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ABSTRACT
The recent introduction of SDN allows deploying new cen-
tralized network algorithms that dramatically improve the
network operation. Many of these solutions rely on the as-
sumption that the centralized controller merges data from dif-
ferent NetworkMonitoring Points (NMP) to obtain a network-
wide view. This is far from trivial when the same packet may
traverse through several NMPs. Therefore, existing solutions
either assume that each packet is measured at exactly one
NMP or that the routing of each packet is known. Another
approach is to mark the sampled packets so that other NMPs
are aware that the packet was already considered.
We suggest the first network-wide and routing oblivious

algorithms for three fundamental network monitoring prob-
lems. The suggested algorithms allow flexible NMP place-
ment, require no control over edge routers, and are indif-
ferent to network topology and routing. Moreover, they are
based on passive measurements without modifying the traf-
fic in any way. Formally, we provide a general, constant time
framework that solves the distributed versions of the volume
estimation, frequency estimation and heavy-hitters problems
with provable guarantees. The evaluation of our scheme on
real packet traces shows that we can achieve very accurate
results using a very reasonable amount of memory. For ex-
ample, using less than 60KB memory in each monitoring
point we get a root square error of less than 0.01% of the
packets for frequency estimation.
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Figure 1: A high-level overview of the scenario consid-
ered in this work. Measurement points are placed in
some of the network devices and deliver the measure-
ment data to a centralized SDN controller. Our meth-
ods require no knowledge of routing and can handle
packets that traverse more than a single site without
double counting them.
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1 INTRODUCTION
Many basic network functionalities such as routing, load bal-
ancing, QoS enforcement, anomaly detection and intrusion
detection require accurate measurements of the network
load and identification of the heavy flows [10, 14, 20, 26, 30,
37]. Network measurement is challenging due to the rapid
line transmission rates, the massive traffic volume and the
scarcity of SRAM memory in routers. Existing works are
thus optimized for space and update complexity.
Gathering load and flow statistics at a single (virtual or

physical) network device was extensively studied [8, 9, 11, 12,
15, 18, 22, 23, 34, 38]. The data collected at the device is used
for local decisions that are made within the switch. However,
several network applications such as traffic engineering [14],
finding lossy links [33, 42] and identifying super-spreaders
and port scans require a network-wide perspective [40].
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Problem Space in each NMP (Bits) Update Time Query Time Theorem #
Distributed Volume Estimation O

( (
ε−2 + logn

)
logδ−1

)
O(1) worst case O(1) 3.1

Distributed Freqency Estimation O
( (
ε−2log |U| + logn

)
logδ−1

)
O(1) amortized O(1) 3.3

Distributed Heavy Hitters O
(
ε−2 log |U| log

(
ε−1δ−1

) )
O(1) amortized O(θ−1) 3.5

Table 1: Summary of our results. n is an upper bound on the number of packets (n ≥ |S|).

Indeed, network-wide measurement is extensively stud-
ied [4, 6, 7, 17, 19, 27, 29, 32, 41]. In this field, the existence of a
centralized controller is assumed and the measurement data
is collected in some of the network devices. The centralized
controller merges the collected data from the Network Mea-
surement Points (NMPs) and creates a network-wide view of
the entire traffic as illustrated in Figure 1. This view is based
on aggregate and should count each packet exactly once.
This is a challenging task as packets may traverse multiple
NMPs which may cause double counting.

Avoiding double counting is a fundamental challenge for
network-wide measurements; yet, to date, a practical solu-
tion has not been proposed. Specifically, the majority of exist-
ing solutions avoid the problem by assuming that no packet
traverses more than a single NMP. Clearly, this assumption
requires an understanding of the routing and topology of the
network. In the SDN era, routing is very flexible and even
a single flow may be routed over multiple paths. Thus, this
assumption complicates the measurement mechanism and
limits the ability to enjoy the benefits of SDN technologies.
A possible solution to the double counting problem was

recently proposed in [4], where the authors suggest to mark
packets when they are first measured. Therefore, NMPs need
to only count unmarked packets and avoid double count-
ing. The method utilizes unused bits in the packet headers,
which means that for correctness (and network friendliness),
packets also need to be unmarked as they leave the network.
While this solution tackles the fundamental problem it suf-
fers from three major problems: (1) While marking packets is
easy, unmarking is much more complex. It requires identify-
ing for each packet the last NMP before it leaves the network
(and unmark the packet there). (2) An attacker can easily ex-
ploit the mechanism to avoid detection bymarking the attack
packets. The NMPs would ignore these packets and the at-
tack may go unmonitored. (3) Since the solution uses unused
bits, it has a hidden assumption that these bits arrive cleared
to the network. This assumption may not hold true for var-
ious reasons. Specifically, other entities may use the same
bits for their own applications. Hence, marked packets may
enter the network and interfere with the measurement. Thus,
a solution that does not modify the traffic is preferable.

1.1 Our Contribution
In this work, we suggest routing oblivious algorithms for
fundamental network-wide monitoring problems such as
estimating the total number of packets or total payload size

in the network, estimating per-flow size (packet or byte) and
reporting the heavy hitter flows. For each of these problems,
we suggest an algorithm that does not modify the packet
content in any way and does not assume that packets only
traverse a single NMP. Specifically, our algorithms only as-
sume that each packet passes through one or more NMPs.

2 PRELIMINARIES
Our data consists of a stream of packetsS ∈ (U × N)∗, where
each packet ⟨x , i⟩ is associated with a flow identifier x ∈ U

and a unique identifier i ∈ N. Here, U is the universe from
which the identifiers are taken. For example,U may be all
32-bits source IPs, 64-bit source and destination IP pairs,
5-tuples, etc. Different packets may have the same unique
identifiers, but each packet is associated with a distinct (flow
identifier, unique identifier) pair. For the TCP protocol, we
can use the sequence number as a unique identifier. For other
protocols, the works of [21, 42] suggest various methods to
distinctly identify packets according to their header fields.
This paper assumes that such a unique identifier exists for
each packet.
The network consists of k measurement points R1, . . .Rk .

Each such networkmeasurement point (or NMP) Rr observes
a subsequence of the stream Si ⊆ S such that ∪k

i=1Si = S.
That is, we assume that each packet traverses at least one
NMP but may also traverse multiple NMPs. This model is
considerably more general than the one studied in previous
works [27, 29, 39]. The fundamental difference is that these
works assumed that each packet traverses a single NMP and
therefore no packet is counted twice.
The frequency of a flow x ∈ U is defined as the number

of packets that belong to the flow: fx ≜ |{⟨x , i⟩ ∈ S}|. We
summarize the notations used in this paper in Table 2.

2.1 Count Distinct Algorithms
Our work utilizes a count distinct algorithm A as a black
box. We assume that A allows processing of a stream and
upon query provides a (1+εA)-approximation of the number
of distinct items in the stream with probability ≥ 1 − δA.
A supports three functions; A.Add(·) processes elements,
A.Query returns an estimate to the number of distinct ele-
ments, and Merge(A1,A2) returns a merge of the instances
A1 and A2. That is, assume that the sets of distinct elements
observed by A1 and A2 are S1 and S2, then Merge(A1,A2)
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Symbol Meaning
S The packet stream
n An upper bound on the length of the stream (n ≥ |S |)

NMP Network Measurement Point
⟨x, i ⟩ A packet from flow x with sequence number i
U The universe of flow identifiers
fx The frequency of flow x ∈ U

k The number of routers in the network
Ri Router number i (i ∈ {1, . . . , k })
Si The sub-stream seen by router Ri (∪i∈{1, . . .,k }Si = S)
V̂ an estimate for |S |

ε The goal error parameter
δ The goal error probability
f̂x An estimate for the frequency of flow x
θ Heavy hitter threshold
A A Count Distinct algorithm with an (εA, δA) guarantee

SεA,δA The space that A requires

χ
The sample size required for an (ε, δ ) approximation
as in Lemma 3.2 (χ = 3ε−2 log 2δ−1)

Table 2: A list of symbols and notations

is an instance that monitors S1 ∪ S2. These assumptions are
satisfied by many count distinct algorithms [5, 24, 25, 28, 31].
Intuitively, count distinct algorithms calculate a hashed

value of each item and then remember certain patterns about
the observed values (e.g., the maximal or minimal values).
Statistical reasoning is then applied to determine the number
of distinct items most likely to yield the observed pattern.
We denote by SεA,δA the space required by S ; we note

that a SεA,δA = O
((
ε−2
A
+ logn

)
logδ−1

A

)
bits algorithm is

known [31] for ≤ n distinct elements. Further, this algorithm
processes new elements and answers queries in O(1) time.

2.2 Problem Definitions
We consider the following network-wide problems:

• (ε,δ )-Distributed Volume Estimation: Return an
estimator V̂ for the overall number of packets in the
network. With probability 1 − δ , V̂ is a (1 + ε) multi-
plicative approximation for |S|.

• (ε,δ )-Distributed Freqency Estimation: given a
query for flow x ∈ U, return an estimator f̂x that
satisfies: Pr

[��� f̂x − fx

��� > |S|ε
]
≤ δ .

• (ε,δ )-Distributed Heavy Hitters: Upon a query
with parameter θ , return a set S ⊆ U such that:
(1) Pr [∃x | fx ≥ |S|θ ∧ x < S] ≤ δ , and
(2) for all y ∈ U such that fy < |S|(θ − ε) we have
that Pr [y ∈ S] ≤ δε .

3 ALGORITHMS
We now provide algorithms for the problems presented in
Section 2.2. Table 1 provides a summary of our algorithms.

3.1 Distributed Volume Estimation
In distributed settings, it is not trivial to measure the total
traffic volume as packets may be counted multiple times
along their route. In principle, existing approaches avoid this
problem by assuming that each packet is only monitored at
a single place. In this work, we provide a solution that tracks
the overall number of packets without assumptions on the
network topology, routing, or the order of packets. Thus, we
explicitly allow packets to be routed through multiple NMPs.

We avoid double counting using a count distinct algorithm
(A) to measure the number of distinct packets. Attaining
distinct ids for packet is addressed in [33, 42].

That is, each NMP maintains such an algorithm. To record
a packet ⟨x , i⟩, we simply add x to the distinct count of A
(A.Add (⟨x , i⟩)). TheNMPs synchronizewith the controller at
the end of the measurement and each NMP transmits its state
to the controller. Count distinct algorithms can be merged
and the result is exactly the same as if the measurement
was performed on a single NMP that observed the entire
traffic. Therefore, the controller achieves a network-wide
and provably accurate estimate of the total number of packets
regardless of topology, routing and the order of the packets.

Theorem 3.1, whose proof follows immediately, shows the
correctness of our approach

Theorem 3.1. Let εA = ε,δA = δ be the parameters for the
algorithm A that runs on each NMP. Then the controller solves
(ε,δ )-Distributed Volume Estimation.

3.2 Distributed Sampling
Intuitively, we use samples to find the heavy hitters and
estimate per-flow frequency. The following lemma explains
how to estimate frequencies from a uniform sample.

Lemma 3.2. Denote χ ≜ 3ε−2 log 2δ−1. Let S′ ∈
(
S

χ

)
be a

random subset of size χ of S and let p ≜ χ
|S |

be the proba-
bility in which each packet is sampled. If we denote by f ′x the
frequency of a flow x ∈ U in S′, then
Pr

[
|p−1 f ′x − fx | > |S|ε

]
≤ δ .

Proof. We use the Chernoff Bound [35] that states that
for all 0 < t ,p ′ ≤ 1 n ∈ N a binomial random variable
X ∼ Bin(n,p ′) satisfies Pr [|X − np ′ | ≥ t · np ′] ≤ 2e−np′t 2/3.
Let X denote the number of appearances of x in S′. Then
X ∼ Bin(fx ,p) and according to the inequality

Pr
[
|p−1 f ′x − fx | > |S|ε

]
≤ Pr

[
| f ′x − p fx | > p fxε

]
≤ 2e−fxpε

2/3 = 2e−fx ε
2 χ
3|S| = 2e−

fx log 2δ−1
|S| ≤ 2e−log 2δ

−1
= δ .

□

In the distributed case, random sampling does not generate
a uniform sample as each NMP samples a different substream.
Thus, packets that traverse multiple NMPs are oversampled

68



ANCS ’18, July 23–24, 2018, Ithaca, NY, USA R. Ben Basat, G. Einziger, S. Feibish, J. Moraney, and D. Raz

and the result is not a uniform sample. This means, that the
frequencies of packets cannot be directly extracted from the
sample and limits its usability. Therefore, we briefly describe
how to overcome this problem and provide the controller
with a uniform sample that can be used for heavy hitters and
frequency estimation.

Intuitively, we use a random hash function 1 h : {0, 1}∗ →
[0, 1] that returns a uniformly distributed random number
for each hashed bit-string given as key. The hash function is
known to the controller and all routers. Each router applies
h on each arriving packet ⟨x , i⟩ and stores the χ packets with
the highest h value. When the measurement ends, each NMP
sends its state to the controller. The controller thenmerges all
reports to obtain the χ packets that have the highesth values.
As this is equivalent to finding the χ packets from S with
the highest h value, and since h is random, we have that the
controller obtains a uniform sample of χ packets 2. The anal-
ysis in [16] shows that the expected number of updates each
NMP Ri makes to obtain a χ -sized sample is O(χ log |Si |).
This implies, as each heap updates takes O(log χ ) time, that
if the number of packets the NMP observes is Ω(χ log χ )
then its amortized update time becomes constant.

3.3 Distributed Frequency Estimation
The above sampling technique allows one to estimate the
frequency of a flow if the effective sampling probability
p =

χ
|S |

is known (see Lemma 3.2). Unfortunately, while
χ = 3ε−2 log 2δ−1 is known, |S| is not. We circumvent this
problem by running a volume estimation algorithm as in
Section 3.1 in parallel to a distributed sampling instance.
Specifically, we show that by setting the error parameters
of the volume estimation to εV = ε/3 and δV = δ/2 and
the parameters of the distributed sampling to εs = ε/2 and
δs = δ/2 (i.e., each router tracks χ = 12ε−2 log 4δ−1 pack-
ets), we can solve the problem by returning f̂x ≜ f ′xV̂ /χ .
Theorem 3.3 is the main theoretical result for this section.

Theorem 3.3. There exists an algorithm that requires:
O
( (
ε−2 + logn + log |U|

)
logδ−1

)
bits at each NMP, processes

packets and answers queries inO(1) amortized time, and solves
(ε,δ )-Distributed Freqency Estimation.

3.4 Finding the Heavy Hitters
In the non distributed case, heavy hitters are a by-product of
frequency estimation. For example, we can find heavy hitters
by returning all flows whose estimate is above the threshold.
Surprisingly, we can solve the heavy hitter problem directly.
1Such hash functions do not exist in practice, but one can use a hash function
that returns (2 log |U | log δ−1) random bits instead; for simplicity, we avoid
the analysis of discretized image values.
2We also note that if |S | ≤ χ then no sampling takes place and the router
sees the entire data and computes all frequencies with no error.

That is, we use our distributed sampling technique to obtain
a uniform sample and check which flows are heavy in the
sample. Our algorithm is simpler than that of the previous
section – we run a distributed sampling protocol and let
the controller infer the heavy hitters upon query. The next
lemma lays the theoretical foundation of our algorithm.

Lemma 3.4. Let ε,δ ,θ > 0 and χ ′ ≜
⌈
9ε−2 log(2δ−1ε−1)

⌉
.

Let S′ ∈
(
S

χ ′

)
be a random subset of size χ ′ of S. If we

denote by f ′x the frequency of a flow x ∈ U in S′, then
S ≜

{
x ∈ S′ | f ′x ≥ (θ − ε/2)χ ′

}
solves (ε,δ )-Distributed

Heavy Hitters.

Applying this lemma, we have the following theorem.

Theorem 3.5. There exists an algorithm that requires
O
(
ε−2 log

(
δ−1ε−1

) )
bits at each NMP, processes packets in

O(1) amortized time, answers queries in O(θ−1) time, and
solves (ε,δ )-Distributed Heavy Hitters.

4 ANALYSIS
In this section, we provide the needed analysis and the proofs
for the correctness of our algorithms.

4.1 Frequency Estimation Algorithm
We proceed by proving Theorem 3.3.

Theorem 3.3. There exists an algorithm that requires:
O
( (
ε−2 + logn + log |U|

)
logδ−1

)
bits at each NMP, processes

packets and answers queries inO(1) worst case time, and solves
(ε,δ )-Distributed Freqency Estimation.

Proof. Recall that our algorithm sets the error parame-
ters of the volume estimation to εV = ε/3 and δV = δ/2
and the parameters of the distributed sampling to εs =
ε/2 and δs = δ/2. This means that by the correctness of
the Distributed Volume Estimation algorithm, we have
that V̂ is a (1 + εV ) multiplicative approximation of |S|, i.e.,
Pr

[
|V̂ − |S|| > |S|εV

]
≤ δV . Recall that we observe the sam-

pled frequency of the queried item f ′x , and that according to
Lemma 3.2:
Pr

[��� |S |

χ f ′x − fx

��� > |S|εs
]
= Pr

[
|p−1 f ′x − fx | > |S|εs

]
≤ δs .

Since δV + δs = δ , we have that with probability 1 − δ��� |S |

χ f ′x − fx

��� ≤ |S|εs and |V̂ − S| ≤ |S|εV . Recall that our

estimator is f̂x = f ′xV̂ /χ . Therefore, since 0 ≤ fx ≤ |S| and
ε < 1, we get:

f̂x − fx = f ′xV̂ /χ − fx ≤ (1 + εV )f ′x |S|/χ − fx

≤ (1 + εV )
(
f ′x |S|/χ − fx

)
+ |S|εV

≤ (1 + εV )|S|εs + |S|εV = |S|(εV + εs + εV εs ) = |S|ε .

Similarly:
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f̂x − fx = f ′xV̂ /χ − fx ≥ (1 − εV )f
′
x |S|/χ − fx

≥ (1 − εV )
(
f ′x |S|/χ − fx

)
− |S|εV

≥ −(1−εV )|S|εs − |S|εV = −|S|(εV +εs −εV εs ) ≥ −|S|ε .

We thus conclude that Pr
[��� f̂x − fx

��� ≥ |S|ε
]
≤ δV + δs = δ .

Finally, since εV = εs = Θ(ε) and δV = δs = Θ(δ ), the
memory per NMP isO

( (
ε−2 + logn + log |U|

)
logδ−1

)
. □

4.2 Heavy Hitters Algorithm
We proceed with the proof of Lemma 3.4.

Lemma 3.4. Let ε,δ ,θ > 0 and χ ′ ≜
⌈
9ε−2 log(2δ−1ε−1)

⌉
.

Let S′ ∈
(
S

χ ′

)
be a random subset of size χ ′ of S. If we

denote by f ′x the frequency of a flow x ∈ U in S′, then
S ≜

{
x ∈ S′ | f ′x ≥ (θ − ε/2)χ ′

}
solves (ε,δ )-Distributed

Heavy Hitters.

Proof. Denote by H ≜ {x ∈ U | fx ≥ |S|θ } be the set of
true heavy hitters, and let x ∈ H . We apply Lemma 3.2 with
δ ′ = δε and ε ′ = ε/2 to get

Pr
[
f ′x < (θ − ε/2)χ ′

]
= Pr

[
f ′x < (θ − ε ′)χ ′

]
= Pr

[
|S|

χ ′
f ′x < |S|(θ − ε ′)

]
= Pr

[
|S|

χ ′
f ′x − fx < |S|(θ − ε ′) − fx

]
≤ Pr

[
|S|

χ ′
f ′x − fx < |S|(θ − ε ′) − |S|θ

]
= Pr

[
|S|

χ ′
f ′x − fx < −|S|ε ′

]
≤ Pr

[���� |S|

χ ′
f ′x − fx

���� > |S|ε ′
]
≤ δ ′.

Thus, the probability of each x ∈ H to not be reported
is at most δ ′. We then use the Union bound to conclude
that the probability all of H is successfully reported in H is
at least 1 − |H |δ ′ ≥ 1 − θ−1δ ′ ≥ 1 − ε−1δ ′ ≥ 1 − δ . Next,
let NH ≜

{
y ∈ U | fy < |S|(θ − ε)

}
be the set of non-heavy

flows and lety ∈ NH . Then, we use Lemma 3.2 fory to obtain

Pr
[
f ′y > (θ − ε/2)χ ′

]
= Pr

[
|S|

χ ′
f ′y > |S|(θ − ε ′)

]
= Pr

[
|S|

χ ′
f ′y − fy > |S|(θ − ε ′) − fy

]
≤ Pr

[
|S|

χ ′
f ′y − fy > |S|(θ − ε ′) − |S|(θ − ε)

]
= Pr

[
|S|

χ ′
f ′y − fy > |S|ε ′

]
≤ Pr

[���� |S|

χ ′
f ′y − fy

���� > |S|ε ′
]
≤ δ ′ = δε .

We thus conclude that our method of examining just the
sampled set S′ solves Distributed Heavy Hitters. □

Based on the correctness of Lemma 3.4, the space require-
ment stated in Theorem 3.5 follows immediately. For answer-
ing queries inO(θ−1) time, the controller keeps the histogram
of S′ in an array sorted by the observed frequencies

{
f ′x
}
.

5 EVALUATION
In order to study the actual tradeoff between the amount
of memory used and the accuracy of the relevant estima-
tions, we evaluate our algorithms on real traffic traces. Our
C++ prototypes are online [36] and we used an open source
implementation HyperLogLog [2].

Datasets:We used the following datasets:
(1) The CAIDAAnonymized Internet Trace 2016 [3]. From

the “Equinix-Chicago” high-speed monitor.
(2) Border router trace from the CS department at the Uni-

versity of California, Los Angeles, denoted byUCLA [1].
(3) A data center trace [13], denoted by UNIV.
Metrics: We consider the following performance metrics:
(1) Mean Square Relative Error (MSRE): Measures the av-

erage of the squares of the relative errors, i.e., given the
estimations (a1,a2, ...,an) and true values t1, t2, ..., tn ,
the MSRE is: 1

n
∑i=n

i=1 (
ai−ti
ti

)2.
(2) Root Mean Square Error (RMSE): Measures the dif-

ferences between predicted values of an estimator to
actual values. Formally, for each flow x the estimated
frequency is f̂x and real frequency is fx . RMSE is cal-

culated as:
√

1
N
∑

x ( f̂x − fx )2.
(3) Wrong Estimation Percentage (WEP): The percentage

of flows in which the absolute difference between their
estimation and their real frequency is larger than |S |ε .

(4) False Positive and False Negative Ratio (FPR) and (FNR).

5.1 Evaluation Results
As we proved in the previous sections, the accuracy of our
method depends only on the set of packets in the network
during the monitoring period and does not depend on the
placement of the NMPs, the routing of the flows, or the actual
network topology. Thus we evaluated a single instance of
our algorithm. The accuracy is identical, to the one achieved
when any number of instances are merged together.

5.1.1 Volume Estimation. Figure 2a shows results for esti-
mating the total number of unique packets in the network. As
can be observed, the results are accurate with a small number
of counters and accuracy improves as the trace prolongs.

5.1.2 Frequency Estimation. Figure 2b shows results for
the Frequency Estimation problem. In this experiment, we
vary δ and measure how many wrong estimations we see.
That is estimations that vary by more than |S |ε . As can be
observed, the accuracy is much better in practice than indi-
cated by our analysis. The difference is because our analysis
is a worse case analysis whereas the traffic is taken from
real packet traces. Note that in this figure, the error is al-
ways 0. That is, we did not observe any wrong estimations
regardless of the value of δ . This can be explained by our
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Figure 2: (a)MSREof the volume estimation algorithm.
(b) Wrong estimation percentage of the frequency es-
timation algorithm for varying δ .
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Figure 3: RMSE in frequency estimation and varying δ .

analysis; Lemma 3.2 discusses the sample size χ required for
adversarial streams. Namely, we use the fact that fx ≤ |S|

and use e fx / |S | ≤ e1. If we know that fx ≪ |S|, we can
get a far better bound. Namely, in CAIDA the largest flow
accounts for just 0.6% and in UCLA the largest takes about
5% of the stream. This means that the error probability is
over 400 million smaller than the guaranteed δ .

Figure 3a quantifies the root mean square error (RMSE) for
ε = 0.1 and Figure 3b for ε = 0.01 with varying delta values.
We evaluate the required space including all overheads of
our algorithms and compare the space to accuracy tradeoff
of our approach. First, notice that both configurations are
very accurate in practice on both the CAIDA and the UCLA
trace. Indeed, allocating more memory improves the empir-
ical error. Specifically, notice that increasing the memory
from 60KB to 6 MB (x100) reduces the error by a factor of
≈ 10 as is indicated by our squared dependence on ε . We
selected these parameters as they are within the operating
range of network devices. We note that the RMSE of 300
packets corresponds to less than 0.01% of |S| which shows
that the empirical performance on real traces is even better
than guaranteed by the analysis.

5.1.3 Heavy Hitters. Figure 4a, shows the false positive
ratio of the algorithm as a function of the memory. For the
given θ = 0.01, there were no heavy hitters in the CAIDA
trace and our algorithm indeed did not identify any flow as
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Figure 4: False Positive/NegativeRatio for heavyhitter
detection with θ = 0.01, ε = 0.005 and varying δ .

a heavy hitter. We can see that for UCLA there where seven
heavy hitter flows for the given threshold, and the algorithm
had identified mistakingly a single flow as a heavy hitter. In
the UNIV trace, the mean FPR is in the range 0.4%-0.5%.

Figure 4b, shows the false negative ratio of the algorithm’s
a function of the memory. For both traces, the actual FNR is
0. Similarly to Figure 2b, the low error is explained by the
fact that our analysis reflects an adversarial setting in which
the stream contains just a single flow; as the largest flow is
much smaller than the overall traffic volume, the effective
error probability is much lower than δ .

6 DISCUSSION
Our work shows the feasibility of attaining a network-wide
measurement in the most general model, without traffic ma-
nipulations or prior knowledge of the routing protocols, the
network topology or the order of the packets. We allow the
network monitoring points (NMPs) to be placed anywhere in
the network, as long as each packet is covered by at least one
of them. This is in contrast to the majority of prior works
that assume that each packet is counted exactly once, which
implies a severe limitation on their deployment.
We studied three fundamental network problems under

this model; (i) total volume within a network, (ii) providing
per-flow frequency estimations and (iii) finding the heavy hit-
ters. We introduced an efficient algorithm for each problem
and formally proved accuracy guarantees as well as analyzed
the runtime complexity. Our analysis is accompanied by an
evaluation of the schemes on real Internet packet traces. Our
evaluation shows that the proposed approach works well in
practice and within the performance parameters of network
devices. Our code is released as open source [36].
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