
Maximization Problems with Submodular

Objective Functions

Moran Feldman

Maximization Problems with Submodular Objective
Functions

Research Thesis

In Partial Fulfillment of the
Requirements for the

Degree of Doctor of Philosophy

Moran Feldman

Submitted to the Senate of
the Technion — Israel Institute of Technology

Tammuz 5773 Haifa June 2013

The Research Thesis was done under the Supervision of Prof. Joseph (Seffi) Naor at the
Computer Science Department.

I would like to thank Seffi, my advisor, who wisely led me and graciously guided me
throughout the years of my work. For pointing out many interesting new research di-
rections. For working with me through the nights when a deadline approached. For
introducing me to many other interesting researchers. And most of all for your great sup-
port and encouragement, especially when papers were rejected time after time. I highly
appreciate the good fortune of having the chance to work with you.

The Generous Financial Help of the Google European Fellowship in Market Algorithms
and the Technion is Gratefully Acknowledged.

Publication List:

1. Moran Feldman, Joseph(Seffi) Naor, Roy Schwartz and Justin Ward, “Improved
approximations for k-exchange systems”, In Proceedings of the 19th Annual European
Symposium on Algorithms, ESA11, Saarbrücken, Germany, 2011.

2. Moran Feldman, Joseph(Seffi) Naor and Roy Schwartz, “A unified continuous greedy
algorithm for submodular maximization.”, In Proceedings of the 52nd annual IEEE
Symposium on Foundations of Computer Science, FOCS11, Palm Springs, Califor-
nia, USA, 2011.

3. Niv Buchbinder, Moran Feldman, Joseph(Seffi) Naor and Roy Schwartz, “A Tight
Linear Time (1/2)-Approximation for Unconstrained Submodular Maximization.”,
In Proceedings of the 53nd annual IEEE Symposium on Foundations of Computer
Science, FOCS12, New Brunswick, New Jersey, USA, 2012.

Contents

Abstract 1

Notation and Abbreviations 2

1 Introduction 3

2 Preliminaries 5
2.1 Submodular Functions and Matroids . 5
2.2 Problems Considered . 6
2.3 Extensions to the [0, 1]N Cube . 6

2.3.1 The Convex Closure and the Lovász Extension 7
2.3.2 The Concave closure and the Multilinear Extension 8

2.A Proof of Lemma 2.3.7 . 10

3 Continuous Greedy Algorithms 12
3.1 Continuous Greedy . 13
3.2 Measured Continuous Greedy . 16

3.2.1 Analysis for Non-Monotone f . 17
3.2.2 Analysis for Monotone f . 20
3.2.3 Analysis for Monotone f and Binary P 22

3.3 Applications of the Measured Continuous Greedy 25
3.3.1 Maximizing a Submodular Function Subject to Matroid Constraint . 26
3.3.2 Maximizing a Submodular Function Subject to Knapsack Constraints 26
3.3.3 The (d, r)-Submodular Partition Problem 27
3.3.4 The Submodular Max-SAT Problem 27
3.3.5 The Submodular Welfare Problems 28

3.A Down Monotone Polytopes in the Hypercube [0, 1]N 29

4 Unconstrained Submodular Maximization 32
4.1 A Deterministic Linear Time (1/3)-Approximation Algorithm for Unconstrained

Submodular Maximization . 33
4.1.1 Tight Example . 35

4.2 A Randomized Linear Time (1/2)-Approximation Algorithm for Unconstrained
Submodular Maximization . 36

4.3 A Tight (1/2)-Approximation for USM using Fractional Values 38
4.4 Linear Time Approximations for Submodular Max-SAT and Submodular

Welfare with 2 Players . 41
4.4.1 A Linear Time Tight (3/4)-Approximation for Submodular Max-SAT 41
4.4.2 A Linear Time Tight (3/4)-Approximation for Submodular Welfare

with 2 Players . 45

5 k-Exchange Systems 47
5.1 k-exchange: definition and relations with other set systems 48
5.2 Maximizing a Monotone Submodular Function 50

5.2.1 Proof of Theorem 5.2.3 . 55
5.3 Maximizing a Non-monotone Submodular Function 59
5.4 Maximizing a Linear Function . 61
5.5 Applications . 62
5.6 Other Results . 68

6 Contention Resolution Schemes 70
6.1 Combining the Framework with the Measured Continuous Greedy 71
6.2 Contention Resolution Schemes . 72

6.2.1 The Submodular Independent Set in Interval Graphs Problem 72
6.2.2 The Submodular Job Interval Selection Problem 76
6.2.3 The Submodular Multiple Knapsacks Problem 80
6.2.4 The Submodular Broadcast Scheduling Problem 84
6.2.5 The Submodular Matching Scheduling Problem 85

Bibliography 87

Figures

4.1 Tight example for Algorithm 4. 35

5.1 Exact characterization of the k-exchange class within the standard set sys-
tem hierarchy. 49

Tables

3.1 Main applications of Section 3. 25

5.1 Applications of Section 5. 63

6.1 Examples of improved approximation ratios due to Theorem 6.0.3. 72
6.2 Results proved in Section 6.2. 73

Abstract

The study of combinatorial problems with submodular objective functions has attracted
much attention recently, and is motivated by the principle of economy of scale, prevalent
in real world applications. Moreover, submodular functions are commonly used as utility
functions in economics and algorithmic game theory. From a theoretical perspective,
submodular functions and submodular optimization play a major role in combinatorics,
graph theory and combinatorial optimization.

In this thesis, we consider a few constrained and unconstrained submodular maximiza-
tion problems. These problems obey the following general structure. Given a submodular
function f and (possibly) a set of constraints, find a feasible set S maximizing f(S). The
problems we consider in this thesis cannot be solved exactly in polynomial time due to
hardness results which are based on information-theoretic arguments. Instead, we describe
approximation algorithms for these problems, achieving the best possible approximation
ratios for some of the problems.

Our approximation algorithms can be roughly partitioned based on the technique they
use. The first approach is combinatorial in nature, and is mostly based on local search
techniques and greedy rules. The second approach resembles a common paradigm for
designing approximation algorithms and is composed of two steps. In the first step, a
fractional solution is found for a relaxation of the problem. In the second step, the frac-
tional solution is rounded to obtain an integral one while incurring only a small loss in
the objective.

1

Notation and Abbreviations

N — Ground set
n — Number of elements in the ground set

A,B, S — Subsets of the ground set
u — An element of the ground set

S + u — Synonym for the union S ∪ {u}
S − u — Synonym for the expression S \ {u}

f — Objective set function
f− — The convex closure of f
f+ — The concave closure of f

f̂ — The Lovász extension of f
F — The multilinear extension of f

x, y — Vectors in the cube [0, 1]N

x ∨ y — The coordinate-wise maximum of x and y (formally, (x ∨ y)u = max{xu, yu})
x ∧ y — The coordinate-wise minimum of x and y (formally, (x ∧ y)u = min{xu, yu})
Tλ(x) — The set of all elements u ∈ N having xu ≥ λ

∂uF (x) — The derivative of F , with respect to u, at x
1S — The characteristic vector of a set S
M — Matroid
I — Collection of independent sets of a sets system (subset of 2N)

P(M) — The matroid polytope corresponding to M
B(M) — The bases polytope corresponding to M

2

Chapter 1

Introduction

The study of combinatorial problems with submodular objective functions has attracted
much attention recently, and is motivated by the principle of economy of scale, prevalent
in real world applications. Moreover, submodular functions are commonly used as utility
functions in economics and algorithmic game theory. From a theoretical perspective,
submodular functions and submodular optimization play a major role in combinatorics,
graph theory and combinatorial optimization.

A set function is a function that gives a numerical value to every subset of a given
ground set. A submodular function is a set function with the following property: the
marginal value of adding an element to a set is non-increasing as more elements are added
to it. Several well known examples for submodular functions include cuts in directed and
undirected graphs, rank functions in matroids, covering functions and cuts in hypergraphs
[74]. In a submodular optimization problem the objective is to find a set that either
maximizes or minimizes a submodular function subject to problem specific constraints on
the allowed sets. Many optimization problems can be represented as constrained variants
of submodular optimization. A partial list of classical well-studied problems captured by
submodular optimization includes: Max Cut, Max k-Cover, Generalized Assignment, several
variants of Max SAT and some welfare and scheduling problems. Hence, finding algorithms
with good approximation ratios for submodular optimization problems will induce similar
algorithms for the above problems and many others. Moreover, since many of the problems
considered here are motivated by real life applications, it is important to find algorithms
that guarantee both good approximations and are as simple and efficient as possible.

In this thesis, we consider a few constrained and unconstrained submodular maximiza-
tion problems. These problems obey the following general structure. Given a submodular
function f and (possibly) a set of constraints, find a feasible set S maximizing f(S). The
problems we consider in this thesis cannot be solved exactly in polynomial time due to
hardness results which are based on information-theoretic arguments. Instead, we describe
approximation algorithms for these problems, achieving the best possible approximation
ratios for some of the problems.

The techniques used to compute approximate solutions to various submodular max-
imization problems can be partitioned into two main approaches. The first approach is
combinatorial in nature, and is mostly based on local search techniques and greedy rules.
This approach has been used as early as the late 70’s for maximizing monotone submod-
ular functions under the constraint that the solution should be an independent set of one
of several specific matroids [22, 36, 46, 47, 50, 56, 71, 72]. Lately, this approach has been
extended to include both non-monotone submodular objective functions [30, 37, 34, 81]
and additional constraints sets [62] (e.g., independent sets of matroids intersection). Sec-

3

tions 4 and 5 describe algorithms that can be classified under this approach. Section 4
addresses the basic problem of maximizing a submodular function under no constraints, as
well as a few related problems. Section 5 considers the problem of maximizing an objective
function subject to a k-exchange set system constraint.

The second approach for approximating submodular maximization problems resembles
a common paradigm for designing approximation algorithms and is composed of two steps.
In the first step, a fractional solution is found for a relaxation of the problem. In the
second step, the fractional solution is rounded to obtain an integral one while incurring
only a small loss in the objective. Despite the combinatorial association of submodular
functions, this approach has been used to obtain many state-of-the-art tight approximation
results [16, 18, 19, 20, 58, 61]. Most notable of these results is an asymptotically tight
approximation for maximizing a monotone submodular function given a single matroid
constraint [16, 71, 72]. Two issues arise when using this approach. First, since the objective
function is not linear, it is not clear how to solve or even efficiently approximate a relaxation
of the problem. Second, given a fractional solution, one needs a rounding procedure which
outputs an integral solution without losing too much in the objective function. Sections 3
and 6 address these two issues, respectively.

Section 3 describes a solver for the multilinear relaxation, which is the standard re-
laxation for submodular maximization problems. For many problems this solver improves
over the best approximation ratio achieved by any other known solver. Section 6 describes
several extensions for the Contentions Resolution Scheme of [20]. This scheme describes
a standard way for rounding fractional solutions of submodular maximization problems.
Our extensions allow the scheme to address additional types of submodular maximization
problems, and improve the approximation ratio achieved by the scheme for many other
problems.

4

Chapter 2

Preliminaries

2.1 Submodular Functions and Matroids

For every set S and an element u, we denote the union S∪{u} by S+u, and the expression
S \ {u} by S − u. Throughout this work, we assume the existence of some ground set N
whose size is denoted by n. A function f : 2N → R assigning a number for every subset of
N is called a set function. Following is a list of properties that a set function might obey.

• f is non-negative if f(S) ≥ 0 for every set S ⊆ N .

• f is normalized if f(∅) = 0.

• f is monotone if f(A) ≤ f(B) for every two sets A ⊆ B ⊆ N .

• f is submodular if f(A) + f(B) ≥ f(A ∪B) + f(A ∩B).

The first three properties are self explanatory, but submodularity is more involved.
Submodular functions are discrete analogs of convex functions. For a submodular function,
the marginal contribution of an element to a set decreases as the set gets larger. In fact, it
can be easily proved that a function is submodular if and only if for every element u ∈ N
and two sets A ⊆ B ⊆ N − u:

f(A+ u)− f(A) ≥ f(B + u)− f(B) .

A set system is a pair (N , I), where N is, as usual, a ground set, and I ⊆ 2N is a
collection of subsets of N . The collection I must obey the following two properties:

• Non-empty: I ̸= ∅.

• Monotone: If A ⊆ B ∈ I, then A ∈ I.

If S ∈ I, we say that S is independent. A maximal (inclusion-wise) independent set is
called base. There are many classes of set systems, the most important of which is the
matroids class. Other classes of set systems are described in Section 5. A set system is a
matroid (or belongs to the matroids class) if it obeys the following extra property:

• Matroid Exchange: If A,B ∈ I and |A| < |B|, then there exists an element u ∈ B
for which A+ u ∈ I.

Matroids capture many natural collections of subsets such as: forests in graphs, inde-
pendent sets in vector spaces and the sets of nodes that appear together in legal matchings
of a given graph. [74, 59]

5

2.2 Problems Considered

All the problems considered in this thesis fall into the following pattern: given a non-
negative (monotone) submodular function f and a collection C ⊆ 2N of subsets, find a set
S ∈ C maximizing f(C). One example for such a problem is maximizing a non-negative

monotone submodular function subject to a matroid constraint. The objective
in this problem is to find a set S maximizing a non-negative, monotone and submodular
function f among the independent sets of a given matroid M = (N , I). More formally, in
this problem the collection C of allowed sets coincides with the collection I.

We look for algorithms that are polynomial in n, the size of N . However, the explicit
representation of both submodular functions and matroids might be exponential in the
size of their ground set. The standard way to bypass this difficulty is to assume access
to these objects via oracles. For a submodular function f : 2N → R, given a set S ⊆ N ,
the oracle returns the value of f(S).1 For a matroid M = (N , I), given a set S ⊆ N , the
oracle answers whether S ∈ I. All the algorithms we describe access submodular functions
and matroids via such oracles.

2.3 Extensions to the [0, 1]N Cube

The collection of sets 2N has a natural extension to the [0, 1]N cube, where each set S
corresponds to its characteristic vector 1S . For linear functions, the extension from 2N

to the cube [0, 1]N is easily defined. However, finding the right extension for submodular
functions is more difficult. Two natural extensions are the convex closure and the concave
closure. The convex (concave) closure of a function f : 2N → R is the point-wise largest
convex (smallest concave) function from [0, 1]N to R that lower bounds (upper bounds)
f . The convex (concave) closure of f is denoted by f− (f+).

Observation 2.3.1. The convex and concave closures exist for every function f : 2N → R.

Proof. We prove the observation for the convex closure. The proof for the concave closure
is analogous. Fix a function f : 2N → R. Let F be the set of functions from [0, 1]N to
R that are convex and lower bound f . Consider the function f ′(x) = max{g(x)|g ∈ F}.
Clearly f ′ is convex and lower bounds f since it is the maximum of a set of functions
which are all convex and lower bound f . Moreover, f ′ is point-wise larger than every
other function in F . Thus, f ′ is the convex closure of f .

The convex and concave closures were presented as extensions of f . However, this is
not obvious from their definitions. To see that they are indeed extensions of f , we need
the following lemma.

Lemma 2.3.2. Fix a set function f : 2N → R. For every x ∈ [0, 1]N , let D−
f (x) (D

+
f (x))

denote a distribution over 2N with marginals x minimizing ES∼D−
f (x)[f(S)] (maximizing

ES∼D+
f (x)[f(S)]), breaking ties arbitrary. Then:

• f− = ES∼D−
f (x)[f(S)].

• f+ = ES∼D+
f (x)[f(S)].

1Such an oracle is called value oracle. Other, stronger, oracle types for submodular functions are also
considered in the literature, but value oracles are probably the most widely used.

6

Proof. We prove the lemma for the convex closure. The proof for the concave closure
is analogue. Consider the function g = ES∼D−

f (x)[f(S)]. Let us prove that g is convex.

Consider any three points x, y, z so that z = λ · x + (1 − λ) · y (for some 0 ≤ λ ≤ 1).
Clearly,

g(z) ≤ ES∼[λ·D−
f (x)+(1−λ)·D−

f (y)][f(S)]

= λ · ES∼D−
f (x)[f(S)] + (1− λ) · ES∼D−

f (y)][f(S)] = g(x) + g(y) .

The convexity of g, plus the fact that g agrees with f on every point x ∈ {0, 1}N ,
proves that g ≤ f−. On the other hand, since f− is convex, for every x ∈ [0, 1]N :

f−(x) ≤ ES∼D+
f (x)[f

−(1S)] ≤ ES∼D+
f (x)[f(S)] = g(x) .

The last lemma implies that both f− and f+ agree with f on every point x ∈ {0, 1}N ,
and therefore, they are indeed extensions of f . The following two sections consider uses of
the convex and concave closures, as well as of two other extensions known as the Lovász
extension and the multilinear extension.

2.3.1 The Convex Closure and the Lovász Extension

Convex extensions such as the convex closure are useful for minimization problems when
they can be efficiently evaluated. However, both the definition and the characterization
by Lemma 2.3.2 do not provide an efficient evaluation method for the convex closure. For
this reason, we need to introduce the Lovász extension.

Given a vector x ∈ [0, 1]N and a scalar λ ∈ [0, 1], let Tλ(x) be the set of elements in
N whose coordinate in x is at least λ. The Lovász extension of a set function f : 2N → R
is defined as:

f̂(x) =

∫ 1

0
f(Tλ(x))dλ .

This definition can also be interpreted in probabilistic terms as the expected value of f over
the set Tλ(x), where λ is uniformly selected from the range [0, 1]. The Lovász extension
has the following very useful property proved in [64].

Theorem 2.3.3. A set function f : 2N → R is submodular if and only if its Lovász
extension is convex.

Notice that the last theorem is especially interesting since we usually see submodular
functions as a discrete variant of concave functions.

Corollary 2.3.4. For a submodular function f : 2N → R, f− = f̂ .

Proof. By definition f− ≥ f̂ since f̂ is convex. To see why f− ≤ f̂ , observe that f̂(x) =
ES∼D[f(S)] for some distribution D, and by Lemma 2.3.2 f− ≤ ES∼D[f(S)] for any
distribution D.

The last corollary gives us a method for calculating the convex closure of submodular
functions. This method is also one of the key ingredients in the first polynomial algorithm
for unconstrained submodular minimization2 given by Grötschel et al. [65]. This algorithm
uses the ellipsoid method to minimize the Lovász extension of a submodular function f ,
and then rounds the resulting vector without loosing in the objective.

2The problem of finding a set minimizing a given submodular function f : 2N → R+ over the entire
collection 2N .

7

2.3.2 The Concave closure and the Multilinear Extension

For maximization problems, we need concave extensions that can be efficiently evaluated.
An obvious candidate for such an extension is the concave closure. Unfortunately, however,
it is NP-hard to evaluate the concave closure (even for graph cut functions) [80]. Instead,
we use the multilinear extension which is not concave, but has some concave-like properties.

Given a vector x ∈ [0, 1]N , the random set R(x) ⊆ N contains every element u ∈ N
with probability xu. Given a set function f : 2N → R, its multilinear extension of f
is denoted by F . For any vector x ∈ [0, 1]N , the value of F (x) is the expected value
of f over the random subset R(x). Formally, for every x ∈ [0, 1]N , F (x) , E[R(x)] =∑

S⊆N f(S)
∏

u∈S xu
∏

u/∈S(1 − xu). The following theorem relates the multilinear and
Lovász extensions.

Theorem 2.3.5 (Lemma A.4 in [81]). Let F (x) and f̂(x) be the multilinear and Lovász
extensions, respectively, of a submodular function f : 2N → R. Then, F (x) ≥ f̂(x) for
every x ∈ [0, 1]N .

In fact, in this thesis, our sole use of the Lovász extension is for constructing lower
bounds on the multilinear extension via this theorem. At this point, we need some ad-
ditional notation dealing with vectors of the cube [0, 1]N and the multilinear extension.
For two vectors x, y ∈ [0, 1]N , we use x ∨ y and x ∧ y to denote the coordinate-wise
maximum and minimum, respectively, of x and y (formally, (x ∨ y)u = max{xu, yu} and
(x∧y)u = min{xu, yu}). We also make use of the notation ∂uF (x) = F (x∨1u)−F (x∧1ū),
where 1u and 1ū are the characteristic vectors of the sets {u} and N − u, respectively.
The multilinear nature of F yields the following useful observation, relating the terms just
defined to each other.

Observation 2.3.6. Let F (x) be the multilinear extension of a submodular function f :
2N → R. Then, for every u ∈ N ,

∂uF (x) =
F (x ∨ 1u)− F (x)

1− xu
=

F (x)− F (x ∧ 1ū)

xu
.

Since its introduction by [15], the multilinear extension has played a central part
in the theory of submodular maximization (see [16, 61, 58, 81] for several examples).
The usefulness of the multilinear extension stems from the many useful properties it has,
among them constant first derivatives, non-increasing second derivatives and, for monotone
functions, positive derivatives in any positive direction. The following lemma formalizes an
additional basic property of the multilinear extension: within a small range, the multilinear
extension can be treated as linear. The proof of this lemma is long and technical, and is,
therefore, deferred to Appendix 2.A.

Lemma 2.3.7. Consider two vectors x, x′ ∈ [0, 1]N such that |xu − x′u| ≤ δ for every
u ∈ N , and let F be the multilinear extension of a non-negative submodular function f .
Then, F (x′)− F (x) ≥

∑
u∈N (x′u − xu) · ∂uF (x)−O(n3δ2) ·maxu∈N f({u}).

For many submodular functions we can evaluate F efficiently. However, we do not
know how to do that for a general submodular function f , given only oracle access to
f . Still, the following Chernoff like theorem allows us to approximate the value of F
arbitrarily well using sampling.

Theorem 2.3.8 (Theorem A.1.16 in [4]). Let Xi (1 ≤ i ≤ k) be mutually independent
with all E[Xi] = 0 and all |Xi| ≤ 1. Set S =

∑k
i=1Xi, then Pr[|S| > a] ≤ 2e−a2·(2k)−1

.

8

To simplify the exposition of our algorithms, we assume they have an oracle access to
F . If this is not the case, every oracle access must be replaced with an approximation via
sampling. This makes the approximation ratio deteriorate by a low order term only (see,
e.g., [16] for details).

The use of the multilinear extension in approximation algorithms follows the approach
known from linear problems: find a good fractional point and round it. For linear problems
the two steps are often separated:

• A good fractional point is found via a general solver such as an LP solver.

• The rounding is largely done via a tailored problem specific method.

The situation for submdoular problems is similar. A good fractional point can often be
found via the Continuous Greedy algorithm discussed in Section 3. Rounding is performed
either via one of a few general methods, or via a tailored problem specific method. Section 6
discusses contention resolution schemes, which is a very general rounding method. Another
example for a rounding method is pipage rounding [2, 16], used for problems with a single
matroid constraint. To understand the capabilities of pipage rounding, we need a few
additional terms.

Matroid Polytopes are an extension of matroids to the cube [0, 1]N . Given a matroid
M , its matroid polytope is the convex-hall of all the independent sets of M , and is denoted
by P(M). Similarly, the convex-hall of all the bases of the matroid is called the Bases
Polytope of M , and is denoted by B(M). Both polytopes have separation oracles, so it
is possible to optimize linear functions over them [59]. Given a matroid M and a point
x ∈ P(M) within its matroid polytope, pipage rounding returns a random set S with the
following properties:

• The set S is always independent in M .

• If x is in the bases polytope B(M), then S is also a base of M .

• Every element u ∈ N appears in S with probability xu.

• For every submodular function f , the expected value of f(S) is at least F (x).

Consider, e.g., the problem of maximizing a non-negative monotone submodular

function subject to a matroid constraint defined above. An optimal algorithm for
this problem works as following [16].

1. The input is a matroid M and a non-negative, monotone and submodular function
f .

2. Use the continuous greedy algorithm to find a fractional solution x ∈ P(M) which
is a (1− e−1 − o(1))-approximation for this problem.

3. Use pipage rounding to round x into a set S with E[f(S)] = F (x).

4. Output the set S.

The above algorithm is a randomized (1−e−1−o(1))-approximation algorithm for the
above problem, and it can be made deterministic via an appropriate derandomization.

9

2.A Proof of Lemma 2.3.7

Let us denote the term maxu∈N f({u}) by w, and the term maxS⊆N by W . From the
submodularity of f , we get the following observation.

Observation 2.A.1. For every set S ⊆ N , f(S) ≤ n · w. Hence, W ≤ n · w.

Let A be the set of elements u with x′u > xu, and let B be the set of elements
with x′u < xu. Recall that R(x) is a random set containing every element u ∈ N with
probability xu. For the sake of the proof, we assume R(x′) is formed from R(x) using
the following process. Every element of A \ R(x) is added to a set D with probability
of 1 − (1 − x′u)/(1 − xu), and every element of B ∩ R(x) is added to D with probability
1 − x′u/xu. Then, R(x′) is chosen as R(x) ⊕ D. Observe that every element u ∈ N
gets into D with probability |xu − x′u| ≤ δ, independently. We now bound the value of
F (x′)− F (x) = E[f(R(x′))− f(R(x))], given various constraints on D.

Lemma 2.A.2.
∑

u∈N Pr[D = {u}]·E[F (x′)−F (x)|D = {u}] ≥
∑

u∈N (x′u−xu)·∂uF (x)−
O(n3δ2) · w.

Proof. Let N+ be the set of elements from N which have (x′u−xu) ·∂uF (x) ≥ 0. Observe
that for every u ∈ N+:

(x′u − xu) · ∂uF (z) = |x′u − xu| · E[F (x′)− F (x)|D = {u}]

=
Pr[D = {u}] · E[F (x′)− F (x)|D = {u}]∏

u′∈N−u

(
1− |x′u′ − xu′ |

)
≤ Pr[D = {u}] · E[F (x′)− F (x)|D = {u}]∏

u′∈N−u (1− δ)

= (1− δ)1−|N| · Pr[D = {u}] · E[F (x′)− F (x)|D = {u}]
< (1− δ)−n · Pr[D = {u}] · E[F (x′)− F (x)|D = {u}] .

And the term, (1− δ)n can be lower bounded as following.

(1− δ)n = (1− δ)nδ/δ ≥ [e−1(1− δ)]nδ ≥ e−2nδ ≥ 1− 2nδ .

Also, for every u ∈ N \ N+:

(x′u − xu) · ∂uF (x) = |x′u − xu| · E[F (x′)− F (x)|D = {u}]

=
Pr[D = {u}] · E[F (x′)− F (x)|D = {u}]∏

u′∈N−u

(
1− |x′u′ − xu′ |

)
≤ Pr[D = {u}] · E[F (x′)− F (x)|D = {u}] .

Combining everything, and recalling that f(S) ≤W ≤ n · w for every S ⊆ N , we get:∑
u∈N

(x′u − xu) · ∂uF (x)− 2n3δ2w ≤
∑
u∈N

(x′u − xu) · ∂uF (x)− δn(2nδ)W

≤
∑
u∈N

[(x′u − xu) · ∂uF (x)− 2nδ · |(x′u − xu) · ∂uF (x)|]

≤
∑
u∈N

Pr[D = {u}] · E[F (x′)− F (x)|D = {u}] .

Lemma 2.A.3. E[F (x′)− F (x) | D = ∅] = 0

10

Proof. D = ∅ implies R(x′) = R(x).

Lemma 2.A.4. Pr[|D| ≥ 2] · E[F (x′)− F (x) | |D| ≥ 2] ≥ −O(n3δ2) · w.

Proof. Let us bound the probability that |D| ≥ 2. Since every element gets into D with
probability at most δ:

Pr[|D| ≥ 2] ≤ 1− (1− δ)n − nδ · (1− δ)n−1 ≤ 1− (1 + nδ) · (1− δ)n

≤ 1− (1 + nδ) · e−nδ · (1− nδ2) ≤ 1− (1 + nδ)(1− nδ)(1− nδ2) ≤ 2n2δ2 .

Therefore,

Pr[|D| ≥ 2] · E[F (x′)− F (x) | |D| ≥ 2] ≥ Pr[|D| ≥ 2] · (−W) ≥ −2n3δ2 · w .

Lemma 2.3.7 now follows immediately from the above lemmata and the law of total
probability.

11

Chapter 3

Continuous Greedy Algorithms

Consider the basic problem of maximizing a non-negative submodular function f : 2N →
R+ over a ground set N under the constraint that the solution must belong to a set system
(N , I).1 This basic (constrained) submodular maximization problem generalizes, e.g., the
two well studied problems Max-Cut and Max-k-Cover [38, 45, 48, 51, 53, 55, 70, 69, 78].

The techniques used to compute approximate solutions to various (constrained) sub-
modular maximization problems can be partitioned into two main approaches. The first
approach is combinatorial in nature, and is mostly based on local search techniques and
greedy rules. This approach has been used as early as the late 70’s for maximizing mono-
tone submodular functions under the constraint that the solution should be an independent
set of one of several specific matroids [22, 36, 46, 47, 50, 56, 71, 72]. Lately, this ap-
proach has been extended to include both non-monotone submodular objective functions
[30, 37, 34, 81] and additional constraint sets I [62] (e.g., independent sets of matroids
intersection). Though for some problems this approach yields the current state of the art
solutions [62], or even tight results [77], these solutions are usually tailored for the specific
structure of the problem at hand, making extensions quite difficult.

The second approach for approximating (constrained) submodular maximization prob-
lems overcomes the above obstacle. This approach resembles a common paradigm for
designing approximation algorithms and is composed of two steps. In the first step, a
fractional solution is found for a relaxation of the problem. In the second step, the frac-
tional solution is rounded to obtain an integral one while incurring only a small loss in
the objective. This approach has been used to obtain improved approximations to various
problems [16, 18, 19, 20, 58, 61]. Most notable of these results is an asymptotically tight
approximation for maximizing a monotone submodular function given a single matroid
constraint [16, 71, 72]. Two issues arise when using this approach. First, since the ob-
jective function is not linear, it is not clear how to formulate a relaxation which can be
solved or even approximated efficiently. Second, given a fractional solution, one needs a
rounding procedure which outputs an integral solution without losing too much in the
objective function.

Let us elaborate on the first issue, namely how to find good fractional solutions to
(constrained) submodular maximization problems. The standard relaxation for such a
problem has a variable for every element of the ground set N taking values from the range
[0, 1]. As with linear programming relaxations, the collection I is replaced by a set of linear
inequality constraints on the variables which define a down-monotone polytope2 P. Unlike

1Note that many natural collections of subsets form set systems, e.g., collections induced by matroid
and knapsack contraints.

2A polytope P ⊆ [0, 1]N is down-monotone if x ∈ P and 0 ≤ y ≤ x imply y ∈ P.

12

the linear case, the formulation of an objective function for the relaxation is not obvious.
A good objective function is a continuous extension of the given integral objective f which
allows for efficient computation of a good fractional solution. The extension commonly
used to overcome this difficulty, in the context of (constrained) submodular maximization
problems, is the multilinear extension F . Such relaxations are very common, since first
introduced by [15] (see [16, 61, 58, 81] for several additional examples).

Even though the objective function defined by the multilinear extension is neither
convex nor concave, it is still possible to efficiently compute an approximate feasible frac-
tional solution for the relaxation, assuming its feasibility polytope P is down monotone
and solvable3. The first method proposed for computing such a solution is the continuous
greedy algorithm [16]. It is simple and quick, and its analysis is rather short and intuitive.
However, it is only known to work for the multilinear extensions of monotone submod-
ular functions f . For non-monotone functions f and specific polytopes, other methods
are known for solving the multilinear extension, e.g., for a constant number of knapsack
constraints [61] and for a single matroid [37, 81]. These methods use extensions of the
local search approach, as opposed to the simple continuous greedy method, making the
analysis quite involved. Recently, three algorithms for the non-monotone case and general
down-monotone solvable polytopes were suggested by [20]. Similarly to [61, 37], these
three algorithms are also based on extensions of the local search approach. The best of
the three (with respect to its approximation guarantee) uses a simulated annealing tech-
nique [37]. Therefore, these algorithms, and especially the best of the three, have quite a
complex analysis.

In this section we present the measured continuous greedy algorithm which finds ap-
proximate fractional solutions for both the non-monotone and monotone cases, and im-
proves on the approximation ratio for many applications. For general non-monotone sub-
modular objective functions, our algorithm achieves an approximation ratio of about 1/e.
For monotone submodular objective functions, our algorithm achieves an approximation
ratio that depends on the density of the polytope defined by the problem at hand, which is
always at least as good as the 1−1/e approximation guaranteed by the “traditional” contin-
uous greedy. Some notable immediate applications are an improved 1/e-approximation for
maximizing a non-monotone submodular function subject to a matroid or O(1)-knapsack
constraints, and information-theoretic tight approximations for Submodular Max-SAT and
Submodular Welfare with k players, for any number of players k.

3.1 Continuous Greedy

Let us present the continuous greedy algorithm of [16], and analyze it. The measured
continuous greedy is presented in Section 3.2. The continuous greedy algorithm has a
parameter T called stopping time. The stopping time controls a tradeoff between two
important properties of the fractional solution found by the algorithm. The first property
is the value of the solution: a larger stopping time implies a better fractional solution. The
second property is how much slack does the fractional solution has: a smaller stopping
time implies more slack (refer to Section 6.1 for uses of the second property).4

Remark: The way δ is defined in Algorithm 1 implies that δ−1 has two properties: it

3A polytope P is solvable if linear functions can be maximized over it in polynomial time. Using the
ellipsoid algorithm, one can prove P is solvable by describing a polynomial-time algorithm that given x
determines whether x ∈ P.

4The concept of stopping time did not exist in the original presentation of [16]. It was only introduced
with the measured continuous greedy in [34].

13

Algorithm 1: Continuous Greedy(f,P, T)
// Initialization

1 Set: δ ← T (⌈n5T ⌉)−1.
2 Initialize: t← 0, y(0)← 1∅.
// Main loop

3 while t < T do
4 foreach u ∈ N do
5 wu(t)← F (y(t) ∨ 1u)− F (y(t)).

6 Let I(t) ∈ P be a vector maximizing I(t) · w(t).
7 foreach u ∈ N do
8 yu(t+ δ)← yu(t) + δIu(t).

9 t← t+ δ.

10 Return y(T).

is at least n5, and it is dividable by T−1. The last property guarantees that after Tδ−1

iterations, t will be exactly T .

Theorem 3.1.1. For any monotone submodular function f : 2N → R+, down-monotone
solvable polytope P ⊆ [0, 1]N and stopping time T ∈ [0, 1], the continuous greedy algorithm
finds a point x ∈ [0, 1]N such that F (x) ≥ [1− e−T − o(1)] · f(OPT) and x/T ∈ P.

Notice that for T = 1 the algorithm outputs a point x such that x ∈ P and F (x) ≥
[1− e−1 − o(1)] · f(OPT). In the rest of this section we prove Theorem 3.1.1.

Lemma 3.1.2. For every T ≥ 0, the continuous greedy algorithm produces a solution x
such that x/T ∈ P.

Proof. Notice that x = δ ·
∑T/δ−1

i=0 I(i ·δ). x/δ is the sum of T/δ points in P, and therefore,
x/T = (x/δ)/(T/δ) ∈ P.

The following lemma together with Lemma 2.3.7 gives a lower bound on the improve-
ment achieved by the algorithm in each iteration. This lower bound is stated explicitly in
Corollary 3.1.4.

Lemma 3.1.3. For every time 0 ≤ t < T ,
∑

u∈N Iu(t) · ∂uF (y(t)) ≥ f(OPT)− F (y(t)).

Proof. Recall that R(x) is a random set containing every element u ∈ N with probability
xu, and that F (x) = E[R(x)]. Let us calculate the weight of OPT according to weight
function w(t).

w(t) · 1OPT =
∑

u∈OPT

wu(t) =
∑

u∈OPT

[F (y(t) ∨ 1u)− F (y(t))]

= E

[∑
u∈OPT

f(R(y(t)) + u)− f(R(y(t)))

]
≥ E [f(R(y(t)) ∪OPT)− f(R(y(t)))] = F (y(t) ∨ 1OPT)− F (y(t)) ,

where the inequality follows from submodularity. Since 1OPT ∈ P, we get:

w(t) · I(t) ≥ F (y(t) ∨ 1OPT)− F (y(t)) .

14

Hence, ∑
u∈N

Iu(t) · ∂uF (y(t)) =
∑
e∈N

Iu(t) · [F (y(t) ∨ 1u)− F (y(t) ∧ 1ū)]

≥
∑
e∈N

Iu(t) · [F (y(t) ∨ 1u)− F (y(t))] = I(t) · w(t)

≥ F (y(t) ∨ 1OPT)− F (y(t)) ≥ f(OPT)− F (y(t)) .

Corollary 3.1.4. For every time 0 ≤ t < T , F (y(T + δ)) − F (y(T)) ≥ δ · [f(OPT) −
F (y(t))]−O(n3δ2) · f(OPT).

At this point we have a lower bound on the improvement achieved in each iteration in
terms of f(OPT) and F (y(t)). In order to complete the analysis of the algorithm, we need
to derive from it a bound on the value of F (y(t)) for every time t. Let g(t) be defined as
following. g(0) = 0 and g(t+ δ) = g(t) + δ[f(OPT) − g(t)]. The next lemma shows that
a lower bound on g(t) also gives a lower bound on F (y(t))

Lemma 3.1.5. For every 0 ≤ t ≤ T , g(t) ≤ F (y(t)) +O(n3δ) · tf(OPT).

Proof. Let c be the constant hiding behind the big O notation in Corollary 3.1.4. We
prove by induction on t that g(t) ≤ F (y(t)) + cn3δtf(OPT). For t = 0, g(0) = 0 ≤
F (y(0)). Assume now that the claim holds for some t, and let us prove it for t+ δ. Using
Corollary 3.1.4, we get:

g(t+ δ) = g(t) + δ[f(OPT)− g(t)] = (1− δ)g(t) + δf(OPT)

≤ (1− δ)[F (y(t)) + cn3δtf(OPT)] + δf(OPT)

= F (y(t)) + δ[f(OPT)− F (y(t))] + c(1− δ)n3δtf(OPT)

≤ F (y(t+ δ)) + cn3δ2f(OPT) + c(1− δ)n3δtf(OPT)

≤ F (y(t+ δ)) + cn3δ(t+ δ)f(OPT) .

The function g is given by a recursive formula, thus, evaluating it is not immediate.
Instead, we show that the function h(t) = (1 − e−t) · f(OPT) lower bounds g for every
value of t.

Lemma 3.1.6. For every time 0 ≤ t ≤ T , g(t) ≥ h(t).

Proof. The proof is by induction on t. For t = 0, g(0) = 0 = (1− e−0) · f(OPT) = h(0).
Assume now that the lemma holds for some t, and let us prove it holds for t+ δ.

h(t+ δ) = h(t) +

∫ t+δ

t
h′(τ)dτ = h(t) + f(OPT) ·

∫ t+δ

t
e−τdτ ≤ h(t) + f(OPT) · δe−t

= (1− δ)h(t) + δ · f(OPT) ≤ (1− δ)g(t) + δ · f(OPT) = g(t+ δ) .

We can now use the last result to lower bound the quality of the algorithm’s output.

Corollary 3.1.7. F (y(T)) ≥ [1− e−T − o(1)] · f(OPT).

Proof. By Lemmata 3.1.5 and 3.1.6, F (y(T)) ≥ g(T) − O(n3δ) · T · f(OPT) ≥ h(T) −
O(n3δ)·f(OPT) = [1−e−T−O(n3δ)]·f(OPT). Recall that δ ≤ n−5, hence, O(n3δ) = o(1),
and the proof is complete.

Theorem 3.1.1 now follows immediately from Lemma 3.1.2 and Corollary 3.1.7.

15

3.2 Measured Continuous Greedy

The measured continues greedy is based on a simple but crucially useful insight on which
we now elaborate. The continuous greedy algorithm of [16] (presented above) starts with
an empty solution and at each step moves by a small δ in the direction of a feasible point
x ∈ P. Let y be the current position of the algorithm. Then x is chosen greedily (hence
the name ”continuous greedy”) by solving x = argmax {w(y) · x | x ∈ P} where the weight
vector w(y) ∈ RN is defined by w(y)u , F (y ∨ 1u) − F (y), for every u ∈ N . Thus, x
is chosen according to the residual increase of each element u, i.e., F (y ∨ 1u) − F (y).
However, one would intuitively expect that the step should be chosen according to the
gradient of F (y). Observe that the residual increase is equal to ∂uF (y) · (1 − yu). The
measured continues greedy compensates for the difference between the residual increase of
elements at point y, and ∂uF (y), by distorting the direction x. Each coordinate of xu is
decreased by a multiplicative factor of 1− yu. Hence, both the weight wu and the step are
multiplied by the same factor. The name of the algorithm is derived from this decrease.

The following two theorems quantify the guaranteed performance of the measured
continuous greedy algorithm for non-monotone and monotone submodular functions. We
denote by OPT the optimal integral solution. Note that the first bullet of Theorem 3.2.2,
x/T ∈ P, repeats, in fact, the guarantee of the continuous greedy algorithm. However,
the second bullet of this theorem enables us to obtain improved approximation guarantees
for several well studied problems. This property states that in some settings one can use
stopping times larger than 1. The maximal stopping time that can be used depends on
the density of the underlying polytope. Consider a down-monotone polytope P ⊆ [0, 1]N

defined by positivity constraints (x ≥ 0) and additional m inequality constraints. Let∑
u∈N ai,uxu ≤ bi denote the ith inequality constraint. The density of P is defined by:

d(P) = min1≤i≤m
bi∑

u∈N ai,u
.5 Since P is a down monotone polytope within the hypercube

[0, 1]N , one can assume all coefficients ai,u and bi are non-negative, and 0 < d(P) ≤ 1. See
Appendix 3.A for details.

Theorem 3.2.1. For any given non-negative submodular function f : 2N → R+, down-
monotone solvable polytope P ⊆ [0, 1]N and stopping time T ≥ 0, the measured continuous
greedy algorithm finds a point x ∈ [0, 1]N such that F (x) ≥ [Te−T − o(1)] · f(OPT) and
x/T ∈ P.

Theorem 3.2.2. For any normalized monotone submodular function f : 2N → R+, down-
monotone solvable polytope P ⊆ [0, 1]N and stopping time T ≥ 0, the measured continuous
greedy algorithm finds a point x ∈ [0, 1]N such that F (x) ≥ [1 − e−T − o(1)] · f(OPT).
Additionally,

• x/T ∈ P.

• Let TP = − ln(1− d(P) + nδ)/d(P).Then, T ≤ TP implies x ∈ P.

For monotone submodular objectives, the dependance of the approximation ratio on
the stopping time T is identical for both the measured continues greedy and the contin-
uous greedy algorithm of [16]. This is somewhat counter intuitive, since the measured
continuous greedy makes a “smaller” step in each iteration (recall that the movement in
direction u is reduced by a multiplicative factor of (1−yu)). This seems to suggest that the
traditional continuous greedy algorithm is a bit wasteful. The smaller steps of the mea-
sured algorithm prevent this waste, keep its fractional solution within the polytope for a
longer period of time, and thus, allow the use of larger stopping times in some settings.

5Notice that the density resembles the width parameter used by [6].

16

Theorem 3.2.2 gives an approximation ratio of 1 − e−TP ≈ 1 − (1 − d(P))1/d(P). In
some cases one can get a cleaner approximation ratio of exactly 1 − (1 − d(P))1/d(P) by
guessing the most valuable single element of OPT (the technique of guessing the most
valuable single element of OPT is not new, and can be found, e.g., in [16]). The following
theorem examplifies that. A binary polytope P is a polytope defined by constraints with
only {0, 1} coefficients.

Theorem 3.2.3. Given a binary down-monotone solvable polytope P with a bounded TP
and a normalized monotone submodular function f : 2N → R+, there is a polynomial time
algorithm outputting a point x ∈ P with F (x) ≥ [1− (1− d(P))1/d(P)] · f(OPT).

The measured continuous greedy algorithm is depicted as Algorithm 2. Notice its
similarity to the traditional continuous greedy (Algorithm 1). The sole change in Algo-
rithm 2 is the distortion of the direction y, which appears in line 8 of the algorithm as the
multiplication of Ie(t) with 1− ye(t).

Algorithm 2: Measured Continuous Greedy(f,P, T)
// Initialization

1 Set: n← |N|, δ ← T (⌈n5T ⌉)−1.
2 Initialize: t← 0, y(0)← 1∅.
// Main loop

3 while t < T do
4 foreach e ∈ N do
5 we(t)← F (y(t) ∨ 1e)− F (y(t)).

6 Let I(t) ∈ P be a vector maximizing I(t) · w(t).
7 foreach e ∈ N do
8 ye(t+ δ)← ye(t) + δIe(t) · (1− ye(t)).

9 t← t+ δ.

10 Return y(T).

3.2.1 Analysis for Non-Monotone f

In this section we analyze the measured continuous greedy algorithm for general non-
negative submodular functions, and prove Theorem 3.2.1. We first prove that the algo-
rithm always remains within the cube [0, 1]N , regardless of the stopping time. Without
this observation, the algorithm is not well-defined for T > 1.

Observation 3.2.4. For every value of t, y(t) ∈ [0, 1]N .

Proof. We prove the observation by induction on t. Clearly the observation holds for
y(0) = 1∅. Assume the observation holds for some t, then, for every u ∈ N , yu(t + δ) ≤
yu(t) + I(t) · (1− yu(t)) ≤ 1.

Next, we prove a counterpart of Lemma 3.1.2.

Lemma 3.2.5. For every T ≥ 0, the measured continuous greedy algorithm produces a
solution x such that x/T ∈ P.

Proof. Notice that x is coordinate-wise upper bounded by x′ = δ ·
∑T/δ−1

i=0 I(i · δ). Since
P is a down-monotone polytope, it is enough to show that x′/T ∈ P. x′/δ is the sum of
T/δ points in P, and therefore, x′/T = (x′/δ)/(T/δ) ∈ P.

17

The following lemma gives together with Lemma 2.3.7 a lower bound on the improve-
ment achieved by the algorithm in each iteration. This lower bound is stated explicitly in
Corollary 3.2.7.

Lemma 3.2.6. For every time 0 ≤ t < T ,
∑

u∈N (1− yu(t)) · Iu(t) · ∂uF (y(t)) ≥ F (y(t) ∨
1OPT)− F (y(t)).

Proof. Recall that R(x) is a random set containing every element u ∈ N with probability
xu, and that F (x) = E[R(x)]. Let us calculate the weight of OPT according to weight
function w(t).

w(t) · 1OPT =
∑

u∈OPT

wu(t) =
∑

u∈OPT

[F (y(t) ∨ 1u)− F (y(t))]

= E

[∑
u∈OPT

f(R(y(t)) + u)− f(R(y(t)))

]
≥ E [f(R(y(t)) ∪OPT)− f(R(y(t)))] = F (y(t) ∨ 1OPT)− F (y(t)) .

Where the inequality follows from submodularity. Since 1OPT ∈ P, we get:

w(t) · I(t) ≥ F (y(t) ∨ 1OPT)− F (y(t)) .

Hence,∑
u∈N

(1− yu(t)) · Iu(t) · ∂uF (y(t)) =
∑
u∈N

(1− yu(t)) · Iu(t) · [F (y(t) ∨ 1u)− F (y(t) ∧ 1ū)]

=
∑
u∈N

Iu(t) · [F (y(t) ∨ 1u)− F (y(t))] = I(t) · w(t)

≥ F (y(t) ∨ 1OPT)− F (y(t)) .

Corollary 3.2.7. For every time 0 ≤ t < T , F (y(T+δ))−F (y(T)) ≥ δ · [F (y(t)∨1OPT)−
F (y(t))]−O(n3δ2) · f(OPT).

The lower bound given by the last corollary is in terms of F (y(t) ∨ 1OPT). To make
this lower bound useful, we need to lower bound the term F (y(t) ∨ 1OPT). This is done
by the following two lemmata and corollary.

Lemma 3.2.8. Consider a vector x ∈ [0, 1]N . Assuming xu ≤ a for every u ∈ N , then
for every set S ⊆ N , F (x ∨ 1S) ≥ (1− a)f(S).

Proof. Notice that if λ > a, then Tλ(x) = ∅. By Theorem 2.3.5, we have:

F (x ∨ 1S) ≥ f̂(x ∨ 1S) =

∫ 1

0
f(Tλ(x ∨ 1S))dλ =

∫ 1

0
f(Tλ(x) ∪ S)dλ

≥
∫ 1

a
f(Tλ(x) ∪ S)dλ =

∫ 1

a
f(S)dλ = (1− a) · f(S) .

Lemma 3.2.9. For every time 0 ≤ t ≤ T and element u ∈ N , yu(t) ≤ 1 − (1 − δ)t/δ ≤
1− e−t +O(δ).

18

Proof. We prove the first inequality by induction on t. For t = 0, the inequality holds
because yu(0) = 0 = 1 − (1 − δ)0/δ. Assume the inequality holds for some t, and let us
prove it for t+ δ.

yu(t+ δ) = yu(t) + δIu(t)(1− yu(t)) = yu(t)(1− δIu(t)) + δIu(t)

≤ (1− (1− δ)t/δ)(1− δIu(t)) + δIu(t) = 1− (1− δ)t/δ + δIu(t)(1− δ)t/δ

≤ 1− (1− δ)t/δ + δ(1− δ)t/δ = 1− (1− δ)(t+δ)/δ .

We complete the proof by deriving the second inequality: 1−(1−δ)t/δ ≤ 1−[e−1(1−δ)]t =
1− e−t(1− δ)t ≤ 1− e−t(1− Tδ) = 1− e−t +O(δ), where the last inequality holds since
t ∈ [0, T].

Corollary 3.2.10. For every time 0 ≤ t < T , F (y(T + δ))−F (y(T)) ≥ δ · [(e−t−O(δ)) ·
f(OPT)−F (y(t))]−O(n3δ2) ·f(OPT) = δ · [e−t ·f(OPT)−F (y(t))]−O(n3δ2) ·f(OPT).

Proof. By Lemma 3.2.9, every coordinate in y(t) is at most 1− e−t +O(δ). Therefore, by
Lemma 3.2.8, F (y(t)∨ 1OPT)] ≥ [e−t−O(δ)] · f(OPT). Plugging this into Corollary 3.2.7
completes the proof.

At this point we have a lower bound on the improvement achieved in each iteration
in terms of t, f(OPT) and F (y(t)). In order to complete the analysis of the algorithm,
we need to derive from it a bound on the value of F (y(t)) for every time t. Let g(t) be
defined as following. g(0) = 0 and g(t+ δ) = g(t)+ δ[e−tf(OPT)− g(t)]. The next lemma
shows that a lower bound on g(t) also gives a lower bound on F (y(t))

Lemma 3.2.11. For every 0 ≤ t ≤ T , g(t) ≤ F (y(t)) +O(n3δ) · tf(OPT).

Proof. Let c be the constant hiding behind the big O notation in Corollary 3.2.10. We
prove by induction on t that g(t) ≤ F (y(t)) + cn3δtf(OPT). For t = 0, g(0) = 0 ≤
F (y(0)). Assume now that the claim holds for some t, and let us prove it for t+ δ. Using
Corollary 3.2.10, we get:

g(t+ δ) = g(t) + δ[e−tf(OPT)− g(t)] = (1− δ)g(t) + δe−tf(OPT)

≤ (1− δ)[F (y(t)) + cn3δtf(OPT)] + δe−tf(OPT)

= F (y(t)) + δ[e−tf(OPT)− F (y(t))] + c(1− δ)n3δtf(OPT)

≤ F (y(t+ δ)) + cn3δ2f(OPT) + c(1− δ)n3δtf(OPT)

≤ F (y(t+ δ)) + cn3δ(t+ δ)f(OPT) .

The function g is given by a recursive formula, thus, evaluating it is not immediate.
Instead, we show that the function h(t) = te−t · f(OPT) lower bounds g within the range
[0, 1].

Lemma 3.2.12. For every 0 ≤ t ≤ T , g(t) ≥ h(t).

Proof. The proof is by induction on t. For t = 0, g(0) = 0 = 0 · e−0 · f(OPT) = h(0).
Assume now that the lemma holds for some t, and let us prove it holds for t+ δ.

h(t+ δ) = h(t) +

∫ t+δ

t
h′(τ)dτ = h(t) + f(OPT) ·

∫ t+δ

t
e−τ (1− τ)dτ

≤ h(t) + f(OPT) · δe−t(1− t) = (1− δ)h(t) + δe−t · f(OPT)

≤ (1− δ)g(t) + δe−t · f(OPT) = g(t) + δ · [e−t · f(OPT)− g(t)] = g(t+ δ) .

19

We can now use the last result to lower bound the quality of the algorithm’s output.

Corollary 3.2.13. F (y(T)) ≥ [Te−T − o(1)] · f(OPT).

Proof. By Lemmata 3.2.11 and 3.2.12, F (y(T)) ≥ g(T) − O(n3δ) · Tf(OPT) ≥ h(T) −
O(n3δ) ·f(OPT) = [Te−T −O(n3δ)] ·f(OPT). Recall that δ ≤ n−5, hence, O(n3δ) = o(1),
and the proof is complete.

Theorem 3.2.1 now follows immediately from Lemma 3.2.5 and Corollary 3.2.13.

3.2.2 Analysis for Monotone f

In this section we analyze the measured continuous greedy algorithm for normalized mono-
tone submodular functions, and prove Theorems 3.2.2. Observe that all claims of Sec-
tion 3.2.1 apply here too because a normalized monotone submodular function is a special
case of a non-negative submodular function.

Theorem 3.2.2 has three parts. The first part we prove is F (y(T)) ≥ [(1− eT)− o(1)] ·
f(OPT). By combining Lemma 3.2.6 with monotonicity, we get the following corollary.

Corollary 3.2.14. For every time 0 ≤ t < T , F (y(T + δ)) − F (y(T)) = δ · [f(OPT) −
F (y(t))]−O(n3δ2) · f(OPT).

Corollary 3.2.14 is identical to Corollary 3.1.4 from the proof of Theorem 3.1.1. Notice
that Theorem 3.1.1 also guarantees F (y(T)) ≥ [(1−eT)−o(1)]·f(OPT), and this guarantee
follows solely from Corollary 3.1.4. Hence, we can follow the proof of Theorem 3.1.1, and
prove that F (y(T)) ≥ [(1− eT)− o(1)] · f(OPT) holds also for Algorithm 2. The proof of
the first part of the theorem is now complete.

The second part of the theorem states that x/T ∈ P, which was already proved by
Lemma 3.2.5. Hence, we are left to prove the third part of the theorem, which states that
if P is a packing constraint and T ≤ TP , then y(T) ∈ P. Consider some general constraint∑

u∈N auxu ≤ b of P. We assume au > 0 for some u ∈ N , otherwise, the constraint holds

always and can be ignored. Let Itu = δ ·
∑t/δ−1

i=0 Iu(δ · i), i.e., Itu is the scaled sum of Iu
over all times up to time t. The following two lemmata prove some properties of Itu.

Lemma 3.2.15.
∑

u∈N au · ITu ≤ Tb.

Proof. For every time t ∈ [0, T), I(t) is a feasible solution, and therefore,
∑

u∈N ai ·Iu(t) ≤
b. Summing over all times in this range, we get:

T/δ−1∑
i=0

∑
u∈N

au · Iu(δ · i) ≤
T/δ−1∑
i=0

b .

Since there are T/δ different times in the above range, the right hand side of the last
expression is Tb/δ. The lemma now follows by switching the order of summation in the
left hand side, and plugging in the definition of Itu.

Lemma 3.2.16. For every 0 ≤ t ≤ T , yu(t) ≤ 1− e−Itu +O(δ) · t.
Proof. We prove by induction on t that ye(t) ≤ 1 − e−Ite + 0.5δt. For t = 0 the lemma
holds since ye(t) = 0 = 1− e−0 +0 · δ. Assume that the lemma holds for some time t, and
let us prove it for time t+ δ.

yu(t+ δ) = yu(t) + δIu(t) · (1− yu(t)) ≤ (1− e−Itu + 0.5tδ)(1− δIu(t)) + δIu(t)

≤ 1− e−Itu · (1− δIu(t)) + 0.5tδ ≤ 1− e−Itu · [e−δIu(t) − 0.5(δIu(t))
2] + 0.5tδ

≤ 1− e−Itu−δIu(t) + 0.5δ2 + 0.5tδ = 1− e−It+δ
u + 0.5(t+ δ)δ .

20

The following lemma is a mathematical observation needed to combine the last two
lemmata.

Lemma 3.2.17. Let c1, c2 > 0, and let z1, z2 be two variables whose values obey c1z1 +
c2z2 = s for some constant s. Then, the expression c1(1−e−z1)+c2(1−e−z2) is maximized
when z1 = z2.

Proof. The value of z2 is given, in terms of z1, by z2 = (s− c1z1)/c2. Hence, we can derive
the expression c1(1− e−z1) + c2(1− e−z2) by z1 as following.

d[c1(1− e−z1) + c2(1− ez2)]

dz1
=

d[c1(1− e−z1) + c2(1− e(c1z1−s)/c2)]

dz1

= c1e
−z1 [1− ez1+(c1z1−s)/c2] .

Observe that the first part of the derivative is always positive. The second part is a
decreasing function of z1, and therefore, the original function has a global maximum when
the right hand side equals 0, which happens when:

ez1+(c1z1−s)/c2 = 1⇔ z1 + (c1z1 − s)/c2 = 0⇔ z1 = z2 .

The following lemma upper bounds, at time T , the left hand side of our general con-
straint

∑
u∈N au · xu ≤ b.

Lemma 3.2.18. Let N ′ ⊆ N be the set of elements with a strictly positive au. Then,∑
u∈N ′ au · yu(T) ≤ b

d(P) · (1− e−Td(P) +O(δ) · T).

Proof. By Lemma 3.2.16:∑
u∈N ′

au · yu(T) ≤
∑
u∈N ′

au · (1− e−ITu +O(δ) · T) ≤
∑
u∈N ′

au · (1− e−ITu) +O(δ) · Tb/d(P) .

The second term of the right hand side is independent of the values taken by the ITu ’s,
therefore, we can upper bound the entire right hand side by assigning to the Itu’s values
maximizing the first term. Let us determine these values.

• We can assume the summand is an increasing function of ITu , the sum
∑

u∈N ′ au · ITu
has its maximal value, which is Tb by Lemma 3.2.15.

• By Lemma 3.2.17, the maximum is attained when ITu is identical for all elements
u ∈ N ′.

It can be easily seen that the sole solution satisfying these conditions is ITu = Tb/
∑

u∈N ′ au.
Plugging this solution to into the previous bound on

∑
u∈N ′ au · yu(T), we get:∑

u∈N ′

au · yu(T) ≤
∑
u∈N ′

au · (1− e−Tb/
∑

u∈N′ au) +O(δ) · Tb/d(P)

= (1− e−Tb/
∑

u∈N′ au) ·
∑
u∈N ′

au +O(δ) · Tb/d(P) .

Let us denote by Σ the sum
∑

u∈N ′ au. The first term of the last expression can now be

rewritten as Σ(1− e−Tb/Σ), and its derivative by Σ is:

d[Σ(1− e−Tb/Σ)]

dΣ
= (1− e−Tb/Σ)− Σ · Tb

Σ2
e−Tb/Σ = 1− (1 + Tb/Σ) · e−Tb/Σ

≥ 1− eTb/Σ · e−Tb/Σ = 0 .

21

Hence, increasing the value of Σ only worsens the bound we have on
∑

u∈N ′ au · yu(T).
Therefore, we can plug Σ = b/d(P), which is an upper bound on Σ, and get:∑
u∈N ′

au·yu(T) ≤ (1−e−Tb/(b/d(P)))·b/d(P)+O(δ)·Tb/d(P) = b

d(P)
·(1−e−Td(P)+O(δ)·T) .

As long as the upper bound proved in the last lemma is at most b, the constraint∑
u∈N auxu ≤ b is not violated. The next corollary shows that if T ≤ TP , then this is the

case.

Corollary 3.2.19. For T ≤ TP , the solution y(T) respects the constraint
∑

u∈N auxu ≤ b.
Moreover, since

∑
u∈N auxu ≤ b is an arbitrary constraint of P, y(T) ∈ P.

Proof. By Lemma 3.2.18,∑
u∈N

au · yu(T) =
∑
u∈N ′

au · yu(T) ≤
∑
u∈N ′

au · yu(TP) ≤
b

d(P)
· (1− e−TPd(P) +O(δ) · TP)

=
b

d(P)
· (1− eln(1−d(P)+nδ) +O(δ) · TP)

=
b

d(P)
· (d(P)− nδ +O(δ) · TP) ≤ b .

This completes the proof of the third (and last) part of Theorem 3.2.2.

3.2.3 Analysis for Monotone f and Binary P

In this section we prove Theorem 3.2.3. Notice that all claims of Section 3.2.2 still
hold because the setting considered here is a special case of the setting considered in
Section 3.2.2. Theorem 3.2.3 guarantees that given a binary down-monotone solvable
polytope P with a bounded TP and a normalized monotone submodular function f :
2N → R+, there exists a polynomial time algorithm outputting a point x ∈ P with
F (x) ≥ [1− (1− d(P))1/d(P)] · f(OPT).

A naive attempt to prove Theorem 3.2.3 is to use the measured continuous greedy
with stopping time T = TP . Corollary 3.2.19 guarantee that the output x of the measured
continuous greedy is a feasible solution. The next lemma lower bounds F (x).

Lemma 3.2.20. Let x be the output of the measured continues greedy, assuming T = TP .
Then, F (x) ≥ [1 − (1 − d(P))1/d(P) − O(n−2)] · f(OPT) = [1 − (1 − d(P))1/d(P) − o(1)] ·
f(OPT).

Proof. First, observe that d(P) must be at least 1/n in a binary down-monotone polytope.
Using this observation, let us derive 1− (1− d(P) + c)1/d(P) by c, for c ≤ n−1.

d[1− (1− d(P) + c)1/d(P)]

dc
= −(1− d(P) + c)1/d(P)−1

d(P)
≥ − 1

d(P)
≥ −n .

Hence, for c ≤ 1/n, 1 − (1 − d(P) + c)1/d(P) ≥ 1 − (1 − d(P))1/d(P) − cn. The discussion
in Section 3.2.2 proves that Corollary 3.1.7 (including its proof) applies to the measured

22

continuous greedy. By the proof of Corollary 3.1.7:

F (y(x)) ≥ [1− e−TP −O(n3δ) · TP] · f(OPT)

= [1− (1− d(P) + nδ)1/d(P) −O(n3δ) · TP] · f(OPT)

≥ [1− (1− d(P))1/d(P) − n2δ −O(n3δ) · TP] · f(OPT)

= [1− (1− d(P))1/d(P) −O(n3δ) · TP] · f(OPT)

= [1− (1− d(P))1/d(P) −O(n−2)] · f(OPT) ,

where the last equality follows since δ ≤ n−5.

Unfortunately, Lemma 3.2.20 is not enough for proving Theorem 3.2.3 because of the
o(1) term in its guarantee. To solve that problem, consider Algorithm 3, which guesses
one element of the optimal solution before applying the measured continuous greedy.

Algorithm 3: Measured Continuous Greedy with Enumeration(f,P)
// Guess

1 If n is small enough, guess the optimal solution and terminate.
2 Otherwise, guess an element u∗ ∈ OPT such that f(u∗) ≥ f(OPT)/n.
// Definitions

3 Let P ′ be the polytope formed from P by setting xu∗ to be identically 1.
4 Let N0 be the set of elements of N whose corresponding variables are identically 0
in P ′.

5 Set N ′ ← N −N0 − {e∗}.
6 Define f ′(A) = f(A+ u∗)− f({u∗}).
// Solve

7 Use the measured continuous greedy algorithm with ground set N ′, submodular
function f ′, polytope P ′ and stopping time TP .

8 Let y(TP) be the output of the measured continuous greedy algorithm.
9 Output y(TP) ∨ 1u∗ .

If n is small enough, then clearly the Algorithm 3 is optimal. Hence, we can assume
from now on that n is large. Let us make sure that there is an element u∗ for the algorithm
to guess.

Lemma 3.2.21. There is an element u∗ ∈ OPT satisfying the requirement of the algo-
rithm, i.e., f(u∗) ≥ f(OPT)/n.

Proof. Assume for the sake of contradiction that every element u ∈ OPT has f(u) <
f(OPT)/n. Then, we get:

f(OPT) ≤
∑

u∈OPT

f(u) <
∑

u∈OPT

f(OPT)

n
=
|OPT | · f(OPT)

n
≤ f(OPT) ,

which is, of course, a contradiction.

Algorithm 3 applies the measured continuous greedy algorithm with the objective func-
tion f ′. The following lemma shows that f ′ has the properties required by Theorem 3.2.2.

Lemma 3.2.22. f ′ is a normalized monotone submodular function over the ground set
N ′.

23

Proof. f is submodular because for every two subsets A,B ∈ N ′:

f ′(A) + f ′(B) = f(A+ u∗)− f({u∗}) + f(B + u∗)− f({u∗})
≥ f(A ∪B + u∗) + f((A+ u∗) ∩ (B + u∗))− 2f({u∗})
= f(A ∪B + u∗)− f({u∗}) + f((A ∩B) + u∗)− f({u∗})
= f ′(A ∪B) + f ′(A ∩B) .

f is monotone because for every A ⊆ B ⊆ N ′:

f ′(A) = f(A+ u∗)− f({u∗}) ≤ f(B + u∗)− f({u∗}) = f ′(B) .

And finally, f ′ is normalized because:

f ′(∅) = f(∅+ u∗)− f({u∗}) = 0 .

In order for us to use the full power of Theorem 3.2.2, we need to demonstrate that
P ′ is a packing polytope and bound its density.

Lemma 3.2.23. The polytope P ′ can be represented as a packing polytope over N ′ with
d(P ′) ≥ d(P).

Proof. Consider a general constraint
∑

u∈N auxu ≤ b of P. The corresponding constraint
in P ′ is

∑
u∈N ′ auxu ≤ b− au∗ . If all the coefficients au on the left side of this constraint

are 0, the constraint always holds, and therefore, can be removed. Hence, we can assume
this is not the case, and there exists u′ ∈ N ′ such that au′ = 1.

Clearly au∗ ≤ b because otherwise u∗ could not be a member of a feasible solution,
contradicting our assumption that u∗ ∈ OPT . Therefore, the free coefficient of the con-
straint is either 0 or 1. If b− ae∗ = 0, then this constraint implies xu′ = 0, contradicting
the fact u′ ∈ N ′. Hence, b− au∗ = 1, which implies au∗ = 0. Thus,

b− au∗∑
u∈N ′ au

≥ b∑
u∈N au

.

The last inequality holds for a general constraint of P ′, and therefore, d(P ′) ≥ d(P).

Corollary 3.2.24. Let x be the output of Algorithm 3. Then, x ∈ P.

Proof. Lemma 3.2.23 imply TP ′ ≥ TP , and therefore, y(TP) ∈ P ′ by Theorem 3.2.2.
Hence, by the definition of P ′, x = y(TP) ∨ 1e∗ ∈ P.

To complete the proof of Theorem 3.2.3, we are only left to lower bound F (x).

Lemma 3.2.25. F (x) ≥ [1− (1− d(P))1/d(P)] · f(OPT).

Proof. Recall that one of the conditions of Theorem 3.2.3 is that TP should be bounded.
The only case in which TP is unbounded is when d(P) approaches 1. Hence, we know that
d(P) is bounded away from 1.

Let F ′ be the multilinear extension of f ′, and observe that OPT −{e∗} is the optimal
point in P ′. The above lemmata prove that f ′ and P ′ obey all the requirements of
Theorem 3.2.2, and therefore, we can apply Lemma 3.2.20 to them, yielding F ′(y(TP)) ≥

24

[1− (1− d(P))1/d(P)− cn−2] · f ′(OPT −{e∗}) for some constant c (assuming large enough
n). Hence,

F (x) = E[f({e∗} ∪ R(y(TP)))] = E[f({e∗}) + f ′(R(y(TP)))] = f({e∗}) + F ′(y(TP))

≥ f({e∗}) + [1− (1− d(P))1/d(P) − cn−2] · f ′(OPT − {e∗})
= ((1− d(P))1/d(P) + cn−2) · f({e∗}) + (1− (1− d(P))1/d(P) − cn−2) · f(OPT)

≥ ((1− d(P))1/d(P) + cn−2) · f(OPT)/n+ (1− (1− d(P))1/d(P) − cn−2) · f(OPT)

≥ [1− (1− d(P))1/d(P) + n−1((1− d(P))1/d(P) − cn−1)] · f(OPT)

≥ [1− (1− d(P))1/d(P)] · f(OPT) ,

where the last inequality holds for large enough n since c is a constant and d(P) is bounded
away from 1.

3.3 Applications of the Measured Continuous Greedy

Theorems 3.2.1, 3.2.2 and 3.2.3 immediately provide improved approximations for various
problems. We elaborate now on a few of these, starting with the non-monotone case. The-
orem 3.2.1, gives an improved (1/e− o(1))-approximation for finding a fractional solution
for any down-monotone and solvable polytope P. Examples of some well-studied problems
for which this provides improved approximation are maximization of a non-monotone sub-
modular function f over a single matroid [20, 37, 81] and over O(1) knapsack constraints
[20, 61, 57]. For both we provide an improved approximation of about 1/e. Note that both
problems are known to have an approximation of roughly ≈ 0.325 [20] via the simulated
annealing technique of [37].

For the monotone case, Theorems 3.2.2 and 3.2.3 can be immediately used to ob-
tain improved approximations for various problems. Most notable is the well studied
Submodular Welfare (SW) problem (refer to [16, 17, 25, 26, 29, 31, 32, 54, 63, 73, 68, 81]
for previous results on SW and additional closely related variants of the problem). The
above theorems provide tight approximations for any number of players k, which exactly
matches the (1 − (1− 1/k)k)-hardness result [68]. This improvement is most significant
for small values of k. Another problem we consider is Submodular Max-SAT (SSAT). SSAT
is a generalization of both Max-SAT and SW with two players, in which a monotone sub-
modular function f is defined over the clauses of a CNF formula, and the goal is to find
an assignment maximizing the value of f over the set of satisfied clauses. For SSAT we
get a 3/4 approximation. The above main applications are summarized in Table 3.1. For
other applications involving our algorithm and the framework of [20], see Section 6.

Table 3.1: Main applications.

Constraint This Thesis Previous Result Hardness*

Matroid
1/e− o(1) 0.325 [20] 0.478 [37]

(non-monotone)

O(1)-Knapsacks
1/e− ε 0.325 [20] 1/2**

(non-monotone)

SW (k players) 1− (1− 1/k)
k

max
{
1− 1

e ,
k

(2k−1)

}
[26, 16] 1− (1− 1/k)

k
[68]

SSAT 3/4 2/3 [5] 3/4 [81]

* All hardness results are for the value oracle model, and are information theory based.
** Can be derived from the method of [81].

25

3.3.1 Maximizing a Submodular Function Subject to Matroid Constraint

In this section we consider the problem of maximizing a submodular function subject to
a matroid constraint. Formally, given a matroid M = (N , I) and a submodular function
f : 2N → R+, the objective is to find an independent set S ∈ I maximizing f(S).
Calinescu et al. [16] considered the case that the submodular function is monotone. They
used the continuous greedy algorithm to prove the following theorem.

Theorem 3.3.1. There is a polynomial time (1− 1/e)-approximation algorithm for max-
imizing a normalized monotone submodular function subject to a matroid constraint.

The above theorem is tight even for uniform matroids6 [71]. Using the measured con-
tinuous greedy algorithm instead of the traditional continuous greedy, we get the following
result for general non-monotone functions.

Theorem 3.3.2. There is a polynomial time (1/e − o(1))-approximation algorithm for
maximizing a general non-negative submodular function subject to a matroid constraint.

Proof. Let P(M) be the matroid polytope corresponding to M . Since P(M) is a solvable
down monotone polytope, by Theorem 3.2.1, applying the measured continuous greedy to
it, with stopping time T = 1, produces a point x ∈ P(M) such that F (x) ≥ [1/e− o(1)] ·
f(OPT).

The point x can then be rounded using pipage rounding. This rounding procedure
returns a random set S which is an independent set of M and obeys E[f(S)] ≥ F (x) ≥
[e−1 − o(1)] · f(OPT).

This improves over the previous 0.325-approximation of [20].

3.3.2 Maximizing a Submodular Function Subject to Knapsack Con-
straints

In this section we consider the problem of maximizing a submodular function subject to a
constant number of knaspack constraints. Formally, we are given a ground set N , a set of
d knapsack constraints over this ground set (where d is considered to be a constant) and
a non-negative submodular function f : 2N → R+. The objective is to find a set S ⊆ N
satisfying all knapsack constraints and maximizing f(S).

Let P be the polytope defined by the d knapsack constraints and the cube [0, 1]N .
Observe that P is a down monotone solvable polytope. The following theorem shows that
it is possible to round fractional points in P.

Theorem 3.3.3 (Theorem 2.6 in [57]). Suppose there is an α-approximation polynomial
time algorithm for finding a point x ∈ P maximizing F (x). Then, for every constant ε > 0,
there is a polynomial time randomized (α− ε)-approximation algorithm for maximizing a
non-monotone submodular function subject to d knapsack constraints.

Theorem 3.3.3 assumes the existence of a fractional approximation algorithm. We
observe that the measured continuous greedy algorithm can be used as such an algorithm.
For monotone submodular functions, this gives (1− 1/e− ε)-approximation, which is the
result obtained by [57]. For general non-monotone functions, we get the following result.

6In a uniform matroid, a set is independent if it contains at most k elements of the ground set, for some
fixed k.

26

Corollary 3.3.4. For any constant ε > 0 and constant integer d, there is a polynomial
time (1/e−ε)-approximation algorithm for maximizing a general non-negative submodular
function subject to d knapsack constraints.

Proof. By Theorem 3.2.1, applying the measured continuous greed to P, with T = 1,
produces a point x ∈ P such that F (x) ≥ [1/e−o(1)] ·f(OPT). The corollary now follows
from Theorem 3.3.3.

This improves over the previous 0.325-approximation of [57].

3.3.3 The (d, r)-Submodular Partition Problem

A (d, r)-partition matroid is a matroid defined over a groundset N = N1 ∪N2 ∪ . . .∪Nm,
where |Ni| = r for every 1 ≤ i ≤ m. A set S ⊆ I is independent if it contains up to d
elements of each subset Ni. In the (d, r)-Submodular Partition problem (considered by
[5]), given a (d, r)-partition matroid M and a normalized monotone submodular function
f , the objective is to find an independent set S maximizing f(S).

Observation 3.3.5. Let M be a (d, r)-partition matroid, then P(M) is a matroid with
density d(P(M)) = d/r. For d = 1, it is also a binary packing matroid.

Proof. P(M) is a polytope defined by m constraints, one for each subset Ni. The con-
straint of Ni is

∑
u∈Ni

xu ≤ d. The number of terms in the sum is r, and therefore, the
density imposed by this constraint is: d/

∑
u∈Mi

d = d/r.
For d = 1, observe that all coefficients in the above constraint belong to {0, 1}, and

therefore, the matroid is a binary packing matroid.

Theorem 3.3.6. There is a polynomial time (1 − (1 − d/r)r/d − o(1))-approximation
algorithm for (d, r)-Submodular Partition. For d = 1, the approximation ratio improves
to (1− (1− 1/r)r.

Proof. Observation 3.3.5 together with Theorem 3.2.2 gives a polynomial time approxima-
tion algorithm that finds a point x ∈ P(M) with F (x) ≥ [1−(1−d/r)r/d−o(1)] ·f(OPT).
The point x can then be rounded using pipage rounding. This rounding returns an inde-
pendent random set S of M , such that: E[f(S)] ≥ F (x) ≥ [1−(1−d/r)r/d−o(1)]·f(OPT).
This completes the proof of the first part of the theorem.

For d = 1, we know that the (d, r)-partition matroid is a binary packing matroid, and
therefore, we can replace Theorem 3.2.2 with Theorem 3.2.3 in the proof of the first part
of the theorem, yielding the second part of the theorem.

The last result matches the hardness result given by [5] for every pair of d and r, up
to low order terms.

3.3.4 The Submodular Max-SAT Problem

In Submodular Max-SAT (SSAT) we are given a CNF formula Ψ with a set C of clauses
over a set N of variables, and a normalized monotone submodular function f : 2C → R+

over the set of clauses. Given an assignment ϕ : N → {0, 1}, let C(ϕ) ⊆ C be the set of
clauses satisfied by ϕ. The goal is to find an assignment ϕ that maximizes f(C(ϕ)).

Usually, an assignment ϕ can give each variable exactly a single truth value. However,
for the sake of the algorithm we extend the notion of assignments, and think of an extended
assignment ϕ′ which is a relation ϕ′ ⊆ N × {0, 1}. That is, the assignment ϕ′ can assign
up to 2 truth values to each variable. A clause C is satisfied by an (extended) assignment

27

ϕ′, if there exists a positive literal in the clause which is assigned the truth value 1, or
there exists a negative literal in the clause which is assigned the truth value 0. Note again
that it might happen that some variable is assigned both 0 and 1. Note also, that an
assignment is a feasible solution to the original problem if and only if it assigns exactly
one truth value to every variable of N . Let C(ϕ′) be the set of clauses satisfied by ϕ′. We
define g : N × {0, 1} → R+ using g(ϕ′) , f(C(ϕ′)). Using this notation, we can restate
SSAT as the problem of maximizing the function g over the set of feasible assignments.

Lemma 3.3.7. The function g is a normalized monotone submodular function.

Proof. It is easy to see that g is normalized and monotone, however, proving it is also
submodular requires some work. Consider two sets A,B ⊆ N × {0, 1}. Using the sub-
modularity and monotonicity of f , we get:

g(A) + g(B) = f (C(A)) + f (C(B)) ≥ f (C(A) ∪ C(B)) + f (C(A) ∩ C(B))

≥ f (C(A ∪B)) + f (C(A ∩B)) = g(A ∪B) + g(A ∩B) .

Notice that we have just restated SSAT as an instance of (1, 2)-Submodular Partition.
Hence, we get the following corollary.

Corollary 3.3.8. There is an α-approximation for SSAT if (1, 2)-Submodular Partition

has such an approximation. Hence, by Theorem 3.3.6, there is a 3/4-approximation algo-
rithm for SSAT.

Since we identified SSAT with (1, 2)-Submodular Partition, the hardness of [5] applies
also to SSAT, and shows that the last corollary is tight.

3.3.5 The Submodular Welfare Problems

The input for the Submodular Welfare problem consists of a ground set N of n elements
and k players, each player is equipped with a normalized monotone submodular utility
function fi : 2

N → R+. The goal is to partition the elements among the players while
maximizing the social welfare. Formally, the objective is to partitionN intoN1,N2, . . . ,Nk

maximizing
∑k

i=1 fi(Ni).

Lemma 3.3.9. An α-approximation algorithm for (1, k)-Submodular Partition implies
an α-approximation for SW with k players.

Proof. Given an instance I of SW with k players, let us transform it into an equivalent
instance I ′ of (1, k)-Submodular Partition. Let u1, . . . , un denote the elements of N .
The ground set of I ′ is N ′ = ∪ni=1N ′

i , where N ′
i = {ui} × {1, 2, . . . , k}. The objective

function of I ′ is g(S) =
∑k

i=1 fi({u|(u, i) ∈ S}). It is easy to see that g is normalized
and monotone, however, proving it is submodular requires some work. Consider two sets

28

A,B ⊆ N ′. Using the submodularity of f , we get:

g(A) + g(B) =

k∑
i=1

fi({u|(u, i) ∈ A}) +
k∑

i=1

fi({u|(u, i) ∈ B})

≥
k∑

i=1

fi({u|(u, i) ∈ A} ∪ {u|(u, i) ∈ B})

+

k∑
i=1

fi({u|(u, i) ∈ A} ∩ {u|(u, i) ∈ B})

=
k∑

i=1

fi({u|(u, i) ∈ A ∪B}) +
k∑

i=1

fi({u|(u, i) ∈ A ∩B})

= g(A ∪B) + g(A ∩B) .

Next, show how to transform any solution of I to a feasible set of I ′, and vice
versa. Consider a solution N1, . . . ,Nk of I, and let us construct from it the set: S =
∪ki=1{(u, i)|u ∈ Ni}. Observe that:

g(S) =

k∑
i=1

fi({u|(u, i) ∈ S}) =
k∑

i=1

fi(Ni) .

Thus, S has exactly the same value as N1, . . . ,Nk. On the other hand, given a set S which
is a feasible solution for I ′, let us create a solution N1, . . . ,Nk for I.

Ni = {u|(u, i) ∈ S} .

By the definition of g, g(S) is equal to the value of the solution N1, . . . ,Nk. The fact that
any feasible solution of I can be translated into a feasible set S of I ′ with the same value,
and vice versa implies that both instances have the same optimal value.

We are now ready to use the above transformation of I into I ′ to translate any α-
approximation algorithm for (1, k)-Submodular Partition into an α-approximation al-
gorithm for SW with k players. Given an instance of SW with k players, transform it into
an instance of (1, k)-Submodular Partition, find an approximate solution for the result-
ing instance, and then use the procedure described above to convert it into an approximate
solution for the original SW instance.

Corollary 3.3.10. There is a polynomial time 1 − (1 − 1/k)k-approximation algorithm
for SW.

Proof. Follows immediately from Theorem 3.3.6 and Lemma 3.3.9.

The last corollary is tight by the result of [68].

3.A Down Monotone Polytopes in the Hypercube [0, 1]N

Let P ⊆ [0, 1]N be a down monotone polytope defined by positivity constraints and m
additional inequality constraints. Let

∑
u∈N ai,uxu ≤ bi be the ith constraint defining P.

In this section we prove that one can assume the coefficients of the inequality constraints
are all non-negative and that 0 < d(P) ≤ 1.

29

Observation 3.A.1. We may assume P has a positive sign constraint xu ≥ 0, and an
inequality constraint of the form xu ≤ 1 for every u ∈ N .

Proof. Since P ⊆ [0, 1]N , adding these constraints will not effect P.

Lemma 3.A.2. For every 1 ≤ i ≤ m, bi is non-negative.

Proof. Since P is down monotone, 1∅ ∈ P. The point 1∅ induce the value of 0 on the left
hand side of all constraints, and therefore, the free coefficients must be non-negative.

Lemma 3.A.3. For every 1 ≤ i ≤ m and u ∈ N , ai,u is non-negative without loss of
generality.

Proof. Assume this is not the case, then let aj,u′ be a negative coefficient. Let P ′ be the
polytope defined by the same set of constraints as P with the sole modification that aj,u′

is changed to 0. By Observation 3.A.1, the change we made only tightens the constraint,
and therefore, P ′ ⊆ P. Let us show that the last containment is in fact an equality. Let
x be a point in P, and let

∑
u∈N a′i,uxu ≤ b′i be the ith constraint of P ′.

For every constraint i ̸= j, P and P ′ share the same coefficients, and therefore,∑
u∈N

a′i,uxu =
∑
u∈N

ai,uxu ≤ bi = b′i .

Let x′ = x ∧ 1N−{u′}. Observe that x′ ∈ P due to the down monotonicity of P. Also, P
and P ′ share all coefficients of the jth constraint except for aj,u′ , and therefore,∑

u∈N
a′j,uxu =

∑
u∈N−{u′}

a′j,uxu =
∑

u∈N−{u′}

aj,ux
′
u =

∑
u∈N

aj,ux
′
u ≤ bj = b′j .

Where the inequality holds since x′ ∈ P. We proved that x ∈ P implies x ∈ P ′, and
therefore, P = P ′. Hence, replacing a negative coefficient aj,u′ by 0 does not change
the polytope. The lemma now follows by repeating the argument for every negative
coefficient.

Lemma 3.A.4. For every constraint i, bi > 0 without loss of generality.

Proof. By Lemma 3.A.2, bi ≥ 0. Let N ′ = {u ∈ N|au,i > 0}. If bi = 0, the constraint
implies that for every u ∈ N ′, the coordinate xu must be zero everywhere in P, and
therefore, the elements of N ′ can be removed from the ground set. After the removal of
N ′’s elements, we are left with a constraint of the form:∑

u∈N
0 · xu ≤ 0 ,

and such constraints are meaningless, and can be removed without effecting P.

Lemma 3.A.5. For every constraint i,
∑

u∈N au,i > 0 without loss of generality.

Proof. By Lemma 3.A.3,
∑

u∈N au,i ≥ 0. If
∑

u∈N au,i = 0, the constraints is satisfied for
every assignment, and therefore, can be removed.

Lemma 3.A.6. For every constraint i,
∑

u∈N au,i > bi without loss of generality.

30

Proof. For every point x ∈ [0, 1]N it holds that
∑

u∈N au,ixu ≤
∑

u∈N au,i. Hence, if∑
u∈N au,i ≤ bi, then the ith constraint is redundant for points in [0, 1]N . By Observa-

tion 3.A.1, the removal of this constraint will not introduce to P points outside of [0, 1]N ,
and therefore, will not modify P.

Corollary 3.A.7. 0 < d(P) ≤ 1 without loss of generality.

Proof. Fix an inequality constraint i. Lemmata 3.A.4 and 3.A.5 guarantee bi > 0 and∑
u∈N au,i > 0, respectively. Hence, bi/

∑
u∈N au,i is positive. On the other hand, from

Lemma 3.A.6 we get
∑

u∈N au,i > bi. Since this is true for every inequality constraint of
P, its density must be in the range (0, 1].

31

Chapter 4

Unconstrained Submodular
Maximization

Unconstrained Submodular Maximization (USM) is perhaps the most basic submodular
maximization problem. Given a non-negative submodular fucntion f , the goal in this
problem is to find a subset S ⊆ N maximizing f(S). Note that there is no restriction on
the choice of S, as any subset of N is a feasible solution. USM captures many well studied
problems such as Max-Cut, Max-DiCut [38, 43, 45, 51, 53, 78], and variants of Max-SAT and
maximum facility location [1, 23, 24]. Moreover, USM has various applications in other,
more practical, settings such as marketing in social networks [44], revenue maximization
with discrete choice [3], and algorithmic game theory [28, 75].

USM has been studied starting from the 60’s in the Operations Research community
[3, 21, 39, 40, 41, 52, 60, 67]. Not surprisingly, as USM captures NP-hard problems, all
these works provide algorithms that either solve specific cases of the problem, provide
exact algorithms whose time complexity cannot be efficiently bounded, or provide efficient
algorithms whose output has no provable guarantee.

The first rigorous study of the problem was conducted by Feige et al. [30], who provided
several constant approximation factor algorithms for USM. They proved that a subset S
chosen uniformly at random constitutes a (1/4)-approximation. Additionally, they also
described two local search algorithms. The first uses f as the objective function, and
provides an approximation of 1/3. The second uses a noisy version of f as the objective
function, and achieves an improved approximation guarantee of 2/5. Gharan and Vondrák
[37] showed that an extension of the last method, known as simulated annealing, can
provide an improved approximation of roughly 0.41. Their algorithm, like that of Feige
et al. [30], uses local search with a noisy objective function. However, in [37] the noise
decreases as the algorithm advances, as opposed to being constant as in [30]. Feldman
et al. [33] observed that if the simulated annealing algorithm of [37] outputs a relatively
poor solution, then it must generate at some point a set S which is structurally similar
to some optimal solution. Moreover, they showed that this structural similarity can be
traded for value, providing an overall improved approximation of roughly 0.42.

It is important to note that for many special cases of USM better approximation factors
are known. For example, the seminal work of Goemans and Williamson [38] provides an
0.878-approximation for Max-Cut based on a semidefinite programming approach, and
Ageev and Sviridenko [1] provide an approximation of 0.828 for the maximum facility
location problem.

On the negative side, Feige et al. [30] studied the hardness of USM assuming the
function f is given via a value oracle. They proved that for any constant ε > 0, any

32

algorithm achieving an approximation of (1/2 + ε) requires an exponential number of
oracle queries. This hardness result holds even if f is symmetric, in which case it is
known to be tight [30]. Recently, Dobzinski and Vondrák [27] proved that even if f
has a compact representation (which is part of the input), the above hardness still holds
assuming RP ̸= NP .

In this section we resolve the approximability of USM. This section is based on [14]. We
design a tight linear time (1/2)-approximation for the problem. Let us begin by presenting
a simple greedy-based algorithm that provides a (1/3)-approximation for USM.

Theorem 4.0.8. There exists a deterministic linear time (1/3)-approximation algorithm
for the Unconstrained Submodular Maximization problem.

We show that our analysis of the last algorithm is tight by providing an instance for
which the algorithm achieves an approximation of 1/3 + ε for an arbitrary small ε > 0.
To improve the algorithm, we incorporate randomness into its choices. The result is an
optimal algorithm for USM with the same time complexity.

Theorem 4.0.9. There exists a randomized linear time (1/2)-approximation algorithm
for the Unconstrained Submodular Maximization problem.

In both Theorems 4.0.8 and 4.0.9 we assume that a single query to the value oracle
takes O(1) time. Thus, a linear time algorithm is an algorithm which makes O(n) oracle
queries plus O(n) other operations, where n is the size of the ground set N .

Building on the above two theorems, we provide two additional approximation algo-
rithms for Submodular Max-SAT and Submodular Welfare with 2 players (for the exact
definition of these problems please refer to Section 3.3). A tight approximation was al-
ready given for both problems in Section 3.3. However, the algorithms given here run in
linear time, thus, significantly improving the time complexity, while achieving the same
performance guarantee.

Theorem 4.0.10. There exists a randomized linear time (3/4)-approximation algorithm
for the Submodular Max-SAT problem.

Theorem 4.0.11. There exists a randomized linear time (3/4)-approximation algorithm
for the Submodular Welfare problem with 2 players .

4.1 A Deterministic Linear Time (1/3)-Approximation Al-
gorithm for Unconstrained Submodular Maximization

It is known that a straightforward greedy approach fails for USM. To understand the main
ideas behind our algorithm, consider some non-negative submodular function f . Let us
examine the complement of f , denoted by f̄ , which is defined as: f̄(S) , f(N \S) for any
S ⊆ N . Note that since f is submodular, f̄ is also submodular. Additionally, given an
optimum solution OPT ⊆ N for USM with input f , N \OPT is an optimal solution with
respect to f̄ , and both solutions have the exact same value. Consider, for example, the
greedy algorithm. For f , it starts from an empty solution and iteratively adds elements
to it in a greedy fashion. However, if one applies the greedy algorithm to f̄ , one gets an
algorithm for f that effectively starts with the solution N and iteratively removes elements
from it. Both algorithms are equally reasonable, but, unfortunately, both fail.

Despite the failure of the greedy algorithm when applied separately to either f or f̄ ,
we show that a correlated execution on both f and f̄ provides a much better result. The

33

algorithm proceeds in n iterations that correspond to some arbitrary order u1, . . . , un of
the ground set N . The algorithm maintains two solutions X and Y . Initially, we set the
solutions to X0 = ∅ and Y0 = N . In the ith iteration the algorithm either adds ui to
Xi−1 or removes ui from Yi−1. This decision is done greedily based on the marginal gain
of each of the two options. Eventually, after n iterations both solutions coincide, and we
get Xn = Yn; this is the output of the algorithm. A formal description of the algorithm
appears as Algorithm 4.

Algorithm 4: DeterministicUSM(f,N)

1 X0 ← ∅, Y0 ← N .
2 for i = 1 to n do
3 ai ← f(Xi−1 + ui)− f(Xi−1).
4 bi ← f(Yi−1 − ui)− f(Yi−1).
5 if ai ≥ bi then Xi ← Xi−1 + ui, Yi ← Yi−1.
6 else Xi ← Xi−1, Yi ← Yi−1 − ui.

7 return Xn (or equivalently Yn).

The rest of this section is devoted for proving Theorem 4.0.8, i.e., we prove that the
approximation guarantee of Algorithm 4 is 1/3. We start with the following useful lemma.

Lemma 4.1.1. For every 1 ≤ i ≤ n,

ai + bi , f(Xi−1 + ui)− f(Xi−1) + f(Yi−1 − ui)− f(Yi−1) ≥ 0 . (4.1)

Proof. Notice that (Xi−1 + ui) ∪ (Yi − ui) = Yi−1 and (Xi−1 + ui) ∩ (Yi − ui) = Xi−1. By
combining both observations with submodularity, one gets:

ai + bi , [f(Xi−1 + ui)− f(Xi−1)] + [f(Yi−1 − ui)− f(Yi−1)]

= [f(Xi−1 + ui) + f(Yi−1 − ui)]− [f(Xi−1) + f(Yi−1)] ≥ 0 .

Define OPTi , (OPT ∪ Xi) ∩ Yi. Note that OPT0 = OPT and the output of the
algorithm is OPTn = Xn = Yn. Examine the sequence f(OPT0), . . . , f(OPTn), which
starts with f(OPT) and ends with the value of the output of the algorithm. The main idea
of the proof is to bound the total loss of value along this sequence. This goal is achieved by
the following lemma which upper bounds the loss in value between every two consecutive
elements in the sequence. Formally, the loss of value, i.e., f(OPTi−1) − f(OPTi), is no
more than the total increase in value of both solutions maintained by the algorithm, i.e.,
[f(Xi)− f(Xi−1)] + [f(Yi)− f(Yi−1)].

Lemma 4.1.2. For every 1 ≤ i ≤ n, f(OPTi−1)−f(OPTi) ≤ [f(Xi)−f(Xi−1)]+[f(Yi)−
f(Yi−1)].

Before proving Lemma 4.1.2, let us show that Theorem 4.0.8 follows from it.

Proof of Theorem 4.0.8. Summing up Lemma 4.1.2 for every 1 ≤ i ≤ n gives:

n∑
i=1

[f(OPTi−1)− f(OPTi)] ≤
n∑

i=1

[f(Xi)− f(Xi−1)] +

n∑
i=1

[f(Yi)− f(Yi−1)] .

The above sum is telescopic. Collapsing it, we get:

f(OPT0)− f(OPTn) ≤ [f(Xn)− f(X0)] + [f(Yn)− f(Y0)] ≤ f(Xn) + f(Yn) .

Recalling the definitions of OPT0 and OPTn, we obtain that f(Xn) = f(Yn) ≥ f(OPT)/3.

34

Figure 4.1: Tight example for Algorithm 4. The weight of the dashed edges is 1− ε. All
other edges have weight of 1.

It is left to prove Lemma 4.1.2.

Proof of Lemma 4.1.2. Assume w.l.o.g that ai ≥ bi, i.e., Xi ← Xi−1 + ui and Yi ← Yi−1

(the other case is analogous). Notice that in this case OPTi = (OPT ∪ Xi) ∩ Yi =
OPTi−1 + ui and Yi = Yi−1. Using both, the inequality that we need to prove becomes:

f(OPTi−1)− f(OPTi−1 + ui) ≤ f(Xi)− f(Xi−1) = ai .

We now consider two cases. If ui ∈ OPT , then the left hand side of the last inequality
is 0, and all we need to show is that ai is non-negative. This is true since Lemma 4.1.1
gives that ai + bi ≥ 0, and we assumed that ai ≥ bi.

If ui ̸∈ OPT , then also ui ̸∈ OPTi−1, and thus:

f(OPTi−1)− f(OPTi−1 + ui) ≤ f(Yi−1 − ui)− f(Yi−1) = bi ≤ ai .

The first inequality follows by submodularity: OPTi−1 = ((OPT ∪Xi−1)∩Yi−1) ⊆ Yi−1−
ui (recall that ui ∈ Yi−1 and ui ̸∈ OPTi−1). The second inequality follows from our
assumption that ai ≥ bi.

4.1.1 Tight Example

In this section we show that the analysis of Algorithm 4 is tight.

Theorem 4.1.3. For an arbitrarily small constant ε > 0, there exists a submodular func-
tion for which Algorithm 4 provides only (1/3 + ε)-approximation.

Proof. The proof is done by analyzing Algorithm 4 on the cut function of the weighted
digraph given in Figure 4.1. The maximum weight cut in this digraph is {u1, u4, u5}. This
cut has weight of 6−2ε. We claim that Algorithm 4 outputs the cut {u2, u3, u4, u5}, whose
value is only 2 (assuming the nodes of the graph are considered at a given order). Hence,
the approximation guarantee of Algorithm 4 on the above instance is:

2

6− 2ε
=

1

3− ε
≤ 1

3
+ ε .

Let us track the execution of the algorithm. Let Xi, Yi be the solutions maintained
by the algorithm. Initially X0 = ∅, Y0 = {u1, u2, u3, u4, u5}. Note that in case of a tie
(ai = bi), Algorithm 4 takes the node ui.

35

1. In the first iteration the algorithm considers u1. Adding this node to X0 increases
the value of this solution by 2− 2ε. On the other hand, removing this node from Y0
increases the value of Y0 by 2. Hence, X1 ← X0, Y1 ← Y0 − u1.

2. Let us inspect the next two iterations in which the algorithm considers u2, u3. One
can easily verify that these two iterations are independent, hence, we consider only
u2. Adding u2 to X1 increases its value by 1. On the other hand, removing u2 from
Y1 = {u2, u3, u4, u5} also increases the value of Y1 by 1. Thus, the algorithm adds u2
to X1. Since u2 and u3 are symmetric, the algorithm also adds u3 to X1. Thus, at
the end of these two iterations X3 = X1 ∪ {u2, u3} = {u2, u3}, Y3 = {u2, u3, u4, u5}.

3. Finally, the algorithm considers u4 and u5. These two iterations are also independent
so we consider only u4. Adding u4 to X3 does not increase the value of X3. Also
removing u4 from Y3 does not increase the value of Y3. Thus, the algorithm adds u4
to X3. Since u4 and u5 are symmetric, the algorithm also adds u5 to X3. Thus, we
get X5 = Y5 = {u2, u3, u4, u5}.

4.2 A Randomized Linear Time (1/2)-Approximation Algo-
rithm for Unconstrained Submodular Maximization

In this section we present a randomized algorithm achieving a tight (1/2)-approximation
for USM, and by doing so prove Theorem 4.0.9. Algorithm 4 presented in Section 4.1
compared the marginal profits ai and bi. Based on this comparison the algorithm made
a greedy deterministic decision whether to include or exclude ui from its output. The
random algorithm we present next makes a “smoother” decision, based on the values ai
and bi. In each step, it randomly chooses whether to include or exclude ui from the
output with probability that is based on the values ai and bi. A formal description of the
algorithm appears as Algorithm 5.

Algorithm 5: RandomizedUSM(f,N)

1 X0 ← ∅, Y0 ← N .
2 for i = 1 to n do
3 ai ← f(Xi−1 + ui)− f(Xi−1).
4 bi ← f(Yi−1 − ui)− f(Yi−1).
5 a′i ← max{ai, 0}, b′i ← max{bi, 0}.
6 with probability a′i/(a

′
i + b′i)

* do: Xi ← Xi−1 + ui, Yi ← Yi−1.
7 else (with the compliment probability b′i/(a

′
i + b′i)) do: Xi ← Xi−1,

Yi ← Yi−1 − ui.

8 return Xn (or equivalently Yn).

* If a′i = b′i = 0, we assume a′i/(a
′
i + b′i) = 1.

The rest of this section is devoted to proving that Algorithm 5 provides an approx-
imation guarantee of 1/2 to USM. Let us start the analysis of Algorithm 5 with the
introduction of some notation. Notice that for every 1 ≤ i ≤ n, Xi and Yi are ran-
dom variables denoting the sets of elements in the two solutions generated by the al-
gorithm at the end of the i-th iteration. As in Section 4.1, let us define the following
random variable: OPTi , (OPT ∪ Xi) ∩ Yi. Note that as before, X0 = ∅, Y0 = N and
OPT0 = OPT . Moreover, the following always happens: OPTn = Xn = Yn. The proof

36

idea is similar to that of the deterministic algorithm in Section 4.1. We consider the se-
quence E[f(OPT0)], . . . ,E[f(OPTn)]. This sequence starts with f(OPT) and ends with
the expected value of the algorithm’s output. The following lemma upper bounds the loss
of two consecutive elements in the sequence. Formally, E[f(OPTi−1)− f(OPTi)] is upper
bounded by the average expected change in the value of the two solutions maintained by
the algorithm, i.e., 1/2 · E [(f(Xi)− f(Xi−1) + f(Yi)− f(Yi−1)].

Lemma 4.2.1. For every 1 ≤ i ≤ n,

E[f(OPTi−1)− f(OPTi)] ≤
1

2
· E [(f(Xi)− f(Xi−1) + f(Yi)− f(Yi−1)] , (4.2)

where the expectations are taken over the random choices of the algorithm.

Before proving Lemma 4.2.1, let us show that Theorem 4.0.9 follows from it.

Proof of Theorem 4.0.9. Summing up Lemma 4.2.1 for every 1 ≤ i ≤ n gives:

n∑
i=1

E[f(OPTi−1)− f(OPTi)] ≤
1

2
·

n∑
i=1

E[f(Xi)− F (Xi−1) + f(Yi)− F (Yi−1)] .

The above sum is telescopic. Collapsing it, we get:

E[f(OPT0)− f(OPTn)] ≤
1

2
· E[f(Xn)− f(X0) + f(Yn)− f(Y0)] ≤

E[f(Xn) + f(Yn)]

2
.

Recalling the definitions ofOPT0 andOPTn, we obtain E[f(Xn)] = E[f(Yn)] ≥ f(OPT)/2.

It is left to prove Lemma 4.2.1.

Proof of Lemma 4.2.1. Notice that it suffices to prove Inequality (4.2) conditioned on any
event of the form Xi−1 = Si−1, where Si−1 ⊆ {u1, . . . , ui−1} and the probability that
Xi−1 = Si−1 is non-zero. Hence, fix such an event corresponding to a set Si−1. The rest
of the proof implicitly assumes everything is conditioned on this event. Notice that due
to the conditioning, the following quantities become constants:

1. Yi−1 = Si−1 ∪ {ui, . . . , un}.

2. OPTi−1 , (OPT ∪Xi−1) ∩ Yi−1 = Si−1 ∪ (OPT ∩ {ui, . . . , un}).

3. ai and bi.

Moreover, by Lemma 4.1.1, ai+ bi ≥ 0. Thus, it cannot be that both ai, bi are strictly less
than zero. Hence, we only need to consider the following 3 cases:

Case 1 (ai ≥ 0 and bi ≤ 0): In this case a′i/(a
′
i + b′i) = 1, and so the following always

happen: Yi = Yi−1 = Si−1 ∪{ui, . . . , un} and Xi ← Si−1+ui. Hence, f(Yi)− f(Yi−1) = 0.
Also, by our definition OPTi = (OPT ∪ Xi) ∩ Yi = OPTi−1 + ui. Thus, we are left to
prove that:

f(OPTi−1)− f(OPTi−1 + ui) ≤
1

2
· [f(Xi)− f(Xi−1)] =

ai
2

.

If ui ∈ OPT , then the left hand side of the last expression is 0, which is clearly no
larger than the non-negative ai/2. If ui ̸∈ OPT , then:

f(OPTi−1)− f(OPTi−1 + ui) ≤ f(Yi−1 − ui)− f(Yi−1) = bi ≤ 0 ≤ ai/2 .

The first inequality follows from submodularity since OPTi−1 , (OPT ∪Xi−1) ∩ Yi−1 ⊆
Yi−1 − ui (note that ui ∈ Yi−1 and ui ̸∈ OPTi−1).

37

Case 2 (ai < 0 and bi ≥ 0): This case is analogous to the previous one, and therefore,
we omit its proof.

Case 3 (ai ≥ 0 and bi > 0): In this case a′i = ai, b
′
i = bi. Therefore, with probability

ai/(ai + bi) the following events happen: Xi ← Xi−1 + ui and Yi ← Yi−1, and with
probability bi/(ai + bi) the following events happen: Xi ← Xi−1 and Yi ← Yi−1 − ui.
Thus,

E[f(Xi)− f(Xi−1) + f(Yi)− f(Yi−1)] =
ai

ai + bi
· [f(Xi−1 + ui)− f(Xi−1) + f(Yi−1)− f(Yi−1)]+

bi
ai + bi

· [f(Xi−1)− f(Xi−1) + f(Yi−1 − ui)− f(Yi−1)]

=
ai

ai + bi
· [f(Xi−1 + ui)− f(Xi−1)] +

bi
ai + bi

· [f(Yi−1 − ui)− f(Yi−1)] =
a2i + b2i
ai + bi

.

(4.3)

Next, we upper bound E[f(OPTi−1)− f(OPTi)]. As OPTi = (OPT ∪Xi) ∩ Yi, we get,

E[f(OPTi−1)− f(OPTi)] =
ai

ai + bi
· [f(OPTi−1)− f(OPTi−1 + ui)]

+
bi

ai + bi
· [f(OPTi−1)− f(OPTi−1 − ui)]

≤ aibi
ai + bi

. (4.4)

The final inequality follows by considering two cases. Note first that ui ∈ Yi−1 and
ui ̸∈ Xi−1. If ui ̸∈ OPTi−1 then the second term of the left hand side of the last inequality
equals zero. Moreover, OPTi−1 , (OPT ∪ Xi−1) ∩ Yi−1 ⊆ Yi−1 − ui, and therefore, by
submodularity,

f(OPTi−1)− f(OPTi−1 + ui) ≤ f(Yi−1 − ui)− f(Yi−1) = bi .

If ui ∈ OPTi−1 then the first term of the left hand side of Inequality (4.4) equals zero, and
we also have Xi−1 ⊆ ((OPT ∪Xi−1)∩Yi−1)−ui = OPTi−1−ui. Thus, by submodularity,

f(OPTi−1)− f(OPTi−1 − ui) ≤ f(Xi−1 + ui)− f(Xi−1) = ai .

Plugging (4.3) and (4.4) into Inequality (4.2), we get the following:

aibi
ai + bi

≤ 1

2
·
(
a2i + b2i
ai + bi

)
,

which can be easily verified.

4.3 A Tight (1/2)-Approximation for USM using Fractional
Values

In Section 4.2 we presented Algorithm 5 which is a randomized optimal algorithm for
USM. In this section we present Algorithm 6, which is the continuous counterpart of the
Algorithm 5. This algorithm achieves the same approximation ratio (up to low order
terms), but keeps a fractional inner state.

38

We abuse notations both in the description of the algorithm and in its analysis, and
unify a set with its characteristic vector. As usual, we assume that we have an oracle
access to the multilinear extension F . If this is not the case, then the value of F can be
approximated arbitrarily well using sampling.

Algorithm 6: MultilinearUSM(f,N)

1 x0 ← ∅, y0 ← N .
2 for i = 1 to n do
3 a′i ← F (xi−1 + {ui})− F (xi−1).
4 b′i ← F (yi−1 − {ui})− F (yi−1).
5 a′i ← max{ai, 0}, b′i ← max{bi, 0}.
6 xi ← xi−1 +

a′i
a′i+b′i

· {ui}*.

7 yi ← yi−1 −
b′i

a′i+b′i
· {ui}*.

8 return a random set R(xn) (or equivalently R(yn)).

* If a′i = b′i = 0, we assume a′i/(a
′
i + b′i) = 1 and b′i/(a

′
i + b′i) = 0.

The main difference between Algorithms 5 and 6 is that Algorithm 5 chooses each
element with some probability, whereas Algorithm 6 assigns a fractional value to the
element. This requires the following modifications to the algorithm:

• The sets Xi, Yi ⊆ 2N are replaced by the vectors xi, yi ∈ [0, 1]N .

• Algorithm 6 uses the multilinear extension F instead of the original submodular
function f .

Theorem 4.3.1. If one has an oracle access to F , Algorithm 6 is a 1/2-approximation
algorithm for USM.

The rest of this section is devoted to proving Theorem 4.3.1. Similarly to Section 4.2,
define OPTi , (OPT ∨ xi) ∧ yi. Examine the sequence F (OPT0), . . . , F (OPTn). Notice
that OPT0 = OPT , i.e., the sequence starts with the value of an optimal solution, and that
OPTn = xn = yn, i.e., the sequence ends at a fractional point whose value is the expected
value of the algorithm’s output. The following lemma upper bounds the loss of two
consecutive elements in the sequence. Formally, F (OPTi−1)−F (OPTi) is upper bounded
by the average change in the value of the two solutions maintained by the algorithm, i.e.,
1/2 · [F (xi)− F (xi−1) + F (yi)− F (yi−1)].

Lemma 4.3.2. For every 1 ≤ i ≤ n, F (OPTi−1) − F (OPTi) ≤ 1
2 · [F (xi) − F (xi−1) +

F (yi)− F (yi−1)].

Before proving Lemma 4.3.2, let us show that Theorem 4.3.1 follows from it.

Proof of Theorem 4.3.1. Summing up Lemma 4.3.2 for every 1 ≤ i ≤ n gives:

n∑
i=1

[F (OPTi−1)− F (OPTi)] ≤
1

2
·

n∑
i=1

[F (xi)− F (xi−1)] +
1

2
·

n∑
i=1

[F (yi)− F (yi−1)] .

The above sum is telescopic. Collapsing it, we get:

F (OPT0)− F (OPTn) ≤
1

2
· [F (xn)− F (x0)] +

1

2
· [F (yn)− F (y0)] ≤

F (xn) + F (yn)

2
.

39

Recalling the definitions of OPT0 and OPTn, we obtain that F (xn) = F (yn) ≥ f(OPT)/2.

It is left to prove Lemma 4.3.2.

Proof of Lemma 4.3.2. By Lemma 4.1.1, ai + bi ≥ 0, therefore, it cannot be that both
ai, bi are strictly less than zero. Thus, we have 3 cases to consider.

Case 1 (ai ≥ 0 and bi ≤ 0): In this case a′i/(a
′
i + b′i) = 1, and so yi = yi−1, xi ←

xi−1∨{ui}. Hence, F (yi)−F (yi−1) = 0. Also, by our definition OPTi = (OPT ∨xi)∧yi =
OPTi−1 ∨ {ui}. Thus, we are left to prove that:

F (OPTi−1)− F (OPTi−1 ∨ {ui}) ≤
1

2
· [F (xi)− F (xi−1)] = ai/2 .

If ui ∈ OPT , then the left hand side of the above equation is 0, which is clearly no
larger than the non-negative ai/2. If ui ̸∈ OPT , then:

F (OPTi−1)− F (OPTi−1 ∨ {ui}) ≤ F (yi−1 − {ui})− F (yi−1) = bi ≤ 0 ≤ ai/2 .

The first inequality follows from submodularity since OPTi−1 = ((OPT ∨ xi−1) ∧ yi−1) ≤
yi−1 − {ui} (note that in this case (yi−1)ui = 1 and (OPTi−1)ui = 0).

Case 2 (ai < 0 and bi ≥ 0): This case is analogous to the previous one, and therefore,
we omit its proof.

Case 3 (ai ≥ 0 and bi > 0): In this case a′i = ai, b
′
i = bi and so, xi ← xi−1+

ai
ai+bi

· {ui}
and yi ← yi−1 − bi

ai+bi
· {ui}. Therefore, we have,

F (xi)− F (xi−1) =

[
ai

ai + bi
· F (xi−1 ∨ {ui}) +

bi
ai + bi

· F (xi−1)

]
− F (xi−1) (4.5)

=
ai

ai + bi
· [F (xi−1 ∨ {ui})− F (xi−1)] =

a2i
ai + bi

.

A similar argument shows that:

F (yi)− F (yi−1) =
b2i

ai + bi
. (4.6)

Next, we upper bound F (OPTi−1) − F (OPTi). For simplicity, let us assume ui ̸∈ OPT
(the proof for the other case is similar). Recall, that OPTi = (OPT ∨ xi) ∧ yi.

F (OPTi−1)− F (OPTi) = F (OPTi−1)− F (OPTi−1 ∨
ai

ai + bi
· {ui}) (4.7)

= F (OPTi−1)−
[

ai
ai + bi

· F (OPTi−1 ∨ {ui})

+
bi

ai + bi
· F (OPTi−1)

]
=

ai
ai + bi

· [F (OPTi−1)− F (OPTi−1 ∨ {ui})]

≤ ai
ai + bi

· [F (yi−1 − {ui})− F (yi−1)] =
aibi

ai + bi
.

40

The inequality follows from the submodularity of f since,

OPTi−1 = ((OPT ∨ xi−1) ∧ yi−1) ≤ yi−1 − {ui}

(note again that in this case (yi−1)ui = 1 and (OPTi−1)ui = 0). Plugging (4.5), (4.6) and
(4.7) into the inequality that we need to prove, we get the following:

aibi
ai + bi

≤ 1

2
· a

2
i + b2i
ai + bi

,

which can be easily verified.

4.4 Linear Time Approximations for Submodular Max-SAT and
Submodular Welfare with 2 Players

In this section we build upon ideas from the previous sections to obtain linear time
tight (3/4)-approximation algorithms for both the Submodular Max-SAT (SSAT) and the
Submodular Welfare (SW) with 2 players problems. Tight approximations for these prob-
lems were also given in Sections 3.3.4 and 3.3.5 above. However, the algorithms we present
here, in addition to having optimal approximation ratios, also run in linear time.

4.4.1 A Linear Time Tight (3/4)-Approximation for Submodular Max-SAT

Recall that in Submodular Max-SAT we are given a CNF formula Ψ with a set C of clauses
over a set N of variables, and a normalized monotone submodular function f : 2C → R+

over the set of clauses. Given an assignment ϕ : N → {0, 1}, let C(ϕ) ⊆ C be the set of
clauses satisfied by ϕ. The goal is to find an assignment ϕ that maximizes f(C(ϕ)).

Like in Section 3.3.4, we extend the notion of assignments, and think of an extended
assignment ϕ′ which is a relation ϕ′ ⊆ N × {0, 1}. That is, the assignment ϕ′ can assign
up to 2 truth values to each variable. A clause C is satisfied by an (extended) assignment
ϕ′, if there exists a positive literal in the clause which is assigned to truth value 1, or there
exists a negative literal in the clause which is assigned a truth value 0. Note again that it
might happen that some variable is assigned both 0 and 1, or no value at all. Note also,
that an assignment is a feasible solution to the original problem if and only if it assigns
exactly one truth value to every variable of N . Let C(ϕ′) be the set of clauses satisfied
by ϕ′. We define g : N × {0, 1} → R+ using g(ϕ′) , f(C(ϕ′)). Using the above notation,
it is possible to restate SSAT as the problem of maximizing the function g over the set of
feasible assignments. Recall the following lemma from Section 3.3.4.

Lemma 3.3.7. The function g is a normalized monotone submodular function.

The algorithm we design for SSAT conducts n iterations. It maintains at each iteration
1 ≤ i ≤ n two assignments Xi and Yi which always satisfy: Xi ⊆ Yi. Initially, X0 = ∅
assigns no truth values to the variables, and Y0 = N × {0, 1} assigns both truth values to
all variables. The algorithm considers the variables in an arbitrary order u1, u2, . . . , un.
For every variable ui, the algorithm evaluates the marginal profit from assigning it only
the truth value 0 in both assignments, and assigning it only the truth value 1 in both as-
signments. Based on these marginal values, the algorithm makes a random decision on the
truth value assigned to ui. After the algorithm considers a variable ui, both assignments
Xi and Yi agree on a single truth value for ui. Thus, when the algorithm terminates both
assignments are identical and feasible. A formal statement of the algorithm appears as
Algorithm 7.

41

Algorithm 7: RandomizedSSAT(f,Ψ)

1 X0 ← ∅, Y0 ← N × {0, 1}.
2 for i = 1 to n do
3 ai,0 ← g(Xi−1 + (ui, 0))− g(Xi−1), ai,1 ← g(Xi−1 + (ui, 1))− g(Xi−1).
4 bi,0 ← g(Yi−1 − (ui, 0))− g(Yi−1), bi,1 ← g(Yi−1 − (ui, 1))− g(Yi−1).
5 si,0 ← max{ai,0 + bi,1, 0}, si,1 ← max{ai,1 + bi,0, 0}.
6 with probability si,0/(si,0+ si,1)

* do: Xi ← Xi−1+(ui, 0), Yi ← Yi−1− (ui, 1).
7 else (with the compliment probability si,1/(si,0 + si,1)) do:
8 Xi ← Xi−1 + (ui, 1), Yi ← Yi−1 − (ui, 0).

9 return Xn (or equivalently Yn).

* If si,0 = si,1 = 0, we assume si,0/(si,0 + si,1) = 1.

The proof of the Theorem 4.0.10 uses similar ideas to previous proofs in this paper,
however, unlike for the previous algorithms, here, the fact that the algorithm runs in linear
time requires a proof. The source of the difficulty is that we have an oracle access to f , but
use the function g in the algorithm. Therefore, we need to prove that we may implement
all the oracle queries to g that are conducted during the execution of the algorithm in
linear time. As a first step we state the following useful lemma.

Lemma 4.4.1. For every 1 ≤ i ≤ n,

E[g(OPTi−1)− g(OPTi)] ≤
1

2
· E [(g(Xi)− g(Xi−1) + g(Yi)− g(Yi−1)] , (4.8)

where expectations are taken over the random choices of the algorithm.

Before proving Lemma 4.4.1, let us show that Theorem 4.0.10 follows from it.

Proof of Theorem 4.0.10. The proof has two parts: bounding the approximation ratio of
the algorithm, and analyzing its running time.

Proof of the approximation ratio of the algorithm: Summing up Lemma 4.4.1 for
every 1 ≤ i ≤ n we get,

n∑
i=1

E[g(OPTi−1)− g(OPTi)] ≤
1

2
·

n∑
i=1

E[g(Xi)− g(Xi−1) + g(Yi)− g(Yi−1)] .

The above sum is telescopic. Collapsing it, we get:

E[g(OPT0)− g(OPTn)] ≤
1

2
· E[g(Xn)− g(X0) + g(Yn)− g(Y0)]

≤ E[g(Xn) + g(Yn)− g(Y0)]

2
.

Recalling the definitions of OPT0 and OPTn, we obtain that:

E[g(Xn)] = E[g(Yn)] ≥ g(OPT)/2 + g(Y0)/4.

The approximation ratio now follows from the observation that Y0 satisfies all clauses of
Ψ, and therefore, g(Y0) ≥ g(OPT).

42

Proof of the linear running time of the algorithm: We explain here how to answer
all oracle queries of the algorithm of the forms g(Xi−1) and g(Xi−1+(ui, v)) in linear time.
Using an analogous idea, one can also answer all oracle queries of the of the forms g(Yi−1)
and g(Yi−1 − (ui, v)) in linear time.

The algorithm first pre-process the clauses, and creates for every variable a list of the
clauses that are satisfied if the truth value of the variable is set to 0, and another list with
the clauses that are satisfied if the truth value of the variable is set to 1. Notice that this
can be done in time linear in the length of the formula Ψ.

Additionally, the algorithm maintains a set C ⊂ C of clauses satisfied by Xi−1. Initially
this set is empty. To evaluate the queries of the forms g(Xi−1) and g(Xi−1 + (ui, v)), the
algorithm has to respond to three types of events.

• A query of the form g(Xi−1) is answered by making an oracle query f(C).

• A query of the form g(Xi−1 + (ui, v)) is answered using a three steps process.

1. Adding all the clauses from the list of clauses satisfied by {ui, v} to C. The
clauses that are new to C are kept in a side list L.

2. Making an oracle query f(C).

3. Removing the clauses of L from C.

• When the assignment Xi−1 is replaced with a new assignment Xi−1 + (ui, v), the
algorithm adds to C all clauses satisfied by {ui, v}.

Notice that each list is used for responding to at most 2 events. Hence, the time required
to respond to all events is O(n) plus time proportional to the total length of the lists
(which is linear in the length of Ψ).

Remark: In order for the above implementation to work efficiently, we must maintain
the set C using a data structure which supports performing the following operations in
constant time: “adding an element”, “removing an element” and “checking the existence
of an element”. One possible such data structure is, e.g., an array.

It is left to prove Lemma 4.4.1.

Proof. Notice that it suffices to prove Inequality (4.8) conditioned on any event of the
form Xi−1 = Si−1, where Si−1 ⊆ {(u1, ∗), (u2, ∗), . . . , (ui−1, ∗)} and the probability that
Xi−1 = Si−1 is non-zero (note that according to the algorithm’s definition Xi−1 contains
exactly a single element of the form (uj , ∗) for every 1 ≤ j ≤ i − 1). Hence, fix such
an event corresponding to a Si−1. The rest of the proof implicitly assumes everything is
conditioned on this event. Notice that due to the conditioning, the following quantities
become constants:

• Yi−1 = Si−1 ∪ {(ui, 0), (ui, 1), . . . , (un, 0), (un, 1)}.

• OPTi−1 = (OPT ∪Xi−1) ∩ Yi−1.

• ai,0, ai,1, bi,0, and bi,1.

Moreover, by Lemma 4.1.1, ai,0 + bi,0 ≥ 0 and ai,1 + bi,1 ≥ 0. Thus, si,0 + si,1 ≥ 0, and
it cannot be that both si,0, si,1 are strictly less than zero. Hence, we only need to prove
the lemma for the following 3 cases:

43

Case 1 (si,0 ≥ 0 and si,1 ≤ 0): In this case
si,0

si,0+si,1
= 1, and the following always

happen: Yi = Yi−1 − (ui, 1) and Xi ← Xi−1 + (ui, 0). Hence,

g(Xi)− g(Xi−1) + g(Yi)− g(Yi−1) = si,0 = ai,0 + bi,1 .

By our definition OPTi = (OPT ∪Xi)∩ Yi = OPTi−1 + (ui, 0)− (ui, 1). Thus, we are left
to prove that:

g(OPTi−1)−g(OPTi−1+(ui, 0)−(ui, 1)) ≤
1

2
·[g(Xi)−g(Xi−1)+g(Yi)−g(Yi−1)] = si,0/2 .

There are two case. If (ui, 0) ∈ OPT, (ui, 1) ̸∈ OPT , then the left hand side of the
last expression is 0, which is clearly no larger than the non-negative si,0/2. If (ui, 0) ̸∈
OPT, (ui, 1) ∈ OPT , then,

g(OPTi−1)− g(OPTi−1 + (ui, 0)− (ui, 1)) = (g(OPTi−1)− g(OPTi−1 + (ui, 0))

+ (g(OPTi−1 + (ui, 0)− g(OPTi−1 + (ui, 0)− (ui, 1)))

≤ g(Xi−1 + (ui, 1))− g(Xi−1) + g(Yi−1 − (ui, 0))− g(Yi−1) = si,1 ≤ 0 ≤ si,0/2 .

The first inequality follows from submodularity since Xi−1 ⊆ OPTi−1 + (ui, 0) − (ui, 1),
OPTi−1 ⊆ Yi−1 − (ui, 0).

Case 2 (si,0 < 0 and si,1 ≥ 0): This case is analogous to the previous one, and therefore,
we omit its proof.

Case 3 (si,0 ≥ 0 and si,1 > 0): In this case si,0 = ai,0 + bi,1, si,1 = ai,1 + bi,0 and so,

E[g(Xi)− g(Xi−1) + g(Yi)− g(Yi−1)]

=
si,0

si,0 + si,1
· [g(Xi−1 + (ui, 0))− g(Xi−1) + g(Yi−1 − (ui, 1))− g(Yi−1)]

+
si,1

si,0 + si,1
· [g(Xi−1 + (ui, 1))− g(Xi−1) + g(Yi−1 − (ui, 0))− g(Yi−1)]

=
s2i,0 + s2i,1
si,0 + si,1

. (4.9)

Next, we upper bound E[g(OPTi−1)− g(OPTi)]. As OPTi = (OPT ∪Xi) ∩ Yi and given
the random choices of the algorithm that modify Xi−1 and Yi−1, we get:

E[g(OPTi−1)− g(OPTi)] =
si,0

si,0 + si,1
· [g(OPTi−1)− g(OPTi−1 + (ui, 0)} − (ui, 1))]

+
si,1

si,0 + si,1
· [g(OPTi−1)− g(OPTi−1 + (ui, 1)− (ui, 0))]

≤ si,0si,1
si,0 + si,1

. (4.10)

The final inequality follows by considering two cases. Note first that {(ui, 0), (ui, 1)} ⊆
Yi−1 and {(ui, 0), (ui, 1)} ∩ Xi−1 = ∅. If (ui, 0) ̸∈ OPTi−1 and (ui, 1) ∈ OPTi−1 then
the second term of the left hand side of the last inequality is zero. Moreover, OPTi−1 =
((OPT ∪Xi−1) ∩ Yi−1) ⊆ Yi−1 − (ui, 0). Thus, by submodularity,

g(OPTi−1)− g(OPTi−1 + (ui, 0)− (ui, 1))

≤ g(Xi−1 + (ui, 1))− g(Xi−1) + g(Yi−1 − (ui, 0))− g(Yi−1) = si,1 .

44

The other case is analogous. Plugging (4.9) and (4.10) into Inequality (4.8), we get the
following:

si,0si,1
si,0 + si,1

≤ 1

2
·

(
s2i,0 + s2i,1
si,0 + si,1

)
,

which can be easily verified.

A Note on Max-SAT: The well known Max-SAT problem is in fact a special case of SSAT
where f is a linear function. We note that Algorithm 7 can be applied to Max-SAT in order
to achieve a (3/4)-approximation in linear time, however, this is not immediate. This
result is summarized in the following theorem.

Theorem 4.4.2. Algorithm 7 has a linear time implementation for instances of Max-SAT.

Proof. Consider the way oracle queries of g are answered in the proof of Theorem 4.0.10.
The only use of queries to f made by this proof is in order to evaluate f(C) - the total
weight of the clauses in the set C. In order to avoid these queries, one can use a counter
w(C) which holds the total weight of the clauses in C. Such a counter can be updated in
constant time whenever a clause is either added or removed from C. Using this counter,
one has an immediate access to the value of f(C) at all times, in O(1) time.

4.4.2 A Linear Time Tight (3/4)-Approximation for Submodular Welfare

with 2 Players

Recall that the input for the Submodular Welfare problem consists of a ground set N of
n elements and k players, each equipped with a normalized monotone submodular utility
function fi : 2

N → R+. The goal is to partition the elements among the players while
maximizing the social welfare. Formally, the objective is to partitionN intoN1,N2, . . . ,Nk

while maximizing
∑k

i=1 fi(Ni).
We give below two different short proofs of Theorem 4.0.11 via reductions to SSAT

and USM, respectively. The second proof is due to Vondrák [79].

Proof of Theorem 4.0.11. We provide here two proofs.

Proof (1): Given an instance of SW with 2 players, construct an instance of SSAT as
follows:

1. The set of variables is N .

2. The CNF formula Ψ consists of 2|N | singleton clauses; one for every possible literal.

3. The objective function f : 2C → R+ is defined as following. Let P ⊆ C be the set of
clauses of Ψ consisting of positive literals. Then, f(C) = f1(C∩P)+f2(C∩ (C \P)).

Every assignment ϕ to this instance of SSAT corresponds to a solution of SW using
the following rule: N1 = {u ∈ N|ϕ(u) = 0} and N2 = {u ∈ N|ϕ(u) = 1}. One can easily
observe that this correspondence is reversible, and that each assignment has the same value
as the solution it corresponds to. Hence, the above reduction preserves approximation
ratios.

Moreover, queries of f can be answered in constant time using the following technique.
We track for every subset C ⊆ C in the algorithm the subsets C ∩ P and C ∩ (C \ P). For
Algorithm 7 this can be done without effecting its running time. Then, whenever the value
of f(C) is queried, answering it simply requires making two oracle queries: f1(C ∩P) and
f2(C ∩ (C \ P)).

45

Proof (2): In any feasible solution to SW with two players, the set N1 uniquely deter-
mines the set N2 = N −N1. Hence, the value of the solution as a function of N1 is given
by g(N1) = f1(N1) + f2(N − N1). Thus, SW with two players can be restated as the
problem of maximizing the function g over the subsets of N .

Observe that the function g is a submodular function, but unlike f1 and f2, it is possibly
non-monotone. Moreover, we can answer queries to the function g using only two oracle
queries to f1 and f2.

1 Thus, we obtain an instance of USM. We apply Algorithm 5 to this
instance. Using the analysis of Algorithm 5, as is, provides only a (1/2)-approximation
for our problem. However, by noticing that g(∅) + g(N) ≥ f1(N) + f2(N) ≥ g(OPT),
and plugging this into the analysis, the claimed (3/4)-approximation is obtained.

1For every algorithm, assuming a representation of sets allowing addition and removal of a single element
at a time, one can maintain the complement sets of all sets maintained by the algorithm without changing
the running time. Hence, we need not worry about the calculation of N −N1.

46

Chapter 5

k-Exchange Systems

Recall that a set system is a pair (N , I), where N is, as usual, a ground set, and I ⊆ 2N

is a collection of subsets of N . The collection I must obey the following two properties:

• Non-empty: I ̸= ∅.

• Monotone: If A ⊆ B ∈ I, then A ∈ I.

If S ∈ I, we say that S is independent. A minimally dependent set is called circuit. A
matroid is a set system with the following extra property:

• Matroid Exchange: If A,B ∈ I and |A| < |B|, then there exists an element u ∈ B
for which A+ u ∈ I.

In this section we consider other classes of set systems. The most common classes of set
systems form a hierarchy:

k-intersection ⊆ k-circuit bound ⊆ k-extendible ⊆ k-system .

A set system belongs to the k-intersection class if it is the intersection of k matroids
defined over a common ground set. The other classes extend this definition. The class of
k-circuit bound contains all set systems in which adding a single element to an indepen-
dent set creates at most k circuits. It is known that in a matroid, adding an element to an
independent set creates at most a single circuit [74]. Therefore, adding an element to an
independent set in a k-intersection system closes at most k circuits, one per matroid. This
shows why the k-circuit bound class generalizes k-intersection. The class of k-extendible,
intuitively, captures all set systems in which adding an element to an independent set
requires throwing away at most k other elements from the set (in order to keep it indepen-
dent). This generalizes k-circuit bound because in k-circuit bound we need to throw at
most one element per circuit closed (i.e., up to k elements). Finally, the class of k-system
contains all set systems in which for every set, not necessarily independent, the ratio of
the sizes of the largest base of the set (a base is a maximal independent subset) to the
smallest base of the set is at most k.

It is no surprise that for any given k, the best approximation factors known for find-
ing an independent set maximizing a submodular function are known for k-intersection.
Moreover, this is the case also for linear and monotone objective functions. An inter-
esting question is whether it is possible to obtain improved approximations (e.g., those
known for k-intersection) to combinatorial optimization problems defined by set systems
not belonging to the k-intersection class.

47

Algorithms maximizing submodular and linear objective functions for set systems
within the hierarchy usually use one of two techniques. The first technique is to use
a greedy rule. This approach was used by [16, 36] on the k-system class, resulting in ap-
proximation ratios of (k+1)−1 (for monotone submodular objectives) and k−1 (for linear
objectives). Of course, these approximation ratios extend to all classes in the hierarchy.

The second approach involves a more delicate local search argument. This technique
has been used, e.g., by Lee et al. [62] to improve upon the two previously mentioned
results. However, it is known to work only for the k-intersection class, and the proof does
not seem to be extendible to other classes in the hierarchy since it relays heavily on the
structure of matroids intersection.

In this section we define the new k-exchange class. This class contains many interesting
set systems which do not fall into the k-intersection class. Yet, we are able to show that
the algorithm of Lee et al. [62] works for this class also, and provides for this class exactly
the same approximation which it is proved to provide for the k-intersection class.

5.1 k-exchange: definition and relations with other set sys-
tems

Here is the promised definition of k-exchange.

Definition 5.1.1 (k-exchange system). An set system (N , I) is a k-exchange system if,
for all S and T in I, there exists a multiset Y = {Yu ⊆ S \ T | u ∈ T \ S} such that:

(K1) |Yu| ≤ k for each u ∈ T \ S.
(K2) Every u′ ∈ T \ S appears in at most k sets of Y .

(K3) For all T ′ ⊆ T \ S, (S \ (
∪

u∈T ′ Yu)) ∪ T ′ ∈ I

Mestre shows that 1-extendible systems are matroids, and vice versa [66]. We can
provide a similar motivation for k-exchange systems in terms of strongly base orderable
matroids (which is derived from a work by Brualdi and Scrimger on exchange systems
[13, 11, 12]).

Definition 5.1.2 (strongly base orderable matroid [12]). A matroid M is strongly base
orderable if for all bases S and T of M there exists a bijection π : S → T such that for all
S′ ⊆ S, (T \ π(S′)) ∪ S′ is a base.

If we restrict S′ to be a singleton set in this definition, i.e., a replacement of a single pair
of elements between the bases, then the above definition always holds due to a well-known
result of Brualdi [10]. In a strongly base orderable matroid, the above definition holds for
arbitrary S′, i.e., multiple replacements can be performed simultaneously, while keeping
the independence of the bases. This simultaneous replacement property is exactly what
we want for local search, as it allows us to extend the local analysis of single replacements
to the larger sets of replacements required by our algorithms.

The following theorem is easily obtained by equating Yu in Definition 5.1.1 with the
singleton set {π(u)}, where π is as in Definition 5.1.2.

Theorem 5.1.1. An independence system (N , I) is a strongly base orderable matroid if
and only if it is a 1-exchange system.

One can easily check that the graphic matroid of the cycle C4 is not strongly base
orderable, and so provides a proof for the following corollary.

48

Corollary 5.1.2. There exists a matroid which is not a 1-exchange system.

In other words, the above corollary implies that k-intersection is not a subset of k-
exchange. This naturally raises the question whether the opposite is true, i.e., whether
k-exchange is a subset of k-intersection. Before answering this question, let us recall that
k-intersection is a subset of k-circuit bound, formally defined next.

Definition 5.1.3. A set system (N , I) belongs to the class of k-circuit bound if for every
S ∈ I and every u ∈ N \ S, S + u contains at most k circuits (minimally dependent set).

Theorem 5.1.3. There exists a 2-exchange set system which is not 2-circuit bound.

Proof. Consider the ground set N = {a, b, c, d}, and the following collection of maximal
independent sets: I ′ = { {a, b}, {a, c}, {a, d}, {b, c, d} }. Let the collection I of independent
sets be all the subsets of sets in I ′. Note that {b, c, d} is independent, yet {a} ∪ {b, c, d}
contains three circuits: {a, b, c}, {a, b, d} and {a, c, d}. Therefore, (N , I) is not 2-circuit
bound.

We are left to prove that (N , I) is 2-exchange. Clearly, this is a set system since it
is non-empty and monotone. Hence, we are left to prove the properties introduced by
Definition 5.1.1. Notice that it is enough to check pairs of sets from I ′ because if two sets
S and T satisfy the above properties, then so does any two subsets of them. Moreover,
since elements b, c and d are symmetric, we have to consider only the following cases. For
S = {a, b} and T = {b, c, d}, choosing Yc = Yd = {a} completes the case. For S = {b, c, d}
and T = {a, b}, choosing Ya = {c, d} completes the case. And lastly, for S = {a, b} and
T = {a, c}, choosing Yc = {b} completes this case also. We conclude that (N , I) is a
2-exchange set system.

The above theorem proves that k-exchange is not a subset of k-circuit bound, and
therefore, also not a subset of the smaller k-intersection. Conversely, the next theorem
proves that the next class of set systems in the hierarchy, k-extendible, is general enough
to capture all k-exchange systems.

Definition 5.1.4. A set system (N , I) belongs to the class of k-extendible if for every
S ⊂ T ∈ I and every u ∈ N such that S + u ∈ I, there exists a set Y ⊆ T \ S of size
|Y | ≤ k such that T \ Y + u ∈ I.

Theorem 5.1.4. Every k-exchange system is a k-extendible system.

Proof. By definition, (N , I) is non empty and monotone. Let S, T ∈ I and u ∈ N
such that T + u ∈ I. Assume u /∈ S, otherwise the proof is finished. By property 3 of
Definition 5.1.1 for S and T + u, there exists Yu ⊆ S \ (T + u) = S \ T such that |Yu| ≤ k
and S \ Yu + u ∈ I (choose T ′ = {u}).

Figure 5.1 depicts the relations between the different set system classes.

Figure 5.1: Exact characterization of the k-exchange class within the standard set system hierar-
chy. A - Corollary 5.1.2, B - Theorem 5.1.3, C - bipartite matching.

49

5.2 Maximizing a Monotone Submodular Function

The problem of optimizing a normalized monotone submodular function over the inter-
section of k matroids was considered by Fisher et al. [36] who gave a greedy algorithm
with an approximation factor of 1/(k + 1). Fisher et al. [36] also state that their proof
extends to the more general class of k-system using the outline of [50] (the extended proof
is explicitly given by [16]). Lee et al. [62], showed that, for intersection of k matroids,
a natural local search algorithm improves over the above result, and achieves 1/(k + δ)-
approximation, for any constant δ > 0. Their analysis make heavy use of the exchange
properties of the underlaying combinatorial structure, and therefore, cannot be extended
to the more general classes of k-circuit bound and k-extendible. For these classes, the
current best known approximation is still the 1/(k + 1) of [36].

In this section we show that the local search algorithms of [62] provides the same
approximation ratio of 1/(k+ δ) also for maximizing a normalized monotone submodular
function over a k-exchange system. However, unlike the analysis of [62] which uses matroid
intersection techniques, our analysis goes through a counting argument applied to an
auxiliary graph. Finding a unified analysis that works for both types of set systems is an
interesting open question. It should be noted that the time complexity of the algorithm
we analyze is exponential in k, thus, k is assumed to be a constant. Indeed, k is a small
constant in our applications (refer to Table 5.1 for the exact values of k).

Let us present the algorithm we analyze. The following directed graph is used by the
algorithm:

Definition 5.2.1. Given a k-intersection/k-exchange set system (N , I), S, T ∈ I, ε > 0
and p ∈ N, T is (ε, p)-reachable from S if the following conditions are satisfied:

1. |T \ S| ≤ p.

2. |S \ T | ≤ (k − 1)p+ 1.

3. f(T) ≥ (1 + ε/|N |) f(S).

Definition 5.2.2. Given a k-exchange system (N , I), ε > 0 and p ∈ N, the (ε, p)-graph of
(N , I) is a directed graph G = (I, E) where (S → T) ∈ E if and only if T is (ε, p)-reachable
from S.

Algorithm 8 starts from a vertex in G and tours the graph arbitrarily until finding a sink
vertex S. The algorithm than outputs S.

Algorithm 8: Local-Search-k-Exchange((N , I), ε, p)
// Starting Point

1 u← argmax {f ({u}) | u ∈ N}.
2 S ← {u}.
// Touring G

3 Let G = (I, E) be the (ε, p)-graph of (N , I).
4 while ∃(S → T) ∈ E do
5 S ← T .

6 Output S.

It is important to note that the starting point of S is an independent set. Otherwise u ∈ N
chosen in step 1 does not belong to any independent set (recall that (N , I) is monotone),
and therefore, can be removed from (N , I).

50

The size of of G might be exponential since |I| might be exponential. However, one
can show that the algorithm terminates in polynomial time.

Lemma 5.2.1. For any constants k, 0 < ε < |N | and p ∈ N, Algorithm 8 terminates in
polynomial time.

Proof. First, consider the time needed to perform a single step while touring G. In such a
single step, the goal is to determine whether there is an edge (S → T) ∈ E . For any given
S ∈ I, there are at most |N |O(kp) possible T ∈ I for which T might be (ε, p)-reachable
from S. Since k and p are constants, the time needed to perform a single step is polynomial
in n.

Second, we bound the number of steps while touring G. Denote by Si the vertex in
G reached after conducting i steps and by S0 the initial vertex. Let M be the number of
steps the algorithm makes. Since the value of the current vertex improves in each step
(condition 3 in Definition 5.2.1), we get that: f(Si) ≥ (1 + ε/|N |)if(S0). On the other
hand, by the choice of S0 and the submodularity of f , for any S ∈ I: f(S) ≤ |N |f(S0).
Combining both bounds we can conclude that:

(1 + ε/|N |)Mf(S0) ≤ |N |f(S0) ⇒ M ≤ ln |N |
ln (1 + ε/|N |)

= O

(
|N | log |N |

ε

)
.

Therefore, since ε is a constant, the number of steps the algorithm makes while touring G
is polynomial in |N |.

The following is the main result of [62].

Theorem 5.2.2 (From [62]). Algorithm 8 provides (k + kε + 1/p)−1-approximation for
maximizing a monotone submodular function over k-intersection.

Using the right choice of ε and p, this approximation guarantee can be made (k+ δ)−1

for an arbitrary small δ. The analyze we present next shows that the same approximation
holds also for k-exchange set systems. The following theorem is a key ingredient of the
analysis. Its use is restricted to the analysis only. No actual construction of P(G, k, h) is
needed.

Theorem 5.2.3. Let G be an undirected graph whose maximum degree is at most k ≥ 2.
Then, for every h ∈ N there exists a multiset P(G, k, h) of simple paths in G and a labeling
ℓ : V × P(G, k, h)→ {∅, 1, 2, . . . , h} such that:

1. For every P ∈ P(G, k, h), the labeling ℓ of the nodes of P is consecutive and increas-
ing with labels from {1, 2, . . . , h}. Vertices not in P receive label ∅.

2. For every P ∈ P(G, k, h) and v in P , if degG(v) = k and ℓ(v, P) /∈ {1, h}, then at
least two of the neighbors of v are in P .

3. For every v ∈ V and label i ∈ {1, 2, . . . , h}, there are n(k, h) = k · (k − 1)h−2 paths
P ∈ P(G, k, h) for which ℓ(v, P) = i.

Note for condition 2, v might be an end vertex of a path P , but still have a label different
from 1 and h. This might happen since paths might contain less than h vertices and start
with a label different from 1 or end with a label different from h.

Let us provide some intuition as to why the construction of P(G, k, h) is possible.
Assume that the degree of every vertex in G is exactly k and that G’s girth is at least h.
Construct the multiset P(G, k, h) in the following way. From every vertex u ∈ V , choose

51

all possible paths starting at v and containing exactly h vertices. Number the vertices of
these paths consecutively, starting from 1 up to h. First, note that all these paths are
simple since the girth of G is at least h and all paths contain exactly h vertices. Second,
the number of paths starting from u is: n(k, h) = k · (k − 1)h−2, since all vertices have
degree of exactly k. Third, the number of times each label is given in the graph is exactly
n · n(k, h). Since the number of vertices at distance i, 1 ≤ i ≤ h, from each vertex u is
identical, the labels are distributed equally among the vertices. Thus, the number of paths
in which a given vertex u appears with a given label, is exactly n(k, h). This concludes
the proof of the theorem in case G has the above properties. For a proof that works for
general graphs, see Section 5.2.1.

Let S, T ∈ I be two arbitrary independent sets. Construct the following bipartite
graph GS,T = (S \ T, T \ S,E), where E = {(u, u′) | u ∈ T \ S, u′ ∈ Yu}. The following
observation implies that Theorem 5.2.3 can be applied to GS,T .

Observation 5.2.4. For any k-exchange system (N , I) and S, T ∈ I, the maximum
degree in GS,T is at most k.

Proof. Follows from the first two properties of Definition 5.1.1.

Choosing h = 2p gives a multiset P(GS,T , k, 2p) of simple paths in GS,T and a labeling
ℓ : (S△T)× P(GS,T , k, 2p)→ {∅, 1, 2, . . . , 2p} with all the properties guaranteed by The-
orem 5.2.3. We use P(GS,T , k, 2p) to construct a new multiset P ′ of subsets of vertices of
GS,T . Intuitively, P ′ is the collection of all paths in P(GS,T , k, 2p) with an extra “padding”
of vertices from S that surround P , excluding “paths” composed of a single vertex from
S.

Formally, let P ∈ P(GS,T , k, 2p). If P contains at least one vertex from T 1, then add
to P ′ the set P ∪ δS\T (P), where δS\T (P) ⊆ S \ T is the set of vertices in S \ T which
neighbor at least one vertex of P . If P does not contain any vertex of T , do not add
anything to P ′.

The following Lemma is an application of the properties Theorem 5.2.3 give to P.

Lemma 5.2.5. Every vertex u ∈ T \S appears in 2p ·n(k, 2p) sets of P ′, and every vertex
u′ ∈ S \ T appears in at most 2 ((k − 1)p+ 1) · n(k, 2p) sets of P ′.

Proof. By property 3 of Theorem 5.2.3, every vertex u ∈ T \ S appears in n(k, 2p) paths
of P(GS,T , k, 2p) for every possible label. Since there are 2p possible labels, the number
of appearances is exactly 2p ·n(k, 2p). In the creation of P ′ from P(GS,T , k, 2p), no vertex
from T \ S is added or removed from any path P ∈ P(GS,T , k, 2p), thus, this is also the
number of appearances of every vertex u ∈ T \ S in P ′. This completes the proof of the
first part of the lemma.

Let u′ ∈ S \ T . By the construction of P ′, a set in P ′ that contains u′ must contain a
vertex u ∈ T \S where (u, u′) ∈ E (u is a neighbor of u′ in GS,T). Every such neighboring
vertex u, by the first part of the lemma, appears in exactly 2p·n(k, 2p) sets in P ′. Therefore,
the number of appearances of u′ in sets of P ′ is at most: degGS,T

(u′) · 2p · n(k, 2p) ≤
2pk · n(k, 2p) (here we use the fact that degGS,T

(u′) ≤ k by Observation 5.2.4). We can
improve this bound by observing that some of the sets in P ′ are counted more than
once. Consider P ∈ P(GS,T , k, 2p) where u′ ∈ P . If ℓ(u′, P) ̸= {1, 2p}, by property 2 of
Theorem 5.2.3, u′ has at least two neighbors in T \ S which belong to P itself. Hence,
P ∪ δS\T (P) ∈ P ′ should be counted only once while in the above counting it was counted
at least twice. The number of such P ∈ P(GS,T , k, 2p) is exactly 2(p − 1) · n(k, 2p) (by

1Note that this implies that this vertex is from T \ S since GS,T does not contain vertices from S ∩ T .

52

property 3 of Theorem 5.2.3). Removing the double counting from the bound, we can
conclude that for every u′ ∈ S \ T , the number of sets in P ′ it appears in is at most:

2pk · n(k, 2p)− 2(p− 1) · n(k, 2p) = 2 ((k − 1)p+ 1) · n(k, 2p) .

Note: In the proof of Theorem 5.2.9 we need each vertex u′ ∈ S \ T to appear in
exactly 2 ((k − 1)p+ 1) ·n(k, 2p) sets in P ′. This can be achieved by adding “dummy” sets
to P ′ containing u′ alone.

Given two independent sets S, T ∈ I, the following lemma shows that the symmetric
difference of S△P ′ is also an independent set, for any P ′ ∈ P ′.

Lemma 5.2.6. Let (N , I) be a k-exchange system, S, T ∈ I and P ′ ∈ P ′. Then S△P ′ ∈
I.

Proof. Let u ∈ P ′ where u ∈ T \S. Note that P ′ contains all neighbors of u in GS,T (since
P ′ ∈ P ′). By the definition of GS,T these neighbors are exactly the set Yu. Therefore,

S△P ′ ⊆ (S \ (∪e∈P ′Ye)) ∪
(
P ′ ∩ (T \ S)

)
.

Since S, T ∈ I and (N , I) is a k-exchange system, by Definition 5.1.1, the right hand
side of the above expression is an independent set. By monotonicity, we conclude that
S△P ′ ∈ I.

At this point we need the following two technical lemmata from [62]:

Lemma 5.2.7 (Lemma 1.1 in [62]). Let f be a non-negative submodular function of N .
Let S′ ⊆ S ⊆ N and let {Tℓ}tℓ=1 be a collection of subsets of S \ S′ such that every
elements of S \ S′ appears in exactly k of these subsets. Then,

∑t
ℓ=1 [f(S)− f(S \ Tℓ)] ≤

k (f(S)− f(S′)).

Lemma 5.2.8 (Lemma 1.2 in [62]). Let f be a non-negative submodular function of N .
Let S ⊆ N , C ⊆ N and let {Tℓ}tℓ=1 be a collection of subsets of C \ S such that every
elements of C \ S appears in exactly k of these subsets. Then,

∑t
ℓ=1 [f(S ∪ Tℓ)− f(S)] ≥

k (f(S ∪ C)− f(S)).

We are now ready to state our main theorem. Denote by SALG the output of Algo-
rithm 8.

Theorem 5.2.9. For every T ∈ I and every submodular f :

f(SALG ∪ T) +

(
k − 1 +

1

p

)
· f(SALG ∩ T) ≤

(
k +

1

p
+ kε

)
· f(SALG) .

Let us give some intuition as to how the above theorem is proved. Given SALG and
an independent set T ∈ I, Lemma 5.2.6 states that SALG△P ′ is independent for every
P ′ ∈ P ′. Additionally, note that the construction of P ′ from G (GSALG,T , k, 2p) implies
that all size conditions of Definition 5.2.1 are met. Thus, SALG△P ′ is (ε, p)-reachable
from SALG, i.e., (SALG → SALG△P ′) ∈ E . However, since Algorithm 8 terminated with
SALG, it must be the case that SALG is approximately “locally optimal”, and therefore,
approximately f(SALG) ≥ f(SALG△P ′).

Every element of P ′ represents a part of the difference between SALG and T . The above
discussion implies that none of these elements improves the value of SALG significantly,
and therefore, we expect that all of them together will not make a significant improvement
also; or in other words we expect T itself to provide only an insignificant improvement
over SALG. Applying now the quantitative bounds of Lemma 5.2.5 to P ′, along with some
additional observations, is what is needed to make this argument formal, and complete
the proof of Theorem 5.2.9.

53

Proof of Theorem 5.2.9. Let P ′ ∈ P ′ where P ′ is the set generated from P(GSALG,T , k, 2p).
Note that P ′ contains only vertices from SALG△T , by the construction of P ′. Addition-
ally, (SALG△P ′) \ SALG = P ′ \ SALG, and by the construction of P ′: |P ′ \ SALG| ≤ p.
This implies that |(SALG△P ′) \ SALG| ≤ p. Also, note that SALG \ (SALG△P ′) =
SALG ∩ P ′, and by the construction of P ′: |SALG ∩ P ′| ≤ (k − 1)p + 1. This implies
that |SALG \ (SALG△P ′)| ≤ (k − 1)p+ 1.

By Lemma 5.2.6, SALG△P ′ ∈ I. If f(SALG△P ′) ≥ (1 + ε/|N |) f(SALG), then by Defi-
nition 5.2.1, SALG△P ′ is (ε, p)-reachable from SALG, contradicting the fact that Algorithm
8 stopped with SALG. Thus, we can conclude:

f(SALG△P ′) < (1 + ε/|N |) f(SALG) . (5.1)

By submodularity of f , the fact that SALG \P ′ ⊆ SALG△P ′ and the fact that all vertices
in SALG ∩ P ′ do not belong to either SALG \ P ′ or SALG△P ′, we get:

f(SALG ∪ P ′)− f(SALG△P ′) ≤ f(SALG)− f(SALG \ P ′) . (5.2)

Adding Inequalities 5.1 and 5.2 gives:

f(SALG ∪ P ′)− (1 + ε/|N |) f(SALG) ≤ f(SALG)− f(SALG \ P ′) . (5.3)

Inequality 5.3 holds for every P ′ ∈ P ′. Summing over all such sets yields:∑
P ′∈P ′

[
f(SALG ∪ P ′)− f(SALG)

]
− ε · |P ′|
|N |

f(SALG)

≤
∑

P ′∈P ′

[
f(SALG)− f(SALG \ P ′)

]
. (5.4)

Let us focus first on the right hand side of Inequality 5.4. Since any given P ′ contains
only vertices from SALG△T , the right hand side can be rewritten as:∑

P ′∈P ′

[
f(SALG)− f(SALG \

(
P ′ ∩ (SALG \ T)

)
)
]

.

By Lemma 5.2.5 (and the note after it), each vertex of SALG \ T belongs to exactly
n(k, 2p) · 2 ((k − 1)p+ 1) sets in P ′. Thus, applying Lemma 5.2.7 gives us that:∑

P ′∈P ′

[f(SALG)−f(SALG \
(
P ′ ∩ (SALG \ T)

)
)]

≤ 2 ((k − 1)p+ 1)n(k, 2p) (f(SALG)− f(SALG ∩ T)) . (5.5)

Let us focus now on the summation part of the left hand side of Inequality 5.4. Since any
given P ′ contains only vertices from SALG△T the summation part of the left hand side
can be rewritten as: ∑

P ′∈P ′

[
f(SALG ∪

(
P ′ ∩ (T \ SALG)

)
)− f(SALG)

]
.

By Lemma 5.2.5, each vertex in T \SALG appears in exactly 2p ·n(k, 2p) sets in P ′. Hence,
applying Lemma 5.2.8 gives us that:∑

P ′∈P ′

[f(SALG∪
(
P ′ ∩ (T \ SALG)

)
)− f(SALG)]

≥ 2p · n(k, 2p) (f(SALG ∪ T)− f(SALG)) . (5.6)

54

Plugging Inequalities 5.5 and 5.6 into 5.4 results in:

2p · n(k, 2p)(f(SALG ∪ T)− f(SALG))−
ε · |P ′|
|N |

f(SALG) ≤

2 ((k − 1)p+ 1)n(k, 2p) (f(SALG)− f(SALG ∩ T)) .

Rearranging terms, we get:

f(SALG ∪ T) +

(
k − 1 +

1

p

)
f(SALG ∩ T)

≤
(
k +

1

p

)
f(SALG) +

ε|P ′|
2p · n(k, 2p)|N |

f(SALG) . (5.7)

Observe that every set P ′ ∈ P ′ contains at least a single vertex from GSALG,T . Lemma
5.2.5 states that every vertex in GSALG,T appears in exactly 2p·n(k, 2p) or 2 ((k − 1)p+ 1)·
n(k, 2p) sets of P ′ (the exact number is determined by whether the vertex is in T \ SALG

or SALG \ T). Therefore, in the worst case we can conclude that |P ′| ≤ |SALG△T | ·
2n(k, 2p)max{p, (k − 1)p+ 1} ≤ 2|N |n(k, 2p)kp. Plugging this bound into Inequality 5.7
completes the proof.

The approximation ratio of Algorithm 8 for maximizing a normalized monotone sub-
modular function subject to k-exchange constraint now follows.

Theorem 5.2.10. Given a k-exchange set system (N , I) and a normalized monotone
submodular function f : 2N → R+, for any constant δ > 0 there is an approximation of
1/(k + δ).

Proof. Choose constants p ∈ N and 0 < ε < |N | such that 1/p+ kε ≤ δ.

f(SOPT)
(1)

≤ f(SOPT ∪ SALG)

(2)

≤ f(SOPT ∪ SALG) +

(
k − 1 +

1

p

)
· f(SOPT ∩ SALG)

(3)

≤
(
k +

1

p
+ kε

)
· f(SALG) .

Inequality (1) is by the monotonicity of f . Inequality (2) is by the fact that f is non-
negative (since it is normalized and monotone). Inequality (3) is by Theorem 5.2.9 used
with T = SOPT .

5.2.1 Proof of Theorem 5.2.3

We described above a simple construction proving Theorem 5.2.3 for graphs of high girth
and uniform degree. For general graphs, we have to “correct” this construction. Since
general graphs might have vertices with a degree lower than k or simple cycles shorter
than h, we add “dummy” vertices to the start and end of paths whenever a vertex has a
low degree or we encounter a short simple cycle. We present a procedure for constructing
the multiset P(G, k, h). This procedure uses the following subroutine we call EXPAND.

The procedure EXPAND gets a prefix, P , of a path and expands it recursively. The
boolean flag EXPAND gets is 1 if and only if the prefix P is composed of a single vertex and
its previous vertex in the path was a dummy vertex. Lines 2−3 of the procedure finish the
path if it is fully expanded. Line 4 deals with the case that the degree of v is smaller than

55

Algorithm 9: EXPAND(P, flag)

1 Denote by v the last vertex in P and by ℓ(v, P) its label.
2 if ℓ(v, P) = h then
3 Add P to P(G, k, h) and terminate.

4 Add P to P(G, k, h) with multiplicity of (k − degG(v)− flag) · (k − 1)h−ℓ(v,P)−1.
5 if P contains only v then
6 Let u be a dummy vertex.

7 else
8 Let u be the predecessor of v in P .

9 for every w ̸= u neighbor of v do
10 if w /∈ P then
11 ℓ(w,P)← ℓ(v, P) + 1.
12 EXPAND(P − w, 0).

13 else

14 Add P to P(G, k, h) with multiplicity of (k − 1)h−ℓ(v,P)−1.

k by adding P to P(G, k, h) the appropriate number of times. The term k−degG(v)−flag
in the number of calls counts the number of neighboring dummy vertices of v which are
unused yet. The term (k − 1)h−ℓ(v,P)−1 counts the number of appendices needed to fully
expand the prefix P . The loop starting at line 9 goes over all real (non-dummy) neighbors
of v which differ from u. If such a neighbor is not in P yet (line 10) it is added to the
prefix P with the next consecutive label and a recursive call to EXPAND is made. In case
such a neighbor is already in P , i.e., there is a simple cycle shorter than h, P is continued
with dummy vertices. The term (k−1)h−ℓ(v,P)−1 counts the number of appendices needed
to fully expand the prefix P .

The procedure CONSTRUCT construct the multiset P(G, k, h) using EXPAND. The
call to EXPAND in line 3 of CONSTRUCT is for creating all paths that start with a real
(non-dummy) vertex labeled 1. Lines 4 − 5 consider the case that the path started in a
dummy vertex and reached v. The term k− degG(v) in the number of calls is for the case
that the degree of v is smaller than k, and the term (k − 1)i−2 in the number of calls is
for the number of possible prefixes before reaching v. Lines 6 − 9 deal with paths that
start with dummy vertices and enter short simple cycles. The number of calls in line 9 is
(k − 1)i−1 since this is the number of possible prefixes to P .

Lemma 5.2.11. Consider a call to EXPAND with a prefix P and denote P ’s last vertex by
v. If ℓ(v, P) = 1 then k · (k−1)h−2 paths are added to P(G, k, h), otherwise (k−1)h−ℓ(v,P)

paths are added to P(G, k, h).

Proof. The proof is by reverse induction on ℓ(v, P).
Base: The base case is that ℓ(v, P) = h. In this case EXPAND adds P only once to
P(G, k, h) (line 2 of EXPAND). This completes the base of the reverse induction.
Step: Consider the case where ℓ(v, P) /∈ {1, h}. It must be the case that either flag = 0
and P contains more than a single vertex, or flag = 1 and P contains a single vertex
(this is true since a call with flag = 1 and P containing more than a single vertex is never
made, and a call with flag = 0 and P containing a single vertex is made only in line 3 of
CONSTRUCT in which case ℓ(v, P) = 1). Let us consider the above two possible cases:

1. flag = 0 and P contains more than a single vertex: Line 4 of EXPAND adds

56

Algorithm 10: CONSTRUCT(G = (V,E), k, h)

1 P(G, k, h)← ∅.
2 for every v ∈ V do
3 EXPAND(P which contains only v with label 1, 0).
4 for i = 2 to h do
5 Call EXPAND(P which contains only v with label i, 1),

(k − degG(v)) · (k − 1)i−2 times.

6 for every simple cycle C of length at most h do
7 for every simple path P of |C| vertices obtained from C by removing a single

edge and choosing a start vertex do
8 for i = 1 to h− |C| do
9 Call EXPAND(P where its first node is assigned label i+ 1, 0), (k− 1)i−1

times.

10 Return P(G, k, h).

(k − degG(v)) · (k − 1)h−ℓ(v,P)−1 paths to P(G, k, h). The loop in lines 8 − 14 of
EXPAND executes degG(v) − 1 iterations, one for each neighbor w ̸= u of v. In the
case w /∈ P , we apply the induction hypothesis with P −w and ℓ(w,P) = ℓ(v, P)+1
and get that (k − 1)h−ℓ(v,P)−1 paths are added to P(G, k, h) (line 12 of EXPAND).
Otherwise, w ∈ P and (k − 1)h−ℓ(v,P)−1 paths are added to P(G, k, h) (line 14 of
EXPAND). Hence, in every iteration of the loop in lines 9−14 exactly (k−1)h−ℓ(v,P)−1

paths are added to P(G, k, h). Therefore, we can conclude that the total number of
paths added to P(G, k, h) in this case is:

(k− degG(v)) · (k− 1)h−ℓ(v,P)−1+(degG(v)− 1) · (k− 1)h−ℓ(v,P)−1 = (k− 1)h−ℓ(v,P) .

2. flag = 1 and P contains a single vertex: When comparing this case to the
previous one, line 3 of EXPAND adds (k − 1)h−ℓ(v,P)−1 less paths to P(G, k, h).
However, the loop in lines 9 − 14 has one more iteration, therefore adding (k −
1)h−ℓ(v,P)−1 more paths to P(G, k, h). This completes the second case.

We are left with the case where ℓ(v, P) = 1. In this case it must be that flag = 0 and
P contains only v, since EXPAND must have been called from line 3 of CONSTRUCT.
EXPAND adds (k − degG(v)) · (k − 1)h−2 paths to P(G, k, h) in line 4. The loop in lines
9 − 14 executes degG(v) iterations, since u is a dummy vertex. As in the proof of the
above two cases, in each iteration (k− 1)h−2 paths are added to P(G, k, h). Thus, we can
conclude that the total number of paths added to P(G, k, h) when ℓ(v, P) = 1 is:

(k − degG(v)) · (k − 1)h−2 + degG(v) · (k − 1)h−2 = k · (k − 1)h−2 .

As a corollary of Lemma 5.2.11 we get that every vertex v is assigned to label 1 in
exactly n(k, h) = k ·(k−1)h−2 paths in P(G, k, h). The reason this is true is that EXPAND
is called with label 1 only in line 3 of CONSTRUCT. Such a call is made only once for
each vertex.

Lemma 5.2.12. For every vertex v ∈ V and label i ∈ {2, 3, . . . , h}, the number of paths
P in P(G, k, h) for which ℓ(v, P) = i is equal to the number of paths P in P(G, k, h) for
which ℓ(v, P) = 1.

57

Proof. For a path P denote by prefixi(P) the prefix of the first i nodes of P (this includes
also the labels assigned to the vertices). If P contains less than i vertices, set prefixi(P) to
be P . Let P1 be the sub multiset of P(G, k, h) of all paths P where ℓ(v, P) = 1. Partition
P1 according to prefixi, i.e., for every instance of a path P ∈ P1 assign it to the multiset
P1,prefixi(P) of the partition.

For a path P denote by prefixv(P) the prefix of P until vertex v (this includes also
the labels assigned to the vertices). Let Pi be the sub multiset of P(G, k, h) of all paths
P where ℓ(v, P) = i. Partition Pi according to prefixv, i.e. for every instance of a path
P ∈ Pi assign it to the multiset Pi,prefixv(P) of the partition.

Note that in both partitions, the second index defining the set in the partition is a path
Q containing at most i vertices with labels in {1, 2, . . . , i}. We prove that for any such Q:
|P1,Q| = |Pi,revi(Q)|, where revi(Q) is the path Q reversed with each label j replaced with
label i− j + 1. Proving this completes the proof of the lemma.

First, consider the case where |Q| = i − 1, i.e., Q contains i vertices. All paths in
the multiset P1,Q contain v as the first vertex with label 1. Therefore, all of these paths
must have originated from a single call to EXPAND in line 3 of CONSTRUCT. This call,
by Lemma 5.2.11, added (k − 1)h−i paths to P1,Q. The exact same argument works for
Pi,revi(Q) since the label of the first vertex in revi(Q) is also 1 (recall that |Q| = i − 1).
Thus, the proof is complete for the case where Q contains i vertices.

The other case to consider is where |Q| < i − 1. Note that the same argument of the
case where |Q| = i−1 does not work here, since the label of the first vertex in revi(Q) is not
1. All paths in the multiset P1,Q contain v as the first vertex with label 1. Therefore, all
these paths must have originated from a single call to EXPAND in line 3 of CONSTRUCT.
Moreover, since all these paths are in fact equal to Q, they all must have been added either
in line 4 or 14 of a single EXPAND call. Denote by vQ the last vertex in Q and by uQ its
predecessor (if one exists). In line 4, (k − degG(vQ)) · (k − 1)h−2−|Q| paths are added to
P1,Q. Every time line 14 is executed, (k−1)h−2−|Q| paths are added to P1,Q. The number
of times line 14 is executed is the number of neighbors of vQ which are not uQ and appear
in Q already, i.e., |(N(vQ)−uQ)∩Q| times. Thus, we can conclude that the total number
of paths in P1,Q is:

(k − degG(vQ) + |(N(vQ)− uQ) ∩Q|) · (k − 1)h−2−|Q| .

Let us count the number of instances in the multiset Pi,revi(Q). The label of the first
vertex in revi(Q) is i − |Q| > 1, therefore, any path in Pi,revi(Q) originated from a call
to EXPAND in which the first vertex was assigned a label greater than 1. There are two
types for such calls. The first is in line 5 of CONSTRUCT and the second is in line 9 of
CONSTRUCT. There are (k − degG(vQ)) · (k − 1)i−|Q|−2 calls of the first type. Each such
call, by Lemma 5.2.11, adds (k−1)h−i paths. Thus, we can conclude that there are exactly
(k − degG(vQ)) · (k − 1)h−|Q|−2 paths added by calls of the first type. Calls of the second
type originate from a simple cycle C. There are exactly |(N(vQ) − uQ) ∩ Q| such cycles
(one for every neighbor of vQ which is not uQ and is in Q). Since the label of the first
vertex in a call of the second type is i− |Q|, there are (k− 1)i−|Q|−2 such calls. The label
of the last vertex in revi(Q) is i, therefore, Lemma 5.2.11 states that (k− 1)h−i paths are
added for any such call. Thus, we can conclude that the total number of paths added to
Pi,revi(Q) is:

(k − degG(vQ) + |(N(vQ)− uQ) ∩Q|) · (k − 1)h−2−|Q| .

This completes the proofs of properties 1 and 3 of Theorem 5.2.3. We focus now on
property 2. Let P ∈ P(G, k, h), and let v ∈ P be a vertex with degG(v) = k such that

58

ℓ(v, P) /∈ {1, h}. If v is not an end vertex of P the proof is completed. Otherwise, there
are two cases. If v is an end vertex of P and minimizes ℓ(v, P) among all vertices in P ,
since ℓ(v, P) > 1, it must be the case that P originated from a call to EXPAND in line
9 of CONSTRUCT (a call line line 5 of CONSTRUCT is not possible since degG(v) = k).
In this case v has two neighbors in P because P contains all the vertices of the cycle C
that originated this call to EXPAND. The other case is that v is an end vertex of P that
maximizes ℓ(v, P) among all vertices in P . Since ℓ(v, P) < h, it must be the case that
some neighbors of v other than u, the previous node in P , is already in P (refer to the
loop in lines 9− 14 in EXPAND), otherwise v would not be an end vertex of P .

5.3 Maximizing a Non-monotone Submodular Function

Gupta et al. [42] presented a technique for using monotone submodular optimization
for non-monotone submodular problems. Their technique can be used, for example, for
converting the greedy algorithm into an algorithm achieving an approximation ratio of
1/(3(k+2+1/k)) for maximizing non-monotone submodular functions subject to general
k-system. When optimizing over the intersection of k matroids, the current best result is
(k − 1)/(k2 + δ), and is due to [62]. In this section we give an approximation algorithm
for maximizing a general non-negative submodular function over a k-exchange set system,
assuming k ≥ 2. The following algorithm uses Algorithm 8 as a procedure. This algorithm
is based on Algorithm A of [61] and its analysis.

Algorithm 11: NON-MONOTONE-k-EXCHANGE((N , I), ε, p)
1 N1 ← N
2 for i = 1 to k do
3 Si → LOCAL-SEARCH-k-EXCHANGE((Ni, I ∩ 2Ni), ε, p)
4 Ni+1 ← Ni \ Si

5 Output the best set in {Si}ki=1.

Recall that LOCAL-SEARCH-k-EXCHANGE is Algorithm 8. The set system on which
Algorithm 8 is applied is the original set system (N , I) constrained to a subset Ni of the
elements.

Observe that the only place where the proof of Theorem 5.2.9 uses the monotonicity
of f is for proving that it is non-negative. Hence, it holds also for general non-negative
submodular functions. Let SOPT,i = SOPT ∩Ni. Observe that SOPT,i is a feasible solution
of the k-system on which Algorithm 8 is applied at the ith iteration. Using Theorem 5.2.9
with T = SOPT,i, we get(

k + p−1 + kε
)
· f(Si) ≥ f(Si ∪ SOPT,i) + (k − 1 + p−1)f(Si ∩ SOPT,i) . (5.8)

Let SALG denote the output of Algorithm 11. Since f(SALG) ≥ f(Si) for every i, we can
add the k instances of Equation 5.8 (for the k values of i), and get:

k
(
k + p−1 + kε

)
· f(SALG) ≥

[
k∑

i=1

f(Si ∪ SOPT,i) (5.9)

+(k − 1 + p−1) ·
k∑

i=1

f(Si ∩ SOPT,i)

]
.

The following lemma simplifies the righthand side of the last inequality.

59

Lemma 5.3.1. For every 1 ≤ ℓ ≤ k,

k(k + p−1 + kε) · f(SALG) ≥ (ℓ− 1) · f(SOPT) + f(∪ℓi=1Si ∪ SOPT) +
k∑

i=ℓ+1

f(Si ∪ SOPT,i)

+

ℓ−1∑
i=1

(k − 1 + p−1 − ℓ+ i) · f(Si ∩ SOPT,i)

+ (k − 1 + p−1) ·
k∑

i=ℓ

f(Si ∩ SOPT,i) .

Proof. We prove the lemma by induction. For ℓ = 1, the claim that we need to prove
becomes identical to Equation 5.9 once we observe that SOPT = SOPT,1. Assume now
that the lemma holds for ℓ− 1, let us prove it for ℓ. By the induction hypothesis we get:

k(k + p−1 + kε) · f(SALG) ≥ (ℓ− 2) · f(SOPT) + f(∪ℓ−1
i=1Si ∪ SOPT) +

k∑
i=ℓ

f(Si ∪ SOPT,i)

+

ℓ−2∑
i=1

(k + p−1 − ℓ+ i) · f(Si ∩ SOPT,i)

+ (k − 1 + p−1) ·
k∑

i=ℓ−1

f(S1 ∩ SOPT,i) .

By the submodularity of f , we get the following inequality:

f(∪ℓ−1
i=1Si ∪ SOPT) + f(Si ∪ SOPT,ℓ) +

ℓ−1∑
i=1

f(Si ∩ SOPT,i)

≥ f(∪ℓi=1Si ∪ SOPT) + f(SOPT,ℓ) +

ℓ−1∑
i=1

f(Si ∩ SOPT,i)

≥ f(∪ℓi=1Si ∪ SOPT) + f(SOPT) .

The proof of the lemma for ℓ follows by combining the last two inequalities.

Theorem 5.3.2. Given a k-exchange set system (N , I) and a non-negative submodular
f : 2N → R+, for any constant δ > 0 there is an approximation of (k− 1)/(k2+ δ) for the
problem of finding an independent set S maximizing f(S).

Proof. Algorithm 11 has a polynomial time complexity because Algorithm 8 does. In
order to lower bound its performance, let us plug ℓ = k into Lemma 5.3.1. We get:

k(k + p−1 + kε) · f(SALG) ≥ (k − 1) · f(SOPT) + f(∪ki=1Si ∪ SOPT)

+
k∑

i=1

(i− 1 + p−1) · f(Si ∩ SOPT,i) .

Since f is non-negative, this implies:

f(SALG) ≥
k − 1

k(k + p−1 + kε)
· f(SOPT) =

k − 1

k2 + kp−1 + k2ε
· f(SOPT) .

Choosing p and ε such that kp−1 + k2ε ≤ δ completes the proof of the theorem.

60

5.4 Maximizing a Linear Function

The previous sections analyzed Algorithm 8 for the case that the function f is submodular.
Better results can be guaranteed when f is linear.

Theorem 5.4.1. Given a k-exchange set system (N , I) and a linear f : 2N → R+, for
any constant δ > 0 there is an approximation of 1/(k − 1 + δ) for the problem of finding
an independent set S maximizing f(S).

Proof. Theorem 5.2.9 applies also to the case where f is linear. Choose constants p ∈ N
and 0 < ε < |N | such that 1/p+ kε ≤ δ.

f(SOPT)
(1)
= f(SOPT ∪ SALG)− f(SALG \ SOPT)

(2)

≤
(
k +

1

p
+ kε

)
· f(SALG)−

(
k − 1 +

1

p

)
· f(SALG ∩ SOPT)− f(SALG \ SOPT)

(3)

≤
(
k +

1

p
+ kε

)
· f(SALG)− (f(SALG ∩ SOPT) + f(SALG \ SOPT))

=

(
k − 1 +

1

p
+ kε

)
· f(SALG) .

Equality (1) is by the linearity of f . Inequality (2) is by Theorem 5.2.9 used with T =
SOPT . Inequality (3) holds since k ≥ 2.

The cardinality function is an interesting special case of a linear function. A variant of
Algorithm 8 achieves a 2/(k + δ)-approximation for maximizing the cardinality function
over a k-exchange set system, assuming k ≥ 3. In the analysis of this algorithm we use
the following theorem.

Theorem 5.4.2 (Theorem 1 of [49]). Let p, k be integers with k ≥ 3. Let S1, S2, . . . , Sm

be subsets of a set N of size n such that the following holds:

• Each element of N is contained in at most k subsets among S1, S2, . . . , Sm.

• For every p′ ≤ p, the union of every p′ subsets among S1, S2, . . . , Sm is of size at
least p′.

Then, we have:

(i) m
n ≤

k(k−1)r−k
2(k−1)r−k for p = 2r − 1;

(ii) m
n ≤

k(k−1)r−2
2(k−1)r−2 for p = 2r.

Before we can describe the algorithm, we need the following definition.

Definition 5.4.1. Given a k-exchange system (N , I), S, T ∈ I and p ∈ N, T is p-
reachable from S if the following conditions are satisfied:

1. |T \ S| ≤ p.

2. |S \ T | ≤ (k − 1)p+ 1.

3. |T | > |S|.

61

Remark: Notice that Definition 5.4.1 is different from Definition 5.2.1 only in property
3.

We can now define p-graphs in an analog way to the definition of (ε, p)-graphs in
Definition 5.2.2. Replacing the (ε, p)-graph in Algorithm 8 with a p-graph, we get an
algorithm for the cardinality objective function. Notice that the number of elements in S
strictly increases in every iteration of the algorithm, hence, it makes at most n iteration
and terminates in polynomial time.

Theorem 5.4.3. For any constant δ > 0, there exists an efficient algorithm for the
cardinality objective function giving 2/(k + δ)-approximation.

Proof. Choose p such that 2k2

(k−1)⌊(p+1)/2⌋ ≤ δ. For every set T ′ ⊆ SOPT − SALG of at most

p elements, consider the set YT ′ = ∪e∈T ′Ye. Assume for the sake of contradiction that
|YT ′ | < |T ′|. Then SALG − YT ′ ∪ T has the following properties:

• It is independent because (N , I) is a k-exchange system.

• It is p-reachable from S (because |SALG−YT ′ ∪T | = |SALG| − |YT ′ |+ |T | > |SALG|).

This contradicts the fact that SALG is the output of the algorithm. Hence, |YT ′ | ≥ |T ′|.
Now, observe that the set SALG − SOPT with the subsets {Ye|e ∈ SOPT − SALG}, k

and p obeys all the conditions of Theorem 5.4.2. Therefore,

|SOPT |
|SALG|

≤ |SOPT − SALG|
|SALG − SOPT |

≤ k(k − 1)⌊(p+1)/2⌋ − k

2(k − 1)⌊(p+1)/2⌋ − k
≤ k

2− k
(k−1)⌊(p+1)/2⌋

.

Since k/(k − 1)⌊(p+1)/2⌋ ≤ 1.5, it is easy to see that the above inequality implies:

|SOPT |
|SALG|

≤
k + 2k2

(k−1)⌊(p+1)/2⌋

2
.

The theorem now follows from the choice of p.

5.5 Applications

In this section we present a few examples of k-exchange systems. Table 5.1 summarizes the
applications, the k for which they are k-exchange systems and the resulting approximation
ratios. The table also summarizes the results proved above for general k-exchange systems.

Let us begin with our first application: strongly base orderable matroid k-parity.

Definition 5.5.1. In the matroid k-parity problem, we are given a collection N of disjoint
k-element subsets from a ground set G and a matroid (G,M) defined on the ground set.
The goal is to find a collection S of subsets in N maximizing a function f : N → R+,
subject to the constraint

∪
u∈S u ∈M.

Strongly base orderable matroid k-parity (SBO matroid k-parity) is a special
case of matroid k-parity where the given matroid is strongly base orderable. Any
matroid k-parity problem can be expressed as the independence system (N , I) where
I = {S ⊆ N |

∪
u∈S u ∈M}.

Theorem 5.5.1. SBO matroid k-parity is a k-exchange system.

62

Table 5.1: k ≥ 2 is a constant and δ > 0 is an arbitrary positve constant. f : NMS - normalized
monotone submodular, NS - general non-negative submodular, L - linear, C - cardinality.

Maximization Problem f k This Thesis Previous Result

k-exchange NMS

k

1/(k + δ) 1/(k + 1) [36]

NS (k − 1)/(k2 + δ) 1/[3(k + 2 + 1/k)] [42]

L 1/(k − 1 + δ) 1/k [50]

Ca 2/(k + δ) 1/k [50]

Main Applications

SBO matroid k-parity NMS

k

1/(k + δ) 1/k [36]

NS (k − 1)/(k2 + δ) 1/[3(k + 2 + 1/k)] [42]

L 1/(k − 1 + δ) 1/k [50]

b-Matching NMS
2

1/(2 + δ) 1/3 [36]

NS 1/(4 + δ) 2/27 [42]

k-Set Packing NMS
k

1/(k + δ) 1/(k + 1) [36]

NS (k − 1)/(k2 + δ) 1/[3(k + 2 + 1/k)] [42]

Additional Applications

independent set in

(k+1)-claw free graphs

NMS
k

1/(k + 1 + δ) 1/k [36]

NS (k − 1)/(k2 + δ) 1/[3(k + 2 + 1/k)] [42]

job interval selection

with identical lengths

NMS 2 1/(2 + δ) 1/3 [66]

NS 3 2/(9 + δ) 1/16 [42]

asymmetric traveling

salesperson

NMS
3

1/(3 + δ) 1/4 [66]

NS 2/(9 + δ) 1/16 [42]

frequency allocation

on lines

NMS

3

1/(3 + δ) 1/4 [36]

NS 2/(9 + δ) 1/16 [42]

L 1/(2 + δ) 1/3 [50]

C 2/(3 + δ) 1− 1/e [76]

a The result applies for k ≥ 3.

Proof. It is easy to see that the above set system is non empty and monotone. Thus, we
focus on the properties given by Definition 5.1.1. Consider two independent sets S, T ∈ I.
By definition,

∪
u∈S u ∈ M and

∪
u∈T u ∈ M. Let π :

∪
u∈S u →

∪
u∈T u be the bijection

guaranteed by Definition 5.1.2. For any set u ∈ S define Yu = {u′ ∈ T | u′ ∩ π(u) ̸= ∅}.
Recall that the sets in N are disjoint and contain at most k elements. Since π is a
bijection, we must, therefore, have |Yu| ≤ k for all u ∈ S. Moreover, each u′ ∈ T appears
in at most k sets Yu. Thus, Properties (K1) and (K2) of Definition 5.1.1 are satisfied.
Consider a set C ⊆ S, and let S′ = (S \

∪
u∈C Yu) ∪ C. From the definition of π we have

(
∪

u∈S u \ π(
∪

u∈C u)) ∪
∪

u∈C u ∈ M. Observe that
∪

u∈S′ u is a subset of this set, and
thus,

∪
u∈S′ u ∈ M, implying S′ ∈ I. This complete the proof that property (K3) is also

satisfied.

SBO matroid k-parity generalizes our other two main applications: b-Matching and
k-Set Packing. However, it is simpler to analyze them directly than to show the reduc-
tions. Consider first b-Matching.

Definition 5.5.2. Given a graph G = (V,E) and a function b : V → N, a b-matching
is a set of edges M ⊆ E such that for every node |M ∩ δ(v)| ≤ b(v) (where δ(v) is the

63

set of edges hitting v). The maximum b-Matching problem is the problem of finding a
b-matching M maximizing f(M) for a given f : 2E → R+.

Lemma 5.5.2. For any instance of b-Matching, the set of all feasible b-matchings is a
2-exchange set system.

Proof. It is easy to see that the set system associated with b-Matching is non empty and
monotone. Thus, we focus on the properties given by Definition 5.1.1. Let S, T ⊆ E be
two b-matchings of G. For every v ∈ V , number the edges of (S \ T) ∩ δ(v) (respectively,
(T \ S) ∩ δ(v)) from 1 to |(S \ T) ∩ δ(v)| (respectively, |(T \ S) ∩ δ(v)|), denote the
number edge e ∈ (S \ T) ∩ δ(v) (respectively, e ∈ (T \ S) ∩ δ(v)) receives by gS\T (v, e)
(respectively, gT\S(v, e)). For every e = (u, v) ∈ T \S define Ye = {e′ ∈ S\T | gT\S(u, e) =
gS\T (u, e

′) ∨ gT\S(v, e) = gS\T (v, e
′)}.

Notice that the numbering is unique among the edges hitting a single vertex. Thus, by
definition |Ye| ≤ 2, and every e′ ∈ S \ T belongs to at most 2 such Y sets. Let T ′ ⊆ T \S,
and consider M = S \ (∪e∈T ′Ye) ∪ T ′. For every vertex v ∈ V , the numbers of the edges
from M hitting v are distinct. Note that the numbers are in the range of 1 to at most
b(v) − |S ∩ T |, therefore there are at most b(v) edges on total from M hitting v. We
conclude that M is a b-matching of G.

The last main application we consider is k-Set Packing.

Definition 5.5.3. Given a hypergraph H = (V,E) having only hyperedges of size at most
k, A set packing is a subset of hyperedges M ⊆ E such that every two hyperedges in M
do not intersect. The maximum k-Set Packing problem is the problem of finding a set
packing M maximizing f(M) for a given f : 2E → R+.

Lemma 5.5.3. For any instance of k-Set Packing, the set of all set packings is a k-
exchange set system.

Proof. Set N = V , and set I to be all feasible set packings of H = (V,E). Clearly,
the set system (N , I) is non-empty and monotone. Hence, we focus on the properties of
Definition 5.1.1. Set S, T ∈ I and choose Ye, for a given e ∈ T \ S, to be all hyperedges
of S \ T that intersect hyperedge e. Since e contains at most k vertices and S \ T is a
feasible set packing (i.e., each vertex belongs to at most one hyperedge in S \T), |Ye| ≤ k.
Fix a hyperedge e′ ∈ S \ T . Since T is a feasible set packing and e′ contains at most k
vertices, e′ belongs to at most k of the Y sets. Fix T ′ ⊆ T \ S. We have to prove that
S\(∪e∈T ′Ye)∪T ′ ∈ I. Assume there is a vertex v ∈ V that belongs to two hyperedges from
S \ (∪e∈T ′Ye)∪ T ′ ∈ I. Since S, T ∈ I, it must be the case that there are two hyperedges,
e1 ∈ S \ (∪e∈T ′Ye) and e2 ∈ T ′, that contain v. However, this is a contradiction to the
construction of Ye2 . We conclude that (N , I) is a k-exchange set system.

In the rest of this section we consider the additional applications enlisted in Table 5.1.

Definition 5.5.4. Given an undirected graph G, a k-claw is a set of k + 1 nodes in G
which induces a star. If a graph contains no k-claw, we say it is a k-claw free graph.

Lemma 5.5.4. The independent sets of size at most k of a (k + 1)-claw free graph form
a k-exchange system.

Proof. Fix some (k+1)-claw free graph G, let N be the set of nodes of the graph, and let
I be the collection of independent sets of size k or less. Since the subset of an independent
set is also an independent set, the set system (N , I) is non-empty and monotone. Hence,

64

we focus on the properties of Definition 5.1.1. Consider two independent sets S, T ∈ I.
For every node u ∈ T , let us define Yu to be the set of all neighbors of u in S. Notice that
there are no edges between the nodes of Yu because they all belong to the independent S.
Hence, |Yu| must be of size at most k, otherwise, u together with any set of k + 1 nodes
from Yu would have formed a claw. A symmetric argument also shows that the collection
{Yv|v ∈ Yu} is of size at most k for every u ∈ T .

Finally, for every subset T ′ ⊆ T , consider the set A = S \ ∪u∈T ′Yu ∪ T ′. Since both S
and T ′ are independent sets, any edge in A must connect nodes of S and T ′. However, all
neighbors of the nodes of T ′ belong to the set ∪u∈T ′Yu, and therefore, are missing from
A. Thus, the set A is independent.

The maximum job interval selection with identical lengths problem (JISIL)
is the next application we consider.

Definition 5.5.5. Given a set J = {J1, J2, . . . , Jn} of n jobs, where job Ji is associated
with a release time ri, a deadline di, and a common length L ∈ N, a schedule S ⊆ J is
feasible if every Ji ∈ S is assigned an interval of length L inside [ri, di] and for any two jobs
Ji, Jr ∈ S the intervals assigned to them do not intersect. The maximum job interval

selection with identical lengths (JISIL) problem is the problem of finding a feasible
schedule S maximizing f(S) for a given f : 2J → R+.

Lemma 5.5.5. For any instance of JISIL, the set of feasible schedules is a 3-exchange
set system. Moreover, if f is monotone and submodular, then this set is also 2-exchange.

Proof. For every Ji ∈ N , the ground set N contains all pairs: (Ji, ri), . . . , (Ji, di − L).
If a pair (Ji, ti) belongs to a schedule S, it indicates that job Ji is scheduled at time t.
Like in Definition 5.5.5, two pairs (Ji, ti) and (Jr, tr) intersect if |ti − tr| < L. A feasible
schedule S ⊆ N is a set of pairs such that any two pairs in S do not intersect, and every
job appears in at most one pair. We say that job Ji ∈ J is scheduled in S if S contains
at least one pair of the form (Ji, ti).

If f is monotone and submodular then we can drop the requirement that at most
one pair of every job is in S. Instead, we define a new objective function f̄ such that
f̄(S) equals the value of f over the set of jobs scheduled in S. Since f is monotone and
submodular, so is f̄ . Choosing more than a single pair associated with a job Ji ∈ J does
not change the value of f̄ , thus, we can always remove the extra pairs from the schedule.

We set I to be the collection of all feasible schedules. Clearly, (N , I) is non-empty
and monotone. Hence, we focus on the properties of Definition 5.1.1. Let S, T ∈ I. For a
pair (Ji, ti) ∈ T \ S choose Y(Ji,ti) to be all pairs in S \ T that intersect (Ji, ti). If f is not
monotone and submodular, we add to Y(Ji,ti) also the single pair containing Ji in S \ T if
there is such pair. Since all intervals have length of exactly L, there are at most 2 pairs that
can intersect a given pair (Ji, ti) ∈ T \S. This implies that |Y(Ji,ti)| ≤ 3 (and |Y(Ji,ti)| ≤ 2 if
f is monotone and submodular). Symmetry shows also that a given (Jr, tr) ∈ S\T belongs
to at most three Y sets (two Y sets if f is monotone and submodular). Let T ′ ⊆ T \ S.
We need to prove that R = S \

(
∪(Ji,ti)∈T ′)Y(Ji,ti)

)
∪ T ′ ∈ I. Fix (Ji, ti) ∈ R and consider

two cases. First, (Ji, ti) ∈ S \ T . (Ji, ti) does not intersect any pair in S \ T (since S is a
feasible schedule), and does not intersect any pair in T ′ (since if that was the case (Ji, ti)
would have belonged to ∪(Ji,ti)∈T ′Y(Ji,ti),which cannot be true (Ji, ti) ∈ R). Moreover, for
the same reasons, if f is not monotone and submodular, there is no other pair of job Ji in
S \ T or T ′. Second, (Ji, ti) ∈ T \ S. (Ji, ti) does not intersect any pair of T ′ (since T is a
feasible schedule) and does not intersect any pair in S \

(
∪(Ji,ti)∈T ′)Y(Ji,ti)

)
(since if that

was the case such a pair would have belonged to Y(Ji,ti)). Again, for the same reasons, if

65

f is not monotone and submodular, there is no other pair of job Ji in S \ T or T ′. We
conclude that R is a feasible schedule, i.e., R ∈ I.

For the special case of L = 1, we can prove a stronger claim.

Lemma 5.5.6. Any instance of JISIL with L = 1 can be represented by a 1-exchange set
system.

Proof. Given a set J ′ ⊆ J of jobs, Algorithm 12 can find a feasible schedule containing
all the jobs of J ′, if such a schedule exists.

Algorithm 12: SCHEDULE-ALL(J ′)

1 S ← {Empty Schedule}
2 i← 0
3 while there are unscheduled jobs in J ′ do
4 Let Ji be the set of unscheduled jobs from J ′ that can be scheduled to time i.
5 if Ji ̸= ∅ then
6 Let Ji be the job from Ji with the earliest deadline.
7 Add Ji to S, and schedule it to time i.

8 Output S.

Let us prove that Algorithm 12 finds a feasible schedules for all the jobs of J ′, if such
a schedule exists. For every iteration i of Algorithm 12, let Si be the schedule constructed
up to this iteration. We need to prove that if there exists a schedule S′

i such that Si ∪ S′
i

is a feasible schedule for all jobs in J ′, then there also exists a schedule S′
i+1 such that

Si+1 ∪ S′
i+1 is a feasible schedule for all jobs in J ′.

If Ji is empty then Si = Si+1, and we are done. Otherwise, let Ji be the job scheduled
by the algorithm to time i. Ji must be scheduled by S′

i to some time, say j. Let Jj be
the job scheduled by S′

i to time i. Clearly, Ji can be scheduled to time i. Moreover, since
both Ji and Jj belong to Ji, the deadline of Jj is no earlier than that of Ji. Hence, Jj
can be scheduled to time j. Thus, we can switch the times of jobs Ji and Jj in S′

i, and
get a new schedule S′′

i such that Si ∪ S′′
i is a feasible schedule for all jobs in J ′, and Ji

is scheduled to time i by S′′
i . By removing job Ji from S′′

i we get a schedule with all the
required properties to be S′

i+1.
At this point we can present our set system. N is the set of all jobs, and I is the

collection of subset of jobs having a feasible schedule. By the above proof, it is possible to
determine in polynomial time if a set of jobs is in I. Clearly this set system is non-empty
and monotone. Hence, we focus on the properties of Definition 5.1.1. Consider two sets
S, T ∈ I, and let J ∈ T \S. We construct the set YJ using the following process. Initially
i is the time in which schedule T schedules job J . If S schedules no job at time i, then
YJ = ∅. Otherwise, If S schedules a job J ′ ∈ S \T , then YJ = {J ′}. Finally, if S schedules
a job J ′ ∈ S ∩ T , then we update i to be the time in which schedule T schedules J ′, and
start again.

Let us explain why the above process must terminate. Think of a digraph G containing
the jobs of T ∪ S as nodes. For every job J1 ∈ T and J2 ∈ S, there is an arc (J1 → J2) if
J1 is scheduled in T in the same time that J2 is schedules in S. Observe that the in-degree
and out-degree of each node in this graph is at most 1. Notice that the above process goes
along a path (or cycle) on this graph. The only case that the above process can continue
infinitely is when it goes along a cycle. However, the process starts with a node J ∈ T \S

66

whose in-degree is 0, and therefore, there is no way to get back to this node once the
process leaves it.

The size of each set YJ is, by definition, at most 1 for every J ∈ T \ S. Consider some
job J ∈ T \ S with non-empty YJ = J ′. Notice that J ′ ∈ S \ T , and therefore, J and
J ′ must be the end points of a path of the above graph, because all interval nodes of a
path belong to S ∩ T . This clearly implies that every node J ′ ∈ S \ T can appear in at
most one set of the form YJ . Finally, consider a subset T ′ of jobs from T . We need to
prove that there exists a schedule for the jobs of S ∪ T ′ \ ∪J∈T ′YJ . Consider the following
schedule. For every job J ∈ T \ S, let PJ be the set of nodes along the path of the above
graph whose end points are J and J ′ ∈ YJ . Schedule all the jobs of S \ ∪J∈T ′PJ at the
time they are scheduled in S. Schedule all the jobs of ∪J∈T ′PJ \ YJ at the time they are
scheduled in T . Let us prove that this is indeed a feasible schedule. Assume for the sake
of contradiction that there exist two jobs in this schedule scheduled to the same time i.
Clearly, one job of these two must belong to S \∪J∈T ′PJ and the other to PJ \YJ for some
J ∈ T ′. However, this implies that there is an edge in the above graph from a node of PJ

to a node of S \ ∪J∈T ′PJ , which is, of course, a contradiction.

Next, we consider the maximum asymmetric traveling salesperson problem (MATS).

Definition 5.5.6. Given a complete directed graph G = (V,E), MATS is the problem of
finding a directed hamiltonian cycle C ⊆ E maximizing f(C) for a given f : 2E → R+.

Lemma 5.5.7. For any instance of MATS, the set of hamiltonian cycles (with all their
subsets) is a 3-exchange set system.

Proof. The set of edges is E is the ground set. A set S ⊆ E is an independent set, i.e.,
S ∈ I, if the directed graph GS = (V, S) is either a directed hamiltonian cycle or a set of
disjoint simple paths (the in and out degree of every vertex are at most 1, and GS does not
contain any cycles shorter than |V |). Fix S, T ∈ I. For every e = (u→ v) ∈ T \ S choose
Ye ⊆ S \T to be the following three types of edges (if they exist): an edge e1 ∈ S \T that
enters v, an edge e2 ∈ S \T that leaves u, and an edge e3 ∈ S \T which is the first edge of
this set one encounters when leaving v and going along edges from S ∩ T only. We prove
that this set system is 3-exchange.

Clearly, the above set system is non empty and monotone. Hence, we focus on the
properties of Definition 5.1.1. First, |Ye| ≤ 3 for every e ∈ T \ S. Second, fix e′ = (u →
v) ∈ S \ T . The edge e′ take at most once each type of the above three types of edges
defining the Y sets. Clearly, this is true for the first two types (since T ∈ I, and therefore,
the in and out degree of every vertex in GT is at most 1). For e′ to be of the third type,
there must be an edge e∗ ∈ T \ S that can be found in the following way: start from u
and go backwards along edges of S ∩ T until hitting a the first vertex w that has an edge
e∗ ∈ T \S entering it (note that this implies that there is no edge from S ∩T entering w).
Since there could be at most a single such e∗ edge, e′ can be at most once an edge of the
third type. This proves the second property of Definition 5.1.1.

We focus now on the third property of Definition 5.1.1. Fix T ′ ⊆ T \ S, our goal it to
prove that S \ (∪e∈T ′Ye) ∪ T ′ ∈ I. Note that for every e = (u→ v) ∈ T ′, Ye contains the
edges from S \T that leave u or enter v (if they exist). Hence, the out degree of u and the
in degree of v in S \ (∪e∈T ′Ye) are 0. Therefore, these degrees in S \ (∪e∈T ′Ye) ∪ T ′ are at
most 1. Assume now that S \ (∪e∈T ′Ye)∪ T ′ contains a non-hamiltonian cycle C. C must
contain edges from both S \ T and T \ S, since S, T ∈ I. Choose e′ ∈ C ∩ (S \ T) and
e ∈ C ∩ (T \ S) such that the path using C from e to e′ contains only edges from S ∩ T .
Such a pair of edges must exist in C. However, this is a contradiction since by definition
e′ ∈ Ye. This proves that S \ (∪e∈T ′Ye) ∪ T ′ does not contain non-hamiltonian cycles.

67

The last application we consider is maximum frequency allocation on lines (MFAL).

Definition 5.5.7. Given a set of frequencies F , an interference radius r and a set P of
points on a line, where every point P ∈ P is associated with a list of frequencies LP ⊆ F
and a positive number MP , a frequency assignment A ⊆ P × F assigns some of the
frequencies to every point. A frequency assignment is legal if it assigns to every point P
a set FP of frequencies such that:

• FP ⊆ LP .

• |FP | ≤MP .

• For every two points P1, P2 ∈ P, dist(P1, P2) < r ⇒ FP1 ∩ FP2 = ∅.

The maximum frequency allocation on lines (MFAL) problem is the problem of finding
a legal frequency assignment A ⊆ P × F maximizing f(A) for a given f : 2P×F → R+.

Lemma 5.5.8. For any instance of MFAL, the set of legal frequency assignments is a
3-exchange set system.

Proof. Fix the ground set N = P × F . A set A ⊆ F is independent (i.e., S ∈ I), if it
is a legal frequency assignment. It is easy to see that this set system is non empty and
monotone. Thus, we focus on the properties of Definition 5.1.1. Fix S, T ∈ I. For every
point P ∈ P, number the frequencies assigned to P by S \T from 1 to |(S \T)∩({P}×F)|
(notice that a frequency might get different numbers in the numbering associated with
different points). Denote the number of a frequency F in the numbering associated with
point P by gS\T (P, F). Similarly, for every point P ∈ P, number the frequencies assigned
to P by T \ S, and denote by gT\S(P, F) this numbering.

Let Nr(P) be the set of points whose distance from P is less than r. For every pair
u = (P, F) ∈ T \ S, define Y ′

u to be the set {(P ′, F ′) ∈ S \ T |gT\S(P, F) = gS\T (P, F
′)}.

Also construct for u a set Yu = Y ′
u ∪ [(Nr(P) × {F}) ∩ (S \ T)]. Informally, Yu contains

two types of pairs from S \ T : at most one pair involving P itself and pairs that contain
the same frequency and a point too close to P.

The size of Y ′
u is at most 1 because there can be at most one frequency F ′ for which

gT\S(P, F) = gS\T (P, F
′). Since S is independent, there can be at most 2 points in Nr(P)

that are assigned the frequency F by S. Hence, |Yu| ≤ 2 + |Y ′
u| ≤ 3. Exactly the same

arguments also imply that every pair u = (P, F) ∈ S \ T can appear in at most 3 sets of
{Yu|u ∈ T \ S}.

Let T ′ ⊆ T \ S and consider A = S \ (∪u∈T ′Yu) ∪ T ′. Consider some point P . Under
A, every frequency assigned to P has a distinct number, and therefore, one of the sets
S or T assigns to P at least as many frequencies as A does. Moreover, for every pair
u = (P, F) that we added to A, Yu contained every pair (P ′, F) ∈ S \ T such that
dist(P ′, P) < r. Therefore, every two points P1, P2 such that dist(P1, P2) < r have disjoint
sets of frequencies under A. We can now conclude that A ∈ I.

5.6 Other Results

The concept of k-exchange set systems was developed independently by Justin Ward and
by us. Justin Ward’s work and ours was published in a joint paper [35]. Wards proved
the following theorem:

Theorem 5.6.1. For every δ > 0, there exits a polynomial 2/(k + 1 + δ) approximation
algorithm for maximizing a linear function f : 2N → R+ over a k-exchange set system.

68

Notice that the last theorem is at least as good as the result presented above for linear
functions for any k ≥ 3. For k = 2, this theorem gives only 2/(3+δ) approximation, while
the result presented above provides a PTAS. In a later paper [82], Wards used a similar
method to get the following result for monotone submodular functions.

Theorem 5.6.2. For every ε > 0, there exits a polynomial (k + 3)/2 + ε approximation
algorithm for maximizing a monotone submodular function f : 2N → R+ over a k-exchange
set system.

Once again, the result given by [82] is at least as good as the result presented above
for monotone submodular functions for any k ≥ 3. For k = 2, this theorem gives only
5/2 + ε approximation, while the result presented above provides 2 + ε approximation. It
is an open question whether the method of Wards can be used also to derive a result for
general non-monotone submodular functions.

69

Chapter 6

Contention Resolution Schemes

As previously mentioned, many algorithms for submodular maximization problems are
composed of two parts: a solver for a fractional relaxation of the problem, and a rounding
method. Building upon [6], [20] proposes a general contention resolution framework for
rounding fractional solutions. Intuitively, the scheme works as follows. First, an approxi-
mate fractional solution x is found for the multilinear extension relaxation of the problem.
Second, x is re-normalized (all its coordinates are multiplied by some value b ≤ 1), and
a random subset of elements is sampled according to the probabilities determined by x.
Third and last, some of the sampled elements are discarded to guarantee the feasibility of
the solution.

The first step can be performed by any algorithm for finding approximate fractional
solutions for the multilinear relaxation. Let α be the approximation guarantee of the
algorithm used. The re-normalization factor and the decision which elements to discard
are determined by a constraint specific contention resolution scheme. Formally, a (b, c)-
balanced contention resolution scheme for a constraint represented by a set system (N , I)
is an algorithm that gets a vector x ∈ bP(I) (where P(I) is the convex hull of I), picks
a random subset R(x) according to probabilities determined by x, and then outputs a set
S ∈ I obeying Pr[u ∈ S|u ∈ R(x)] ≥ c for every u ∈ N . If the contention resolution
scheme is monotonic, i.e., Pr[u ∈ S] only increases when other elements are removed from
R(x), then the framework guarantees an αbc approximation for maximizing a submodular
function subject to the set system (N , I). One advantage of this framework is the ease with
which it deals with intersections of constraints of different types (e.g., matroids, knapsack
constraints and matchoids). Chekuri et al. [20] show that given contention resolution
schemes for two types of constraints, there is a standard method to get a contention
resolution scheme for the intersection of these constraints.

We extend the framework of [20] by showing that finding a fractional solution for
the relaxation and the re-normalization step, can both be done simultaneously using the
measured continuous greedy algorithm. Equipped with this observation, we can replace
the expression αbc for the approximation ratio with an improved one for both the non-
monotone and the monotone cases. The improvement achieved by the new expression is
most significant for small values of b.

The idea behind our method is to use b as the stopping time of Theorems 3.2.1 and
3.2.2, hence directly getting a re-normalized fractional solution (as is guaranteed by both
theorems). The following theorem presents the improved expressions for the approximation
ratio. Its proof appears in Section 6.1.

Theorem 6.0.3. If there is a monotone (b, c)-balanced contention resolution scheme for
I, then there is an approximation of

(
e−bbc− o(1)

)
for maxS∈I{f(S)} assuming f is

70

non-negative and submodular, and an approximation of
(
(1− e−b)c− o(1)

)
assuming f is

monotone.

Note that the results of Theorem 6.0.3 are better than the (αbc)-approximation of [20].
This is true, since for the non-monotone case e−b > 0.325 for every b ∈ (0, 1], and for the
monotone case 1− e−b ≥ (1− 1/e)b for every b ∈ (0, 1].

We also provide monotone balanced contention resolution schemes for various match-
ing, scheduling and packing problems. Using these schemes and Theorem 6.0.3, we are
able to improve the known approximation ratios for these problems. A comprehensive
list of our schemes and the problems for which they provide an improvement appears in
Section 6.2. Among the results of Section 6.2, there are two that are especially notable:

• For job interval scheduling with k identical machines, and a linear objective function,
we get an approximation ratio approaching 1 for large values of k. The previously
best approximation ratio for this problems approached 1− e−1 for large k’s [9].

• For broadcast scheduling with a monotone submodular objective function, we get
an approximation ratio of 1/4. This matches the best known approximation for the
linear variant [8].

6.1 Combining the Framework with the Measured Contin-
uous Greedy

Theorem 6.0.3 quantifies the approximation ratio that can be achieved by combining the
measured continuous greedy and the contention resolution framework. This approximation
ratio is better than what can be expected by a black-box combination of the two. We begin
this section by proving Theorem 6.0.3. After the proof we discuss some applications of
this theorem.

Proof of Theorem 6.0.3. Consider the case of a non-negative and submodular f . Apply
Theorem 3.2.1 with stopping time T = b (recall 0 ≤ b ≤ 1). Then we obtain a fractional
solution x ∈ bP whose value satisfies: F (x) ≥ (be−b − o(1)) · f(OPT). The rest of the
proof is exactly as in Theorem 1.8 of [20], thus details are omitted.

For the case of a normalized, monotone and submodular f , apply Theorem 3.2.2 with
stopping time T = b (recall that, as before, 0 ≤ b ≤ 1). Then we obtain a fractional
solution x ∈ bP whose value satisfies: F (x) ≥ (1− e−b − o(1)) · f(OPT). Again, the rest
of the proof is exactly as in Theorem 1.8 of [20].

Theorem 6.0.3 implies improved approximation ratios for many problems considered in
[20]. For example, consider the problem of maximizing a submodular function subject to k
matroid constraints. Chekuri et al. [20] describe, for every b ∈ (0, 1] a monotone (b, [(1−
e−b)/b]k)-balanced contention resolution scheme for this problem, using this contention
resolution scheme they derive an approximation ratio of 0.19/k (for large enough k values).
The following corollary improves this approximation ratio using Theorem 6.0.3 and a better
choice of value for b.

Corollary 6.1.1. For large enough values of k, there is a 0.735/k−o(1) approximation al-
gorithm for maximizing a general non-monotone submodular function subject to k matroid
constraints.

71

Proof. By Theorem 6.0.3 and the above contention resolution scheme, there is a e−bb[(1−
e−b)/b]k − o(1) approximation algorithm for the problem of maximizing a general non-
monotone submodular function subject to k matroid constraints. Choosing b = 2/(k+1),
we get:

e−bb[(1− e−b)/b]k − o(1) ≥ e−bb[(b− b2/2)/b]k − o(1) = e−bb[1− b/2]k − o(1)

= e−2/(k+1) · 2

k + 1
·
[
1− 1

k + 1

]k
− o(1)

≥ e−2/(k+1) · 2

k + 1
· e−1 − o(1)

=
2

e
· e

−2/(k+1)

k + 1
− o(1) = 0.735/k − o(1) .

Remark: Notice that the problem considered in the last corollary also has an approxima-
tion algorithm with an approximation ratio close to 1/k for large values of k [62], however,
this result has polynomial time complexity only if k is fixed.

Table 6.1 summarizes a few other examples of the improvements achieved by Theo-
rem 6.0.3 to problems considered in [20].

Table 6.1: A few examples of improved approximation ratios due to Theorem 6.0.3. All
previous results in this table are due to [20]. The notation of ε denotes an arbitrarily small
positive constant.

Problem This Thesis Previous
Result

k-Uniform Matchoid (linear) 2
e

1
k+1 0.6/k

k-Uniform Matchoid (monotone) 2
e

1
k+1 − o(1)*

0.38/k

k-Uniform Matchoid (non-monotone) 0.19/k

k Matroid Intersection and O(1) Knapsacks (linear)
(
2
e − ε

)
1

k+1 0.6/k

k Matroid Intersection and O(1) Knapsacks (monotone) (
2
e − ε− o(1)

)
1

k+1
* 0.38/k

k Matroid Intersection and O(1) Knapsacks (non-monotone) 0.19/k

* The o(1) term is with respect to min{n, k}, i.e., it vanishes when both n and k are large. The
exact function hiding behind the o(1) term depends on the type of the objective function.

6.2 Contention Resolution Schemes

In this section we provide improved contention resolution schemes for several matching,
schedule and packing problems. These schemes imply improved approximation ratios
for these problems using the framework of [20]. Moreover, Theorem 6.0.3 provides an
additional improvement to these approximation ratios. Table 6.2 summarizes the approx-
imation ratios proved in this section.

6.2.1 The Submodular Independent Set in Interval Graphs Problem

The first problem we consider is the Submodular Independent Set in Interval Graphs

problem since many (constrained) submodular maximization problems can be reduced to
it. In this problem we are given a set N of intervals, and a non-negative submodular
function f : 2N → R+. A solution S ⊆ N is feasible if no two intervals in S intersect,
i.e., the constraint family I contains all independent sets of the interval graph defined

72

Table 6.2: Results proved in Section 6.2. Objective functions: NMS - normalized monotone
and submodular, NS - non-negative submodular, and L - linear.

Problem Objective This Paper Previous Result
function

Submodular Independent Set

in Interval Graphs

NMS 1/4

O(1)* [20]
NS 1/(2e)

Submodular k-Colorable
Subgraph in Interval Graphs

NMS 1− e−1 − o(1)△

NS e−1 − o(1)△

Submodular Job Interval

Selection(single machine)
NMS 1/4 —

Submodular Job Interval

Selection(k unrelated machines)
NMS 1/4 —

Submodular Job Interval

Selection(k identical machines)
NMS 1− e−1 − o(1)△ —
L 1− o(1)△ 1− e−1 − o(1)△ [9]

Submodular Multiple

Knapsacks
NMS 1/42 —

Submodular Multiple

Knapsacks(identical knapsack sizes)
NMS 1− e−1 − o(1)△,2 —

Submodular Broadcast

Scheduling
NMS 1/4 —

Submodular Matching

Scheduling(edge degree ≤ k)
NMS k

e(k+1)2 —

* The exact constant was not calculated by [20], but it is inferior to our corresponding results.
△ The o(1) term is with respect to min{n, k}, i.e., it diminishes when both n and k are large.
2 Requires pseudo polynomial time. It is possible to get a polynomial time algorithm at the cost
of some loss in the approximation ratio. For details, see the theorems below.

by N . The goal is to find a feasible solution S which maximizes f(S). Unlike its linear
variant, Submodular Independent Set in Interval Graphs is NP-hard. This follows,
e.g., from the reduction proved by Lemma 6.2.5.

We note that Submodular Independent Set in Interval Graphs is a special case
of the unsplittable flow problem where the graph is a path and all demands and capac-
ities equal 1. For the unsplittable flow problem with general demands and capacities, [20]
presents a (b, 1−ρb)-balanced contention resolution scheme for some constant ρ > 1. This
gives a (1− e−b)(1− ρb)-approximation for the monotone case and a (be−b− o(1)(1− ρb)-
approximation for the non-monotone case.1 We show that Submodular Independent Set

in Interval Graphs admits an improved monotone (b, e−b)-balanced contention resolu-
tion scheme for every b ∈ (0, 1], and thus, has better approximation ratios than the ones
known for unsplittable flow. We get (1 − e−b)e−b and

(
be−2b − o(1)

)
approximation for

the monotone and non-monotone cases, respectively.
Algorithm 13 is the algorithm induced by our contention resolution scheme for the

Submodular Independent Set in Interval Graphs problem. We give the complete al-
gorithm, instead of only the contention resolution scheme because we believe the algorithm
is more natural this way.

The first step of the algorithm is the relaxation solving and re-normalization steps

1In both cases, the approximation ratios presented are the ones achieved using our measured continuous
greedy algorithm, and Theorem 6.0.3. These ratios are somewhat better than the original ones given by
[20].

73

Algorithm 13: Contention Resolution Scheme for Submodular Independent Set in

Interval Graphs(N , f, b)

// Computing Fractional Solution

1 Use the measured continuous greedy algorithm with stopping time T = b to obtain
x.
// Sampling

2 Sample R where each interval u ∈ N is chosen independently with probability
1− e−xu .
// Diluting

3 For every u ∈ N , mark interval u for deletion if there is a different interval u′ ∈ R
that intersects the starting point of u.
// Output

4 Remove all marked intervals from R, and let S be the set of remaining intervals.
5 Output S.

of the contention resolution framework. The relaxation we use is the natural relaxations
of the problem. The second step of the algorithm corresponds to the sampling step of
the framework. We note that the probability of choosing an element into R in Line 2
is not as in [20]. However, since 1 − e−x ≤ x, one can think of it as the sampling step
of the framework, followed by a second sampling step at the beginning of the contention
resolution scheme. More formally, the sampling step of the framework outputs a set R′

containing every element u ∈ N with probability xu. The contention resolution scheme
starts by constructing a set R containing every element u ∈ R′ with probability [1 −
e−xu]/xu.

Lemma 6.2.1. For every b ∈ (0, 1], Algorithm 13 represents a monotone (b, e−b)-balanced
contention resolution scheme for Submodular Independent Set in Interval Graphs.

Proof. First, we prove that for every interval u ∈ N :

Pr [u ∈ S] ≥
(
1− e−xu

)
exu−b .

Let Lu be the set of intervals that intersect the starting point of u, excluding u itself.
Theorems 3.2.1 and 3.2.2 guarantee that x ∈ bP. Hence,

∑
u′∈Lu

xu′ ≤ b− xu. Therefore,

Pr [u ∈ S] =
(
1− e−xu

)
·
∏

u′∈Lu

e−xu′ =
(
1− e−xu

)
· e−

∑
u′∈Lu

xu′

≥
(
1− e−xu

)
· e−(b−xu) =

(
1− e−xu

)
· exu−b .

Since u ∈ S implies u ∈ R′, we get:

Pr
[
u ∈ S | u ∈ R′] = Pr[u ∈ S ∧ u ∈ R′]

Pr[u ∈ R′]
≥ Pr[u ∈ S]

Pr[u ∈ R′]

≥ (1− e−xu) exu−b

xu
=

(exu − 1) e−b

xu
≥ e−b .

The monotonicity of contention resolution scheme is clear from the description of Algo-
rithm 13.

Corollary 6.2.2. For normalized monotone submodular f Submodular Independent Set

in Interval Graphs has 1/4-approximation, and for non-negative submodular f it has
(1/(2e)− o(1))-approximation.

74

Proof. For the former case apply Theorem 6.0.3 and Lemma 6.2.1 with b = ln 2 to obtain
an approximation of 1/4. For the latter case apply Theorem 6.0.3 and Lemma 6.2.1 with
b = 1/2 to obtain an approximation of 1/(2e)− o(1).

We consider also a variation of Submodular Independent Set in Interval Graphs

in which a valid solution can contain up to k intervals covering each time point on the line
(as opposed to just a single one). We denote this problem as the Submodular k-Colorable
Subgraph in Interval Graphs problem. Algorithm 13, and the contention resolution
scheme implying it, can still be applied with a few minor changes.

Algorithm 14: Contention Resolution Scheme for Submodular k-Colorable
Subgraph in Interval Graphs (N , f, k, b)

// Computing Fractional Solution

1 Use the measured continuous greedy algorithm with stopping time T = b to obtain
x.
// Sampling

2 Sample R where each interval u ∈ N is chosen independently with probability xu.
// Diluting

3 For every u ∈ N , mark interval u for deletion if there are at least k other intervals
u′ ∈ R that intersect the starting point of u.
// Output

4 Remove all marked intervals from R, and let S be the set of remaining intervals.
5 Output S.

The first step of the algorithm is the relaxation solving and re-normalization steps of
the contention resolution framework. The relaxation we use is the natural relaxations of
the problem. The second step of the algorithm corresponds to the sampling step of the
framework. Note that here, as expected, and unlike the case in Algorithm 13, we sample
every element u ∈ N with probability xu.

Lemma 6.2.3. Algorithm 14 represents a monotone (b, 1 − e−[1/b−1]2bk/3)-balanced con-
tention resolution scheme for Submodular k-Colorable Subgraph in Interval Graphs

for b ∈ (0, 1].

Proof. Let Lu be the set of intervals that intersect the starting point of u, excluding u itself.
Theorems 3.2.1 and 3.2.2 guarantee that x ∈ bP. Hence,

∑
u′∈Lu

xu′ ≤ b(k − xu) ≤ bk.
By using standard Chernoff bound on the upper tail, one can show that:

Pr[|Lu ∩R| ≥ k − 1] = Pr[|Lu ∩R| > k] ≤ e−[1/b−1]2bk/3 .

Observe that the above inequality is independent of the question whether u ∈ R. Hence,

Pr [u ∈ S | u ∈ R] ≥ 1− e−[1/b−1]2bk/3 .

The monotonicity of contention resolution scheme is clear from the description of Algo-
rithm 14.

We can now prove the next corollary. The o(1) term in this corollary is with respect
to min{k, n}, hence, it diminishes when both k and n are large.

75

Corollary 6.2.4. For normalized monotone submodular f the above algorithm with b =
1/[1+

√
log k/k] provides a (1− 1/e− o(1))-approximation for Submodular k-Colorable

Subgraph in Interval Graphs. For non-negative submodular f it provides (1/e− o(1))-
approximation.

Proof. Notice that b = 1−o(1), where the o(1) term is, as usual, with respect to min{k, n}.
Let us now calculate:

b·
(
1− e−[1/b−1]2bk/3

)
= b·

(
1− e−[

√
log k/k]2bk/3

)
= (1−o(1)·

(
1− k−(1−o(1))/3

)
= 1−o(1) .

By the result of [20], the approximation ratio is equal to αbc, where α is the approxima-
tion ratio of the relaxation solving algorithm. The last calculation shows that bc = 1−o(1)
in our case, hence, the approximation ratio we get is α− o(1).

6.2.2 The Submodular Job Interval Selection Problem

The Submodular Job Interval Selection problem is defined as following. We are given
a set N of n jobs, where each job u ∈ N is associated with a set Ju of possible intervals.
Additionally, a normalized monotone submodular function f : 2N → R+ over the jobs
is given (note that f is not defined over the intervals, but over the jobs). A feasible
schedule is a subset S ⊆ ∪u∈NJu of intervals, such that no two intervals in S intersect.
A job u is scheduled in S if S contains an interval from Ju. The goal is to find a feasible
schedule S that maximizes the value of f over the set of jobs scheduled in S. We show that
Submodular Job Interval Selection can be reduced via an approximation preserving
reduction to Submodular Independent Set in Interval Graphs. This reduction works
only for normalized monotone submodular objective functions, hence, we do not consider
general non-negative submodular objectives.

Lemma 6.2.5. For normalized monotone and submodular objective functions, there is an
efficient approximation preserving reduction from Submodular Job Interval Selection

to Submodular Independent Set in Interval Graphs.

Proof. Fix an instance of Submodular Job Interval Selection with a normalized mono-
tone and submodular objective f , and let us define the following instance of Submodular
Independent Set in Interval Graphs. Set the interval set N ′ of the instance to be all
intervals inN ′ = ∪u∈NJu while keeping multiplicities. Formally, N ′ = {Iu|I ∈ Ju, u ∈ N}
(we keep the multiplicities by adding a superindex of u for every interval according to the
job it belongs to). Define f̄ as the objective function of the Submodular Independent

Set in Interval Graphs instance by setting f̄(S) to be the value of f over all jobs
u scheduled by S (i.e., S contains an interval of Ju). Given an oracle for f , one can
construct an oracle for calculating f̄ in polynomial time. Clearly every feasible solu-
tion to Submodular Job Interval Selection can be translated to a feasible solution
to Submodular Independent Set in Interval Graphs while keeping the value of the
objective function, and vice versa. Hence, we are left to prove that f̄ is a normalized
monotone submodular function.

First, we show that f̄ is normalized. The empty schedule contains no intervals, and
therefore, f̄(∅) = f(∅) = 0.

Second, we show that f̄ is monotone. Given two sets S1 ⊆ S2 ⊆ N ′, let N1 and N2 be
the set of jobs that are scheduled by S1 and S2, respectively. Clearly, every job that has an
interval in S1 also has an interval in S2, hence N1 ⊆ N2. Hence, due to the monotonicity
of f , f̄(S1) = f(N1) ≤ f(N2) = f̄(S2).

76

Third, we show that f̄ is submodular. Assume S1, S2,N1 and N2 are defined as above,
and let I ∈ N ′ − S2 be an interval outside of S2. It is enough to show that f̄(S1 + I) −
f̄(S1) ≥ f̄(S2 + I)− f̄(S2). Let u denote the (only) job that is associated with I. Clearly,
the set of jobs that have at least one interval in S1 + I (S2 + I) is N1 + J (respectively,
N2 + J). Using the properties of f , and the fact N1 ⊆ N2, we conclude:

f̄(S1 + I)− f̄(S1) = f(N1 + J)− f(N1) ≥ f(N2 + J)− f(N2) = f̄(S2 + I)− f̄(S2) .

The last inequality requires some explanation. If J ̸∈ N2, then it follows from submodu-
larity. If J ∈ N1 then both sides of the inequality are 0, and it trivially holds. Finally,
if J ∈ N2 but J ̸∈ N1, then the right side of the inequality is 0, and the left side is
non-negative due to the monotonicity of f .

Note: For linear objective functions, the above two problems are not equivalent.
Specifically, the job interval selection problem is hard while the maximum weight inde-
pendent set in interval graph problem can be solved in polynomial time.

Corollary 6.2.6. There is a 1/4-approximation algorithm for Submodular Job Interval

Selection with a normalized monotone and submodular objective function.

We consider three variants of Submodular Job Interval Selection. First, we con-
sider the case where there are k identical machines. Second, we consider the case where
there are k unrelated machines. Third and last, we consider the case where the objective
function is a linear function, and there are k identical machines.

k Identical Machines

An instance of the k identical machines variant of Submodular Job Interval Selection

is identical to a standard instance with the following modification. A schedule S is a k-
tuple (S1, S2, . . . , Sk), where every Si is a set of intervals. S is a feasible schedule if no
two intervals of the same set Si intersect. As before, the goal is to maximize the value of
f over the set of jobs scheduled in S.

Lemma 6.2.7. For normalized monotone and submodular objectives, there is an approxi-
mation preserving reduction from Submodular Job Interval Selection with k identical
machines to Submodular k-Colorable Subgraph in Interval Graphs.

Proof. Given an instance of Submodular Job Interval Selection with k identical ma-
chines which consists of Ju for every u ∈ N , k and f , define an instance of Submodular
k-Colorable Subgraph in Interval Graphs exactly as in the proof of Lemma (6.2.5).
The proof that f̄ is a normalized monotone submodular function, and that it can be cal-
culated efficiently is identical to the equivalent part in the proof of Lemma (6.2.5). Addi-
tionally, from the construction of the Submodular k-Colorable Subgraph in Interval

Graphs instance, it is clear that given any schedule of the Submodular Job Interval

Selection instance, one can translate it into a solution for the Submodular k-Colorable
Subgraph in Interval Graphs instance with the same objective value, and vice versa.

Corollary 6.2.8. There is a (1− 1/e− o(1)) approximation algorithm for Submodular

Job Interval Selection with k identical machines and a normalized monotone and sub-
modular objective, where the o(1) term is with respect to min{k, n}.

77

k Unrelated Machines

An instance of the k unrelated machines variant of Submodular Job Interval Selection

is identical to a standard instance with the following modification. A job u ∈ N is
associated with k sets of intervals: Ju,1,Ju,2, . . . ,Ju,k, where set Ju,i is the collection of
allowed intervals of job u on the ith machine. A schedule S is a k-tuple (S1, S2, . . . , Sk),
where every Si is a subset of the intervals allowed for the ith machine. Again, S is a
feasible schedule if no two intervals of the same set Si intersect.

Lemma 6.2.9. For normalized, monotone and submodular objectives, there is an approxi-
mation preserving reduction from Submodular Job Interval Selection with k unrelated
machines to Submodular Job Interval Selection.

Proof. Given an instance of Submodular Job Interval Selection with k unrelated ma-
chines and a normalized monotone and submodular objective f , define the following in-
stance of Submodular Job Interval Selection. Given an interval I, let I+t denote the
same interval shifted by t, i.e., I+ t has the same length as I, but starts t time units later.
We also denote by T the latest end time of any interval in the original instance. For every
job u, its set of intervals in the new Submodular Job Interval Selection instance is:
J ′
u = ∪ki=1{I+iT |I ∈ Ju,i}. Informally, intervals of machine i are placed between times iT

and (i+ 1)T . This guarantees that intervals which are originally from different machines
never intersect. Define f̄ as the objective function of the new Submodular Job Interval

Selection instance by setting f̄(S) to be the value of f over all jobs u scheduled by S
(i.e., S contains an interval of J ′

u). Given an oracle for f , one can construct an oracle for
calculating f̄ in polynomial time.

Recall that intervals that are originally from different machines never intersect in the
new instance. Using this observation, every feasible solution to the original instance of
Submodular Job Interval Selection with k unrelated machines can be translated to a
feasible solution of the new Submodular Job Interval Selection instance while keeping
the value of the objective function, and vice versa. Hence, we are left to prove that f̄ is a
normalized monotone submodular function.

First, we show that f̄ is normalized. The empty schedule contains no intervals, and
therefore, f̄(∅) = f(∅) = 0.

Second, we show that f̄ is monotone. Let I ′ be the set of all intervals of the new
instance of Submodular Job Interval Selection. Given two sets S1 ⊆ S2 ⊆ I ′, let N1

and N2 be the set of jobs that are scheduled by S1 and S2, respectively. Clearly, every job
that has an interval in S1 also has an interval in S2, thus, N1 ⊆ N2. Hence, due to the
monotonicity of f , f̄(S1) = f(N1) ≤ f(N2) = f̄(S2).

Third, we show that f̄ is submodular. Assume S1, S2,N1 and N2 are defined as above,
and let I ∈ I ′−S2 be an interval outside of S2. It is enough to show that f̄(S1+I)−f̄(S1) ≥
f̄(S2 + I)− f̄(S2). Let u denote the (only) job that is associated with I. Clearly, the set
of jobs that have at least one interval in S1 + I (S2 + I) is N1 + J (respectively, N2 + J).
Using the properties of f , and the fact N1 ⊆ N2, we get:

f̄(S1 + I)− f̄(S1) = f(N1 + J)− f(N1) ≥ f(N2 + J)− f(N2) = f̄(S2 + I)− f̄(S2) .

The last inequality requires some explanations. If J ̸∈ N2, then the inequality follows
from the submodularity of f . If J ∈ N1, then both sides of the inequality are equal to 0,
and the inequality trivially holds. Finally, if J ∈ N2, but J ̸∈ N1, then the right hand side
of the inequality is 0, while the left hand side is non-negative due to the monotinicity of
f .

78

Corollary 6.2.10. Submodular Job Interval Selection with k unrelated machines
has a 1/4-approximation algorithm for normalized monotone and submodular objective
functions.

k Identical Machines with Linear Objective

An instance of this variant is an instance of the k identical machines variant, with a linear
objective function. Since the objective is linear, one can use for this variant the following
linear programming formulation instead of the multilinear extension formulation. For
every job u, we denote by wu its contribution to the objective. For every interval I, we
denote by LI the set of other intervals intersecting it.

max
∑

u∈N wu ·
(∑

I∈Ju
xI
)

s.t.
∑

I∈Ju
xI ≤ 1 ∀u ∈ N

xI +
∑

I′∈LI
xI′ ≤ k ∀I ∈ ∪u∈NJu

xI ≥ 0 ∀I ∈ ∪u∈NJu

The algorithm we use for this problem is Algorithm 15, which is a variant of Algorithm
14.

Algorithm 15: Algorithm for Weighted Job Interval Selection with k identical
machines (N , f, k)

// Computing Fractional Solution

1 Use an LP solver to find an x maximizing the linear relaxation of the problem.
// Sampling

2 For every job u sample at most one interval I ∈ Ju, with probability b · xI for every

interval, where b = 1/[1 +
√

log k/k].
// Diluting

3 For every I ∈ R, mark interval I for deletion if there are at least k other intervals
I ′ ∈ R that intersect the starting point of I.
// Output

4 Remove all marked intervals from R, and let S be the set of remaining intervals.
5 Output S.

The o(1) term in the next lemma is with respect to min{k, n}, hence, it diminishes
when both k and n are large.

Lemma 6.2.11. Weighted Job Interval Selection with k identical machines has a
polynomial time (1− o(1))-approximation algorithm.

The proof of this lemma is similar in spirit to that of Lemma 6.2.3. However here we
do not need to evoke the framework of Theorem 6.0.3 and [20].

Proof. Fix an interval I ∈ Ju. The constraints of the LP guarantee that
∑

I′∈LI
xI′ ≤

k − xI ≤ k. By using standard Chernoff bound on the upper tail, one can show that:

Pr[|LI ∩R| ≥ k − 1] = Pr[|LI ∩R| > k] ≤ e−[1/b−1]2bk/3 .

Observe that the above inequality is independent of the question whether I ∈ R.
Hence,

Pr[I ∈ S] = Pr[I ∈ R] · Pr [I ∈ S | I ∈ R] ≥ bxI · [1− e−[1/b−1]2bk/3] .

79

Notice that b = 1− o(1), where the o(1) term is, as usual, with respect to min{k, n}.
Let us now calculate:

b·
(
1− e−[1/b−1]2bk/3

)
= b·

(
1− e−[

√
log k/k]2bk/3

)
= (1−o(1)·

(
1− k−(1−o(1))/3

)
= 1−o(1) .

Combing the two last equations, we get: Pr[I ∈ S] = xI · [1 − o(1)]. Recall that the
events I1 ∈ S and I2 ∈ S are disjoint for every two different intervals I1 and I2 of the same
job. Thus, expected contribution of job u to the objective function is:∑

I∈Ju

wu · xI · [1− o(1)] = [1− o(1)] · wu ·
∑
I∈Ju

xI .

By the linearity of the expectation, the expected value of S is equal to the objective of
the linear program times [1− o(1)], which completes the proof of the lemma.

Observe that this is a linear problem for which we improve the best known approxima-
tion ratio. The previously best approximation ratio for this problem approached 1− e−1

for large k values [7].

6.2.3 The Submodular Multiple Knapsacks Problem

The Submodular Multiple Knapsacks problem is defined as following. We are given a
collection N of n elements and k knapsacks, where the size of the ith knapsack is Bi ∈ N.
We note that the number of knapsacks (k) might not be a constant. Each element u ∈ N
has a given size su ∈ N. In addition, we are also given a normalized monotone submodular
function f : 2N → R+ defined over the elements. A feasible packing S is a k-tuple
(S1, S2, . . . , Sk) such that the total size (i.e., the sum of the sizes) of the elements in
each set Si is at most Bi. An element u is packed by S if there exists an Si such that
u ∈ Si. The goal is to find a feasible packing S that maximizes the value of f over the set
of elements packed by S. Note that Submodular Multiple Knapsacks differs from the
usual k-knapsack constraints, discussed earlier in this work, in the sense that here we are
asked to pack each element into up to one of several possible knapsack, while the problem
of k-knapsack constraints ask to pack each element either to no knapsack or to all of them
at the same time.

We first consider the variant of Submodular Multiple Knapsacks where all knap-
sacks have equal size B. We show that in this case Submodular Multiple Knapsacks

can be reduced via an approximation preserving reduction to Submodular k-Colorable
Subgraph in Interval Graphs (again, the reduction works only for normalized, mono-
tone and submodular objective functions). However, the time complexity of this reduction
depends on the sizes of the knapsacks.

Lemma 6.2.12. For normalized, monotone and submodular objectives, there exists an
approximation preserving reduction from Submodular Multiple Knapsacks with identical
knapsack sizes, to Submodular k-Colorable Subgraph in Interval Graphs. The time
complexity of this reduction is pseudo polynomial.

Proof. Given an instance of Submodular Multiple Knapsacks with identical knapsack
sizes, define an instance of Submodular k-Colorable Subgraph in Interval Graphs

as follows. The number of machines (k) in the new instance is equal to the number of
knapsacks in the original one. For each element u ∈ N , create a collection of B − su + 1
intervals by constructing for every possible (integral) starting point from 0 up to B − sj
an interval of length sj that starts at that point. Denote this collection of intervals by Nu.

80

Define: N ′ = ∪eu∈NNu. N
′ is the set of intervals in the constructed instance. Define f̄ as

the objective function of the Submodular k-Colorable Subgraph in Interval Graphs

instance by setting f̄(S) to be the value of f over all elements u ∈ N for which S∩Nu ̸= ∅.
One can construct an oracle for calculating f̄ in polynomial time, let us prove that f̄ is a
normalized, monotone and submodular function.

First, we show that f̄ is normalized. The empty solution contains no intervals, and
therefore, f̄(∅) = f(∅) = 0.

Second, we show that f̄ is monotone. Given two sets S1 ⊆ S2 ⊆ N ′, let N1 and N2 be
the sets of elements that are covered by S1 and S2, respectively. Clearly, every element
that has an interval in S1 also has an interval in S2, hence N1 ⊆ N2. Therefore, due to
the monotonicity of f , f̄(S1) = f(N1) ≤ f(N2) = f̄(S2).

Third, we show that f̄ is submodular. Assume S1, S2,N1 and N2 are defined as before,
and let I ̸∈ S2 be an interval outside of S2. It is enough to show that f̄(S1 + I)− f̄(S1) ≥
f̄(S2 + I)− f̄(S2). Let u denote the (only) element that is associated with I. Clearly, the
set of elements that have at least one interval in S1 + I (S2 + I) is N1 + u (respectively,
N2 + u). Using the properties of f , we can conclude that:

f̄(S1 + I)− f̄(S1) = f(N1 + u)− f(N1) ≥ f(N2 + u)− f(N2) = f̄(S2 + I)− f̄(S2)

The last inequality requires some explanations. If u ̸∈ N2, then the inequality follows from
the submodularity of f . If u ∈ N1, then both sides of the inequality are equal to 0, and
the inequality trivially holds. Finally, if u ∈ N2, but u ̸∈ N1, then the right hand side of
the inequality is 0, while the left hand side is non-negative due to the monotinicity of f .

Next, let us explain how to translate a feasible solution of the Submodular Multiple

Knapsacks with identical knapsack sizes instance into a feasible solution of Submodular
k-Colorable Subgraph in Interval Graphs without modifying the value of the objec-
tive. Let S = (S1, S2, . . . , Sk) be a feasible solution to the original instance of Submodular
Multiple Knapsacks with identical knapsack sizes. Fix Si, and let ui1 , ui2 , . . . , uim be the
elements of Si. Let us construct a set S̄i as following. For every 1 ≤ i ≤ m, add the inter-
val of u starting at time

∑j−1
k=1 sui,k

to S̄i. Notice that this interval exists since the total
size of the elements in Si is at most B. Moreover, all the intervals in S̄i are disjoint. We
can now construct a solution S̄ for Submodular k-Colorable Subgraph in Interval

Graphs which is simply the union ∪ki=1S̄i. Since the union is over k sets only, there are at
most k intervals in S̄ that contain any point p. This completes the construction of S̄, and
the proof that S̄ is a feasible solution. Clearly, f(S) = f̄(S̄).

We now prove the other direction. Let S̄ be a solution to Submodular k-Colorable
Subgraph in Interval Graphs. Since there are at most k intervals in S̄ containing any
point p, we can color all intervals in S̄ by k colors such that any two intervals with the same
color do not intersect. Recall that each interval is associated with an element u ∈ N . Thus,
we can define S = (S1, S2, . . . , Sk) by assigning all elements corresponding to intervals of
color i to Si. Note that S is a feasible solution of Submodular Multiple Knapsacks with
identical knapsack sizes because all intervals of color i have total length of at most B (by
the fact that any two intervals of the same color do not intersect). Clearly f̄(S̄) = f(S),
which completes the translation of the lemma.

Corollary 6.2.13. Submodular Multiple Knapsacks with identical knapsack sizes has
1− e−1 − o(1) approximation algorithm with pseudo polynomial time complexity.

The o(1) term in Corollary 6.2.13 is with respect to min{n, k}, i.e., it diminishes when
both n and k are large. Interestingly, the guarantee of Corollary 6.2.13 for many identical

81

knapsacks is identical to the one achieved by [77] for a single knapsack, which is known to
be tight (e.g., it can be easily proved using the symmetry gap technique of [81]).

In order to get an approximation that uses polynomial time regardless of the sizes
of the knapsacks, additional techniques has to be applied. As usual, the o(1) term in
Lemma 6.2.14 is with regard to min{n, k}.

Lemma 6.2.14. There is a polynomial time ((e− 1)/(3e− 1)− o(1))-approximation al-
gorithm for Submodular Multiple Knapsacks with identical knapsack sizes and a nor-
malized, monotone and submodular objective function.

In the following proof we abuse notation, and unify a schedule with the set of elements
within this schedule.

Proof. We suggest an algorithm that constructs three feasible solutions, and output the
single solution with the maximum value. We assume there are no elements larger than
B, otherwise, any such element can be safely removed. Let X be the set of all elements
smaller than B/n. Notice that all the elements of X can be packed into a single knapsack.
Hence, X is a feasible solution. Since f is monotone, the value of X is at least: f(X) ≥
f(X ∩OPT), where OPT is the optimal solution.

From now on we consider only the elements of N \X. We set the size of the knapsacks
to B′ = n2, and scale the size of every element u ∈ N \X accordingly to s′u = ⌊su ·B′/B⌋.
Notice that the set of feasible solutions can only increase by this scaling, i.e., OPT \X is
still a feasible solution. We now apply the algorithm from Corollary 6.2.13 to the instance
(with the ground set N \ X). This algorithm runs in polynomial time on this instance
because all numbers in the representation of the instance are smaller or equal to n2. Let
S be the output of the algorithm. Since OPT \ X is still a feasible solution, we are
guaranteed that f(S) ≥ [1− e−1 − o(1)] · f(OPT \X).

Consider the set of elements Si packed by S to some knapsack. The total original
size of the elements in Si is B(1 + |Si|/n2) ≤ B(1 + 1/n). Hence, by removing any single
element from Si, we get a set of elements of size at most B. In other words, the set of
elements in Si can be split into two disjoint sets Yi and Zi, each having a total size of
at most B. By repeating this argument for all knapsacks, we get two disjoint feasible
solutions Y and Z whose union is S. From submodularity and non-negativity, we get:
f(Y) + f(Z) ≥ f(S) ≥ [1− e−1 − o(1)] · f(OPT \X).

Our algorithm picks the best set among X, Y and Z. The value of this solution is at
least:

max{f(OPT ∩X), [1− e−1 − o(1)]/2 · f(OPT \X)} .

By the submodularity and non-negativity of f , we know that f(OPT ∩X)+f(OPT \X) ≥
f(OPT). Hence, f(OPT ∩X) ≥ f(OPT)− f(OPT \X). Plugging this into the previous
expression, and denoting f(OPT \X) by x, we get that the algorithm outputs a solution
of value at least:

max{f(OPT)− x, [1− e−1 − o(1)]/2 · x} . (6.1)

Clearly this expression is minimized when the two arguments of the max are equal, i.e.,
when:

f(OPT)−x = [1−e−1−o(1)]/2·x⇒ f(OPT) = [3−e−1−o(1)]/2·x⇒ x =
3 · f(OPT)

2− e−1 − o(1)
.

82

Plugging this x into Equation 6.1 gives the following lower bound on the value of the
algorithm’s output:

max{f(OPT)− x, [1− e−1 − o(1)]/2 · x} ≥ f(OPT)− 2 · f(OPT)

3− e−1 − o(1)

=
1− e−1 − o(1)

3− e−1 − o(1)
≥ e− 1

3e− 1
− o(1) .

If the knapsacks have different sizes, the problem can still be reduced to Submodular

Independent Set in Interval Graphs. This leads to somewhat weaker results, as can
be seen from the following claims.

Lemma 6.2.15. For normalized, monotone and submodular objectives, There is an ap-
proximation preserving reduction from Submodular Multiple Knapsacks to Submodular

Job Interval Selection. The time complexity of this reduction is pseudo-polynomial.

The main reason why the proof of the Lemma 6.2.12 fails for the general problem
is that there is no way to convert a solution of Submodular k-Colorable Subgraph in

Interval Graphs back to a solution Submodular Multiple Knapsacks when there are
multiple knapsacks. The source of the failure is that intervals corresponding to different
knapsacks appear in the solution together. To by pass that, the following proof has a
disjoint range for intervals of each knapsack.

Proof. Given an instance of Submodular Multiple Knapsacks, we define an instance
of Submodular Job Interval Selection as following. Let B be the size of the largest
knapsack. Every element u of Submodular Multiple Knapsacks translates into a job u
which has the following intervals: Ju = {[iB+ j, iB+ j+ su) | 1 ≤ i ≤ k, 0 ≤ j ≤ Bi− su}.
The submodular function f : 2N → R+ is common to both instances.

Let S = (S1, S2, . . . , Sk) be a feasible solution to the original instance of Submodular
Multiple Knapsacks. Fix Si, and let ui1 , ui2 , . . . , uim be all the elements of Si. Let us
construct a set S̄i as following. For every 1 ≤ i ≤ m, add the interval of u starting at time∑j−1

k=1 sui,k
to S̄i. This interval exists since the total size of the elements in Si is at most Bi.

Moreover, all the intervals in S̄i are disjoint, and are within the range [iB, (i+ 1)B). We
can now construct a solution S̄ for Submodular Job Interval Selection which is simply
the union ∪ki=1S̄i. Since each one of the sets S̄i contains intervals included in a different
range [iB, (i + 1)B), clearly S̄ contains no two intersecting intervals. This completes the
construction of S̄, and the proof that S̄ is a feasible solution. Clearly, f(S) = f̄(S̄) because
the jobs corresponding to the intervals of S̄ are exactly the elements of S.

Consider now the reverse direction. Let S̄ be a feasible solution to the instance of
Submodular Job Interval Selection. For every 1 ≤ i ≤ k, we construct a set Si

containing all jobs for which S̄ contains an interval in the range [iB, (i + 1)B). By the
construction of the Submodular Job Interval Selection instance, and the fact that
no two intervals of S̄ intersect, the total size of the elements of Si must be at most Bi.
Hence, S = (S1, S2, . . . , Sk) is a feasible solution for the original Submodular Multiple

Knapsacks instance. Clearly, f(S) = f̄(S̄) because the jobs corresponding to the intervals
of S̄ are exactly the elements of S.

Corollary 6.2.16. Submodular Multiple Knapsacks has 1/4 approximation algorithm
with pseudo polynomial time complexity.

Again, it is possible to get an approximation that uses only polynomial time regardless
of the sizes of the knapsacks, but at the cost of a somewhat inferior approximation ratio.

83

Lemma 6.2.17. Submodular Multiple Knapsacks with a normalized, monotone and
submodular objective function has a polynomial time (1/9− o(1))-approximation algo-
rithm.

Proof. The proof of Lemma 6.2.14 works for this lemma also, with a few modifications.

• The set of elements in X contains all elements smaller than Bmax/n, where Bmax is
the largest knapsack. Notice that all the elements of X can still be packed into a
single knapsack.

• We can assume all knapsacks are of size at least Bmax/n, otherwise, no remaining
element can be packed into them.

• The size of a knapsack of size B is scaled to ⌈B ·n3/Bmax⌉, and the size each element
u is scaled accordingly to s′u = ⌊su · n3/Bmax⌋. Notice that, as before, the set of
feasible solutions only increases in the process, and all numbers become polynomial
in n.

• We apply the algorithm of Corollary 6.2.16 instead of the algorithm given by Corol-
lary 6.2.13. However, this time the algorithm cannot be applied in a black box
fashion. The problem is that it is now possible that there is an element which could
not fit into a given knapsack before the scaling, but fits into it after the scaling. To
solve this problem, we require that the algorithm of Corollary 6.2.16 will not gener-
ate segments for a given combination of element and knapsack, unless the element
fits into the knapsack before the scaling.

• Consider some knapsack, and the set Si of elements S pack into this knapsack. The
total original size of the elements of Si can be at most:

⌈B · n2/Bmax⌉ ·Bmax/n
3 + n · (Bmax/n

3) = B +Bmax/n
3 +Bmax/n

2

≤ B(1 + 1/n+ 1/n2) .

If the total original size exceeds B, we need to describe how to split Si into Yi and
Zi, and guarantee that both Yi and Zi are feasible. There are two case. If there
is an element of size at least B(1/n + 1/n2) in the knapsack, then this element is
placed into Yi, and the remaining elements, are placed into Zi. Clearly both sets are
feasible. If no such element exists, we pick arbitrary two elements and place them in
Yi. The rest of the elements go to Zi. The elements in Zi are feasible because their
total size is less than B. The two elements in Yi also form a feasible set because
their total size is at most B(2/n+ 2/n2) ≤ B (assuming n ≥ 3).

6.2.4 The Submodular Broadcast Scheduling Problem

The Submodular Broadcast Scheduling problem is defined as follows. We are given a
set K of n pages, and a set N of requests. Each page P ∈ K is associated with a set JP of
intervals, and each request u ∈ N is associated with a page Pu and a subset Ju ⊆ JPu of
intervals of Pu. Two intervals of two pages are always considered to be different from each
other, even if they cover exactly the same range (i.e., they can appear together in one set).
Additionally, we are given a normalized monotone submodular function f : 2N → R+. A
feasible schedule is a set S of intervals, such that no two intervals intersect. A request u
is fulfilled by schedule S if S contains an interval from Ju. The goal is to find a feasible
schedule S maximizing the value of f over the set of requests fulfilled by S.

84

One can assume without loss of generality that there is only one page P̄ in any instance
of Submodular Broadcast Scheduling. The reduction goes as following. Replace all
pages with a new page P̄ . The set of intervals of P̄ is JP̄ = ∪P∈KJP (notice that JP̄ can
contain multiple intervals that cover the same range if they originate from different pages.
Such intervals are considered different from each other). All requests u ∈ N are now
associated with P̄ , but keep the same intervals set Ju ⊆ JPu ⊆ JP̄ . Neither the definition
of feasible schedules, nor the objective of the problem, are changed by the introduction of
P̄ . The following lemma is proved using this reduction.

Lemma 6.2.18. There exists an approximation preserving reduction from Submodular

Broadcast Scheduling to Submodular Independent Set in Interval Graphs for nor-
malized, monotone and submodular objectives.

Proof. Following the above reduction, we assume there is a single page P̄ in the instance
of Submodular Broadcast Scheduling. Given an instance of Submodular Broadcast

Scheduling, we construct an instance of Submodular Independent Set in Interval

Graphs as following. The set of intervals in the new instance is JP̄ , and its objective
function f̄ is defined as following:

f̄(S) = f({u ∈ N | S ∩ Ju ̸= ∅}) .

Notice that a set S of intervals is feasible under both instances if and only if it contains
no intersecting intervals. Moreover, under both instances the objective value associated
with S is the value of f over the set of requests u which have some request of Ju in S.
Hence, we are only left to show that f̄ is normalized, monotone and submodular.

Let us start with the normalization: f̄(∅) = f(∅) = 0. Next, we need to show the
monotonicity of f̄ . Let S1 ⊆ S2 be two sets of intervals. Let N1 (N2) be the set of requests
u for which there is some interval of Ju in S1 (respectively, S2). Clearly, N1 ⊆ N2. Hence,
f̄(S1) = f(N1) ≤ f(N2) = f̄(S2). Finally, we should prove that f̄ is submodular. Let
S1, S2,N1 and N2 be defined as before, let I be an interval that does not appear in S2 and
let SI be the set of requests u for which Ju ∩ Si ̸= ∅. Then:

f̄(S1 + I)− f̄(S1) = f(N1 ∪ SI)− f(N1)

= [f(N1 ∪ SI)− f(N1 ∪ (SI ∩N2))] + [f(N1 ∪ (SI ∩N2))− f(N1)]

≥ f(N1 ∪ SI)− f(N1 ∪ (SI ∩N2)) ≥ f(N2 ∪ SI)− f(N2)

= f̄(S2 + I)− f̄(S2) ,

where the first inequality follows from the monotonicity of f , and the second one from its
submodularity.

Corollary 6.2.19. Submodular Broadcast Scheduling has a 1/4 approximation algo-
rithm.

We would like to emphasis that the approximtion ratio given by Corollary 6.2.19 is
the best approximation ratio known also for the linear variant of Submodular Broadcast

Scheduling [8].

6.2.5 The Submodular Matching Scheduling Problem

The Submodular Matching Scheduling problem is defined as follows. We are given a
multigraph G = (V,E) of edge degree at most k and a set Je of intervals tuples for every
edge e ∈ E, where the number of intervals in each tuple of Je is equal to the degree of

85

e. Given an intervals tuple J ∈ Je, one interval of J is associated with each end point
of e. Let E(J) be the edge with which the tuple J is associated, and let J(u) denote the
interval in J associated with node u (assuming u ∈ E(J)). A feasible matching schedule
S ⊆ ∪e∈EJe is a set of intervals tuples such that for every two intervals tuples J1, J2 ∈ S,
if E(J1) and E(J2) share a common vertex u, then J1(u) and J2(u) do not intersect. An
edge e is covered by a matching schedule if Je∩S ̸= ∅. The objective is to find a matching
schedule S maximizing a normalized monotone submodular function f : 2E → R+ over
the set of edges that are covered by S.

Informally, a matching schedule is a matching in which every edge is also assigned a
tuple of intervals, one for each end point, and we allow multiple edges to hit the same node
as long as their associated intervals do not intersect. This problem has several interesting
special cases:

1. The multigraph is a graph, i.e., k = 2, and every intervals tuple contains two identical
intervals. In this case, we can think of each edge e has having a given list Je of
allowed intervals. A feasible schedule chooses a subset E′ of edges, and assigns an
interval from Je to every edge e ∈ E′ in such a way that the intervals assigned
to edges intersecting a common vertex are do not intersect. This problem models a
situation where nodes wish to transmit a set of messages among themselves, however,
a node can participate at every point in time in one transmission only. The goal
is to maximize a normalized monotone submodular function over the transmitted
messages.

2. The input is a graph in which every node v ∈ V has a budget B(v) ∈ N, and every
edge e ∈ E has a weight we. A feasible schedule is a subset of edges such that for
every vertex v, the total weight of the schedule’s edges hitting v does not exceed
B(v). The goal is to maximize a normalized monotone submodular function over
the schedule’s edges.

This problem has an approximation preserving pseudo polynomial time reduction to
Submodular Matching Scheduling. This reduction uses the same ideas presented
in the proofs of Section 6.2.3.

Lemma 6.2.20. One can assume without loss of generality that for every edge e ∈ E,
|Je| = 1.

Proof. Replace every edge e with |Je| parallel edges: e1, e2, . . . , e|Je|, and assign a unique
intervals tuple from Je to every edge ei. The new objective function f̄ is defined as
following: f̄(S) = f({e ∈ E | ∃i Jei ⊆ S}). Clearly f̄ is also a normalized monotone
submodular function. Observe that any feasible matching schedule before the reduction
is also a feasible matching schedule after the reduction, and vice versa. Moreover, it is
easy to see that the reduction preserves the value of the objective function because f̄ is
not effected by the size of Je ∩ S as long as this quantity is positive.

After the reduction presented by Lemma 6.2.20 is applied, an instance of Submodular
Matching Scheduling can be viewed as the intersection of n Submodular Independent

Set in Interval Graphs instances, one for each node. Thus, we can apply the contention
resolution scheme of Submodular Independent Set in Interval Graphs to each node
separately, and get a scheme for Submodular Matching Scheduling. By Lemma 1.5 of
[20], this yields a (b, e−bk)-monotone balanced contention resolution scheme for Submodular
Matching Scheduling.

86

Corollary 6.2.21. Submodular Matching Scheduling has a ke−1(k + 1)−2 approxima-
tion algorithm.

Proof. Using the contention resolution scheme described above, Theorem 6.0.3 and b =
ln(1+ 1/k), we get an algorithm for Submodular Matching Scheduling with an approx-
imation ratio of:

(1− e−b) · e−bk =

(
1− k

k + 1

)
·
(

k

k + 1

)k

=
1

k + 1
·
(
1− 1

k + 1

)k

≥ k

e(k + 1)2
.

87

Bibliography

[1] A. A. Ageev and M. I. Sviridenko. An 0.828 approximation algorithm for the unca-
pacitated facility location problem. Discrete Appl. Math., 93:149–156, July 1999.

[2] A. A. Ageev and M. I. Sviridenko. Pipage rounding: a new method of constructing
algorithms with proven performance guarantee. Journal of Combinatorial Optimiza-
tion, 8(3):307–328, 2004.

[3] Shabbir Ahmed and Alper Atamtürk. Maximizing a class of submodular utility func-
tions. Mathematical Programming, 128:149–169, 2011.

[4] Noga Alon and Joel H. Spencer. The Probabilistic Method. Wiley Interscience Series in
Discrete Mathematics and Optimization. John Wiley and Sons, Inc., second edition,
2000.

[5] Yossi Azar, Iftah Gamzu, and Ran Roth. Submodular max-sat. In ESA, pages 323–
334, 2011.

[6] Nikhil Bansal, Nitish Korula, Viswanath Nagarajan, and Aravind Srinivasan. On k-
column sparse packing programs. In Friedrich Eisenbrand and F. Shepherd, editors,
Integer Programming and Combinatorial Optimization, volume 6080 of Lecture Notes
in Computer Science, pages 369–382. Springer Berlin / Heidelberg, 2010.

[7] Amotz Bar-Noy, Reuven Bar-Yehuda, Ari Freund, Joseph (Seffi) Naor, and Baruch
Schieber. A unified approach to approximating resource allocation and scheduling.
J. ACM, 48(5):1069–1090, 2001.

[8] Amotz Bar-Noy, Sudipto Guha, Yoav Katz, Joseph (Seffi) Naor, Baruch Schieber, and
Hadas Shachnai. Throughput maximization of real-time scheduling with batching.
ACM Trans. Algorithms, 5(2):1–17, 2009.

[9] Amotz Bar-Noy, Sudipto Guha, Joseph (Seffi) Naor, and Baruch Schieber. Approxi-
mating the throughput of multiple machines under real-time scheduling. SIAM Jour-
nal on Computing (SICOMP), 31(2):331–352, September 2001.

[10] Richard A. Brualdi. Comments on bases in dependence structures. Bull. of the
Australian Math. Soc., 1(02):161–167, 1969.

[11] Richard A. Brualdi. Common transversals and strong exchange systems. J. of Com-
binatorial Theory, 8(3):307–329, April 1970.

[12] Richard A. Brualdi. Induced matroids. Proc. of the American Math. Soc., 29:213–221,
1971.

88

[13] Richard A. Brualdi and Edward B. Scrimger. Exchange systems, matchings, and
transversals. J. of Combinatorial Theory, 5(3):244–257, November 1968.

[14] Niv Buchbinder, Moran Feldman, Joseph (Seffi) Naor, and Roy Schwartz. A tight lin-
ear time (1/2)-approximation for unconstrained submodular maximization. In FOCS,
pages 649–658, 2012.

[15] Gruia Calinescu, Chandra Chekuri, Martin Pal, and Jan Vondrák. Maximizing a
submodular set function subject to a matroid constraint. In IPCO, pages 182–196,
2007.

[16] Gruia Calinescu, Chandra Chekuri, Martin Pal, and Jan Vondrák. Maximizing a
monotone submodular function subject to a matroid constraint. SIAM Journal on
Computing, 40(6):1740–1766, 2011.

[17] Deeparnab Chakrabarty and Gagan Goel. On the approximability of budgeted allo-
cations and improved lower bounds for submodular welfare maximization and gap.
SIAM J. Comput., 39(6):2189–2211, 2010.

[18] Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. Dependent randomized round-
ing via exchange properties of combinatorial structures. In FOCS, pages 575–584,
2010.

[19] Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. Multi-budgeted matchings and
matroid intersection via dependent rounding. In SODA, pages 1080–1097, 2011.

[20] Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. Submodular function maxi-
mization via the multilinear relaxation and contention resolution schemes. In STOC,
pages 783–792, 2011.

[21] V. P. Cherenin. Solving some combinaotiral problems of optimal planning by the
method of successive calculations. Proceedings of the Conference on Experiences and
Perspectives on the Applications of Mathematical Methods and Electronic Computers
in Planning, Mimeograph, Novosibirsk, 1962 (in Russian).

[22] M. Conforti and G. Cornuèjols. Submodular set functions, matroids and the greedy
algorithm. tight worstcase bounds and some generalizations of the radoedmonds the-
orem. Disc. Appl. Math., 7(3):251–274, 1984.

[23] G. Cornuejols, M. L. Fisher, and G. L. Nemhauser. Location of bank accounts to
optimize float: an analytic study of exact and approximate algorithms. Management
Sciences, 23:789–810, 1977.

[24] G. Cornuejols, M. L. Fisher, and G. L. Nemhauser. On the uncapacitated location
problem. Annals of Discrete Mathematics, 1:163–177, 1977.

[25] Shahar Dobzinski, Noam Nisan, and Michael Schapira. Approximation algorithms for
combinatorial auctions with complement-free bidders. Math. Oper. Res., 31(1):1–13,
2010.

[26] Shahar Dobzinski and Michael Schapira. An improved approximation algorithm for
combinatorial auctions with submodular bidders. In SODA, pages 1064–1073, 2006.

[27] Shahar Dobzinski and Jan Vondrák. From query complexity to computational com-
plexity. In STOC, pages 1107–1116, 2012.

89

[28] Shaddin Dughmi, Tim Roughgarden, and Mukund Sundararajan. Revenue submod-
ularity. Theory of Computing, 8(1):95–119, 2012.

[29] Uriel Feige. On maximizing welfare when utility functions are subadditive. SIAM J.
Comput., 39(1):122–142, 2009.

[30] Uriel Feige, Vahab S. Mirrokni, and Jan Vondrák. Maximizing non-monotone sub-
modular functions. SIAM Journal on Computing, 40(4):1133–1153, 2011.

[31] Uriel Feige and Jan Vondrák. Approximation algorithms for allocation problems:
Improving the factor of 1− 1/e. In FOCS, pages 667–676, 2006.

[32] Uriel Feige and Jan Vondrák. The submodular welfare problem with demand queries.
Theory of Computing, 6(1):247–290, 2010.

[33] Moran Feldman, Joseph (Seffi) Naor, and Roy Schwartz. Nonmonotone submodular
maximization via a structural continuous greedy algorithm. In ICALP, pages 342–
353, 2011.

[34] Moran Feldman, Joseph (Seffi) Naor, and Roy Schwartz. A unified continuous greedy
algorithm for submodular maximization. In FOCS, 2011.

[35] Moran Feldman, Joseph (Seffi) Naor, Roy Schwartz, and Justin Ward. Improved
approximations for k-exchange systems. In ESA, pages 784–798, 2011.

[36] M. L. Fisher, G. L. Nemhauser, and L. A. Wolsey. An analysis of approximations for
maximizing submodular set functions – ii. In Polyhedral Combinatorics, volume 8 of
Mathematical Programming Studies, pages 73–87. Springer Berlin Heidelberg, 1978.

[37] Shayan Oveis Gharan and Jan Vondrák. Submodular maximization by simulated
annealing. In SODA, pages 1098–1117, 2011.

[38] Michel X. Goemans and David P. Williamson. Improved approximation algorithms
for maximum cut and satisfiability problems using semidefinite programming. Journal
of the ACM, 42(6):1115–1145, 1995.

[39] Boris Goldengorin and Diptesh Ghosh. A multilevel search algorithm for the maxi-
mization of submodular functions applied to the quadratic cost partition problem. J.
of Global Optimization, 32(1):65–82, May 2005.

[40] Boris Goldengorin, Gerard Sierksma, Gert A. Tijssen, and Michael Tso. The data-
correcting algorithm for the minimization of supermodular functions. Manage. Sci.,
45(11):1539–1551, November 1999.

[41] Boris Goldengorin, Gert A. Tijssen, and Michael Tso. The maximization of submod-
ular functions : old and new proofs for the correctness of the dichotomy algorithm.
Research Report 99A17, University of Groningen, Research Institute SOM (Systems,
Organisations and Management), 1999.

[42] Anupam Gupta, Aaron Roth, Grant Schoenebeck, and Kunal Talwar. Constrained
non-monotone submodular maximization: offline and secretary algorithms. In WINE,
pages 246–257. Springer-Verlag, 2010.

[43] Eran Halperin and Uri Zwick. Combinatorial approximation algorithms for the max-
imum directed cut problem. In SODA, pages 1–7, 2001.

90

[44] Jason Hartline, Vahab Mirrokni, and Mukund Sundararajan. Optimal marketing
strategies over social networks. In WWW, pages 189–198, 2008.

[45] Johan Hȧstad. Some optimal inapproximability results. J. ACM, 48:798–859, July
2001.

[46] D. Hausmann and B. Korte. K-greedy algorithms for independence systems. Oper.
Res. Ser. A-B, 22(1):219–228, 1978.

[47] D. Hausmann, B. Korte, and T. Jenkyns. Worst case analysis of greedy type algo-
rithms for independence systems. Math. Prog. Study, 12:120–131, 1980.

[48] Dorit S. Hochbaum. Approximation algorithms for NP-hard problems, chapter Ap-
proximating covering and packing problems: set cover, vertex cover, independent set,
and related problems, pages 94–143. PWS Publishing Co., Boston, MA, USA, 1997.

[49] C. A. J. Hurkens and A. Schrijver. On the size of systems of sets every t of which have
an sdr, with an application to the worst case ratio of heuristics for packing problems.
SIAM J. Disc. Math., 2(1):68–72, 1989.

[50] T. Jenkyns. The efficacy of the greedy algorithm. Cong. Num., 17:341–350, 1976.

[51] Richard M. Karp. Reducibility among combinatorial problems. In R. E. Miller
and J. W. Thatcher, editors, Complexity of Computer Computations, pages 85–103.
Plenum Press, 1972.

[52] V. R. Khachaturov. Some problems of the consecutive calculation method and its
applications to location problems. Ph.D. thesis, Central Economics & Mathematics
Institute, Russian Academy of Sciences, Moscow , 1968 (in Russian).

[53] Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. Optimal in-
approximability results for max-cut and other 2-variable csps? SIAM J. Comput.,
37:319–357, April 2007.

[54] Subhash Khot, Richard J. Lipton, Evangelos Markakis, and Aranyak Mehta. Inap-
proximability results for combinatorial auctions with submodular utility functions.
Algorithmica, 52(1):3–18, 2008.

[55] S. Khuller, A. Moss, , and J. Naor. The budgeted maximum coverage problem.
Information Processing Letters, 70(1):39–45, 1999.

[56] B. Korte and D. Hausmann. An analysis of the greedy heuristic for independence
systems. Annals of Discrete Math., 2:65–74, 1978.

[57] Ariel Kulik, Hadas Shachnai, and Tami Tamir. Approximations for monotone and
non-monotone submodular maximization with knapsack constraints. Manuscript,
2011.

[58] Ariel Kulik, Hadas Shachnai, and Tami Tamir. Maximizing submodular set functions
subject to multiple linear constraints. In SODA, pages 545–554, 2009.

[59] Eugene Lawler. Combinatorial Optimization: Networks and Matroids. Holt, Rhine-
hart and Winston, New York, NY, USA, 1976.

91

[60] Heesang Lee, George L. Nemhauser, and Yinhua Wang. Maximizing a submodular
function by integer programming: Polyhedral results for the quadratic case. European
Journal of Operational Research, 94(1):154 – 166, 1996.

[61] Jon Lee, Vahab S. Mirrokni, Viswanath Nagarajan, and Maxim Sviridenko. Maxi-
mizing non-monotone submodular functions under matroid or knapsack constraints.
SIAM Journal on Discrete Mathematics, 23(4):2053–2078, 2010.

[62] Jon Lee, Maxim Sviridenko, and Jan Vondrák. Submodular maximization over multi-
ple matroids via generalized exchange properties. In APPROX, pages 244–257, 2009.

[63] Benny Lehmann, Daniel Lehmann, and Noam Nisan. Combinatorial auctions with
decreasing marginal utilities. Games and Economic Behavior, 55(2):270–296, 2006.

[64] László Lovász. Submodular functions and convexity. In A. Bachem, M. Grötschel, and
B. Korte, editors, Mathematical Programming: the State of the Art, pages 235–257.
Springer, 1983.

[65] L. Lovász M. Grötschel and A. Schrijver. The ellipsoid method and its consequences
in combinatorial optimization. Combinatoria, 1(2):169–197, 1981.

[66] Julián Mestre. Greedy in approximation algorithms. In ESA, pages 528–539, 2006.

[67] Michel Minoux. Accelerated greedy algorithms for maximizing submodular set func-
tions. In J. Stoer, editor, Optimization Techniques, volume 7 of Lecture Notes in
Control and Information Sciences, pages 234–243. Springer Berlin / Heidelberg, 1978.

[68] Vahab S. Mirrokni, Michael Schapira, and Jan Vondrák. Tight information-theoretic
lower bounds for welfare maximization in combinatorial auctions. In EC, pages 70–77,
2008.

[69] Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized Algo-
rithms and Probabilistic Analysis. Cambridge University Press, New York, NY, USA,
2005.

[70] Rajeev Motwani and Prabhakar Raghavan. Randomized algorithms. Cambridge Uni-
versity Press, New York, NY, USA, 1995.

[71] G. L. Nemhauser and L. A. Wolsey. Best algorithms for approximating the maximum
of a submodular set function. Mathematics of Operations Research, 3(3):177–188,
1978.

[72] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations
for maximizing submodular set functionsi. Mathematical Programming, 14:265–294,
1978.

[73] Noam Nisan and Ilya Segal. The communication requirements of efficient allocations
and supporting prices. Journal of Economic Theory, 129:192–224, 2006.

[74] Alexander Schrijver. Combinatorial Optimization, Polyhedra and Efficiency. Springer,
2004.

[75] A. S. Schulz and N. A. Uhan. Approximating the least core and least core value
of cooperative games with supermodular costs. To appear in Discrete Optimization,
2013.

92

[76] Hans Simon. Approximation algorithms for channel assignment in cellular radio net-
works. In J. Csirik, J. Demetrovics, and F. Gcseg, editors, Fundamentals of Com-
putation Theory, volume 380 of Lecture Notes in Computer Science, pages 405–415.
Springer Berlin / Heidelberg, 1989.

[77] Maxim Sviridenko. A note on maximizing a submodular set function subject to
knapsack constraint. Operations Research Letters, 32:41–43, 2004.

[78] Luca Trevisan, Gregory B. Sorkin, Madhu Sudan, and David P. Williamson. Gadgets,
approximation, and linear programming. SIAM J. Comput., 29:2074–2097, April
2000.

[79] Jan Vondrák. personal communication.

[80] Jan Vondrák. Submodularity in combinatorial optimization. PhD thesis, Charles
University, 2007.

[81] Jan Vondrák. Symmetry and approximability of submodular maximization problems.
In FOCS, pages 651–670, 2009.

[82] Justin Ward. A (k+3)/2-approximation algorithm for monotone submodular k-set
packing and general k-exchange systems. In STACS, pages 42–53, 2012.

93

התוצאה המפורסמת . מודולריות שונות-הקירוב הטובות ביותר הידועות לבעיות מיקסום תת

עבור מיקסום .Calinescu et alביותר מבין תוצאות אלה היא הקירוב ההדוק אסימפטוטית של

תחת האילוץ שהפתרון חייב להיות קבוצה בלתי תלויה של מונוטונית מודולרית -פונקציה תת

השימוש בשיטות מבוססות הקלה מחייב פתרון).ידאללא הגבלות על סוג המטרו(מטרויד נתון

בצורה ראשית יש להגדיר הקלה של הבעיה אותה ניתן לפתור או לקרב. שתי סוגיות מרכזיות

פתרון , מודולרית-מכיוון שפונקצית המטרה אינה לינארית בבעיות אופטימיזציה תת. יעילה

תן פתרון שבור נבהי, שנית. סוגיה זו אינו טריוואילי והוא נעשה בדרכים שונות בבעיות שונות

. יש למצוא שגרה המעגלת אותו בלי לאבד יותר מדי ערך בפונקצית המטרה, להקלה של הבעיה

את הפרק הראשון מבין השנים מתאר . פרקים בתיזה זו עוסקים בסוגיות אלהשני

הקלות המשמש למציאת פתרון שבור עבור measured continuous greedyהאלגוריתם

-לות לבעיות מקסימיזציה תתנפוץ של הקהסוג שהן ה) multilinear relaxations(מולטילינאריות

מעניין לציין . ר הקלות של בעיות רבותעבו משופר האלגוריתם משיג יחס קירוב. תמודלרי

ות בעלות פונקצית שאלגוריתם זה הוא האלגוריתם הטוב ביותר הידוע הן עבור הקלות של בעי

הפרק השני עוסק .פונקצית מטרה לא מונוטוניתהקלות של בעיות עם עבור והן מטרה מונוטונית

ידי פתרון -עיגול על"הנקראת הקלותבמספר הרחבות של שיטה כללית לעיגול פתרונות של

הרחבה אחת מראה כיצד ניתן להתמודד במסגרת .)contention resolution scheme" (עימותים

ההרחבה השניה). scheduling –כדוגמת אילוצי תזמון (השיטה עם סוגים נוספים של אילוצים

 measured continuous greedyמראה כי ניתן לשלב את השיטה באופן אורגאני עם האלגוריתם

מתקבלות משילוב השיטה באופן נאיבי עם אלגוריתם כללי הולקבל תוצאות טובות יותר מאלו

 .בעל ביצועים דומים לפתרון הקלות

מספר אקספוננציאלי של פניות כל אלגוריתם מדויק לבעיות אלה יחייב, כלומר(האינפורמציה

ר בעיות אלה המשיגים את יחס הקירוב הטוב וגוריתמים עבאנו מתארים אל, במקום זאת.)לאוב

עבור מקצת הבעיות ניתן להראות שיחס הקירוב שאנו משיגים הוא הטוב ביותר . ביותר הידוע

 .שניתן להשיג

ת משתמשים בשיטות הנחלקות לשני סוגים מודולרי-תת מקסימיזציהאלגוריתמי קירוב לבעיות

 local(חיפוש מקומי : ריות שהעיקריות מביניהן הןוקומבינט הסוג הראשון כולל שיטות. עיקריים

search (וכללים חמדניים)greedy rules .(מקסימיזציההשימוש בסוג זה של שיטות עבור בעיות

עבור בעיות המבקשות למקסם פונקצית מטרה 70- ת החל כבר בתחילת שנות המודולרי-תת

יד אמודולרית תחת האילוץ שהפתרון חייב להיות קבוצה בלתי תלויה של מטרו- מונוטונית ותת

אלגוריתם המראה כי ה .Fisher et alשל לשימוש כזה היא ההוכחה פשוטה ביותרהדוגמא ה .נתון

ה השולית הגדולה ביותר הוא המוסיף לפתרון בכל צעד את האיבר עם התרומ נאיביה חמדןה

כאשר , איברים kהפתרון יכול להכיל עד , במילים אחרות(ידים אחידים אמטרואופטימאלי עבור

k לאחרונה השימוש בסוג זה של שיטות הורחב לפונקצית מטרה שאינן). חלק מהקלטהוא

תלויה בשני למשל הפתרון חייב להיות קבוצה בלתי(מונוטוניות ולסוגים נוספים של אילוצים

).מטרואידים שונים

הפרק הראשון מבין השניים מתאר . שני פרקים בתיזה זו מתארים אלגוריתמים קומבינטוריים

-עבור הבעיה של מיקסום פונקציה תתוזמן ריצה ליניארי 1/2בעל יחס קירוב אלגוריתם

קבוצה - מצוא תתיש ל fמודולרית -בהינתן פונקציה תת, במילים אחרות(לרית ללא אילוציםומוד

בשל השימושים הרבים של בעיה בסיסית זו היא .)f(S)כלשהי של קבוצת הבסיס הממקסמת את

זכתה לשורה ארוכה של מחקרים שתיארו אלגוריתמים בעלי יחסי קירוב הולכים ומשתפרים

מבחינת יחס הן אופטימאלי האלגוריתם שלנו מסיים שורה זו של מחקרים מכיוון שהוא. עבורה

הפרק מתאר אלגוריתמים אופטימאלים , בנוסף לאלגוריתם זה .רוב והן מבחינת זמן הריצההקי

הפרק השני מתאר .עם שני שחקנים Submodular Welfare-ו Submodular SATגם לבעיות

מודולרית תחת האילוץ -אלגוריתם חיפוש מקומי עבור הבעיה של מיקסום פונקצית מטרה תת

. k-exchangeמסוג) set system(בלתי תלויה של מערכת קבוצות שהפתרון חייב להיות קבוצה

גרפים - שידוכים ברב ,כיםשידו-b, כיםכדוגמת שידו מבניםמערכות קבוצות מסוג זה מכלילות

 strongly base orderable(וחיתוכים של מטרואידים בעלי בסיסים הניתנים לסידור במובן החזק

matroids.(מעניין לציין כיLee et al. הראו כי אלגוריתם זה משיג את אותן תוצאות קירוב גם

שונה מאוד ומסתמכת בצורה חזקה ההוכחה לכךאך , k-intersectionעבור מערכות קבוצות מסוג

מציאת הוכחה שתעבוד עבור שני סוגי מערכות הקבוצות היא שאלה . על תכונות של מטרואידים

 .פתוחה

מודולריות דומה -גוריתמי קירוב לבעיות מקסימיזציה תתהסוג השני של שיטות המשמשות באל

בכל שיטה מסוג). relaxations(לשיטה הסטנדרטית לבנית אלגוריתמי קירוב באמצעות הקלות

בשלב השני . ר הקלה של הבעיהובשלב הראשון מחושב פיתרון שבור עב. זה ישנם שני שלבים

למרות . בלבד של ערך פונקצית המטרההפתרון השבור מעוגל לפתרון שלם תוך ירידה חסומה

סוג זה של שיטות שימש לגילוי רבות מתוצאות , מודולריות-האופי הקומבינטורי של פונקציות תת

 תקציר

מושך אליו) submodular(מודולריות -המחקר של בעיות קומבינטוריות עם פונקציות מטרה תת

יתרון "ודולריות מיצגות את העיקרון של מ-פונקציות תת. תשומת לב מרובה בעת האחרונה

-קציות תתפונ, יתר על כן. "עולם האמיתיב" שמקורןהנפוץ בבעיות) economy of scale(" לגודל

מודולריות משמשות לעיתים קרובות כפונקציות מטרה בכלכלה ובתורת המשחקים

ת מודלרי-ודולריות ואופטימיזציה תתמ-פונקציות תת, מנקודת מבט תיאורטית. האלגוריתמית

 .תורת הגרפים ואופטימיזציה קומבינטורית, הן בעלות תפקיד חשוב בקומבינטוריקה

קבוצה של קבוצת - היא פונקציה המעניקה ערך מספרי לכל תת) set function(פונקצית קבוצות

מודולרית היא פונקצית קבוצות המקיימת את התכונה -פונקציה תת. נתונה) ground set(בסיס

אחרים התרומה השולית של הוספת איבר לקבוצה אינה עולה כאשר נוספים איברים : הבאה

ות כמקבילה הבדידה של פונקציות מודולרי-תלעיתים קרובות מתייחסים לפונקציות ת. לקבוצה

להלן . מודולריות מגלות תכונות קמורות וקעורות גם יחד-פונקציות תת ,זאת למרות. ורותקע

, מכוונים חתכים בגרפים מכוונים ובלתי: מודולריות-מספר דוגמאות ידועות לפונקציות תת

).hypergraph(גרפים תכים בהיפרפונקציות כיסוי וח,)matroid(פונקציות דרגה של מטרואידים

פונקציה מנורמלת . שפונקצית קבוצות עשויה לקיים ישנן מספר תכונות שימושיות נוספות

)normalized (פונקציה מונוטונית . לקבוצה הריקה 0היא פונקציה הנותנת את הערך

)monotone (היא פונקציה הנותנת לקבוצהA ערך גדול לפחות כמו לקבוצהB אםA את ילהמכ

B .ניתן לראות כי . שלילי לכל קבוצה-ערך אי מעניקהשלילית אם היא -פונקציה היא אי, לבסוף

 .שלילית-פונקציה מנורמלת מונוטונית היא תמיד אי

מודלרית -רית המטרה היא למצוא קבוצה המביאה פונקציה תתמודול-בבעיות אופטימיזציה תת

ת זו מזו באילוצים על הקבוצות המותרות הבעיות נבדלו. נתונה למקסימום או למינימום

כדוגמת (מודולריות -בנוסף לתתלקיים פונקצית המטרהשעל ובתכונות , לבעיהכפתרונות

. מודולרית-ניתן ליצג בעיות אופטימיזציה רבות באמצעות בעיות אופטימיזציה תת.)מונוטוניות

גן באמצעות בעיות אופטימיזציה לדוגמה הבעיות הבאות הן בעיות ידועות שנחקרו רבות וניתן ליצ

מספר וריאנטים של , Max Cut ,Max k-Cover ,Generalized Assignment: מודולרית-תת

Max SAT ומספר בעיות תזמון)scheduling (ורווחה)welfare .(אלגוריתמים בעלי יחסי גילוי

עיות שהוצגו לעיל שרה אלגוריתמים דומים לבימודולרית - קירוב טובים לבעיות אופטימיזציה תת

מאחר שרבות מבעיות שהוצגו לעיל מופיעות לעיתים קרובות , יתר על כן. ולבעיות רבות נוספות

 .גם בעלי יחס קירוב טוב וגם יעילים שהםאלגוריתמים למצוא להן חשוב , בעולם האמיתי

אותו לכל הבעיות שנחקור ישנו. מודלרית- מספר בעיות אופטימיזציה תת אנו חוקריםבתיזה זו

 Sקבוצה יש למצוא ,)לעיתים ריקה(וקבוצת אילוצים fבהינתן פונקצית מטרה . מבנה כללי

עשוי להיות fיצוג מפורש של הפונקציה . ומקיימת את האילוצים f(S)הממקסמת את

. מתבצעת באמצעות אוב f-אנו מניחים כי הגישה ל, לכן. אקספוננציאלי בגודל קבוצת הבסיס

כל הבעיות שנחקור בתיזה זו אינן .f(S)האוב מחשב את , של קבוצת הבסיס Sקבוצה - בהינתן תת

בשל תוצאות קושי הנובעות משיקולים של תורת ות לפתרון מדויק בזמן פולינומיניתנ

 .המחשב- המחקר נעשה בהנחיית פרופסור ספי נאור מהפקולטה למדעי

שהוביל אותי בחוכמה והכווין אותי בנועם במשך , המנחה שלי, וני להודות לספיברצ

על עבודה משותפת . על הכוונה לנושאי מחקר מעניינים וחדשים. כל שנות עבודתי

. על הצגתי בפני חוקרים מעניינים נוספים .לתוך הלילה כאשר תאריך יעד התקרב

. אשר מאמרים נדחו פעם אחר פעםבעיקר כ, על תמיכתך הרבה והעידוד, ומעל הכל

 .אני מעריך מאוד את ההזדמנות שנפלה בחלקי לעבוד איתך

כניון על התמיכה ולט" אלגוריתמי שוק"מלגת גוגל האירופאית לחקר אני מודה ל

 .הכספית הנדיבה בהשתלמותי

 :רשימת פרסומים

1. Moran Feldman, Joseph(Seffi) Naor, Roy Schwartz and Justin Ward, “Improved

approximations for k-exchange systems'”, In Proceedings of the 19th Annual

European Symposium on Algorithms, ESA11, Saarbrücken, Germany, 2011.

2. Moran Feldman, Joseph(Seffi) Naor and Roy Schwartz, “A unified continuous

greedy algorithm for submodular maximization.”, In Proceedings of the 52nd

annual IEEE Symposium on Foundations of Computer Science, FOCS11, Palm

Springs, California, USA, 2011.

3. Niv Buchbinder, Moran Feldman, Joseph(Seffi) Naor and Roy Schwartz, “A Tight

Linear Time (1/2)-Approximation for Unconstrained Submodular

Maximization.'”, In Proceedings of the 53nd annual IEEE Symposium on

Foundations of Computer Science, FOCS12, New Brunswick, New Jersey, USA,

2012.

 מודולרית-ת מטרה תתיבעיות מקסימיזציה עם פונקצי

 חיבור על מחקר

 לשם מילוי חלקי של הדרישות לקבלת התואר

 דוקטור לפילוסופיה

 מורן פלדמן

 מכון טכנולוגי לישראל –הוגש לסנט הטכניון

 2013 יוני חיפה ג"התשע תמוז

 מטרה תייבעיות מקסימיזציה עם פונקצ

 מודולרית-תת

 מורן פלדמן

