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Abstract

We study the following online problem. There are n advertisers. Each advertiser ai has a
total demand di and a value vi for each supply unit. Supply units arrive one by one in an online
fashion, and must be allocated to an agent immediately. Each unit is associated with a user, and
each advertiser ai is willing to accept no more than fi units associated with any single user (the
value fi is called the frequency cap of advertiser ai). The goal is to design an online allocation
algorithm maximizing the total value.

We first show a deterministic 3/4-competitiveness upper bound, which holds even when all
frequency caps are 1, and all advertisers share identical values and demands. A competitive ratio
approaching 1 − 1/e can be achieved via a reduction to a different model considered by [Goel
and Mehta, 2007]. Our main contribution is analyzing two 3/4-competitive greedy algorithms
for the cases of equal values, and arbitrary valuations with equal integral demand to frequency
cap ratios. Finally, we give a primal-dual algorithm which may serve as a good starting point
for improving upon the ratio of 1− 1/e.

Keywords: Competitive analysis, Frequency capping, Advertising, Online allocation

1 Introduction

Display advertising, consisting of graphic or text-based ads embedded in webpages, constitutes a
large portion of the revenue from Internet advertising, totaling billions of dollars in 2008. Display,
or brand, advertising is typically sold by publishers or ad networks on a pay-per-impression basis,
with the advertiser specifying the total number of impressions she wants (the demand) and the
price she is willing to pay per impression.1

Since display ads are sold on a pay-per-impression rather than on a pay-per-click or pay-per-
action basis, effective delivery of display ads is very important to maximize advertiser value — each
impression that an advertiser pays for must be shown to as valuable a user as possible. One aspect
of effectively delivering display ads, which has been widely studied, is good targeting — matching
ads to users who are likely to be responsive to the content of the ad. Another very important, but
less studied, aspect is limiting user exposure to an ad - displaying the same ad to a user multiple
times diminishes value to the advertiser, since the incremental benefit from repeatedly displaying
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the same ad to a user is likely to be small (a user is unlikely to react to an ad after he has seen it
a few times).

The notion of limiting the number of times a user is exposed to a particular ad is called frequency
capping2, and is often cited as a way to avoid banner ad burnout. That is, frequency capping
prevents ads from being displayed repeatedly to the point where visitors are being overexposed,
and response drops3. Serving frequency capped ads is a very real requirement to maximize the
value delivered to display advertisers, particularly in the pay-per-impression structure of the display
advertising market. This is recognized by a number of publishers and ad networks (for instance,
RightMedia, Google and Yahoo!) who already offer, or implicitly implement, frequency capping for
their display advertisers.

Serving display ads subject to a frequency capping constraint poses an online assignment prob-
lem since the supply of users, or impressions, is not known to the ad server in advance. How should
the ad server allocate impressions to advertisers when it does not know which users’ impressions will
arrive in the future? In this paper, we study the simplest abstractions of the assignment problems
motivated by frequency capping.

Problem Statement. There are n advertisers. Advertiser i has value per impression vi, which is
the price she is willing to pay for an impression, and a demand di, which is the maximum number of
impressions she is interested in. In addition, she also has a frequency cap fi, which is the maximum
number of times her ad can be displayed to the same user. That is, advertiser ai pays vi only for
impressions from users who have not seen her ad more than fi times. The set of advertisers, and
their parameters, is known to the ad server in advance.

Impressions from users arrive online. We say an advertiser is eligible for an impression if she
still has leftover demand, and has not yet exhausted her frequency cap for the user associated with
this impression. When an impression arrives, the ad server must immediately decide which ad of
which advertiser, among the set of eligible advertisers, to display for that impression. The total
revenue obtained by an algorithm is the sum of the revenues from all impressions it allocates. We
want to design algorithms that are competitive against the optimal offline allocation, which knows
the supply of impressions (with their associated users) in advance. We note that this problem is
captured by the model of [Goel and Mehta, 2007], see §1.1 for more details.

In the absence of the frequency capping constraints (fi = ∞), the natural greedy algorithm,
assigning each arriving impression to the eligible advertiser with the highest per-impression value
vi, is optimal. However, with the frequency capping constraint, the ad server faces a tradeoff
between assigning an arriving impression to an advertiser with high vi but large frequency cap
(since the supply can stop anytime) and a lower value advertiser with a smaller frequency cap
(since small fi means this advertiser needs to be assigned to many distinct users). In fact, even
when all advertisers have identical values (with arbitrary tie breaking), the greedy algorithm is not
optimal, as the following example shows: there are two advertisers, the first with v1 = 1, f1 = n,
and the second with v2 = 1− ϵ and f2 = 1; both advertisers have demand n (the 1− ϵ is used for tie
breaking). The sequence of users is u1, . . . , un, un+1, . . . , un+1, where the last user appears n times
(n impressions). The greedy allocation gets a value of n+1, whereas the optimal offline allocation
gets 2n.

As the next example shows, however, it is not even the different frequency caps that lead to the
suboptimality of the greedy algorithm: suppose there are n+ 1 advertisers each with fi = 1. The

2See, e.g., www.marketingterms.com/dictionary/frequency cap.
3While it might be argued that displaying an ad more than once to a user reinforces the advertiser’s message,

repeated display without an upper limit clearly diminishes value.
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first n advertisers have value 1 and demand 1, and the last advertiser has value 1−ϵ and demand n.
With the same arrival sequence of users, a greedy allocation, again, gets a value of n+ 1, whereas
the optimal value is 2n. In fact, as we will show in §3, even when all values and demands are equal
and all frequency caps are 1, no deterministic algorithm can have a competitive ratio better than
3/4.

Distinction from Online Matching. Finding a matching in a bipartite graph, where one
side is known and the other side is exposed one vertex at a time, is known as online matching.
While the problem of online allocation with frequency capping constraints appears to be similar
to online matching, they are actually quite different. In the frequency capping problem, a-priori
each impression can be assigned to any of the advertisers. Now, as the impressions arrive, in
the language of online matching, the existence of an edge between an advertiser and an arriving
impression depends on the previous assignments made by the algorithm because of the frequency
capping constraint. Specifically, if the algorithm has already assigned enough impressions from
user j to advertiser i, or has exhausted i’s demand, there is no edge between advertiser i and a
newly arrived impression of user j; otherwise, there is an edge. This means that an adversary
can no longer control the set of edges hitting each new impression; instead, the online algorithm
determines the set of edges using indirect means. While we expect this property to translate into
better competitive ratios for the frequency capping problem, taking advantage of it is not easy;
a fact which is demonstrated by the involved analysis for the natural greedy algorithm for the
problem.

Results. Our online assignment problem can also be stated abstractly as follows. There are n
agents, each one has a total demand di and a value vi for items. Items of different types arrive one
by one in an online fashion, and must be allocated to an agent immediately. Agent i wants no more
than fi copies of any single type of item. How should an online algorithm assign each arriving item
to agents to maximize value? This abstract statement suggests the following simpler algorithmic
questions.

• Equal values, arbitrary di, fi: Suppose agents (advertisers) have identical values for items
(impressions), that is, vi = 1 for all i. Now, the goal of the online algorithm is simply to assign
as many items as possible. Our main technical contribution is the analysis of a novel greedy
algorithm, proving that it is 3/4-competitive; which is optimal for a deterministic algorithm.
The first step towards this result is to show that we can assume without loss of generality
that every advertiser has frequency cap of 1, i.e., wants no more than one impression from
each user (the reduction is independent of advertisers having the same value, and also applies
when advertisers have arbitrary values). This reduction is simple, yet crucial — for each of
the cases we study, designing algorithms directly, with arbitrary frequency caps, turns out to
be rather hard.

We then analyze our greedy algorithm, which assigns arriving impressions in decreasing order
of total demand amongst eligible advertisers, for instances with unit frequency cap. (Assigning
greedily according to maximum residual demand does not work; this algorithm cannot do
better than 2/3.) The unit frequency cap means that an advertiser is eligible for an impression
if she has leftover demand, and has not yet been assigned an impression of this user. We first
prove that any non-lazy algorithm has a competitive ratio of 3/4 when all demands are equal
(in addition to the equal values); then we build on this analysis to account for the fact that
advertisers have unequal demands.
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Combinatorial analysis of online algorithms is usually done via a potential function argument
which shows that at each step, the change in the potential function plus the algorithm’s
revenue are comparable to the gain of the optimal solution. Surprisingly, our analysis considers
only the final assignment, disregarding the way in which it is reached. This allows us to avoid
coming up with a potential function (which in many cases seems to come “out of nowhere”),
and skip the tedious consideration of each possible step.

Our result is especially interesting in light of the known upper bounds for unweighted online
matching: 0.5 and 1 − 1/e ≈ 0.63 for deterministic and randomized algorithms, respectively
[Karp et al., 1990].

• Arbitrary values, equal integral di/fi: The ideas used in the analysis of the equal values case
can be extended to analyze the case where advertisers have different values, but the same
integral ratio of demand to frequency cap. We show here that the natural greedy algorithm,
which assigns in decreasing order of value, has a competitive ratio of 3/4 for this case; again,
this is optimal in the sense that no deterministic algorithm can do better.

• Arbitrary values, di and fi: Finally, for the general case with arbitrary values, demands
and frequency caps, we design a primal-dual algorithm whose competitive ratio approaches
1− 1/e ≈ 0.63 for di/fi ≫ 1; we also show an upper bound of 1/

√
2 ≈ 0.707 for this case. A

competitive ratio of 1− 1/e for the general case is already known from the work of [Goel and
Mehta, 2007], also under an assumption similar to ours.

Our online primal-dual algorithm has an interesting feature: during the execution of the
algorithm, it both increases and decreases primal variables. (We refer to our online problem
as the dual problem.) The same algorithm and competitive ratio also apply when advertisers
have target sets, i.e., they have value vi for impressions from a set Si of users, and value
of 0 for other impressions. For this case, we have a matching upper bound for deterministic
online algorithms, using the upper bound on online b-matching [Kalyanasundaram and Pruhs,
2000]. (See §1.1 for a discussion regarding [Goel and Mehta, 2007] and online primal dual
algorithms.)

1.1 Related Work

The maximization of revenue in online ad auctions has received much attention in recent years [Blum
et al., 2004, Blum and Hartline, 2005, Mehta et al., 2007, Mahdian and Saberi, 2006, Bansal et al.,
2010, Buchbinder et al., 2007, Feldman et al., 2009a]. The problem of designing online algorithms to
maximize advertising revenue was introduced by the adwords model [Mehta et al., 2007]: advertisers
have budgets, and bids for different keywords. Keywords arrive online, and the goal is to match
advertisers to keywords to maximize revenue, while respecting the advertisers’ budget constraints.
Goel and Mehta [2007] extend the adwords model, allowing advertisers to specify bids for keywords
which are decreasing functions of the number of impressions (of the keyword) already assigned to
the advertiser. Our frequency capping problem is, in fact, a special case of the model of [Goel and
Mehta, 2007] (but not of the adwords model of [Mehta et al., 2007]), where keywords correspond
to users, and the decreasing function takes the form of a step function with a cutoff equal to the
frequency cap fi of the advertiser. Hence, the (1− 1/e)-competitive online algorithm of [Goel and
Mehta, 2007] applies to our problem as well. On the other hand, the upper bounds in [Goel and
Mehta, 2007] do not apply to our problem since the model of [Goel and Mehta, 2007] also captures
online matching. Improving upon the ratio of 1− 1/e in special cases is posed as an open problem
in [Goel and Mehta, 2007].
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Our greedy algorithms in §3 and §4 obtain a ratio of 3/4, improving upon this ratio of 1− 1/e.
While the competitive ratio of our algorithm in §5 is the same as that in [Goel and Mehta, 2007],
the algorithms are quite different. Moreover, our model does not inherit the upper bound of 1−1/e,
and in fact, the best upper bound4 for the case without target sets is 1/

√
2. Also, while the most

general problem we solve in this paper remains within the model of [Goel and Mehta, 2007], the most
general and realistic version of the frequency capping problem (§6) cannot be stated as a special
case of the model of [Goel and Mehta, 2007]. For this model the question of both a competitive
algorithm and an upper bound (tighter than 1− 1/e) are open.

The primal dual framework for online problems, first introduced by Buchbinder and Naor [2009],
has been shown to be useful in many online scenarios including ad auctions, see [Bansal et al.,
2012a,b, Alon et al., 2009, 2006, Buchbinder and Naor, 2006, Buchbinder et al., 2007]. Unlike these
primal-dual algorithms, which update the primal variables monotonically in each round, our primal-
dual algorithm is novel in that it reassigns primal variables several times during the execution of the
algorithm; hence, the primal variables do not necessarily increase monotonically with each round
of new supply.

Feldman et al. [2009b] consider frequency capping in a stochastic model, but they leave open
the question of improving upon the 1− 1/e ratio in this model. Finally, the work in [Abrams and
Vee, 2007] also addresses user fatigue in the context of sponsored search; however, the model and
algorithms substantially differ from ours.

2 Preliminaries

We denote by ALG(σ) the revenue of algorithm ALG on a sequence σ of arrivals of impressions, and
by OPT (σ) the revenue of the optimal offline algorithm, which knows σ in advance. Our goal is to
design an online algorithm ALG that assigns each impression, immediately upon arrival, to produce
a feasible allocation whose total value ALG(σ) is competitive against OPT (σ) for any arrival
sequence σ of impressions. The natural greedy algorithm for the problem, denoted by GREEDYV ,
allocates each arriving impression to the eligible advertiser with the highest value (breaking ties
arbitrarily, but consistently). The examples in the introduction show that GREEDYV is no better
than 1/2-competitive. The next theorem shows that these examples are tight. The proof of the
theorem is based on matching every impression assigned by GREEDYV to up to two impressions
of OPT .

Theorem 1. The competitive ratio of GREEDYV is 1/2.

Proof. For a particular sequence of arrivals, let o(t) and g(t) be the advertisers for which an
impression t is assigned by OPT and GREEDYV , respectively. Let f denote the number of
impressions assigned by both OPT and GREEDYV to the same advertiser, i.e., |{t | o(t) = g(t)}|.

If v(o(t)) > v(g(t)), and the reason GREEDYV does not allocate impression t to advertiser
o(t) is that GREEDYV has already allocated the maximum allowed number of impressions of the
same user to o(t), then there must be t′ ̸= t such that t and t′ are impressions of the same user,
g(t′) = o(t) and o(t′) ̸= o(t). Swapping the assignment of t and t′ in OPT (i.e., allocating t to
advertiser o(t′) and t′ to advertiser o(t)) does not change its value, and increases the value of f
by 1. Repeat this process for all such impressions. Since f is upper bounded by the total number
of impressions, the process is repeated only a finite number of times. At the end of the process,

4While 1 − 1/e is the best possible competitive factor for the model of [Goel and Mehta, 2007] since this model
captures the adwords model of [Mehta et al., 2007], the frequency capping problem does not generalize the adwords
model of [Mehta et al., 2007]. Therefore, it does not follow that 1− 1/e is an upper bound for our problem.
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if v(o(t)) > v(g(t)) for some impression t, the reason that GREEDYV does not allocate t to o(t)
must be that GREEDYV has exhausted the demand of o(t).

For each impression t with v(o(t)) > v(g(t)), we map t to a distinct impression allocated, by
GREEDYV , to advertiser o(t). Since GREEDYV exhausts the demand of o(t), such a mapping
is one-to-one. Therefore, each allocation of GREEDYV is counted at most twice to cover the
allocation of OPT , so GREEDYV is 1/2-competitive.

We now establish a reduction from general frequency caps to unit frequency caps which greatly
simplifies our algorithms. The following theorem allows us to assume fi = 1 in the rest of the
paper.

Theorem 2 (Reduction to Unit Frequency Cap). For every frequency capping instance there is
an equivalent instance where all frequency caps are 1. Moreover, any solution to the equivalent
instance can be transformed in an online fashion to an equivalent solution of the original instance.

Proof. For any given instance I (vi, di, fi), we construct a new instance I ′, so that every feasible
allocation of I can be mapped to a feasible allocation of I ′, and vice versa. We replace each
advertiser ai in I having di > fi with fi new dummy advertisers with value vi, frequency cap 1,
and demand either ⌊di/fi⌋ or ⌈di/fi⌉ such that the sum of demands of these fi advertisers is di. If
di ≤ fi, replace ai by di dummy advertisers with value vi and demand and frequency cap 1 each.

Given a feasible allocation in I ′, allocate all impressions assigned to the copies of advertiser ai
in I ′ to ai in I. This allocation is feasible — for an advertiser with di > fi, there are fi dummy
advertisers each with frequency cap 1 in I ′, so ai does not receive more than fi impressions from
any single user since I ′ is a feasible allocation. Also, since the sum of the demands of the dummy
advertisers in I ′ is equal to the demand di, the allocation in I does not exceed demand either. A
similar argument applies for advertisers with di < fi. This process can be done in an online fashion.

Conversely, given an allocation in I, construct an allocation in I ′ as follows. Assuming fi ≤ di,
let ai(1), . . . , ai(fi) denote the dummy new advertisers in I ′ corresponding to a(i) in I (the other
case, di > fi, is similar), ordered according to non-increasing demand. Note that the demand
difference between any two dummy advertisers is at most 1. Let Q(i) be the set of impressions
allocated to a(i) in I. Order the impressions in Q(i) such that all impressions that belong to the
same user are subsequent. Then allocate the impressions to the advertisers ai(1), . . . , ai(fi) one by
one in a cyclic way. That is, allocate the j-th impression in Q(i) to advertiser jmod fi. Since no
user occurs in Q(i) more than fi times, no user is assigned to any dummy advertiser more than
once. Finally, this cyclic allocation maintains the invariant that the difference in residual demand
of any two dummy advertisers is at most 1. Moreover, the allocation method always allocates the
next impression to one of the dummy advertisers that have maximal residual demand. Thus, if the
j-th impression in Q(i) cannot be allocated due to demand overflow it means that all advertisers
have residual demand 0. However, this cannot happen since |Q(i)| ≤ di, i.e., Q(i) is not larger
than the total demand of the dummy advertisers. Thus, the instances I and I ′ are equivalent.

3 Identical Valuations

In this section, we assume all advertisers have identical valuations, i.e., for each advertiser ai,
vi = 1. Let us begin with an upper bound on any deterministic online algorithm.

Theorem 3. No deterministic online algorithm is better than 3/4-competitive, even if all adver-
tisers have identical values, demands, and frequency caps.
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Proof. Suppose there are two advertisers a1 and a2 with demand 2 each. Consider any deterministic
online algorithm ALG. Assume the first three impressions belong to users u1, u2 and u3. If ALG
refuses to allocate any one of these impressions, then it cannot be better than 2/3-competitive,
since OPT accepts them all. Otherwise, necessarily, one of the advertisers was assigned two im-
pressions, and the other one was assigned only one impression. Assume, w.l.o.g., u1 is the user
whose impression was assigned on its own to an advertiser. Let the fourth impression belong to
user u1, then ALG cannot allocate the last impression, while OPT allocates all four impressions,
yielding a ratio of 3/4.

We now turn to online algorithms. A natural greedy algorithm is one that assigns an arriving
impression to an eligible advertiser with the maximum residual demand. However, assigning ac-
cording to residual demand, breaking ties arbitrarily, cannot have a competitive ratio better than
2/3, as the following example shows. There are two advertisers, with d1 = 1 and d2 = 2, with
ties broken in favor of a1. The sequence of arrivals is u1, u2, u1. The residual demand algorithm
allocates only two impressions: the first impression to a2 and then the second impression to a1.
The optimal assignment, however, can assign all 3 impressions.

We show that an alternative greedy algorithm, named GREEDYD, which assigns according to
total demand, has a competitive ratio of 3/4. Hereby is algorithm GREEDYD:

1. Sort advertisers a1, . . . , an in a non-decreasing demand order (d1 ≥ . . . ≥ dn).
2. Upon arrival of a new impression, assign it to the first eligible advertiser according to the

above order.

We need the following notation. Let yi denote the number of impressions assigned byGREEDYD
to advertiser ai, and let y∗ = mini yi. Let k denote the number of advertisers whose demand is
exhausted by GREEDYD. In §3.1, we analyze the case of equal demands (and vi = 1), and in §3.2
we build on this analysis to deal with the case where demands are arbitrary. We include the proof
of the equal demands case since it is simpler, yet gives some insight into the proof of the general
case.

3.1 Equal Demand Case

Algorithm GREEDYD has the property that it is non-lazy, i.e., it allocates every impression it
receives, unless no advertiser is eligible for it. We show that any non-lazy algorithm, including
GREEDYD, is 3/4-competitive when all advertisers have equal demand, denoted by d.

Theorem 4. Let ALG be a non-lazy algorithm, and let σ be a sequence of input impressions. Then,
ALG(σ)
OPT (σ) ≥ 3/4.

Before going into the proof of Theorem 4, consider the example depicted in Figure 1. The
rectangle is divided into three areas: R1 is the total allocation of advertisers who have exhausted
their demand, R2 is the total allocation of advertisers who have not exhausted their demand, and
R3 is “unused” demand. We use two upper bounds on OPT (σ)−ALG(σ):

|R3| ≤ (d− y∗) · (n− k) ≤ |R2| · (d− y∗)/y∗,

and
k · y∗ ≤ |R1| · y∗/d.

Note that y∗ > 0, since an advertiser who has received no impressions can always be assigned at
least one impression without violating the frequency cap constraint. The theorem now follows from
these bounds together with the observation |ALG(σ)| = |R1|+ |R2|.
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Figure 1: An assignment constructed by the online algorithm ALG. Each column is an advertiser
and each row corresponds to a unit demand.

Let us now begin the formal proof of Theorem 4. Let A be the set of impressions allocated
by OPT , and let B ⊆ A be of size OPT (σ) − ALG(σ). Associate each impression of B with an
advertiser, such that up to d− yi impressions of B are associated with each advertiser ai. This is
possible since

n∑
i=1

(d− yi) = nd−ALG(σ) ≥ OPT (σ)−ALG(σ) = |B|.

Lemma 1. |B| = OPT (σ)−ALG(σ) ≤ y∗k.

Proof. Let ai∗ be an advertiser for which yi∗ = y∗. If y∗ = d, then ALG(σ) = nd = OPT (σ),
so we can assume y∗ < d. Thus, each impression that ALG fails to allocate belongs to a user
that already has an impression allocated to ai∗ (otherwise, ALG could have assigned it to ai∗).
Hence, there are at most y∗ users having impressions that are not allocated to all advertisers. Each
such user u can have at most k more impressions allocated by OPT than by ALG (if u has an
unassigned impression, all n− k advertisers with non-exhausted demands must have been assigned
an impression of u).

Next, for the purpose of analysis, we define two types of payments received by each impression
x ∈ B. Suppose impression x is associated with advertiser ai. The first payment x gets is px =
yi/(d− yi), and the second payment is p′x = d/y∗.

Lemma 2. The total payment received by all impressions of B is at most ALG(σ).

Proof. Let E denote the set of advertisers whose demand is not exhausted byALG (i.e., |E| = n−k).
Let ai ∈ E. For each impression x associated with ai, we have px = yi/(d − yi) and the number
of such impressions is at most d− yi. Therefore, the first type of payment received by impressions
associated with ai sums up to at most yi. Adding up over all advertisers of E, the sum of the first
type payments to all impressions in B is at most

∑
ai∈E yi. Since payments of the second type are

all equal, they add up to

|B| · d
y∗
≤ y∗k · d

y∗
= dk.

Note that dk +
∑

ai∈E yi = ALG(σ), since ai ̸∈ E ⇒ yi = d, completing the proof.

Lemma 3. For each impression x ∈ B, px + p′x ≥ 3.

Proof. Suppose x is associated with an advertiser ai. The total payment received by x is:

yi
d− yi

+
d

y∗
≥ y∗

d− y∗
+

d

y∗
=

y∗2 + d(d− y∗)

y∗(d− y∗)
= 3 +

(2y∗ − d)2

y∗(d− y∗)
≥ 3 .
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Corollary 1. ALG(σ) ≥ 3|B|.

The proof of Theorem 4 is now immediate:

ALG(σ)

OPT (σ)
=

ALG(σ)

ALG(σ) + |B|
≥ 3|B|

3|B|+ |B|
=

3

4
.

3.2 General Case

In this section we prove the main result of our paper. Unfortunately, the proof from the previous
section does not readily generalize; the core of the difficulty is that it is no longer possible to
sort the advertisers in a non-decreasing demand order in which all exhausted advertisers appear
before the non-exhausted advertisers. Instead, exhausted and non-exhausted advertisers might be
interleaved in every non-decreasing demand ordering of the advertisers. Thus, it is hard to guarantee
the extent to which impressions of exhausted advertisers can be charged. A simple approach to
overcome this difficulty is to split the advertisers into blocks, making sure that within each block
the exhausted advertisers appear before the non-exhausted ones. However, this fails since OPT
and GREEDYD may place impressions in different blocks. To circumvent this problem we consider
subsets of advertisers having demand above a given threshold. The proof then makes a connection
between the difference in number of impressions allocated by OPT and GREEDYD to a subset of
the advertisers and the number of exhausted advertisers in the subset, yielding a lower bound on
the payment that can be extracted from the impressions of the exhausted advertisers.

The next theorem shows that the competitive ratio of GREEDYD is 3/4 even when the demands
are arbitrary.

Theorem 5. Let σ be a sequence of input impressions. Then,

GREEDYD(σ)

OPT (σ)
≥ 3/4.

The rest of this section is devoted for proving Theorem 5. Let ki be an indicator for the event
that the demand of advertiser ai is exhausted by the algorithm, i.e., ki = 1 if di = yi, and ki = 0
otherwise. Note that k =

∑n
i=1 ki. Let OPTi(σ) denote the number of impressions allocated by

OPT to advertiser ai.
We first prove a convenient property of the optimal solution. We construct a flow network N

where there is a node for each user uj and advertiser ai, together with source node s and sink node
t. The edges of the network are as follows:

• For each user uj with mj impressions, there is an edge of capacity mj from s to uj .

• For each advertiser ai with demand di, there is an edge of capacity di from ai to t.

• For each pair of user uj and advertiser ai, there is an edge of capacity 1 from uj to ai,
representing the frequency cap which we assume, by Theorem 2, is 1.

Observation 1. Every feasible integral flow f in the network N corresponds to a legal assignment
of impressions to advertisers with revenue |f |, such that the number of impressions assigned to
advertiser ai is equal to the flow on the edge (ai, t). The reverse direction holds as well.

Using this observation we can prove the next lemma:

Lemma 4. For any input sequence σ of impressions, and a feasible assignment S of impressions
to advertisers, there is an optimal assignment S′ such that for each advertiser ai, S

′ assigns to ai
at least as many impressions as S does.
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Proof. Let S′′ be any optimal integral assignment. Using Observation 1, assignments S and S′′

define flow functions f and f ′′, respectively, in the network N . Flow function f ′′− f is a legal flow
function in the residual network of f , and it can be decomposed into a collection of augmenting
cycles and simple augmenting paths from s to t. Therefore, every augmenting path in f ′′ − f
can only increase the flow on the edges going from the advertisers to the sink t. Let f ′ be the
flow resulting from f by the addition of all augmentation paths in f ′′ − f , and let S′ be the
corresponding assignment. Inevitably, S′ is optimal, and has at least as many impressions assigned
to each advertiser as in S.

Applying Lemma 4 to the solution produced by GREEDYD, we can assume that for each advertiser
ai, OPTi(σ) ≥ yi.

Observation 2. If i < j, then yj ≤ yi. That is, the number of impressions allocated by GREEDYD
to the advertisers is non-increasing.

Proof. If yi = di the observation holds, since yj ≤ dj ≤ di. Else, each impression GREEDYD
allocates to aj must belong to a user that already has an impression allocated to ai.

We now extend Lemma 1 to the general demands setting.

Lemma 5. For every advertiser ai, if ki = 0, then∑i
j=1 [OPTj(σ)− yj ] ≤ yi ·

∑i
j=1 kj.

Proof. Every impression that GREEDYD fails to allocate to one of the advertisers a1, . . . , ai must
belong to a user already having an impression allocated to ai (since ki = 0). Therefore, there are
at most yi users who have impressions that are not allocated to advertisers a1, . . . , ai. Each such
user can have at most

∑i
j=1 kj more impressions allocated to advertisers a1, . . . , ai by OPT than

by GREEDYD, completing the proof.

We now order the impressions allocated by OPT (σ) to the advertisers. An impression x assigned
to advertiser a′(x) (by OPT (σ)) precedes an impression y assigned to advertiser a′(y) (again, by
OPT (σ)) if a′(x) appears before a′(y) in the order define by GREEDYD. If x and y are assigned to
the same advertiser, the order between them is arbitrarily chosen. Let A be the set of impressions
allocated by OPT . Define B ⊆ A as the following subset of impressions. For each advertiser ai, all
impressions OPT allocates to ai belong to B, except for the first yi impressions (if OPTi(σ) = yi,
then none of the impressions OPT allocates to ai belongs to B.) See Figure 2 for a graphical
representation of the relationship between A,B,OPT (σ) and GREEDYD(σ). For any impression
x ∈ B, let B≤x denote the set of impressions in B which appear before x in the above order,
including x.

Observation 3. If impression x ∈ B is allocated to advertiser ai by OPT (σ), then ki = 0.

Proof. Otherwise, yi = di, and no impression allocated by OPT to ai belongs to B.

Observation 4. OPT (σ) = GREEDYD(σ) + |B|.

We now define, for analysis purposes, two types of payments made by the impressions allocated
by GREEDYD to the impressions of B. Consider an impression x ∈ B allocated to advertiser ai
by OPT . Then, the impressions allocated to ai by GREEDYD contribute px = yi/(di − yi) to x
(recall that di − yi is not zero since x ∈ B, and therefore ki = 0). Let h be the minimal integer

10



B ALG(σ)

OPT(σ) A

Figure 2: An assignment constructed by GREEDYD. The set A contains the impressions assigned
by OPT (σ). The set B contains OPTi(σ) − yi impressions of A from every advertiser ai (recall
that we assumed OPTi(σ) ≥ yi). Thus, B and GREEDYV (σ) add up to OPT (σ).

such that: yi ·
∑h

j=1 kj ≥ |B≤x|.5 Then, the impressions allocated to ah by GREEDYD contribute
p′x = dh/yi to x.

Lemma 6. For each impression x ∈ B allocated by OPT to ai, The payment p′x is relieved from
impressions that are allocated by GREEDYD to an advertiser ah with h < i and kh = 1.

Proof. Since x ∈ B is assigned to ai, it must hold that:

|B≤x| ≤
i∑

j=1

[OPTj(σ)− yj ] .

Also, by Lemma 5,
i∑

j=1

[OPTj(σ)− yj(σ)] ≤ yi ·
i∑

j=1

kj .

Combining both inequalities, we get |B≤x| ≤ yi ·
∑i

j=1 kj , and can conclude h ≤ i. Notice that

kh = 1, otherwise h could be replaced by h− 1 without changing yi ·
∑h

j=1 kj . On the other hand,
ki = 0 since x ∈ B, and therefore, h ̸= i.

Lemma 7. For each impression x ∈ B, px + p′x ≥ 3.

Proof. Suppose OPT allocates x to advertiser ai. Let ah be the advertiser whose impressions
contribute to p′x. Clearly, px + p′x = yi/(di − yi) + dh/yi. By Lemma 6, h < i, and therefore,
dh ≥ di. Hence,

px + p′x =
yi

di − yi
+

dh
yi
≥ yi

di − yi
+

di
yi
≥ 3 .

where the last inequality follows from the same arguments used in the proof of Lemma 3.

For an advertiser ah, we use the term the total contribution made by the impressions allocated
to ah to denote the total payment that is associated with the impressions that were allocated to it
by GREEDYD.

Lemma 8. Let ah be an advertiser with kh = 0, then the total contribution made by the impressions
allocated to ah (by GREEDYD) is at most yh.

5Following Lemma 5, every advertiser with an exhausted demand can be “blamed” for at most yi impressions in
B. The definition of h attempts to isolate the advertiser ah which is to be blamed for the fact that x ∈ B.
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Proof. By Lemma 6, the impressions allocated to ah contribute, for any impression x, only to px
(and not to p′x). Each contribution is yh/(dh − yh). A contribution is made only to impressions
allocated by OPT to ah which are in B, and the number of such impressions is OPTh(σ) − yh ≤
dh − yh.

Lemma 9. Let ah be an advertiser with kh = 1, then the total contribution made by the impressions
allocated to ah (by GREEDYD) is at most yh = dh.

Proof. Let x ∈ B be the last impression whose p′x is contributed by the impressions allocated to ah
by GREEDYD, and let ai be the advertiser to which OPT allocated x. Consider any impression
z ∈ B such that |B≤z| ≤ |B≤x| − yi. Necessarily, z is allocated to an advertiser ai′ with i′ ≤ i,
hence, yi ≤ yi′ . Implying:

|B≤z| ≤ |B≤x| − yi ≤ yi

 h∑
j=1

kj

− yi = yi ·
h−1∑
j=1

kj ≤ yi′ ·
h−1∑
j=1

kj .

Therefore, by definition, z gets its p′z contribution from the impressions allocated to advertiser ah−1

or advertisers preceding it. By the choice of x and z this implies that there are at most yi impressions
in B which get their p′x contribution from the impressions allocated to ah by GREEDYD. The
total contribution the impressions of ah contribute is, therefore, at most yi · (dh/yi) = dh.

Corollary 2. GREEDYD(σ) ≥ 3|B|.

Proof. By Lemmata 8 and 9, the total contribution of all the impressions assigned to some advertiser
by GREEDYD is at most GREEDYD(σ). On the other hand, by Lemma 7, the contribution for
each impression of B is at least 3.

The proof of Theorem 5 is now immediate:

GREEDYD(σ)

OPT (σ)
≥ GREEDYD(σ)

GREEDYD(σ) + |B|
≥ 3|B|

3|B|+ |B|
=

3

4
.

4 Equal Demands, Arbitrary Valuations

In this section, we assume advertisers have different values, but the same integer ratio of demand
to frequency cap (this can happen, for example, when each advertiser has frequency cap fi and
wants to advertise to the same number of distinct users u, so that di = fiu). The reduction to unit
frequency cap makes this equivalent to the assumption that demands are equal (di = d) and all
frequency caps are 1. The following theorem shows that the natural greedy algorithm GREEDYV ,
which assigns in decreasing order of value (breaking ties arbitrarily), has a competitive ratio of 3/4.
Note that by Theorem 3, this ratio is optimal.

Theorem 6. Let σ be a sequence of input impressions. Then, under the above assumptions,

GREEDYV (σ)

OPT (σ)
≥ 3/4.

The rest of this section is devoted for proving Theorem 6. Algorithm GREEDYV sorts the
advertisers in a non-decreasing value order, a1, a2, . . . , an. Let yi denote the number of impressions
GREEDYV allocates to advertiser ai. Let k denote the number of advertisers whose demand was
exhausted (i.e., k = |{i|yi = d}|). Let OPTi denote the number of impressions allocated by OPT
to ai and let v(Z) denote the total value that a set Z of impressions contributes to OPT (σ).
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Observation 5. If i < j, then yj ≤ yi. That is, the number of impressions allocated by GREEDYV
to the advertisers is non-increasing.

Proof. Each impression GREEDYV allocates to aj must belong to a user that already has an
impression allocated to ai. Therefore, yj ≤ yi.

Corollary 3. The k advertisers whose demand was fulfilled by GREEDYV are the first k adver-
tisers.

Lemma 10. For every advertiser ai with i > k,
∑i

j=1OPTj ≤ yik +
∑i

j=1 yj.

Proof. Each impression that GREEDYV fails to allocate to one of the advertisers a1, . . . , ai must
belong to a user which already has an impression allocated to ai by GREEDYV (because i > k,
and therefore, there is still demand left for ai). Therefore, there are at most yi users who have
impressions that are not allocated to the advertisers a1, . . . , ai. Each such user can have at most k
more impressions allocated to advertisers a1, . . . , ai by OPT , than by GREEDYV .

Let A be the set of impressions allocated by OPT (i.e., v(A) = OPT (σ)). We order the
impressions of A according to the order of the advertisers defined by GREEDYV , breaking ties
arbitrarily (i.e., the impressions of A that OPT allocates to a1 appear first in the order, then
the impressions of A that OPT allocates to a2 and so forth.) Define B as the following set of
impressions. For each advertiser ai, all impressions OPT allocates to ai belong to B, except for the
first yi impressions. (If OPTi(σ) ≤ yi, then none of the impressions OPT allocates to ai belongs
to B.)

For every set Z ⊆ A, let Z<x denote the set of impressions in Z which appear before x in the
above order, excluding x, and let Z≤x denote the same set including x if x ∈ Z. Notice that if
x ̸∈ Z then Z<x = Z≤x. Similarly, let us define Z>x and Z≥x.

We define C ⊆ B as following. An impression x ∈ B allocated by OPT to advertiser ai is in C
if it satisfies the following inequality:

i∑
j=1

yj < |(A−B)<x|+ |B≤x| − |C<x| .

Although this definition uses the set C, it is not cyclic because the membership of each impression
x in C depends only on the membership in C of impressions that appear before it in the above
order. The intuition behind the set C is that it contains the impressions that give the “real”
difference between the solutions of OPT and GREEDYV , i.e., C is a subset of B of size equal to
the difference between the number of impressions assigned by OPT and GREEDYV . The set C
was not necessary in the proof of Theorem 5 because there we could assume yi ≤ OPTi, which
would have implied B = C given the above definition of C.

Observation 6. If impression x ∈ C is allocated by OPT to ai, then i > k (otherwise yk = d, and
no impression allocated by OPT to ai could have been in B).

Let xi be the last impression of A that is allocated by OPT to one of the advertisers a1, . . . , ai.
xi may not exist, but then no impressions arrived, and any algorithm is optimal; so it is safe to
assume xi exists.

Lemma 11. For 1 ≤ i ≤ n,
∑i

j=1 (OPTj − yj) ≤ |C≤xi |.
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Proof. Let zi be the last impression of (B − C)≤xi . If there is no zi then B≤xi = C≤xi , and the
proof is complete since by definition

∑i
j=1 (OPTj − yj) ≤ |B≤xi |. Therefore, we can assume that

zi exists. Let ah be the advertiser that zi was assigned to (by OPT ). Since zi ̸∈ C,

h∑
j=1

yj ≥ |(A−B)<zi |+ |B≤zi | − |C<zi | ,

and therefore,

i∑
j=1

OPTj ≤
h∑

j=1

yj +
i∑

j=1

OPTj − |(A−B)<zi |−|B≤zi |+ |C<zi |

=

h∑
j=1

yj + |A>zi ∩A≤xi |+ |C<zi | .

Notice that by the definition of B we have: |(A − B)>zi ∩ (A − B)≤xi | ≤
∑i

j=h+1 yj . In addition,
due to the way zi was chosen, each impression of A>zi ∩A≤xi is either in C, or not in B, therefore:

|A>zi ∩A≤xi | = |(A−B)>zi ∩ (A−B)≤xi |+ |C>zi ∩ C≤xi |

≤
i∑

j=k+1

yj + |C≤xi | − |C≤zi | .

Plugging this into the previous inequality gives:

i∑
j=1

OPTj ≤
h∑

j=1

yj +

 i∑
j=h+1

yj + |C≤xi | − |C≤zi |

+ |C<zi | =
i∑

j=1

yj + |C≤xi | .

Lemma 12. OPT (σ) ≤ GREEDYV (σ) + v(C)

Proof. Let us define vn+1 = 0 for consistency, then one can easily observe that

OPT =

n∑
i=1

(vi − vi+1) ·
i∑

j=1

OPTj

 .

Using Lemma 11, we get:

OPT (σ) ≤
n∑

i=1

(vi − vi+1) ·

 i∑
j=1

yj + |C≤xi |


= GREEDYV (σ) +

n∑
i=1

[(vi − vi+1) · |C≤xi |] = GREEDYV (σ) + v(C) ,

where the inequality holds since vi − vi+1 ≥ 0, and the last equality follows since |C≤xi | is the
number of impressions of C allocated to advertisers a1, . . . , ai by OPT .

We now define two types of payments that the impressions allocated by GREEDYV pay to
the impressions of C. Consider an impression x ∈ C allocated to advertiser ai by OPT . The
impressions allocated to ai by GREEDYV pay px = viyi/(d− yi) to x (recall that d− yi is not zero
because x ∈ C, and therefore, i > k). Let h be the minimal integer such that hyi ≥ |C≤x|, then
the impressions allocated to ah by GREEDYV pay p′x = vhdh/yi to x.
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Lemma 13. For each impression x ∈ C allocated to ai by OPT , p′x is contributed by the impressions
allocated (by GREEDYV ) to an advertiser ah with h ≤ k < i.

Proof. Since x ∈ C:
i∑

j=1

yj < |(A−B)<x|+ |B≤x| − |C<x| .

Firstly notice that |C<x| = |C≤x|−1, and also
∑i

j=1OPTj ≥ |A≤x| = |(A−B)<x|+|B≤x|. Plugging
this into the previous inequality gives:

i∑
j=1

yj <

i∑
j=1

OPTj − |C≤x|+ 1⇒ |C≤x| ≤
i∑

j=1

OPTj −
i∑

j=1

yj .

From Lemma 10,
∑i

j=1OPTj ≤ yik+
∑i

j=1 yj . Combining the last two inequalities we get |C≤x| ≤
yik, and we can immediately conclude h ≤ k. In addition, since x ∈ C, Observation 6 implies
k < i.

Lemma 14. For each impression x ∈ C, px + p′x ≥ 3vi.

Proof. Suppose OPT allocates x to advertiser ai, and let ah be the advertiser whose impressions
contribute to p′x. Then px + p′x = viyi/(d − yi) + vhd/yi. By Lemma 13, h < i, and therefore,
vh ≥ vi. Hence:

px + p′x =
viyi
d− yi

+
vhd

yi
≥ vi ·

(
yi

d− yi
+

d

yi

)
≥ 3vi .

Where the last inequality follows from the same arguments used in the proof of Lemma 3.

Lemma 15. Let ah be an advertiser with h > k, then the total contribution made by the impressions
allocated to ah (by GREEDYV ) is at most vhyh.

Proof. By Lemma 13, the impressions allocated to ah contribute, for any impression x, only to px
(and not to p′x). Each contribution is vhyh/(dh − yh). A contribution is made only to impressions
allocated by OPT to ah which are in C ⊆ B, and the number of such impressions cannot exceed
dh − yh.

Lemma 16. Let ah be an advertiser with h ≤ k, then the total contribution made by the impressions
allocated to ah (by GREEDYV ) is at most vhyh = vhd.

Proof. Let x ∈ C be the last impression whose p′x is contributed by the impressions allocated to
ah, and let ai be the advertiser x is allocated to by OPT . Consider any impression z ∈ C such
that |C≤z| ≤ |C≤x| − yi. Necessarily, z is allocated to an advertiser ai′ with i′ ≤ i, and therefore
yi ≤ yi′ . This implies:

|C≤z| ≤ |C≤x| − yi ≤ yih− yi = yi(h− 1) ≤ yi′(h− 1) .

Therefore, by definition, z gets its p′z payment from the impressions allocated to advertiser ah−1 or
an advertiser before it. By the choice of x and z this implies that there are at most yi impressions
in C whose second payment is contributed by the impressions allocated to ah by GREEDYV . The
total contribution of the impressions of ah is, therefore, at most: yi · (vhd/yi) = vhd.

Corollary 4. GREEDYV (σ) ≥ 3v(C)
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Proof. By Lemmata 15 and 16, the total contribution of all the impressions assigned by GREEDYV
is no greater than GREEDYV (σ). On the other hand, by Lemma 14, the payment received by
each impression x ∈ C is at least 3v(x).

The proof of Theorem 6 is now immediate:

GREEDYV (σ)

OPT (σ)
≥ GREEDYV (σ)

GREEDYV (σ) + v(C)
≥ 3v(C)

3v(C) + v(C)
=

3

4
.

5 Arbitrary Valuations

We now consider arbitrary valuations vi. We first prove an improved upper bound for this case.

Theorem 7. No deterministic algorithm has a competitive ratio better than 1/
√
2 ≈ 0.707.

Proof. Consider any deterministic algorithm ALG and the following instance: There are two adver-
tisers: a1 with v1 = 1, d1 = 1 and a2 with v2 = 1/

√
2, d2 = 2. At step one, a user u1 comes. If ALG

assigns to a2, the process stops. The optimal algorithm will assign to a1. The ratio of the algorithm
is 1/

√
2. If ALG assigns to a1 at step one, a new user u2 comes with two impressions. ALG can

only assign one of them to a2, giving a total revenue of 1 + 1/
√
2. However, the optimal algorithm

assigns the three impressions to a2, a1, a2, respectively, earning a total revenue of 1+2/
√
2. Hence,

the ratio of the algorithm is 1+1/
√
2

1+2/
√
2
= 1/

√
2.

5.1 A Primal-Dual Algorithm

In order to apply the primal-dual approach to the problem, we first formulate the offline allocation
problem as a linear program as follows. We refer to the allocation problem as the dual problem,
since it is a maximization problem. Let A be the set of advertisers. Let B be the set of users.
Finally, for each user j ∈ B, let K(j) be the number of impressions of user j. We define variables
y(i, j, k) indicating that the k-th impression of user j is assigned to advertiser ai.

max
∑
ai∈A

vi
∑
j∈B

K(j)∑
k=1

y(i, j, k) (D)

s.t.
∑
j∈B

K(j)∑
k=1

y(i, j, k) ≤ di ∀ai ∈ A

K(j)∑
k=1

y(i, j, k) ≤ fi ∀ai ∈ A, j ∈ B∑
ai∈A

y(i, j, k) ≤ 1 ∀j ∈ B, k ∈ {1, 2 . . . ,K(j)}

y(i, j, k) ≥ 0

The first set of constraints guarantees that at most di impressions are assigned to advertiser ai.
The second set of constraints guarantees the frequency cap of each advertiser. Finally, the last set
of constraints guarantees that each impression is assigned only once. For consistency with previous
work [Buchbinder and Naor, 2009], we refer to the maximization problem as the dual problem. We
now define the primal problem. We have variable x(i) for each advertiser ai, a variable w(i, j) for
each pair of advertiser ai and user j and variable z(j, k) for the k-th impression of user j.
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min
∑
ai∈A

dix(i) +
∑

ai∈A,j∈B
fiw(i, j) +

∑
j∈B,k

z(j, k) (P )

s.t. x(i) + w(i, j) + z(j, k) ≥ vi ∀ai ∈ A, j ∈ B, k
x,w, z ≥ 0

The allocation algorithm is as follows. We assume that the reduction to the case where the frequency
cap of each advertiser is 1 has already been applied.

Allocation Algorithm: Upon arrival of impression k of user j:

• Let S(j) be the set of advertisers not yet assigned impressions of user j, and let S(j) =
A \ S(j).

• Let m1 ∈ S(j) be the advertiser maximizing vi − x(i). Let m2 ∈ S(j) \ m1 be the
advertiser maximizing vi − x(i).a

1. Assign impression k to advertiser m1.

2. For each advertiser i ∈ S(j) ∪m1 set:
w(i, j)← max{0, (vi − x(i))− (vm2 − x(m2))}.

3. For each advertiser i ∈ S(j) \m1 set: w(i, j)← 0.

4. For each impression ℓ ≤ k of user j set:
z(j, ℓ)← vm2 − x(m2).

5. For advertiser m1: x(m1) ← x(m1)
(
1 + 1

di

)
+

vm1
c·di (where c is a constant to be deter-

mined later).

aIf maxS(j)(vi − x(i)) ≤ 0, or S(j) = ∅, no assignment is made and no variables are updated. If there is no
m2, we view vm2 − x(m2) as equal to 0.

Notice that this algorithm differs from the standard online primal-dual approach because it
both increases and decreases primal variables.

Theorem 8. The algorithm is (1 − (c + 1)−1)-competitive, for c = (1 + 1
dmin

)dmin − 1, where dmin

is the minimum demand of any advertiser.

Proof. The assignment of impressions to advertisers defines a solution to the dual program. The
algorithm generates a primal solution online.

We start with a few useful observations. Note first that the variables in the primal solution
are always non-negative. Next, observe that for each advertiser i, x(i) is monotonically increasing
during the execution of the algorithm, and vi − x(i) is monotonically decreasing. Also, observe
that if at some point of time in which an impression of user j arrives, vm2 − x(m2) = v′, then in
the next time in which an impression of user j arrives, vm2 − x(m2) ≤ v′, i.e., vm2 − x(m2) is also
monotonically decreasing. This follows since m2 maximizes vi−x(i) among advertisers i that have
not yet been assigned an impression of user j (i.e., advertisers in S(j)), vi − x(i) is monotonically
decreasing and the set S(j) can only shrink over time.
We now prove the following claims from which the theorem readily follows.

1. The primal solution produced by the algorithm is feasible.

2. In each round (arrival of an impression) the change in the dual profit is at least 1− (c+1)−1

times the change in the primal cost.
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3. The dual solution produced is feasible.

Proof of (1). We prove feasibility by induction on the steps of the algorithm. Initially, there
are no primal constraints and the primal solution is trivially feasible. Consider the step in which
impression k of user j arrives. The algorithm does not change the value of variables w(i, j′) and
z(j′, k) corresponding to any user j′ ̸= j. Thus, since x(i) only increases, all the constraints
corresponding to users j′ ̸= j and impression ℓ remain feasible, i.e., x(i) + w(i, j′) + z(j′, ℓ) ≥ vi,.

Next, consider the primal constraint corresponding to user j, advertiser i, and impression ℓ ≤ k:
x(i)+w(i, j)+z(j, ℓ) ≥ vi. If advertiser i ∈ S(j)∪m1, i.e., i has already been assigned an impression
of user j, then:

w(i, j) + z(j, ℓ) = max{0, (vi − x(i))− (vm2 − x(m2))}+ vm2 − x(m2) ≥ vi − x(i) .

and the constraint is satisfied. If advertiser i ∈ S(j)\m1, i.e., i has not been assigned an impression
of user j, then:

w(i, j) + z(j, ℓ) = 0 + vm2 − x(m2) ≥ vi − x(i) .

The last inequality follows since m2 is the advertiser that maximizes the quantity vi − x(i) in
the set S(j) \m1, yielding that the constraint is satisfied.

Proof of (2). We analyze the change in the primal cost and the dual profit in the current
round. Consider first the contribution to the primal cost due to the change in the w-variables and
z-variables, excluding advertiser m1 and impression (j, k):∑

i∈S(j)

w(i, j) +
∑
ℓ<k

z(j, ℓ) .

The first sum has k − 1 terms corresponding to advertisers that were already assigned impressions
belonging to user j, and the second sum has also k − 1 terms corresponding to the first k − 1
impressions of user j. We now match each advertiser i ∈ S(j) with the variable z(j, ℓ) corresponding
to the impression ℓ assigned to i. The new values of the variables satisfy:

w(i, j) + z(j, ℓ) = max{vi − x(i), vm2 − x(m2)} .

Since both terms above can only decrease during the execution of the algorithm, the contribution
to the primal cost of advertiser i ∈ S(j) and impression ℓ < k in the current round is not higher
than the contribution to the primal cost of those advertisers and impressions in the previous round.

The only increase in the primal cost is, thus, due to the increase in the variables w(m1, j),
z(j, k) and x(m1). Their contribution is:

w(m1, j) + z(j, k) + dm1 ·∆x(m1) = vm1 − x(m1) + x(m1) +
vm1

c
= vm1(1 + 1/c) .

The dual profit in this round is vm1 , so the ratio between the dual profit and the primal cost is
(1 + 1/c)−1 = c/(c+ 1) = 1− (c+ 1)−1.

Proof of (3). The algorithm never assigns more than one impression of user j to advertiser i.
We only need to make sure that the algorithm does not assign a total of more than di impressions
to advertiser i. It is easy to verify that after assigning ℓ impressions to advertiser i:

x(i) =
vi
c
·

((
1 +

1

di

)ℓ

− 1

)
.

Thus, after di rounds x(i) ≥ vi if c = (1 + 1
dmin

)dmin − 1. At this point all primal constraints
corresponding to advertiser i are satisfied and the algorithm is guaranteed not to assign any further
impressions to advertiser i.
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Targeting constraints. We assumed thus far that advertisers valued all users equally. In prac-
tice, however, when buying display ad space, advertisers can provide targeting information, spec-
ifying which subset of impressions is acceptable. That is, advertisers have value vi for acceptable
impressions that meet the targeting constraints and value of 0 for others (contracts for display
ads typically specify a single price-per-impression that does not vary across the set of acceptable
impressions, i.e., vi does not take on different non-zero values).

Suppose targeting information is user-dependent only, i.e., an advertiser may value only a
subset of users with certain characteristics (age, gender, location, etc.), but does not distinguish
between different impressions (e.g., when visiting different webpages) from the same user. In this
case, advertiser values have the following form: v(i, j) is either vi or 0 (i.e., ai finds users with
v(i, j) = vi acceptable, and the rest unacceptable). We observe that the above algorithm also works
for this more general setting. The only change is that the sets S(j) and S(j) include only advertisers
that accept user j. This implies the following.

Theorem 9. For c = (1 + 1
dmin

)dmin − 1, the algorithm is (1 − (c + 1)−1)-competitive also when
v(i, j) ∈ {0, vi} for all i, j.

Proof Sketch. In the dual objective function, advertisers do not sums up their contribution over
all users, but rather only over their acceptable users. This corresponds in the primal program to
constraints that only contain an advertiser i and an acceptable user j. The same analysis shows
now that all primal constraints remain feasible during the execution of the algorithm.

The relation between the change in primal cost and dual profit also follows by noting that if
impression k of user j is assigned, then every previous impression l ≤ k is also assigned. So we can
find an advertiser i to match every l ≤ k as before. 2

Theorem 10. In the presence of targeting constraints, no deterministic algorithm has a competitive
ratio higher than 1− 1/e, even when demands are large.

Proof. Online b-matching, which generalizes online matching, is defined as follows: requests arrive
online; a request can be matched to any server to which it has an edge, but no server can be used
more than b times. An instance of the b-matching problem can be mapped to an instance of the
frequency capping problem with targeting constraints: advertisers correspond to servers, and each
request corresponds to a new user j; j ∈ Si for the set of servers to which the request has edges.
All advertisers have demand d = b, fi = 1 and vi = 1. This reduction implies an upper bound
of 1 − 1

(1+ 1
d
)d
, which follows from the upper bound on the online b-matching problem given by

[Kalyanasundaram and Pruhs, 2000]. For d≫ fi = 1, this upper bound tends to 1− 1/e.

6 Further Directions

The frequency capping problem is an important practical problem which imposes interesting algo-
rithmic challenges. Here are two main directions for further work.

• Improving 1− 1/e for arbitrary valuations: There is a gap between the best upper bound of
1/
√
2 and the best algorithm (1− 1/e) for the case of arbitrary valuations without targeting

constraints, discussed in §5. The targeting constraints are to be blamed for the “matching”
aspects, leading to the upper bound of 1−1/e in Theorem 10. By removing these constraints,
the difference between our problem and online matching resurfaces, and the upper bound of
1 − 1/e does not hold anymore. We believe that our primal-dual algorithm is an excellent
starting point for a future online algorithm for frequency capping with arbitrary values that
will go beyond 1− 1/e.
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• Content-based targeting specifications: Targeting specifications may be not only user-based,
but also depend on the webpage’s content. For instance, an advertiser might want to display
her ads only to males (user targeting) when they browse a sports related webpage (content
targeting); targeting constraints are often of this form. So, advertisers now have valuations of
the form v(i, j, k) ∈ {0, vi}, i.e., the value of the k-th impression of the j-th user to advertiser
i is either vi or 0 depending on what page the user was surfing on his k-th impression. Note
that the model of [Goel and Mehta, 2007] does not capture this problem, which entangles a
matching aspect with frequency capping. The questions of designing a good online algorithm
and finding the smallest upper bound (of course, 1 − 1/e is a trivial upper bound since this
problem generalizes arbitrary valuations with targeting) are both open.

Acknowledgements. We are extremely grateful to Ning Chen for several helpful discussions,
and for first suggesting the total demand algorithm.
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