
Sampling and Large Flow Detection in SDN

Yehuda Afek*

afek@cs.tau.ac.il
Anat Bremler-Barr†
bremler@idc.ac.il

Shir Landau Feibish*

shirl11@post.tau.ac.il
Liron Schiff*

schiffli@post.tau.ac.il
*Blavatnik School of Computer Science †Computer Science Department

Tel-Aviv University Interdisciplinary Center
Tel-Aviv, Israel Herzliya, Israel

CCS Concepts
•Networks → Programmable networks; Network monitoring;
Network measurement;

Keywords
Network monitoring; Software Defined Networks; Heavy Hitters

1. INTRODUCTION
We present techniques for traffic sampling and large flows detec-

tion in SDN with Openflow. In many cases, in order to efficiently
compute high speed traffic statistics, sampling is needed. While
SDN switches are very efficient and considerably simpler to man-
age than existing routers and switches, they don’t offer direct means
for sampling and detection of large flows. Both of these capabilities
are important for various basic network applications. For example,
traffic monitoring is such an application, which is a key ability in
providing QoS, capacity planning and efficient traffic engineering.
Additional applications which make use of sampling and large flow
detection are applications that depend on network visibility, such as
security (DDoS and others), anomaly detection, DPI and billing.

Traffic visibility, and specifically measurements and monitoring
in IP networks has become a very difficult task due to the over-
whelming amounts of traffic and flows. One of the earliest network
measurements tools was Cisco Netflow [1], which allowed IP flow
level measurement. Netflow provided a variety of monitoring capa-
bilities yet suffered from high processing and collection overheads,
which were partially decreased using sampling in the variant Sam-
pled Netflow, yet this variant provided reduced accuracy caused

This research was supported by European Research Council
(ERC) Starting Grant no. 259085, and the Neptune Consortium,
administered by the Office of the Chief Scientist of the Israeli min-
istry of Industry, Trade, and Labor, and the Ministry of Science and
Technology, Israel.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGCOMM ’15 August 17-21, 2015, London, United Kingdom
c© 2015 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-3542-3/15/08.

DOI: http://dx.doi.org/10.1145/2785956.2790009

by the straightforward use of sampling. In [2] Estan and Vargh-
ese significantly improve the accuracy of the sampling process by
introducing the Sample and Hold algorithm which provides better
accuracy while reducing the processing and collection overhead.

In order to increase the availability of monitoring, and follow-
ing the SDN trend, we explore ways to implement this with the
widespread OpenFlow standard for SDN switches. OpenFlow swit-
ches provide counters of the number of bytes and packets per flow
entry, yet traffic measurement remains a difficult task in SDN for
two reasons. The first is the hardware (usually Ternary Content Ad-
dressable Memories (TCAMs)) constraints which limit the number
of flows which the switch can maintain and follow. The second
is the limited number of updates which the switch can process per
second, which can therefore limit the amount of updates that the
controller will make to the flow table. The algorithms provided
herein overcome these limitations by providing efficient building
blocks for sampling and large flow detection which can be used by
various monitoring applications.

1.1 Our Contribution
First, we present various OpenFlow based methods to sample

packets that traverse an SDN switch. These methods are immune to
various cyber attacks and are based on Open-Flow 1.3 capabilities.
Second, we make use of the sampling mechanisms for the develop-
ment of an efficient method to detect large flows. The techniques
presented are both flow-table size and switch-controller communi-
cation efficient.

2. TRAFFIC SAMPLING

2.1 Packet Sampling
In Packet Sampling we select each packet in a stream of packets

traversing the switch with probability p, 0≤ p≤ 1, and send them
to a receiver that can be the controller or some middlebox (monitor-
ing box). We present three basic approaches for packet sampling,
each using different OpenFlow 1.3 optional features which are sup-
ported by existing software and hardware switches.

2.2 Pseudo Byte Sampling
In Pseudo Byte Sampling we select each byte in a stream of pack-

ets traversing the switch with probability p, 0≤ p≤ 1, and send the
packet containing the sampled byte to a receiver. We present op-
timized techniques for pseudo-byte sampling, in which we assume
that packet size is accessible and can be matched in the OpenFlow
pipeline, using the Experimenter extension or any other way. It is
expected that with upcoming new OpenFlow and alike SDN archi-

345



tectures, such as [3] more header fields could be natively matched
by the flow tables.

2.3 Evaluation
We evaluate the performance of our sampling schemes by con-

sidering the resulting sampled flow size distributions compared to
real flow size distribution. Figure 1 shows the three packet sam-
pling methods achieve similar distributions, and closely approxi-
mate the real (exact) distribution.

Figure 1: Flow size CDF under
three sampling schemes and the
exact (not sampled) traffic CDF.

3. HEAVY FLOWS DETECTION
A Heavy flow in a stream of packets S, is a flow which takes up

more than T percent of the traffic (i.e., packets) in the stream. Fun-
damental counter based algorithms for finding Heavy Hitters (or
flows) such as that of Metwally et. al. [4], cannot be directly imple-
mented in the SDN framework since in the worst case they would
require rule changes for every packet that traverses the switch. A
different approach is therefore needed.

First we consider a naive solution which we name Sample&HH,
that samples packets in the switch and then sends all sampled pack-
ets to the controller. The controller computes the heavy flows using
a heavy hitters algorithm. However, as can be seen in Figure 3a
(and other works [2]), relying solely on the samples is not accurate
enough. Next we consider a solution based on the Sample&Hold
paradigm of [2] which was devised for identifying elephant flows in
traffic of classic IP networks. Sample&Hold achieves very accurate
results by using sampling together with accurate in-band counters
for sampled flows, yet the high amount of counters and the rate of
installing them make Sample&Hold incompatible with SDN switch
architecture. Therefore we only consider it as a reference point to
evaluate our algorithm.

To deal with the problems of the above solutions, we present
our Sample&Pick algorithm. Sample&Pick uses sampling to iden-
tify flows that are suspicious of being heavy. For these suspicious
flows a special rule is placed in the switch flow table providing ex-
act counters for the suspicious flows. The Sample&Pick algorithm
considers both the bounded rule space in the switch as well as the
time it takes for the controller to install a rule in the switch. There-
fore we use two separate thresholds, one for determining which
flows are heavy and a second lower threshold for detecting poten-
tially large flows. This lower threshold allows us to install a rule in
the switch early enough to get an accurate count of the large flows,
yet we do not install rules for too many flows that will remain small.

Our algorithm operates as follows: in the first step we sample
the flows going through the switch using one of the sampling tech-
niques mentioned. As can be seen in Fig. 2, these samples are sent
to the controller, that feeds them as input to a heavy hitters compu-
tation module in order to identify the suspicious heavy flows (steps
2 and 3). Once a flow’s counter in the heavy hitters module has
passed some predefined threshold t, a rule is inserted in the switch
to maintain an exact packet counter for that flow (steps 4 and 5).
This counter is polled by the controller at fixed intervals and stored
in the controller (steps 6 and 7). Finally the last step increments the
counters that are processed by the Heavy Hitters module to main-
tain correct counters of non-sampled flows.

Figure 2: Sample&Pick overview

(a) False negative errors, shown by
the ratio between the Heavy Hitter
(HH) flows missed to the total num-
ber of HH flows.

(b) Rate of PacketIn messages (sam-
ples) from switch to controller. In
Sample&Hold, sampling is switch-
contained.

Figure 3: Heavy Flow Detection test results

3.1 Evaluation
We compare our Sample&Pick algorithm to the two additional

solutions described above Sample&Hold and Sample&HH.
Testing shows: Considering a line rate of 2 · 104 pps, it takes

the scheme about 107 packets to stabilize (Figure 3a). Further-
more, the controller in Sample&Pick processes approximately half
the samples than in Sample&HH (Figure 3b), due to the fact that
Sample&HH has no counters in the switch so all traffic is sampled,
whereas Sample&Pick uses switch counters for heavy flows; Pa-
rameters used: T = 10−3, p = 0.5 ·10−2, t = T/2 = 10−3/2.

4. CONCLUSIONS AND FUTURE WORK
We have presented techniques for sampling and large flow detec-

tion in SDN. Our sampling techniques are unique in that they are
simple and remain within the confinements of the OpenFlow stan-
dard. Our algorithmdetects large flows with a relatively small error
rate while minimizing the computation overhead in the switch and
requiring little controller-switch communication.

5. REFERENCES
[1] [Online]. Available: http://www.cisco.com/c/en/us/tech/

quality-of-service-qos/netflow/index.html
[2] C. Estan and G. Varghese, “New directions in traffic

measurement and accounting: Focusing on the elephants,
ignoring the mice,” ACM Trans. Comput. Syst., vol. 21, no. 3,
pp. 270–313, 2003.

[3] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown,
J. Rexford, C. Schlesinger, D. Talayco, A. Vahdat,
G. Varghese, and D. Walker, “P4: programming
protocol-independent packet processors,” Computer
Communication Review, vol. 44, no. 3, pp. 87–95, 2014.

[4] A. Metwally, D. Agrawal, and A. El Abbadi, “Efficient
computation of frequent and top-k elements in data streams,”
in ICDT, ser. Lecture Notes in Computer Science, T. Eiter and
L. Libkin, Eds., vol. 3363. Springer, 2005, pp. 398–412.

346




