
Mitigating DNS Random Subdomain DDoS Attacks by
Distinct Heavy Hitters Sketches

Shir Landau Feibish1, Yehuda Afek1, Anat Bremler-Barr2, Edith Cohen1, and Michal Shagam1

1Blavatnik School of Computer Sciences, Tel-Aviv University, Israel
2Computer Science Dept., Interdisciplinary Center, Herzliya, Israel

lfshir@gmail.com, afek@cs.tau.ac.il, bremler@idc.ac.il, edith@cohenwang.com, michalshagam@mail.tau.ac.il

ABSTRACT
Random Subdomain DDoS attacks on the Domain Name
System (DNS) infrastructure are becoming a popular vec-
tor in recent attacks (e.g., recent Mirai attack on Dyn). In
these attacks, many queries are sent for a single or a few vic-
tim domains, yet they include highly varying non-existent
subdomains generated randomly.

Motivated by these attacks we designed and implemented
novel and efficient algorithms for distinct heavy hitters (dHH).
A (classic) heavy hitter (HH) in a stream of elements is a
key (e.g., the domain of a query) which appears in many
elements (e.g., requests). When stream elements consist of
<key, subkey> pairs, (<domain, subdomain>) a distinct heavy
hitter (dhh) is a key that is paired with a large number of dif-
ferent subkeys. Our algorithms dominate previous designs
in both the asymptotic (theoretical) sense and practicality.
Specifically the new fixed-size algorithms are simple to code
and with asymptotically optimal space accuracy tradeoffs.

Based on these algorithms, we build and implement a sys-
tem for detection and mitigation of Random Subdomain DDoS
attacks. We perform experimental evaluation, demonstrating
the effectiveness of our algorithms.

1. INTRODUCTION
The Domain Name System (DNS) service is a critical el-

ement in the internet functionality. Distributed Denial of
Service (DDoS) attacks on the DNS service typically con-
sist of many queries coming from a large botnet and sent to
the root name server or an authoritative name server along
the domain chain. According to Akamai’s state of the inter-
net report [2] nearly 20% of DDoS attacks in Q1 of 2016
involved the DNS service, some of them on the root name
servers [19].

This research was supported by a grant from the Blavatnik Cyber
Security Councile, by a grant of the European Research Council
(ERC) Starting Grant no. 259085, and by the Ministry of Science
and Technology, Israel.

1.1 Random Sundomain Attacks
One type of particularly hard to mitigate DDoS attack is

the randomized attack on the DNS service called Random
Subdomain Attack [16] (also known as Authoritative Ex-
haustion Attack [4]; Nonsense Name Attack [14]; Pseudo-
random Subdomain Attack [3]).

In this attack, queries for many different pseudorandom
non-existent subdomains (subkeys) of the same primary do-
main (key) are issued [3]. Since the response to a query for
a new subdomain is not cached at the DNS resolver, these
queries are propagated to the domain authoritative server.
Initially, the authoritative server is able to respond and typ-
ically answers with an ”NXDOMAIN” response, indicating
that the domain can’t be found. Once the authoritative server
becomes overwhelmed, it will either crash or implement a
response rate limiting mechanism. Either way, no response
will be received from the authoritative server and it will ap-
pear unresponsive to the ISP.

Shortly after, the ISP resolvers, that store each recursive
request until a response is received, exhausts all available
storage space and also becomes debilitated, causing legiti-
mate clients to experience an increase in ”Server Failure” re-
sponses from the ISP resolvers [3] While these attacks were
first witnessed in 2009, in October 2016 they made head-
lines, when hundreds of top websites were drastically af-
fected by the Mirai IoT Botnet attack on domains delegated
to the Dyn DNS resolvers [4]. Mitigation of these attacks
took hours.

Mitigation of Random Subdomain attacks is difficult since
the packets in the attack are correctly formed DNS requests.
Furthermore, the queries are normally received from legit-
imate ISP clients and therefore source based filtering can
not be used. The solution of internet providers so far has
been to identify the targeted zone by analyzing query logs
for anomalies, and to temporarily prevent the name server
from handling queries for this zone [3, 14], or alternatively
to reduce the number of queries handled using rate limiting.

1.2 Our Contributions
The two major contributions of this paper are novel practi-

1

Target’s Authoritative DNS server

ISP DNS Resolvers

Attacker

<Random String>.victim.com

Compromised
Devices

Clients

Legitimate queries

Figure 1: DNS Random Subdomain attack overview

cal sampling-based structures for distinct heavy hitter (dHH)
detection, and the system we propose for detection and mit-
igation of Random Subdomain attacks.

1.2.1 Attack Mitigation System
In this paper we present a system for the mitigation of this

attack. Our system is based on the observation that the num-
ber of distinct subdomains in queries for targeted domains
significantly increases during this attack due to the pseudo-
random part of the query. Our system detects this sudden rise
in the number of distinct subdomains, and therefore identi-
fies the targeted domain automatically. Depending on the
rate of the attack, our system can detect an attack within
seconds of attack start time.

During normal network operation, the number of distinct
subdomains for each domain is usually relatively constant
and typically a small number. One exception to this is the
increasing usage of disposable domains. These are large
volumes of automatically generated domains, legitimately
created by top sites and services (e.g., social networks and
search engines), to give some signal to their server [6]. By
analyzing traffic during normal server load (i.e. ”peacetime”),
our system creates a baseline of the normal number of dis-
tinct subdomains of such domains so that it can detect the
abnormal rise during the attack. Using this baseline, our
system can identify attacks while significantly reducing false
positives. Furthermore, we are able to automatically identify
most of the legitimate requests for the targeted domain.

1.2.2 Algorithms for Distinct Heavy Hitters
Our system is based on our algorithms for finding distinct

heavy hitters. Consider a stream of DNS queries, with the
second-level domain, for example, serving as the key. A
key that appears many times in the query stream constitutes
a “classic” heavy hitter (e.g., google.com, cnn.com, etc,).
If each query’s subdomain serves as the subkey (e.g., mail.,
home., game1., etc,), a key with many different subkeys is
then a distinct heavy hitter (dHH) or superspreader [18].

Generally, approximate distinct heavy hitters algorithms
exhibit a tradeoff between detection accuracy and the amount
of space they require. Cardinality estimate accuracy is even
more difficult to achieve with a fixed-size structure since a

key may be evicted from the cache and then re-enter the
cache, resulting in cardinality inaccuracies. Our proposed
fixed-size dHH algorithm, named Distinct Weighted Sam-
pling (dwsHH), uses a fix-size structure and outperforms known
solutions both in terms of cardinality accuracy and practical-
ity.

We demonstrate the effectiveness of our algorithms via
experimental evaluations on real Internet traces and attacks.

2. DISTINCT HEAVY HITTER ALGORITHMS

2.1 Preliminaries and Background

2.1.1 Problem Definitions
Formally, our input is modeled as a stream of elements,

where each element has a primary key x from a domain X
and a subkey y from domain Dx. For each key, the (clas-
sic) weight hx is the number of elements with key x, and
the distinct weight wx is the number of different subkeys in
elements with key x.

A key x with weight that is at least an ε fraction of the
(respective) total is referred to as a heavy hitter. When hx ≥
ε
∑
y hy , x is a (classic) heavy hitter (HH), and when wx ≥

ε
∑
y wy , x is a distinct heavy hitter (dHH).

2.1.2 Background
Sample and Hold: The Sample and Hold (S&H) algo-

rithm [13, 10] is applied to a stream of elements, where each
element has a key x and weight hx as described above.

The fixed threshold design is specified for a threshold τ .
The algorithm maintains a cache S of keys, which is ini-
tially empty, and a counter cx for each cached key x. A
new element with key x is processed as follows: If x ∈ S
is in the cache, the counter cx is incremented. Otherwise, a
counter cx ← 1 is initialized with probability τ . The fixed-
size design is specified for a fixed sample (cache) size k and
works by effectively lowering the threshold τ to the value
that would have resulted in k cached keys.

An important property of S&H is that the set of sampled
keys is a probability proportional to size without replace-
ment (ppswor) sample of keys according to weights hx [17].

Approximate Distinct Counters: A distinct counter is an
algorithm that maintains the number of different elements in
a stream of elements. An exact distinct counter requires state
that is proportional to the number of different elements in
the stream. Fortunately, there are many existing designs and
implementations of approximate distinct counters that have
a small relative error but use state size that is only logarith-
mic or double logarithmic in the number of distinct elements
[12, 7, 5, 11, 8]. The basic idea is elegant and simple: We
apply a random hash function to each element, and retain the
smallest hash value. This value, in expectation, is becoming
smaller as there are more distinct elements, and thus can be
used to estimate the number of distinct elements. The differ-
ent proposed structures have different ways of enhancing this

2

approach to control the error. The tradeoff between structure
size and error are controlled by a parameter `: A structure of
size proportional to ` has normalized root mean square error
(NRMSE) of 1/

√
`. In Section 2.2.1 we use distinct counters

as a black box in our dHH structures, abstracted as a class of
objects that support the following operations: Init: Initial-
izes a sketch of an empty set; Merge(x): merge the item
x into the set (x could already be a member of the set or a
new item); CardEst: return an estimate on the cardinality
of the set (with a confidence interval)

2.2 Distinct Weighted Sampling

2.2.1 Distinct Heavy Hitters Algorithms Overview
Our distinct weighted sampling schemes take as input a

stream of elements that are key and subkey pairs. We build
on the fixed-size classic S&H schemes but make some criti-
cal adjustments: First, we apply hashing so that we can sam-
ple the distinct stream instead of the classic stream. Second,
instead of using simple counters for cached keys as in clas-
sic S&H, we use approximate distinct counters applied to
subkeys. Third, we maintain state per key that is suitable for
estimating the weight of heavy cached keys (whereas classic
S&H was designed for unbiased domain queries).

2.2.2 Fixed-size distinct weighted sampling
The fixed-size Distinct Weighted Sampling (dwsHH) al-

gorithm is specified for a cache size k. Compared with the
fixed-threshold algorithm, we keep some additional state for
each cached key:

• The threshold τx when x entered the cache (represented
in the pseudocode as dCounters[x].τ). τx is important
in deriving confidence intervals on wx. Intuitively, τx
captures a prefix of elements with key x which were
seen before the distinct structure for x was initialized,
and is used to estimate the number of distinct subkeys
in this prefix.

• A value seed(x) ≡ min(x,y)in stream Hash(x,y)which
is the minimum Hash(x,y) of all elements with key
x. (in the pseudocode, dCounters[x].seed represents
seed(x)). Note that it suffices to track seed(x)
only after the key x is inserted into the cache, since
all elements that occurred before the key entered the
cache necessarily had Hash(x,y) > τx, as the entry
threshold τ can only decrease over time.

The fixed-size dwsHH algorithm retains in the cache only
the k keys with lowest seeds. The effective threshold value
τ that we work with, is the seed of the most recently evicted
key. The effective threshold has the same role as the fixed
threshold since it determines the (conditional) probability on
inclusion in the sample for a key with certain wx. A pseudo
code is provided as Algorithm 1.

2.2.3 Analysis and estimates

Algorithm 1: Fixed-size streaming Distinct Weighted Sampling
(dwsHH)

Data: cache size k, stream of elements of the form (key,subkey),
where keys are from domain X

Output: set of (x, cx, τx) where x ∈ X
dCounters← ∅; τ ← 1 // Initialize a cache of
distinct counters

foreach stream element with key x and subkey y do // Process a
stream element

if x is in dCounters then
dCounters[x].Merge(x,y)
dCounters[x].seed←
min{dCounters[x].seed,Hash(x,y)}

else
if Hash(x,y) < τ then // Create dCounters[x]

dCounters[x].Init
dCounters[x].Merge(x,y)
dCounters[x].seed← Hash(x,y)
dCounters[x].τ ← τ
if |dCounters| > k then

x← argmaxy∈dCounters dCounters[y].seed
τ ← dCounters[x].seed
Delete dCounters[x]

return(For x in dCounters,

(x, dCounters[x].CardEst, dCounters[x].τ))

We first consider the sample distribution of dwsHH. As
we mentioned, it is known that classic S&H applied with
weights hx has the property that the set of sampled keys is a
ppswor sample according to hx [9]. Surprisingly, the sample
distribution properties of S&H carries over from being with
respect to hx (classic S&H) to being with respect towx (dw-
sHH). Therefore, when working with a fixed k, a key with
weight wx is selected with probability ≥ 1− (1−wx/m)k,
where m =

∑
x wx is the sum of weights of all keys. If

the threshold is τ , a key with weight wx is selected with
probability 1 − exp(−τwx). A detailed proof is found in
the technical report [1]. We therefore obtain that key x is
very likely to be sampled when wx � maxi∈[0,k−1](m −∑
x∈topi wx)/(k−i) where topi is the set of i heaviest keys.

A detailed explanation of this bound with relevant proofs can
be found in [1].

In terms of time complexity, given a stream of ¡key, sub-
key¿ pairs, for each pair the dwsHH algorithm makes at most
O(log(n)) accesses to memory for keys not in the cache and
2 accesses for keys in the cache. The first is an item ’read’
for checking if the key is in the structure. If the key is in the
structure, only an additional ’write’ is needed. Otherwise,
the algorithm searches for the item with the maximal seed.
The number of accesses for this depends on the implementa-
tion. We assume an efficient structure is used for max search
which, assuming there are n items in the structure, makes
O(log(n)) reads for the search, followed by an additional
write operation.

Estimate quality and confidence interval.
With the fixed-size (dwsHH) scheme, we expect the cache

3

to include keys withwx �
∑
y wy/k but it may also include

some keys with small weight.
For many applications, an estimate on the weight wx of

the heavy hitters is needed. We compute an estimate with a
confidence interval on wx for each cached key x, using the
entry threshold dCounters[x].τ and the approximate distinct
count dCounters[x].CardEst.

We obtain the confidence interval [dCounters[x].CardEst−
aδσ2,dCounters[x].CardEst− 1 + 1/τ + aδ

√
σ2
1 + σ2

2]
where aδ is the coefficient for confidence 1− δ according

to the normal approximation. E.g., for 95% confidence we
can use aδ = 2. We note the confidence intervals are tighter
for keys that are presented earlier and thus have τx � τ .

2.2.4 Integrated dwsHH design
We propose a seamless design (Integrated dwsHH) inte-

grating the hashing performed for the weighted sampling
component with the hashing performed for the approximate
distinct counters. We use a type of distinct counters based
on stochastic averaging (`-partition) [12, 11] (see [8] for an
overview). This design hashes strings to ` buckets and main-
tains the minimum hash in each bucket. We estimate the
distinct counts using the tighter HIP estimators [8].

For a sampled x, we can obtain a confidence interval on
wx using the lower end point dCounters[x].CardEst +
1, with error controlled by the distinct counter and the up-
per end point dCounters[x].CardEst+1/dCounters[x].τ ,
with error controlled by both the distinct counter and the en-
try threshold. The errors are combined as explained in Sec-
tion 2.2.3 using the HIP error of
σ2 ≈ (2`)−0.5dCounters[x].CardEst .

The size of our structure isO(k` logm) plus the represen-
tation of the k cached keys. Note that the parameter ` can be
a constant for DDoS applications: A choice of ` = 50 gives
NRMSE of 10%. Additional details can be found in [1].

2.3 Evaluation

2.3.1 Theoretical Comparison
In Table 1 we show a theoretical memory usage compar-

ison of our distinct weighted sampling algorithms, Super-
spreaders and Locher [15], assuming all algorithms use the
same distinct count primitive. We are using the notations: δ
as the probability that a given source becomes a false neg-
ative or a false positive, N as the number of distinct pairs,
r as the number of estimates, s as the number of pairs of
distinct counting primitives used to compute each estimate,
and c (for a c-superspreader (i.e. we want to find keys with
more than c distinct elements) choosing c = τ−1.Note that
the Superspreaders algorithm does not provide an estimate
on the distinct weight of the keys, but rather only reports
which keys have high enough weights. Locher’s algorithm
provides an estimate error which is incomparable theoreti-
cally and significantly higher than ours in practice

Algorithm Memory usage Keys’ distinct weight
estimation error

Fixed-threshold
distinct WS

O(τ
∑
y wy · ` logm)

(Exp.) τ−1 + wy/
√
2`

Fixed-size dwsHH O(k` logm)
(1/k)

∑
y wy +

wy/
√
2`

Superspreaders 1-
Level Filtering [18] O(N

c
) NA

Superspreaders 2-
Level Filtering [18] O(N

c
ln 1
δ
) NA

Locher [15] O(rs · 2`+ |k|) NA

Table 1: Theoretic Comparison between methods

2.3.2 Practical Evaluation

Accuracy and Parameters.
The following tests were done using a 4GB trace of 40M

DNS queries captured at our campus network. For each
DNS query q = ...p6.p5.p4.p3.p2.p1, we sliced the query
at most 5 times to produce the < key, subkey > pairs, <
p1, ...p6.....p2 >,< p2.p1, ...p6.....p3 > ... < p5.....p1,p6 >.
This process gave us a total of over 120M pairs composed
of a total of nearly 1M distinct pairs.

We compare the affect of different cache sizes (k) on the
output of our dwsHH algorithm. As shown in Fig 2a we set
the number of buckets to be 32 and use cache sizes of 100,
500, 1000, 10000. Using a cache size of 100, our algorithm
reports keys with cardinality at least 0.005 of the total num-
ber of distinct items with a false negative rate under 5%. A
false negative rate of under 5% is also achieved with cache
size of 500 for cardinality over 0.0008. Using a cache of
1000 and 10000, our algorithm reports keys with cardinality
at least 0.0004 of the total, with false negative rates of 2%
and 0% respectively.

Additionally, we compare the affect of the different num-
ber of buckets (`) on the output of our dwsHH algorithm.
As shown in Fig 2b we set cache size to be 1000 and use
4, 8, 16, 32 and 64 buckets. For the reported keys, using
4 buckets gave a median distinct weight estimated error of
49% over all reported keys and 8, 16, 32 and 64 buckets gave
a median error of 33%, 18%, 13% and 9% accordingly.

To report, for example, all keys which have a weight of at
least 0.001% of the total number of distinct pairs, using the
dwsHH algorithm, we use cache size of 1000, achieving a
false negative rate of 0% and a false positive rate of 0%. Us-
ing 32 buckets, the weight estimates provided have a median
error of less than 10% of the item cardinality for the reported
keys. This test is shown in Figure 2c.

3. RANDOMIZED SUB-DOMAIN ATTACKS
MITIGATION SYSTEM

3.1 Notations
We denote a domain, subdomain and subpart in the fol-

lowing manner: Given a query q = ...d6.d5.d4.d3.d2.d1,

4

(a) Modified cache size (b) Modified Number of Buckets (c) 32 Buckets, 1000 Items

Figure 2: Distinct Weighted Sampling (dWS) parameter comparison results

a subpart of a domain is any individual part di. (i.e., d1,
d2 etc.). A domain-suffix of the query is any suffix of q
composed of whole subparts. The subdomain-prefix of a
domain-suffix is the prefix of q up to and not including the
domain-suffix. For example, for domain-suffix d1 the subdomain-
prefix is ...d6....d2. For brevity, we refer to a domain-suffix
as a domain and a subdomain-prefix as a subdomain. Note
that we refer to the length of a domain to be the number of
domain subparts and not the number of characters.

3.2 Overview
Attack Detection: As depicted in Figure 3, attack detec-

tion is done in two stages. The first stage is a preprocess-
ing of traffic captured when there is a normal DNS query
load (this is considered to be peacetime). Using our system,
a baseline is created which identifies domains which have
many different subdomains on a regular basis (for example,
domains of sites that use disposable domains). Additionally,
a whitelist of common domain subparts (i.e., mail, maps etc.)
is also identified and used during mitigation to allow the le-
gitimate queries of targeted domains. The second stage is
an analysis of traffic during an attack. The system identifies
domains which are potential attack targets. If the number
of distinct queries for these domains is significantly higher
than the peacetime baseline, these domains are set as attack
signatures.

The main component of our system is the Distinct Heavy
Domain Hierarchy Extractor (HDDH) (Section 3.3), which
is used for both the baseline creation as well as the attack
signature extraction.

Attack Mitigation: Once signatures have been extracted,
consequent queries are matched against the attack signatures.
Queries which match an attack signature and do not qual-
ify as whitelisted are dropped before reaching the ISP re-
solvers. For example, in an attack on ’victim.com’, our sys-
tem would generate the signature ’*.victim.com’. Using the
whitelist of common domain subparts, our system identi-
fies that ’mail.victim.com’ is not an attack query and it is
allowed. Other queries for ’victim.com’ are dropped. The
whitelist can be fine-tuned for each signature during the at-
tack to further reduce false positives.

Figure 3: DNS Random Subdomain mitigation system

Our system makes no assumptions on the resource con-
sumption or behaviour of the resolvers making it more ro-
bust in terms of detection.

3.3 Heavy Distinct Domain Hierarchy (HDDH)
Extractor

The HDDH can be better visualized using a trie. As can be
seen in Figure 4, each edge of the trie is labled with a domain
subpart. Each node represents a domain (e.g. the domain
∗.site.org is represented by the right-most leaf in the trie).
Each node is labeled with the number of distinct subdomains
seen for that domain. For example, there were 500 different
queries for domain ∗.com, of which 420 were for domain
∗.google.com, 60 for ∗.cnn.com and the remaining 20 were
for domains that had a cardinality below min heavy. Note

5

that the remaining cardinality of each node is the number
indicated on the node minus the sum of its child nodes in the
next level of the tree. We would like to find a minimal set
of nodes in the trie with a cardinality above min heavy that
cover the leaves of the trie.

Figure 4: Hierarchy of heavy distinct domains. Bold edged
nodes are in the cover, dashed edge nodes do not surpass the
minimum cardinality.

In order to extract the hierarchy of heavy distinct domains,
we need to efficiently compute how many of the distinct sub-
domains are contributed by each branch of the hierarchy.
For each heavily distinct domain we would like to identify
which, if any, of its subdomains is also heavily distinct. Fur-
thermore, we would like to calculate the accumulative cardi-
nality of all of its heavily distinct subdomains. Since extract-
ing the entire hierarchy of queried domains would consume
way too many resources, we provide an approximate solu-
tion, that allows extracting the desired information mainly
for the heavily distinct domains.

The HDDH Extractor is composed of our Fixed-size stream-
ing Distinct Weighted Sampling (and specifically Integrated
dwsHH) structures for Distinct Heavy Hitters detection.

Our structure maintains 5 Integrated dwsHHstructures which
we denote DHH1-DHH5. Denote as ki the size of each
DHHi. The keys in each DHHi are domains of length i
(i.e. domains of the form ∗.di.di−1.....d1).

Given a stream of traffic (or a traffic capture), for each
query q = ...d6.d5.d4.d3.d2.d1 received, the key ∗.d1 (of
length 1) is inserted to DHH1 with subkey ...d6....d2, key
∗.d2.d1 (of length 2) is inserted toDHH2 with subkey ...d6....d3
and so on. However, a insertion is made to DHH2 only if
∗.d1 was already found in DHH1. Similarly, a insertion is
made toDHH3 only if ∗.d2.d1 was already found inDHH2

and so on. Meaning, that a longer domain is only inserted
into the structure if a shorter domain of that URL was al-
ready sufficiently heavy to be an item in the structure. In
this manner, only domains which are somewhat likely to be-
come signatures are inserted into the structure.

To find the distinct heavy domain cover, once the traffic
capture has been analyzed, or after every fixed time inter-
val, a heavy domain cover must be extracted from the struc-
ture. To identify the heavy domain cover, we build a trie
as shown in Figure 4, using only the items in our HDDH

Extractor. Intuitively, each domain found in our HDDH ex-
tractor can be placed on a branch of the trie and the value of
each node needs to be calculated. This is done by travers-
ing each key d in each DHHi (for 1 ≤ i ≤ 4). For each
key, we calculate the sum of the cardinalities of its children
in the next level of the trie, i.e. in DHHi+1, defined as:
SumChildrend =

∑
{CardEst of all items inDHHi+1 s.t.

d is their suffix}. Once this sum has been calculated for all
keys inDHH1 throughDHH4, based on predefined param-
eters, our algorithm identifies, for every branch, the deepest
node that has enough distinct subdomains and its child nodes
do not. These nodes will compose the heavy domain cover
from which the signature set will be selected.

4. REFERENCES
[1] Tech report:

https://www.dropbox.com/s/r9kgatk4htfyu1w/techreport.pdf?dl=0.
[2] akamais [state of the internet] / security – q1 2016 report.

www.akamai.com/StateOfTheInternet, 2016.
[3] Cathy Almond. Recent authoritative exhaustion attacks, 2016.

https://www.arbornetworks.com/threats/.
[4] Chris Baker. Recent authoritative exhaustion attacks, October 2016.

Talk given on behalf of Dyn Inc.
[5] Z. Bar-Yossef, T. S. Jayram, R. Kumar, D. Sivakumar, and

L. Trevisan. Counting distinct elements in a data stream. In
RANDOM. ACM, 2002.

[6] Yizheng Chen, Manos Antonakakis, Roberto Perdisci, Yacin Nadji,
David Dagon, and Wenke Lee. DNS noise: Measuring the
pervasiveness of disposable domains in modern DNS traffic. In 44th
Annual IEEE/IFIP International Conference on Dependable Systems
and Networks, DSN 2014, Atlanta, GA, USA, June 23-26, 2014,
pages 598–609. IEEE, 2014.

[7] E. Cohen. Size-estimation framework with applications to transitive
closure and reachability. J. Comput. System Sci., 55:441–453, 1997.

[8] E. Cohen. All-distances sketches, revisited: HIP estimators for
massive graphs analysis. TKDE, 2015.

[9] E. Cohen, N. Duffield, H. Kaplan, C. Lund, and M. Thorup.
Algorithms and estimators for accurate summarization of
unaggregated sata streams. J. Comput. System Sci., 80, 2014.

[10] C. Estan and G. Varghese. New directions in traffic measurement and
accounting. In Proceedings of the ACM SIGCOMM’02 Conference.
ACM, 2002.

[11] P. Flajolet, E. Fusy, O. Gandouet, and F. Meunier. Hyperloglog: The
analysis of a near-optimal cardinality estimation algorithm. In
Analysis of Algorithms (AOFA), 2007.

[12] P. Flajolet and G. N. Martin. Probabilistic counting algorithms for
data base applications. J. Comput. System Sci., 31:182–209, 1985.

[13] P. Gibbons and Y. Matias. New sampling-based summary statistics
for improving approximate query answers. In SIGMOD. ACM, 1998.

[14] C. Liu. A new kind of ddos threat: The nonsense name attack.
Network World, 2015. [Online; posted 27-January-2015].

[15] T. Locher. Finding heavy distinct hitters in data streams. In SPAA.
ACM, 2011.

[16] Latest internet plague: Random subdomainattacks.
https://nominum.com/wp-content/uploads/2014/10/Nominum-
Whitepaper-Latest-Internet-Plague-Random-Subdomain-Attacks.pdf,
2014.

[17] B. Rosén. Asymptotic theory for successive sampling with varying
probabilities without replacement, I. The Annals of Mathematical
Statistics, 43(2):373–397, 1972.

[18] S. Venkataraman, D. Song, P. B. Gibbons, and A. Blum. New
streaming algorithms for fast detection of superspreaders. In Proc.
Network and Distributed System Security Symposium (NDSS), 2005.

[19] Verisign distributed denial of service trends report q4 2015.
https://www.verisign.com/assets/report-ddos-trends-Q42015.pdf,
2015.

6

