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Abstract

Efficient algorithms and techniques to detect and identify large flows in a high
throughput traffic stream in the SDN match-and-action model are presented. This is
in contrast to previous work that either deviated from the match and action model
by requiring additional switch level capabilities or did not exploit the SDN data
plane. Our construction has two parts; (a) new methods to efficiently sample in
an SDN match and action model, (b) new and efficient algorithms to detect large
flows efficiently and in a scalable way, in the SDN model.

Our large flow detection methods provide high accuracy and present a good
and practical tradeoff between switch - controller traffic, and the number of entries
required in the switch flow table. Based on different parameters, we differentiate
between heavy flows, elephant flows and bulky flows and present efficient algo-
rithms to detect flows of the different types.

Additionally, as part of our heavy flow detection scheme, we present sampling
methods to sample packets with arbitrary probability p per packet or per byte that
traverses an SDN switch.

Finally, we show how our algorithms can be adapted to a distributed monitoring
SDN setting with multiple switches, and easily scale with the number of monitoring
switches.
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1. Introduction

Heavy flow detection in traffic remains one of the fundamental capabilities re-
quired in a network. It is a critical telemetry tool for understanding the behaviour
of traffic in a given point in the network or in the network as a whole. Furthermore,
it is a key ability in providing QoS, capacity planning and efficient traffic engineer-
ing. Additionally, heavy flow detection is crucial for the detection of Distributed
Denial of Service (DDoS) attacks in the network which remain a common attack
in the Internet today, with hundreds of attacks carried out daily [1].

We present techniques for large flows detection in traffic that flows through a
Software Defined Network (SDN) switch. While SDN switches are very efficient
and considerably simpler to manage than existing routers and switches, they do not
offer direct means for the detection of large flows.

Existing network monitoring tools for classic IP networks have been available
for over 20 years, with one of the earliest tools being Cisco Netflow [2]. Over the
years, traffic visibility, and specifically measurements and monitoring in IP net-
works has become an increasingly difficult task due to the overwhelming amounts
of traffic and flows [3]. While existing tools may be very useful for classic net-
works, monitoring in SDN networks requires new tools and technology. The S-
DN network architecture places the controller as the focal point of the network.
Therefore, using existing tools would require extensive communication between
the controller and the monitoring tools, which would place significant overhead
on the controller. It is therefore necessary to provide new monitoring methods for
SDN networks based on the SDN architecture.

We design ways to implement monitoring methods with the widespread Open-
Flow and the recent P4 standard for SDN switches. OpenFlow switches provide
counters of the number of bytes and packets per flow entry, yet traffic measure-
ment remains a difficult task in SDN for two reasons: First the hardware (usually
Ternary Content Addressable Memories (TCAMs)) constraints limit the number
of flows which the switch can maintain and follow. Secondly the limited num-
ber of updates that the switch can process per second [4], which hence limits the
number of updates that the controller can make to the flow table. The algorithms
provided herein overcome these limitations by providing efficient building blocks
for large flow detection and sampling which may be used by various monitoring
applications.

1.1. Our Contribution

First, we propose our Sample&Pick algorithm which is an efficient method to
detect large or heavy flows going through an SDN switch. The Sample&Pick al-
gorithm is designed for protocols which are based on the match and action model
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(e.g., OpenFlow, P4, etc.), and performs a division of labour between the switch
and the controller, coordinating between them to identify the large flows. Sam-
ple&Pick achieves very high accuracy using a fixed amount of rules in the switch
and requiring little communication between the switch and the controller.

Second, as part of our algorithm we present various OpenFlow (with optional
features) based methods to sample packets that traverse an SDN switch. These
methods may be used independently of our heavy flows detection algorithm.

Third, we consider a distributed model with multiple switches and propose
solutions for efficient scaling of our techniques, to support large flow detection as
well as sampling in the distributed setting.

Finally we have implemented and evaluated our Sample&Pick comparing it
with OpenSketch [5]. The sampling methods rely on standard and optional fea-
tures of OpenFlow 1.3 (or the P4 language) and are implemented with the NoviKit
(hardware) switch[6] (operated with NoviWare switching software [7]) that sup-
ports the optional OpenFlow feature to match on extra fields. The heavy flow de-
tection also relies on a standard OpenFlow controller and was evaluated as a whole
using a dedicated virtual time simulation for both the data and control planes. Ad-
ditionally, the techniques presented are both flow-table size and switch-controller
communication efficient.

2. Preliminaries

2.1. Background: Heavy Hitters
The Heavy Hitters Problem (also known as the ε-Approximate Frequent Items

Problem) is defined as follows: Given a sequence of N values α = 〈α1, .....αN〉, a
threshold 0≤ θ ≤ 1 and an error value ε: denote fx = |{ j|α j == x}|, find a set of
items F such that for any item x ∈ α , if fx ≥ θN then x ∈ F , and if fx ≤ θN− εN
then x /∈ F .

Note that a streaming algorithm for the Heavy Hitters problem, can use only a
constant amount of space and make a single pass over the input.

Many solutions have been proposed for the heavy hitters problem, for example
[8, 9, 10, 11, 12]. A description of a few counter-based algorithms as well as other
results regarding the heavy hitters problem can be found in [13].

We chose the Space Saving algorithm of Metwally et al. [8] as a building block
for the detection of heavy flows due to its simplicity, efficiency and high level of
counter accuracy.

The Space Saving algorithm works as follows: given parameters ε , θ as de-
scribed above and a sequence of N values α = 〈α1, .....αN〉, the algorithm main-
tains v = 1

ε
items, each consisting of an ID and a counter. For each value w = αi

for 1≤ i≤ N:
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1. If the ID of one of the v items equals w, its counter is incremented by 1.

2. Otherwise, let u be an item with the minimal counter value. The ID of u is
replaced with w and its counter is incremented by 1.

The (additive) error rate Nε of this algorithm for ε = 1
v is N

v [8]. Therefore,
for each item j, denote its counter in the output of the algorithm c j, and its count
in the sequence as r j then r j ≤ c j ≤ r j +Nε . The algorithm requires O(v) space
and only a single pass over the input, with a small number of instructions per item.

2.2. Definitions

Following [14] a flow is defined to be any sequence of packets which can be
matched to rules in the flow table, such as, for example, those defined by a set of
header field values. Note that our algorithms can be used for any flow definition,
including those which pertain to matches in the payload or any of the headers as
long as it is supported by the controller and switch implementation. A flow entry
in an OpenFlow (flow) table can be defined to match packets according to (almost)
any selection of header field bits thereby allowing various flow definitions.

A large flow is usually defined as a flow that takes up more than a certain per-
centage of the link traffic during a given time interval [15]. For some applications
other definitions of large flows are required, for instance network analysis tools
may want to identify flows that consist of a certain amount of packets regardless of
link capacity.

We therefore refine the large flow definition, considering both the time aspect
as well as the type of measurement performed.

We consider the following definitions of large flows:

Definition 2.1. Heavy flow: Given a stream of packets S, a heavy flow is a flow
which includes more than T percent of the packets since the beginning of the mea-
surement.

Considering the definition of flow provided above, this can be useful for iden-
tifying flows which remain heavy over a significant period of time, for example
in Distributed Denial of Service (DDoS) attacks. On the other hand this will miss
large flows if the measurement continues for a very long period of time.

Definition 2.2. Interval Heavy flow (Elephants): Given a stream of packets S,
and a length of time m, an interval heavy flow is a flow that includes more than T
percent of the packets seen in the previous m time units.
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These can be used for standard traffic management and resource allocation. We
note that heavy flows in the context of the streaming model are defined with respect
to the entire stream as opposed to Interval Heavy flows which are heavy within a
given time interval. Algorithms such as the Space Saving algorithm [8] do not offer
a direct mechanism for detecting heavy hitters with respect to part of the stream and
therefore new techniques are required for the detection of Interval Heavy Flows.

Definition 2.3. Bulky flow at a point of time: Given a stream of packets S, and
a length of time m, a bulky flow is a flow that contains at least B packets in the
previous m time units.

The algorithms we present for large flows follow the above definitions which
consider traffic volume measurements in terms of packets. Nevertheless, we note
that certain traffic management capabilities require volume, i.e., byte size, analysis.
For instance, if we wish to identify the flow which takes up the most bandwidth,
then we are required to count the number of bytes in the flow rather than the number
of packets. The algorithms presented here work well for both definitions.

2.3. Towards a Solution in SDN

Fundamental counter based algorithms for finding Heavy Hitters (or flows)
such as that of Metwally et. al. [8], cannot be directly implemented in the SDN
framework since in the worst case they would require rule changes for every packet
that traverses the switch. A different approach is therefore needed.

First we consider a naive solution which we name Sample&HH, that samples
packets in the switch and then sends all sampled packets to the controller. The
controller computes the heavy flows using a heavy hitters algorithm. However, as
can be seen in Figure 4a (and other works [15]), relying solely on the samples
is not accurate enough. Next we consider a solution based on the Sample&Hold
paradigm of [15] which was devised for identifying elephant flows in traffic of
classic IP networks. In Sample&Hold sampled packets are sent to the controller,
which installs a counter rule for each new flow that is sampled. Every consequent
packet from that flow will be counted by the rule and will not be sampled. By using
sampling together with accurate in-band counters for sampled flows Sample&Hold
achieves very accurate results, yet the high amount of counters and the rate of
installing them make Sample&Hold incompatible with SDN switch architecture.
Therefore we only consider it as a reference point to evaluate our algorithm.

To deal with the problems of the above solutions, we present our Sample&Pick
algorithm. Sample&Pick uses sampling to identify flows that are suspicious of be-
ing heavy. For these suspicious flows a special rule is placed in the switch flow
table providing exact counters for them. The Sample&Pick algorithm considers
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both the bounded rule space in the switch as well as the time it takes for the con-
troller to install a rule in the switch. Therefore we use two separate thresholds,
the first, T , for determining which flows are heavy and a second lower threshold,
t, for detecting potentially large flows. This lower threshold allows us to install
rules in the switch early enough to get an accurate count of the large flows, yet we
do not install rules for too many flows that will remain small. The Sample&Pick
algorithm is described in detail in Section 3.1.

Table 1 depicts the conceptual differences and the resource consumption over-
head of the Sample&Pick algorithm, the SDN Sample&Hold algorithm and the
Sample&HH algorithm.

Technique Switch mem-
ory usage

Controller
functionality

Controller to
Switch traffic

Switch to con-
troller traffic

Sample&Pick Sampling
rules + at
most 1

t count
rules

Heavy hitter-
s computation
+ counter ag-
gregation

Every interval
at most 1

t new
count rules

Sample of
all non-hold
packets +
counters each
interval.

Sample&Hold
(OpenFlow
variant)

Sampling
rules +
unlimited
count rules

Counter
aggregation

Every new
sample create
message with
a new count
rule

Sample of
all non-hold
packets +
final counters.

Sample&HH Sampling
rules

Heavy hitters
computation

None Sample of al-
l packets

Table 1: Comparison of the heavy flow detection techniques presented in this paper. Denote t the
threshold for candidate heavy hitters in Sample&Pick.

3. Heavy Flows Detection

3.1. The Sample&Pick algorithm

3.1.1. Algorithm Overview
Our algorithm operates as follows: in the first step we sample the flows go-

ing through the switch using one of the sampling techniques to be explained in
Section 4. As can be seen in Fig. 1, these samples are sent to the controller, that
feeds them as input to a heavy hitters computation module in order to identify the
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name match actions
Count f low1 (src ip,src port,dst ip,dst port) = f low1 1
... ... ...
Count f lowm (src ip,src port,dst ip,dst port) = f lowm 1
Sample (src ip,src port,dst ip,dst port) = ∗ 2

Table 2: Illustration of switch flow table configuration. Rule priority decreases from top to bottom.
Actions: 1- increment counter; 2 - apply sampling technique (goto sampling tables / apply group)

suspicious heavy flows (steps 2 and 3). Once a flow’s counter in the heavy hitter-
s module has passed some predefined threshold t, a rule is inserted in the switch
to maintain an exact packet counter for that flow (steps 4 and 5). This counter is
polled by the controller at fixed intervals and stored in the controller (steps 6 and
7). Finally the last step increments the counters that are processed by the Heavy
Hitters module to maintain correct counters of non-sampled flows.

Figure 1: Sample&Pick overview

3.1.2. Switch Components Design
As seen in Fig. 1, two kinds of rules are used in the switch flow tables. The

sampling rules, which are created as needed by the selected sampling algorithm as
described in Section 4. And the counter rules used for precisely counting packets
of potentially heavy flows. An example of this configuration can be seen in Table 2.

First, each packet is matched against counter rules. In case of a successful
match, the relevant counter is increased. Only if the packet does not match any
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counter rule, it is matched against the sampling rules, and if the packet is selected
by the sampling rules it (or only the headers) is sent to the controller. Counters of
the counter rules are only sent to the controller when polled by the controller.

3.1.3. Controller Components Design
As shown in Fig. 1, the controller maintains the heavy hitters computation

module and a collection of the exact counters accumulation.
The heavy hitters computation module: Maintains the heavy hitters data struc-

ture according to the algorithm of Metwally et al. [8], as described in Section 2.1.
As the heavy hitters module only receives sampled data which is sent to the

controller from the switch, the traffic of the heavy flows which are not sampled is
not inserted at all into the heavy hitters and therefore it may seem as though the
flows are no longer heavy. To simulate the sampling of these heavy flows, when
the controller polls the switch for the updated counters, it uses those counters to
update the heavy hitters module accordingly. That is, we simulate a sampling of the
heavy flows by updating the heavy hitters module with the number of new packets
that have been counted since the previous polling, multiplied by the sampling ratio
p. As noted, this mechanism saves a substantial amount of sample traffic from the
switch to the controller.

The exact count data structure: The accumulated counters of the flows that are
suspected to be heavy are maintained in a simple ordered data structure. Its use is
to compute the delta from the previous time the counters were polled. This delta is
then fed (with a factor) into the heavy hitter module.

An additional counter is maintained in the controller to count the total number
of items inserted into the heavy hitters module, which is necessary to calculate the
rates from the individual counters inside the heavy hitter module. At any point the
heavy flows may be identified as the flows in the heavy hitters module that have
passed the threshold T , relative to the total counter.

3.1.4. Analysis
Here we discuss how to choose the parameters, t and v of Sample&Pick al-

gorithm for given problem parameters, the threshold T for heavy flow and the
sampling probability p. Recall that v is the number of items maintained by the
Space Saving algorithm used in the controller component (see Section 2.1). The
threshold t is used to detect large flow candidates (see Section 3.1). By definition,
if a total of N packets have passed so far, each heavy hitter flow contains at least
T N packets. Our controller receives each packet with probability p. The num-
ber of samples is then on average (or exactly depending on the sampling method)
n := N p. The number of packets sampled out of x original packets is a random
binomial variable with average xp and variance xp(1− p). When x is high this
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converges to normal distribution with similar parameters. For normal distribution,
w.h.p the random variable is within distance of 3 times the standard deviation from
the average. Therefore the number of packets sampled from x packets is w.h.p
greater than xp−3

√
xp(1− p).

Our scheme uses a threshold t < T , in order to detect possible heavy flows
that might be missed due to sampling errors. For a heavy flow (with at least T ·N
packets) w.h.p at least T N p−3

√
T N p(1− p) packets are sampled. We need to set

t to ensure that the above expression is higher than t ·n. Thus,

t < T −3

√
T (1− p)√

N p
(1)

Since t must be a positive number, we get the following constraint on the flow
weight (ratio) our scheme is expected to detect: T 2− 9 T (1−p)

N p > 0 which is valid
when

T > 9
1− p
N p

(2)

To illustrate the relationship between the different parameters, we examine the
following example: Given a line rate of 6 ·105 packets per second and a controller
throughput of only a few thousands messages per second. We need a sampling
rate of at most 1 : 100, i.e., p < 10−2. Assuming that the tested interval is at least
10 seconds long, more than six million packets pass through the switch during the
interval, i.e., N > 106. From Equation 2 we get that the threshold, T , can then be
roughly 10−3 or more.

Next we consider the fact that the flows that are monitored by exact counters
are updated in batches (when reading the switch flow entry counters). To make
sure that their counters in the approximate HH structure are not evicted between
updates, we set the number of entries, v, to be high enough considering the thresh-
old, t, for monitored flows.

Next we show that by choosing v= 2/t the number of samples that would cause
the eviction of one of the monitored flows, that is, a flow that is located at the top
part of the approximate heavy hitters structure, is very high.

Assume we have k monitored flows, the sum of their counters is at least k ·n · t.
The number of other values in the table is v− k, and their sum is at most n− knt.
In order for the minimal monitored flow to be evicted, all lower values in the table
should exceed it, i.e., all smaller counts need to become higher than nt. Their sum
should thus be at least (v− k)nt, increasing by at least (v− k) · nt − (n− knt) =
vnt − n. Since the counts change by the number of incoming samples, if we set
v = 2

t then the number of new samples received between batch updates should be
as large as the number of all samples received so far (n) which is highly unlikely.
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3.2. Interval Heavy Flow and Bulky Flow Detection

Recall that, an interval heavy flow is a flow whose volume is more than T
percent of the traffic seen in the last time interval of length m. While the problem
is defined in a continuous manner, that is, an interval can begin at any point in
time, considering the inherent subtle delays caused by the OpenFlow architecture,
an approximate solution is sufficient.

Figure 2: The modified heavy hitters data structure using counter arrays. In this example the active
counter is currently c1.

Our solution makes use of the Sample&Pick algorithm, specifically we take
the array of counters in the heavy hitter module in the controller as the starting
point. We modify this structure so that instead of maintaining one counter per item
(flow), an array of counters is maintained for each flow that is kept in the heavy
hitter module. In addition, for each flow we maintain an additional accumulative
counter. The updated counter structure is depicted in Fig. 2.

The array of counters for each flow maintains the history of the flow’s counter
values in fixed intervals of time. The flow’s accumulative counter is the sum of all
the counters in the flow’s array. Let m seconds be the selected time interval, and
let there be r history counters maintained for each flow, we get a sub-interval that
is m

r seconds long. The basic idea is that in each sub-interval a different counter in
the array is updated by the HH module, in addition to updating the accumulative
counter. Thereby, consecutive (cyclicly) counters in the array can be used to calcu-
late the number of times the value appeared in the entire interval. At the beginning
of the sub-interval, for each flow, the value of the active counter is decreased from
the value of the accumulative counter. Then all active counters in all flows are re-
set to zero. In this manner, at the end of each sub-interval, for any flow, the active
counter equals the number of times the flow was sampled during that sub-interval,
and the value of the accumulative counter equals the number of times the flow was
sampled in the last interval m. It follows that if the index of the active counter is a
s.t. 0≤ a≤ r−1 for any r′ ≤ r−1 the sum of the cyclically consecutive counters
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between index a− r′ mod r and a equals to the number of times the item was seen
during the r′ previous sub-intervals.

Note that if an interval does not begin at the beginning of an exact sub-interval,
we will consider it to begin at the start of either the current or the consequent sub-
interval.

The accumulative counter has two additional important uses: 1) it is used to
maintain the threshold ratio; 2) it is used by the heavy hitters algorithm as the
de-facto counter for deciding which flow has the minimum counter and should be
evicted.

Using the accumulative counter in this manner is the basis for the correctness
of our algorithm, which we will now briefly show. Given an interval i of length
m, denote N to be the number of items seen in i. If i is made up only of whole
sub-intervals, it is easy to see that at the end of interval i the accumulative counter
of each flow in the structure is equal to what its counter would be had we reset all
of the counters at the beginning of the interval. Therefore, using the accumulative
counters as described above provides us with a heavy hitters mechanism which
supports the same counter error rate (i.e. N

v ) as that of [8]. If, however, i begins in
the middle of a sub-interval, the counter error rate is slightly higher. In this case,
suppose i contains j complete sub-intervals, and at most 2 partial sub-intervals.
The additional error contains appearances of the flow which occurred in the partial
sub-intervals, which may incur an additional error of at most N

v since otherwise it
would be heavy for an interval comprised of only complete sub-intervals as well,
making the overall error rate in this case to be 2N

v .
Notice that bulky flows can be detected by using the above mechanism without

dividing the counters sum by the relevant sum of counters, but rather taking the
absolute values.

4. Traffic Sampling

An SDN controller sets flow entries in the switch, a flow entry can match one
or many flows but generates one statistical record for all matching flows. A con-
troller has to install a flow entry per each separately monitored flow in real time
by sending all unmonitored flows to the controller which in turn would install a
specific entry for each. Monitoring flows in real time in the controller is infeasible
due to controller computation speed constraints. Therefore in order to find large
flows in SDN networks, sampling has to be used to reduce the set of monitored
flows.

We discuss two types of traffic sampling: packet sampling and pseudo byte
sampling, for which we provide the following definitions respectively:
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Definition 4.1. Packet sampling: Select each packet in a stream of packets with
probability p, 0≤ p≤ 1.

Note that the number of packets sampled from each flow times 1/p is an estimation
of the real number of packets in the flow (during the sampling period).

Definition 4.2. Pseudo byte sampling: Select each byte in a stream of traffic with
probability p, 0≤ p≤ 1.

Practically, this translates to a packet size based sampling, where given a stream
of packets, a packet of size s bytes is selected with probability 1− (1− p)s. For
small enough p, this can be approximated by 1−e−ps and since usually ps << 1 it
is approximated by simply p · s. With this type of sampling, the number of packets
sampled from each flow times 1/p is an estimation for the real number of bytes in
each flow (during the sampling period).

4.1. Packet Sampling
We present two approaches for packet sampling, each using different SDN

features.
Packet Sampling Using Random Selection: The following technique in the

most direct way to implement packet sampling, it utilizes OpenFlow weighted
groups (Section 7.3.4.2 in [16]), an optional feature intended for unequal load shar-
ing and we expect it to be supported by future P4 compilers.

A weighted group contains a list of buckets each with different weight and
actions. A packet is assigned to such a group (by the apply group instruction) is
randomly diverted to one of the buckets according to the weights and that bucket’s
actions are applied to the packet.

In our case, we use a group with two buckets - an ”active” bucket that transfers
to the receiver and a ”dummy” bucket does nothing. We set the weights of the
buckets according to the sampling probability p: weight 1 for the active bucket and
weight d 1

pe−1 for the dummy bucket.
Note that as weighted groups are optional in the OpenFlow standard and are

currently considered expensive (in terms of switch resources) and are not supported
by P4, this solution is not compatible with all switches.

A similar sampling technique can be achieved by using OpenFlow round-robin
groups, where for each packet the next action bucket is chosen (in round robin
order). This technique is less compatible and more expensive than weighted groups
based technique, and we therefore only use it for comparison with other techniques
without describing the full implementation details.

Packet Sampling Using Hash Matching: As random generators are not native-
ly supported by current SDN standards, OpenFlow and P4, we suggest to use the
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hash of the packets instead. More precisely we suggest to use Ethernet CRC or
TCP/UDP checksum fields and match them against predefined bit patterns thereby
selecting which packets to sample and send to the collector. We overcome weak-
nesses of this method in the sequel.

More precisely, assuming p = 1
2k the controller randomly selects a ternary pat-

tern with k 0/1-bits (not ’*’s) for matching the checksum field, and install a flow
entry with that pattern as the match and with an action to forward to the collec-
tor. For example, sampling with probability p = 2−13 0.0001 is implemented by
matching the (16 bit) checksum to a ternary pattern with 3 ∗′s (don’t cares) and 13
zero/one bits.

To achieve uniform packet sampling using this mechanism, the selected pattern
must be chosen with a uniform distribution and on a packet field which is uniformly
distributed across all packets. The first requirement insures that any pattern value
may be chosen with equal probability, and the second requirement insures that all
packets have an equal chance of matching this pattern.

Matching unconventional packet fields (e.g. checksum) is supported in P4 and
is also supported by some SDN switches such as the NoviKit [6, 7] using the op-
tional Experimenter extension. In general this method uses the fundamental prop-
erties of all match-action modules (flow tables, TCAMs, etc..) and therefore ex-
pected to be easily realized in future network devices and control protocols.

Note that setting a single match pattern without changing it may present some
problems. For example, crafted packets such as those in DDoS attacks may be
missed. Such packets may be generated with a specific checksum value, and would
be missed by this method. If, for example, this attack accounts for 50% of all traffic
going through a link for some given time interval, and these packets all have the
matched field set to some predetermined value, then the sampling is no longer done
uniformly across all packets causing the sampling rate to be reduced in half. In
order to deal with such scenarios, the controller should modify the selected match
pattern randomly every fixed period of time, so that the mechanism approximates
a sampling with a uniform probability for selecting any packet over a long enough
period of time.

Additionally, since each change in the bit pattern requires a new rule (e.g.,
OpenFlow FlowMod command) to be sent by the controller to the switch, there is
a tradeoff between the safety of the scheme and the control traffic it creates. It is
also possible to send multiple commands in batches utilizing rule timeouts to set the
end time of rule liveness, yet these rules have to be separated by additional rules to
set the start time. Considering a short 1sec update interval and a command packet
size of 108 bytes (40 bytes for TCP/IP headers and 68 bytes for OpenFlow 1.3
FlowMod message with two actions) we get an insignificant control plane traffic
of 108B/s (in each direction).
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The flow entries can be installed in a dedicated flow table, so that the sampling
process does not interfere with other switch processing. Packets that match the
pattern are sampled and then all packets continue to traverse the rest of the tables
as in the unmodified pipeline. This process is depicted in Fig. 3.

Figure 3: Example of the randomized bit algorithm for packet sampling. All packets traverse through
both the new table and the original flow table. The sampling rate provided is p = 1

128 . Sampled
packets may be sent to a monitor or the controller.

4.2. Pseudo Byte Sampling

As described above, Pseudo Byte Sampling with probability p per byte is ap-
proximated by sampling each packet with probability p · s, where s is the packet
size.

We present optimized techniques for pseudo-byte sampling, which are based
on matching the packet size. Matching unconventional packet fields (e.g. packet
size) is supported in P4 and is also supported by some SDN switches such as the
NoviKit [6, 7] using the OpenFlow optional Experimenter extension

A General Approach for Pseudo-Byte Sampling: A straightforward implemen-
tation of the pseudo-byte sampling is to use multiple instances of any of the pack-
et sampling implementations presented so far, where each instance samples with
a different probability, and we divert each packet to the most accurate sampling
instance considering the packet size. More formally, given a set of packet sizes
{si}1≤i≤R, we define the set of sampling instances {PSi}1≤i≤R, where PSi samples
any packet with probability p · si. Moreover, we divert each packet with size s to
the sampler PSz, where z = argmini|s− si|.

The maximum error ratio in this method is maxi
si

si−1
. Therefore, in order to

bound the error sis should be chosen as geometric series. For example, for 1≤ i≤
R, si = m · 2i where m and M are min and max packet size (e.g., 64 and 1500 for
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Ethernet) and R = log2
M
m . Finally, following last example, given a packet of size s

we divert it to the PSdlog2 se.
Note that this approach presents a tradeoff between accuracy and resources. In

order to reduce the maximum error, one has to use more sampler instances.
Pseudo-Byte Sampling with Hash Comparison: The following sampling tech-

nique uses constant resources and has optimal accuracy. It is fully supported by P4
and is also supported by some SDN switches such as the NoviKit [6, 7] using the
OpenFlow optional Experimenter extension.

Before describing the technique we first make the following observation: if s
and M are numbers such that 0< s<M and x is a random variable chosen uniform-
ly from [0,M], then the probability that x≤ s is s/M, i.e. for x∼U([0,M]),Pr(x≤
s) = s

M . Following the last observation, if we substitute M with 1
p , we get that the

probability of sampling a packet of size s, namely ps, is equal to the probability
that x < s. This means that given access to such uniform distribution we can im-
plement size based sampling in the following way: for each packet of size s, first
randomly choose x, then if x < s transfer the packet to the receiver.

Similarly to the hash matching technique, we suggest to use the packet check-
sum as a random number generator. Assuming 1

p = 2b, where b ∈ N, we use the
first b bits of the checksum field as the random variable x, and we define rules that
check whether x < s. If the comparison succeeds the action should forward the
packets to the receiver and otherwise do nothing.

Comparing two fields is also not natively supported in OpenFlow but can be
implemented by a flow table filled with 2b+ 1 rules, where b is the width of the
compared numbers (in bits) [17].

Similarly to the packet sampling with hash matching described in the previous
section, the pseudo-byte sampling technique presented here might miss specific
classes of crafted packets whose checksum is high. Therefore we need to add
some external randomness that is changed over time. While in the case of packet
sampling we can just change the pattern, in the pseudo byte sampling case we need
to affect the comparison result.

The solution we suggest is that every fixed time interval the controller will
modify a rule (or a batch of rules with different timeouts) that writes the metadata
field of every packet with some value r, and that value will be used in a modified
version of comparison that checks whether x⊕ r < s. For each new value of r the
controller needs to send one FlowMod command packet whose size in our scenario
is less than 110 bytes. As in the packet sampling case, even for short time interval
of 10 seconds, the control traffic overhead is insignificant.
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(a) Comparison of algorithms by Counter er-
ror, False negative errors and False positive
errors.

(b) Comparison of algorithms by Overal-
l traffic (between switch and controller) and
Switch memory usage.

Figure 4: Resource consumption and accuracy comparison

5. Evaluation

5.1. Comparison of Algorithms

5.1.1. Comparison of Our Algorithms
We compare our Sample&Pick algorithm to the two additional solutions de-

scribed above Sample&Hold and Sample&HH (See algorithms overview in Ta-
ble 1). We analyze the resource consumption and accuracy of each of the algo-
rithms in fixed time intervals. We use 10 intervals of 5 seconds each, and we
collect the counters of each algorithm at the end of each interval. In addition we
compare the results of these algorithms to that of the OpenSketch Heavy Hitters
detection mechanism [5]. For our analysis, we use a one-hour packet trace collect-
ed at a backbone link of a Tier-1 ISP in San Jose, CA, at 12pm on September 17,
2009 [18].

We chose the following simulation parameters T = 5 · 10−3 (to detect flows
each of which takes up more than 0.5% of the traffic), p= 1

1024·102 Bytes (to sample
roughly 0.1% of not picked packets) and considering the analysis at Section 3.1.4
we set Sample&Pick parameters t = 2 ·10−3 and v = 2000.

Figure 4a shows a comparison of the three algorithms based on accuracy crite-
ria. The counter error refers to the ratio between the real count of the heavy hitters
and the algorithm estimates. The false negative and false positive errors is the ratio
between Heavy Hitter (HH) flows missed to the total number of HH flows, and
the HH flows wrongly detected to the total number of HH flows respectively. Fig-
ure 4b shows a comparison of the three algorithms based on the amount of traffic
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they generate and the amount of memory they use in the switch. As can be seen,
while Sample&Hold provides the best accuracy results, it requires an increasing
amount of counters and therefore its switch memory consumption is significant-
ly higher than that of the other algorithms. In contrast, Sample&HH requires the
least amount of switch memory since all of the heavy hitters computation is per-
formed in the controller yet it relies on sampling alone and provides significantly
lower accuracy results. Our testing shows that Sample&Pick provides accuracy re-
sults only slightly inferior to those of Sample&Hold yet requires significantly less
switch memory.

Technique Error Rate Switch
memory
usage

Controller ↔
Switch Traffic

Sample&Pick 3.3% 2KB 220KB/s
Sample&Hold 1.15% 400KB 140KB/s
Sample&HH 11.3% ≤ 1KB 270KB/s

Table 3: Resource consumption test results

As can be seen in Table 3, Sample&Hold gives the smallest error rate, since
it performs an actual count of all flows that it samples, yet it uses significantly
more switch memory. Sample&HH uses only samples for the counter estimates
without using any counters in the switch yet incurs significantly higher error rates.
Sample&Pick has relatively small error rates due to the actual counting of poten-
tially heavy flows, yet due to the careful selection of which counters to place in
the switch, the switch memory usage in Sample&Pick is very low. According to
our testing, the error rate of Sample&Pick may be further reduced with increased
sampling rate or counter polling rate, yet the switch memory requirement remain-
s steady at 2KB as determined by our parameters. The controller↔switch traffic
(sum of traffic in both directions) of each of the presented algorithms is directly in-
fluenced by the sampling rate (recall in this case p= 1

1024·102 Bytes) and the counter
polling rate of the controller. In the case of Sample&Pick the polling rate is set to
be every 0.1 seconds in these tests, while in Sample&Hold the controller only poll-
s for the counters once at the end of the interval. As can be seen, Sample&HH
produces a larger traffic overhead since all sampled messages are sent to the con-
troller whereas in the other two algorithms the counters in the switch perform the
aggregation locally.
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5.1.2. Comparison to Existing Solutions
We compare our results to several existing solutions: Sampled Netflow [2],

OpenSketch [5], Hashpipe [19] and UnivMon [20].
We compare the results achieved by the different solutions when tested on ISP

backbone traffic. We analyze the results presented by the authors in each of the
above papers using multiple different CAIDA traces from recent years.

Summarizing our testing of our Sample&Pick algorithm, it achieves an average
error rate of 3.3% using 2KB of switch memory. Both false positive and false
negative rates are approximately 2% and the communication overhead is averaged
at 220KB/s.

We now compare these findings to those of the other solutions. Sampled Net-
flow [2] is based on sampling performed at the switch and processing of the data at
the collector. Our Sample&HH algorithm is a simulation of this mechanism. Sam-
pling based methods reduce communication overhead at the cost of accuracy[15].
As can be seen in Table 3, the Sample&HH mechanism achieves a significant-
ly higher error rate of 11.3%, and still requires more communication between the
switch and the controller. False positive and False negative are both higher at≥ 6%.

Comparing our results to testing done on the OpenSketch Heavy Hitters de-
tection mechanism [5], we can see that to achieve a comparable error rate of ap-
proximately 3% Opensketch utilizes ≥ 100KB of memory in the switch compared
with 2KB needed by our method. To achieve better error rates, OpenSketch re-
quires hundreds of KB more. The false positve and false negative rates are ≤ 1%.
The table maintained by OpenSketch at the switch needs to be periodically sent
to the controller therefore incurring a communication overhead proportional to the
amount of memory needed in the switch or greater.

UnivMon [20], a P4 based solution, achieves slightly better error rates of≤ 1%,
yet the switch memory requirement is averaged at ≥ 200KB which is significantly
higher than that required by our solution. The communication overhead includes
sending the sketch to the controller every interval.

Haspipe [19], is another P4 based solution, performed completely in the data
plane. It reaches an estimation error of ≤ 10% and false negative rate of ≤ 10%
using 80KB of switch memory. Communication overhead includes reporting the
detected heavy hitters to the controller.

5.2. Parameters Evaluation

We evaluate the affects of different parameters on our system. In our analysis,
we compute average results for 50 time intervals, 10 seconds each, of packet traces
collected at backbone links of a Tier-1 ISP in San Jose, CA and Chicago, IL, during
the years 2009-2016 [18, 21, 22, 23].
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Figure 5: Affect of varying t values

The base setting of our system for all the following tests used the following
parameters: T = 0.01, p = 1

256 Packets, t = 0.005, v = 400.
The first parameter we examine is t, which is the threshold for considering a

flow a potentially large flow and installing an exact monitoring rule for a it. As
discussed in Section 3.1.4 we recommend using t = T/2, where T is the target
threshold for large flow. In Figure 5a we can see that when setting t as high as T
we have more errors, this is due to the fact that exact counters are placed for bigger
flows and exactly at target, therefore less flows are accurately monitored, and more
flows might be measured by random sampling, hence decreasing accuracy. How-
ever as seen in Figures 5b and 5c, this setting requires less communication with
the controller at the beginning (as less counter values are sent) and less monitoring
rules at the switch.

When setting t to be as low as T/4 we can see in Figure 5c that it results in
high switch memory consumption, as more monitoring rules are installed, with-
out noticeable improvement in accuracy compared to setting t = T/2 (Figure 5a).
Overall, we can conclude that choosing t = T/2 provides a good balance of moni-
toring resources and accuracy.

Next, we consider different values of parameter v (the number of items main-
tained by the heavy hitter module in the controller) and its effect on the system. As
discussed in Section 3.1.4 we recommend setting v sufficiently higher than 1/t, for
example v = 2/t, as 1/t is the maximum number of monitored flows in the switch.

As can be seen in Figure 6a, using lower values of v may decrease the accuracy
during the inspected 10 sec window but not in the final result. However, as can be
seen in Figures 6b and 6c, using v = 1/t produces significantly more communi-
cation to the controller and consumes more switch memory compared to 2/t and
4/t. We can conclude that using v = 2/t produces good results with low controller
memory consumption.
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Figure 6: The effect of varying the value of v.

Note that while v represents the memory overhead of the controller, the pro-
cessing time overhead of the controller is proportional to the amount of incoming
traffic to the controller. This corresponds to the number of counters and packetIns
sent from the switch, each requiring an update to the table of counters in the con-
troller.

In addition, note that other factors were also measured during the executions,
such as errors in the reported large flow counts and traffic from the controller to the
switch, however due to space constrains, we included only those that were most
affected by the studied parameters. Expected values for the missing measures can
be seen in Table 3 and Figure 4a.

Finally, we compare the performance of our scheme for different values of
the large flow threshold T , while using the suggested values for v and t. As can
be seen in Figure 7a, with smaller values of T it takes a longer time to achieve
accurate results (although all runs complete with a very small error rate). This is
due to the fact that a lower value of T calls for the detection of smaller flows which
are more prone to errors caused by sampling.

Considering the traffic from the switch to controller, as can be seen in Figure 7c,
the smaller the value of T , the less PacketIn messages generated. This is due to
the fact that a smaller T means more monitored flows and therefore less traffic is
sampled and sent to the controller. However, as seen in Figure 7c, more monitoring
rules means higher consumption of switch memory.

6. Distributed Setting

In many cases, in order to achieve a comprehensive view of the network, it is
required to distributively monitor traffic at multiple switches. There are two main
challenges to deal with when detecting large flows in this distributed setting; false
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Figure 7: Results for different values of large flow threshold (T )

negatives due to split flows and false positives due to sequential flows. Split flows
are large flows that their traffic is split to small sub flows, each going through a
different monitoring switch, and therefore monitored in parallel. Split flows could
be caused by load balancing between different paths, rerouting or flows that do
not share the same source and destination IPs and are therefore routed through
different paths in the network. On the other hand, sequential flows are small flows
that each of their packets traverse multiple monitoring switches and are therefore
over sampled or counted.

In this section we extend our Sample&Pick solution in order to support this
distributed setting. We describe the changes that need to be done to the sampling
and to the large flow detection scheme. We note that our solution easily scales with
the number of monitoring switches. To support multiple controllers, a hierarchy of
controllers needs to be defined and data should be collected by the controllers and
forwarded up the hierarchy.

Sampling: In order to handle over sampling of sequential flows, flows that each
of their packets traverse multiple switches, we need to prevent each packet from
being sampled more than once. We suggest to do so by marking packets after they
are sampled (whether selected or not) and by applying sampling only to unmarked
packets. Marking of packets can easily be managed in SDNs (with OpenFlow and
especially with P4), for example by utilizing one bit in the VLAN tag. Matching the
VLAN tag of each packet can be easily done and allows to skip sampled packets.
Note that the marks should be removed at egress ports so that they do not affect the
traffic leaving the network.

Heavy Flow Detection: As described in Section 3.1, our Sample&Pick algo-
rithm makes use of both sampling and exact counter rules in the switch. To support
the distributed setting, and to handle split flows, that each of their sub flows goes
through a different monitoring switch, all of the samples and counter values from
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all monitoring switches should be aggregated centrally by the controller. The con-
troller will receive the samples and counter values from the different switches and
treat them as if they were generated by a single monitoring switch. One of the im-
plications of that is that when a flow becomes suspect of being large, exact counter
rules should be installed on all monitoring switches, to assure that all consequent
packets going through the network are counted.

Similarly to sampling, in case of sequential flows that traverse multiple switch-
es, exact counters (on different switches) should not count the same packet more
than once. The same packet marking technique we suggest to avoid over sampling,
can be used in order to prevent multiple counting (see Figure 8), i.e., marked pack-
ets are not matched against exact counter rules nor sampled. Moreover, packets
which match exact count rules are marked even if they have not been sampled.

Figure 8: Marking sampled packets in the distributed setting.

7. Related Work

One of the earliest network monitoring tools was Cisco Netflow [2], which al-
lowed collection of IP flow level statistics. Netflow provided the ability to gather
information from the router about every IP flow, including byte and packet counts
yet suffered from high processing and collection overheads, which were partially
decreased using sampling in the variant Sampled Netflow, yet this variant provid-
ed reduced accuracy caused by the straightforward use of sampling [15]. In [15]
Estan and Varghese significantly improve the accuracy of the sampling process by
introducing the Sample and Hold algorithm which provides better accuracy while
reducing the processing and collection overhead. The sample and hold algorithm
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is essentially sampling with a ”twist”. As in regular sampling, each packet is sam-
pled with some probability, and if there is no entry for the packet’s flow, an entry
is created. Once an entry for a flow exists, it is updated for every packet thereafter
in that flow.

In a usual setup, monitoring devices are placed in central locations in the net-
work (such as Arbor’s Peekflow [24], or other security detection devices) and sam-
ples of traffic are being sent to the monitoring devices for various additional pro-
cessing for which the switch/router are not suitable, such as heavy-hitters analysis,
DPI, and behavioral analysis. These monitoring devices usually cannot absorb and
process all the traffic. Therefore, traffic must be sampled, and only the samples or
relevant flows should be forwarded to these devices.

As the networks evolved, network monitoring tools with more advanced capa-
bilities were developed. In [25], for example, a flow monitoring tool was presented.
There, they discussed adding flow sampling abilities as an inherent capability of the
routers. They provide a framework for distributing the monitoring across router-
s, allowing for network-wide monitoring. By using uniform hash functions, flow
sampling is not duplicated across different routers which route the same flow.

In OpenFlow the flow table allows us to define rules which support count-
ing of bytes and packets per flow. However, this is not sufficient for more ad-
vanced measurements. Recently there have been several works that discuss or
suggest enhancements to network measurement capabilities for both OpenFlow
and for SDN in general. FleXam is a sampling infrastructure for OpenFlow pro-
posed in [26], which adds sampling capabilities, using random number generation.
Opensketch [5] is a commonly known measurement platform which provides a
simple approach to collect and use measurement data, separating the measurement
data plane from the control plane. The paper suggests a new architecture, where in
the data plane, a pipeline of three essential building blocks is provided: hashing,
filtering and counting, and in the control plane, a wide library of measurement tasks
is provided. The above works suggest an alternate to the OpenFlow architecture,
while our work relies on features that already appear in the current OpenFlow stan-
dard as required or optional features, in addition to the common extensions such
as matching on an extra field in the packet. These extensions follow the concepts
described in [27], that suggests that the OpenFlow standard should allow the user
to configure the headers that the switch can examine. All our modification are in
the spirit of OpenFlow architecture. A broader comparison to our solution is given
in Section 5.1.2.

We note that there are works that do not require changes to the OpenFlow s-
tandard. For instance, OpenNetMon described in [28] is a controller module for
monitoring flow level metrics, such as packet loss, delays and throughput in Open-
Flow networks, for determining whether QoS criteria are met, which is based on
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the OpenFlow standard. Our solution which combines both a switch module and a
controller module provides accurate results while significantly reducing the com-
munication overhead. Another such solution has been introduced in [29]. There,
a method for heavy hitters detection is presented which analyzes network statistics
using different aggregation levels. This solution does not require sampling which
allows them to reduce communication overhead.

A recent work [30], proposes a method for distributing the monitoring tasks
between different switches in order to reduce the number of rules needed in each
switch. This method is orthogonal to our distributed solution (see Section 6), and
can be combined to further reduce the number of switch entries.

An additional line of work relies on different hardware for heavy hitter detec-
tion. A recent work, [31], proposes DREAM, a framework for identifying heavy
hitters (see Section 2.1) in traffic using TCAM based hardware. As shown in [31],
the algorithm they use for heavy hitters detection may require more TCAM en-
tries than a commodity switch may have available. Therefore DREAM performs
efficient multi-switch resource allocation between switches to achieve the desired
accuracy rates. The Sample&Pick algorithm we propose (Section 3.1) requires
significantly less counters in the switch and can be used by DREAM to reduce the
overall number of switch entries used.

Solutions have also been presented using a NetFPGA Openflow switch. In [32]
a solution is presented which is based on the Count-Min sketch [11] with an auxil-
iary data structure for maintaining the identities of the heavy hitters. The memory
required by this solution is slightly higher, yet comparable to the requirements of
our proposed algorithm, however, it is not limited to the match-action model and
assumes that the required data structures can be placed on a particular hardware
design.

Recent advances in programmable data planes including the development of
the P4 language and switch architecture have brought the development of telemetry
solutions performed mainly or solely in the data plane. The Hashpipe algorithm
presented in [19] provides a solution for heavy hitters detection done completey in
the data plane using P4 programmable switches. A comparison to our solution is
given in Section 5.1.2.

A generalized approach is presented in UnivMon [20] where a solution for a
P4 universal sketch is presented which is performed mostly in the data plane. The
solution maintains a sketch in the data plane and a summary of the sketch is sent as
required for further evaluation in the control plane. A comparison to our solution
is given in Section 5.1.2.

We note that there have also been works done on variations of the interval
heavy hitters problem, such as [33] which proposes a scheme based completely on
statically allocated memory for finding sliding window heavy hitters.
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8. Conclusions

We have presented techniques for performing large flow detection and sam-
pling in SDN. Our sampling techniques are unique in that they are simple and
remain mostly within the confinements of the OpenFlow standard. Our approxi-
mation algorithms for large flows detection provide a generic mechanism for SDN,
providing a way to detect various types of large flows with a relatively small er-
ror rate while minimizing the computation and space overhead in the switch and
requiring little controller-switch communication. Furthermore, we expanded our
algorithms to a distributed multi-switch setting.
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