−b)-approximation algorithm for maximizing a monotone submodular
function over the integral points of P .

Proof. Consider first a linear objective function f . Since we assumed P is solvable, it is possible
to find a fractional solution x ∈ P maximizing f . Since bx ∈ bP , we can feed bx into the CRS to
get an integral solution whose value is, in expectation, at least c · f(bx) = bc · f(x). Hence, the
approximation ratio of the algorithm is bc.

For a submodular objective function it is possible to find an approximately optimal fractional
solution x ∈ P using Measured Continuous Greedy. We can then use bx as our vector in bP ,
and the approximation ratio of this vector is be−1 for non-monotone functions and b(1− e−1) for
monotone functions. However, there is a better way. If one stops Measured Continuous Greedy
at time T = b, then its output is a vector which already belongs to bP . The approximation ratio
of this vector is be−b for non-monotone functions and 1 − e−b for monotone functions. Feeding
this vector into the monotone (b, c)-balanced CRS we have yields an approximation algorithm
whose approximation ratio is c · be−b for non-monotone functions and c(1 − e−b) for monotone
functions.
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u v

Figure 1.2: A graph inducing a simple unconstrained submodular maximization instance.

1.3.5 Inapproximability Results

In this section we describe the symmetry gap technique (originally proposed by [22]) which can
be used to prove many of the state of the art inapproximability results in the field of submodular
maximization. We begin by studying a very simple instance of unconstrained submodular maxi-
mization induced by the cut function of the graph depicted in Figure 1.2. Formally, our instance
contains a ground set of two elements N = {u, v}. The function defined over this ground set is

f(A) =

{
1 if |A| = 1 ,

0 otherwise .

It is easy to verify that this function is indeed non-negative and submodular. One can also
observe that u and v play completely symmetric roles in this instance. Let us assume, for the
moment, that an algorithm for unconstrained submodular maximization must output a vector
x ∈ [0, 1]N which is symmetric with respect to every symmetry that its input instance have. In
particular, for the instance we consider, it must be that xu = xv = y for some value y ∈ [0, 1]. The
value of any such symmetric vector, with respect to the multilinear extension F of f , is

F (x) = F (y · 1N ) = 2y(1− y) ≤ 1

2
.

On the other hand, there is an integral solution for this instance (for example, the vector (1, 0))
whose value is 1. Hence, there is a multiplicative gap of (1/2) : 1 = 1/2 between the best symmetric
and non-symmetric (feasible) fractional solutions of this instance. This gap is called the symmetry
gap.

On the face of it, the symmetry gap does not seem to be related to inapproximability. After
all, real algorithms output integral solutions, and these solutions are allowed to be asymmetric.
However, it turns out that there is a way to force polynomial time algorithms to output a close to
symmetric fractional solution. As a first step in that direction, let us “blow” each element of the
above instance into t elements. This yields a new ground set that we denote by Nt = {ui, vi}ti=1.
The objective function that we associate with this ground set is

ft(A) = F (t−1 · |A ∩ {ui}ti=1|, t−1 · |A ∩ {vi}ti=1|) .

Informally, every set A ⊆ Nt is interpreted as a fractional solution over the ground set N , where
the fraction of u is proportional to the number of {ui}ti=1 elements in A, and the the fraction of
v is proportional to the number of {vi}ti=1 elements in A. It can be verified that the resulting
objective function ft is non-negative and submodular whenever the objective function f of the
original instance has these properties (this follows, for example, from the more general results
of [22]).

Assume that the elements of Nt are assigned names, uniformly at random, from the list 1, 2, . . . ,
2t, and the algorithm can access the elements only via these names (i.e., the algorithm has no
access to the original names of the elements). The randomness of the names assignment means that



1.3 CONTINUOUS METHODS R-1-32

the algorithm does not know which of the elements descend from u and which descend from v. If
the algorithm fails to find out more information about the origin of the different elements, then its
output set will necessarily be chosen independently of this information. Thus, assuming t is large,
the output set is likely to contain a similar number of elements descending from u and v. In other
words, if the algorithm cannot find information about the origin of the different elements, then its
output is close to being a symmetric fractional solution for the original (non-blown) instance; and
thus, its approximation ratio cannot be significantly better than the symmetry gap.

The only way in which the algorithm can gather information is through the value oracle. To
query this oracle the algorithm constructs a set A and forwards it to the oracle. Note that when
the number of element in A originating from u and v is equal, then the response of the oracle is

F (t−1 · |A|/2, t−1 · |A|/2) = 2 · |A|
2t

(
1− |A|

2t

)
=
|A|
t

(
1− |A|

2t

)
,

which is a function of the size of A alone. Hence, queries about sets with equal number of
elements originating from u and v does not give the algorithm any information about the origin
of the different elements. Thus, getting information about the origin of the elements requires the
algorithm to construct a set which is unbalanced in terms of the number elements in it originating
from u and v.

By a slight modification of ft, one can further guarantee that getting information about the
origin of the elements requires the algorithm to construct a set which is significantly unbalanced
in terms of the number elements in it originating from u and v. However, such a set cannot be
constructed without prior knowledge about the origin of elements because any set constructed
without such knowledge is likely, for large values of t, to contain a similar number of elements
descending from u and v.

This concludes our intuitive explanation about how to convert the symmetry gap of uncon-
strained submodular maximization into an inapproximability result. The next theorem, due to [6],
gives a formal proof, based on this idea, of this inapproximability.

Theorem 1.27 (Due to [6]). For every constant ε > 0, there is no polynomial time (1/2 + ε)-
approximation algorithm for unconstrained submodular maximization.

Proof. For simplicity, we prove the equivalent claim that there is no polynomial time (1/2 + 3ε)-
approximation algorithm for unconstrained submodular maximization. This claim is meaningless
for ε > 1/6, thus, we assume ε ∈ (0, 1/6]. Additionally, we also assume 1/ε is integral (otherwise,
one can replace ε with some value from the range [ε/2, ε] having this property).

Let t be an arbitrary large positive integer dividable by 1/ε (meaning that εt is integral), and
let Nt = {1, 2, . . . , 2t}. Let U ⊆ Nt be an arbitrary subset of size t. Intuitively, the elements of
U are the elements originating from u in the above general description of the proof. For every set
A ⊆ Nt let uA = |A∩U | and vA = |A\U |. Using this notation we define a function ft : 2Nt → R≥0
as follows.

ft(A) =

{
uA+vA

t

(
1− uA+vA

2t

)
= |A|

t

(
1− |A|2t

)
when |uA − vA| ≤ εt ,

uA
t

(
1− vA

t

)
+ vA

t

(
1− uA

t

)
+ ε2

2 −
ε|uA−vA|

t when |uA − vA| ≥ εt .

The definition of this function in the case |uA − vA| ≥ εt is identical to the definition of the
function ft from the intuitive description above up to the additional terms involving ε. These
additional terms change the maximum of the function very little, but allow for the two cases of the
definition to combine into one submodular function. For ease of the reading, we omit the technical
verification of the following claim.
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Claim. ft is a non-negative submodular function. Its maximum value 1 + ε2/2− ε ∈ (1− ε, 1) is
attained both when uA = t and vA = 0 and when uA = 0 and vA = t.

The definition of ft depends on the set U which we assumed so far to be fixed. From now
on we assume it is a uniformly random subset of Nt of size t. Hence, ft is now a sample out
of a distribution of non-negative submodular functions. All the functions in the support of this
distribution share the same maximum value. We would like to show that, given access to a function
ft sampled from this distribution, no polynomial time algorithm can output, in expectation, a
solution of value at least 1/2 + ε times this optimal value (where the expectation is over the
randomness of U and the random coins of the algorithm). By Yao’s principal, it is enough to
prove this for deterministic algorithms (if there is a single distribution over instances which is
hard for any given polynomial time deterministic algorithm, then Yao’s principal guarantees that
this distribution is hard also for polynomial time randomized algorithms); and thus, we restrict
ourselves to deterministic algorithms in the rest of the proof.

Consider an arbitrary polynomial time deterministic algorithm ALG for unconstrained sub-
modular maximization, and consider an execution of this algorithm on the instance induced by
the following non-negative submodular function.

gt(A) =
|A|
t

(
1− |A|

2t

)
.

Let Q1, Q2, . . . , Qr be the list of sets that ALG passes as queries to its value oracle given this
instance. Since ALG is polynomial, r (the number of queries) is bounded by a polynomial function
of t. Additionally, we can assume, without loss of generality, that the output set of ALG is one of
the sets in this list. For every set Qi, uQi = |Qi ∩U | has a hypergeometric distribution, and thus,
by bounds given in [23] (which are based on results of [24, 25]) we get

Pr[|uQi − vQi | ≥ εt] = Pr[|2|Qi ∩ U | − |Qi|| ≥ εt] = Pr

[
||Qi ∩ U | − E[|Qi ∩ U |]| ≥ |Qi| ·

εt

2|Qi|

]
≤ 2e

−2·
(

εt
2|Qi|

)2
·|Qi| = 2e

− ε2t2

2|Qi| ≤ 2e−ε
2t/4 ,

where the last inequality holds since |Qi| ≤ |Nt| = 2t. Notice that the event |uQi − vQi | ≤ εt
implies ft(Qi) = gt(Qi). Hence, what we proved is in fact that ft(Qi) = gt(Qi) with probability
at least 1− 2e−ε

2t/4 for every given set Qi. By the union bound, we get that, with probability at
least 1 − 2re−ε

2t/4, ft(Qi) = gt(Qi) for every 1 ≤ i ≤ r. Let us denote by E the last event (i.e.,
the event that ft(Qi) = gt(Qi) for every 1 ≤ i ≤ r).

The main observation of the proof is that when E happens ALG has an identical execution
given either ft or gt. Thus, E guarantees that given both inputs ALG outputs the same output
set, and this set has the same value under both functions because we assumed that it is one of
the sets in the list Q1, Q2, . . . , Qr. Since the maximum value of gt is 1/2, this implies that ALG
outputs a set of value at most 1/2 whenever E occurs. We can now upper bound the expected value
of the output of ALG given ft (where the expectation is over the randomness of U) by

1

2
· Pr[E ] + max

A⊆Nt
ft(A) · (1− Pr[E ]) ≤ 1

2
· 1 + 1 · (1− Pr[E ]) ≤ 1

2
+ 2re−ε

2t/4 ≤ 1

2
+ ε ,

where the last inequality holds for large enough t since r is polynomial in t. On the other hand,
by the claim the maximum value of ft is at least 1− ε, and thus, the approximation ratio of ALG
is worse than

1/2 + ε

1− ε
≤ 1

2
+ 3ε .
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This completes the proof of the theorem by the above discussion.

In general, the work of [22] shows that the symmetry gap can be converted into an inapproxima-
bility result in many cases. We do not state the results of [22] explicitly here, however, intuitively,
the conversion of the symmetry gap into an inapproximability result can be done whenever the
following two conditions hold.

• The symmetries of the objective function that one uses in order to calculate the symmetry
gap cannot be broken by the algorithm using some bypass. In particular, the constraint of
the problem should obey these symmetries as well.

• As seen in the proof of Theorem 1.27, the hardness result applies in fact to a distribution
over blown up instances. Hence, it should be possible to somehow present blown up instances
as new instances of the original problem for which the inapproximability result should apply.

To better understand these conditions, we now give an informal proof based on the symme-
try gap technique for another inapproximability result—the problem of maximizing a monotone
submodular function subject to a cardinality constraint. Consider an instance of this problem in
which one is allowed to pick up to one element out of some ground set N of size n. The objective
function of the instance is the monotone submodular function f(A) = min{|A|, 1}. Clearly all the
elements of the ground set are symmetric with respect to both this objective function and the
constraint. Hence, any symmetric fractional solution must assign an identical value to each one
of the elements. To keep this fractional solution feasible, this identical value must be at most 1/n.
Thus, the best feasible symmetric fractional solution is n−1 · 1N , and its value with respect to the
multilinear extension F of f is

F (n−1 · 1N ) = 1− (1− 1/n)n .

One the other hand, any set containing a single element of N is feasible and has a value of 1.
Hence, the symmetry gap of this instance of maximizing a monotone submodular function subject
to a cardinality constraint is [1− (1− 1/n)n]/1 = 1− (1− 1/n)n.

When blowing up the above instance by a factor of t one gets a new instance with a ground set
of size nt in which a feasible solution contains at most t elements. Clearly, this blown up instance is
a valid instance of maximizing a monotone submodular function subject to a cardinality constraint,
and thus, the two intuitive conditions given above hold. This means that the symmetry gap we
have shown translates into an inapproximability result for this problem. In conclusion, we got
that no polynomial time algorithm can achieve an approximation ratio of 1 − (1 − 1/n)n + ε for
any constant ε > 0 and integer n. As (1 − 1/n)n approaches 1/e when n grows, this implies that
no polynomial time algorithm can achieve an approximation ratio of 1 − 1/e + ε for any constant
ε > 0. This inapproximability result is optimal (as shown in Section 1.2.1). It was first proved
by [2] using a different technique.

It is interesting to note that the inapproximability result proved by Theorem 1.27, like all
the other inapproximability results discussed in this chapter, is unconditional. In particular, this
inapproximability result does not relay on complexity assumptions such as P 6= NP . Instead, its
proof argues that a polynomial number of value oracle queries does not suffice in order to distinguish
between two functions ft and gt having very different maximum values—which is an information
theoretic argument. The use of this information theoretic argument means that our assumption
that the objective function can be accessed only via a value oracle is essential for the proof. More
specifically, the proof does not hold if the objective function is specified to the algorithm using some
succinct representation. Dobzinski and Vondrák [26] showed that inapproximability results based
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on the symmetry gap, such as the inapproximability result proved by Theorem 1.27, can usually be
modified to allow some succinct representation of the input functions. This modification, however,
comes at the cost of loosing the unconditionality of the result and relaying on the widely believed
complexity assumption RP 6= NP .

1.3.6 Notes and Open Questions

Measured Continuous Greedy: The 1/e-approximation guarantee of Measured Continuous
Greedy for non-monotone functions on down-closed convex body P is not known to be the best
possible. For this problem it is only known that no polynomial time algorithm can output a
fractional solution of value at least 0.478 · f(OPT ) [9]. Closing the gap between the guarantee
of Measured Continuous Greedy and this impossibility result is one of the most important open
problems related to the topics presented in this section.

Rounding Techniques: The fractional solutions produced by Continuous Greedy and Measured
Continuous Greedy are of little use without rounding algorithms that convert their fractional
solutions into integral solutions. In Section 1.3.4 we presented a powerful technique which yields
rounding algorithms for many types of constraints. We would like to mention a few rounding
algorithms which are based on other techniques.

The problem of maximizing a submodular function subject to a matroid constraint8 was one
of the first problems studied in the context of submodular functions maximization [8]. Matroid
constraint generalizes, for example, both the cardinality constraint and the constraints in SW. Two
rounding algorithms called Pipage Rounding and Swap Rounding were suggested by [14] and [27],
respectively, for the multilinear relaxation of this problem in which the convex body P is the
matroid polytope. Both rounding techniques loose nothing in the objective, and thus, yield an
optimal (1 − 1/e)-approximation algorithm for maximizing a non-negative monotone submodular
function subject to a matroid constraint as well as a (1/e − o(1))-approximation for the non-
monotone counterpart of this problem. Swap Rounding, suggested later, is faster than Pipage
Rounding and also enjoys additional concentration bounds which make it more suitable for some
applications.

Kulik et al. [28] designed a rounding algorithm for the natural multilinear relaxation of the
problem of maximizing a non-negative monotone submodular function subject to a constant num-
ber of knapsack constraints. This rounding algorithm looses only a factor of 1 − ε (for any fixed
ε > 0), and thus, combined with Continuous Greedy, implies (1 − 1/e − ε)-approximation for this
problem. Notice that this result is optimal up to the term ε since the problem generalizes max-
imization of a submodular function subject to a cardinality constraint. In a later work Kulik et
al. [29] extended their rounding algorithm also to non-monotone functions, which, combined with
Measured Continuous Greedy, yields a (1/e − ε)-approximation algorithm for the non-monotone
counterpart of the above problem.

Inapproximability: Despite its origin in the field of submodular maximization, the symme-
try gap technique found some applications also in the study of submodular minimization prob-
lems [30].

8Unfortunately, the definition of matroids is outside the scope of this survey; however, we mention a few results
concerning matroid constraints for the sake of more advanced readers.
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