
Zero-Day Signature Extraction for High Volume
Attacks

Yehuda Afek, Member, IEEE, Anat Bremler-Barr, Member, IEEE, and Shir Landau Feibish, Member, IEEE,

Abstract—We present a basic tool for zero day attack signature
extraction. Given two large sets of messages, P of messages
captured in the network at peacetime (i.e., mostly legitimate
traffic) and A captured during attack time (i.e., contains many
attack messages), we present a tool for extracting a set S of
strings, that are frequently found in A and not in P , thus
allowing identification of the attack packets. This is an important
tool in protecting sites on the Internet from Worm attacks,
and Distributed Denial of Service (DDoS) attacks and may
also be useful for other problems, including command and
control identification, DNA-sequences analysis, etc. The main
contributions of this paper are the system we developed to extract
the required signatures together with the string-heavy hitters
problem definition and the algorithm for solving this problem.
This algorithm finds popular strings of variable length in a
set of messages, using, in a tricky way, the classic heavy-hitter
algorithm as a building block. The algorithm runs in linear time
requiring one-pass over the input. Our system makes use of
this algorithm to extract the desired signatures. Furthermore, we
provide an extended algorithm which is able to identify groups
of signatures, often found together in the same packets, which
further improves the quality of signatures generated by our
system. Using our system a yet unknown attack can be detected
and stopped within minutes from attack start time.

Index Terms—High volume attacks, DDoS, zero-day attacks,
signature extraction, heavy hitters.

I. INTRODUCTION

Signature extraction is an important tool in several network
security problems. In Distributed Denial of Service (DDoS)
mitigation, for example, there has recently been a growing
demand for zero day attack signature extraction solutions.

Two basic techniques are traditionally used to identify
DDoS attacks, flow authentication based on challenge response
and flow behavioural analysis based on statistics and learning.
Recent attacks with millions of zombies generating seemingly
legitimate flows go under the behavioural radar screen. In
these types of attacks, behavioural analysis does not succeed
to detect the malicious traffic, as each zombie generates little
traffic, which in itself may appear to be benign. Furthermore,
the huge amount of attack sources makes it unfeasible to stop
the attack at the source. Recent use of Internet-of-Things (IoT)
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devices in Botnets has caused further increase in the number of
compromised machines which may take part in the attack [12].
This therefore leaves a loophole in the defense mechanisms
and creates the demand for a DDoS zero day attack signature
extraction solution.

Identifying signatures for unknown DDoS attacks is ex-
tremely difficult due to the seemingly legitimate content found
in the packets which comprise the attack. Most traditional
signatures are based on the malicious code that is expected
in the attack packets, which may not be the case with modern
DDoS attacks. Leading industry experts [1], [2] confirm, that
the signatures found in recent zero-day application-level DDoS
attacks are usually a bi-product of the attack tools which the
attackers use. These tools, often leave some footprint caused
unintentionally by the program, such as a short string or
some (protocol complying) anomaly in the packet content
structure. Such signatures allow fine grained identification of
attack packets during an attack with minimal false positives
or negatives.

These subtle signatures are not identified by the current au-
tomated defense mechanisms, but rather by a manual process
which may take hours or days. Clearly, in order to stop such
unknown attacks while they are occurring, such signatures
must be extracted quickly and automatically.

A. Zero-day Attack Signature Extraction System

Generally speaking, leading security companies provide
systems which offer several layers of defense against high-
volume attacks. When all layers of defense fail, the attacked
customer contacts the security company’s support team to
alert them and get their assistance in stopping the attack.
This manual assistance may be composed of a number of
procedures, including the identification of attack signatures.
The attack mitigation process is therefore long and may take
hours to days, in addition it is labor intensive. Moreover, in
many cases the human eye misses the identifying string which
could be an extra space, line-feed etc.

We present a system for automatic extraction of signatures
for high volume attacks, using a single pass over the input, and
space dependent only on the predetermined size of the heavy
hitters data structure. Our system takes as input two streams
(or stream samples): one of traffic collected during an attack
and a second collected during peacetime. A peacetime traffic
sample may be collected as a routine scheduled procedure. The
attack traffic sample can be collected once the attack has been
identified. We note that for DDoS attacks there are existing
mechanisms for identifying when an attack has started and
for differentiating between Flash events and DDoS attacks,



for instance that of Park et al. [29]. The system then analyzes
both traffic samples to identify content that is frequent in the
attack traffic sample yet appears rarely or not at all in the
peacetime traffic.

Our system makes no assumptions on traffic characteristics
such as client behaviour, address dispersion, URL statistics and
so forth. Therefore, it is generic in that it can be easily adapted
to solving other network problems with similar characteristics.
That said, while our algorithm can generically work on dif-
ferent data types, our evaluation focuses on application-level
DDoS attacks.

The following are the basic requirements of our system:
1) Signatures should not be found frequently in legitimate

traffic. One of the main difficulties in differentiating
between malicious traffic and traffic from legitimate
sources, lies in the fact that malicious requests may have
legitimate payloads. Identifying these malicious requests
therefore becomes a significant challenge.

2) Allow signatures of varying lengths. The signatures pro-
duced by the algorithm must be of varying length. Setting
a predefined constant length for signatures would create
very problematic outcomes, as described in section IV-A.

3) Find a minimal set of signatures. Filtering devices such
as intrusion detection systems search for the signatures in
the packets. The complexity of this process is dependant
on the number of signatures. Furthermore, they may have
a limited capacity of signatures. The algorithm must
therefore aim to produce a small number of signatures
that capture the attack.

4) Minimize space and time usage. Our solution must main-
tain a high level of efficiency, such that the attack can be
stopped quickly with minimal space usage.

More specifically, given some constant k we wish to find
all strings s1, ..., sm, s.t. ∀i, 1 ≤ i ≤ m:

1) |si| ≥ k
2) si appears frequently enough in the attack traffic.
3) Either one of the following holds:

a) The frequency of si in peacetime is very low.
b) The frequency of si in peacetime is moderate, yet in

the attack traffic its frequency is significantly higher.
4) In order to have a minimal set, no string si is contained

in another string sj .
These requirements are formally explained in Section V-B.

In Section VI, we test our system on traffic logs of real
attacks that have occurred in recent years. We show that our
solution has good performance in real life, with a recall rate
average of 99.95% and an average precision rate of 98%.

Additionally, our system makes use of an algorithm we
have devised for finding heavy hitters in textual data which
is described in Section IV-A and is of independent interest.
This algorithm runs in a single pass over the input and space
dependent only on some predefined parameters.

B. Open Implementation

An implementation of our solution is publicly available and
may be used for signature extraction from user uploaded files.

It is found on our website [4]. Users are advised to prepare
a peacetime pcap file and an attack time pcap file which they
may upload to the website for immediate signature extraction.

II. PRELIMINARIES

Our work deals with a variant of the heavy hitters problem
which we call the string heavy hitters, which we soon define.

A. The Heavy Hitters Problem

Definition 1. Heavy Hitter: Given a sequence of N values
α = 〈α1, .....αN 〉 and a threshold 0 ≤ θ ≤ 1, using a
constant amount of space, a heavy hitter is an item which
has a frequency (the number of times it appears in α) greater
than θN .

The problem of finding the heavy hitters or frequent items
in a stream of data is: given a sequence of N values α =
〈α1, .....αN 〉 find nv heavy hitters using a constant amount of
space.

Many solutions have been proposed for the classical heavy
hitters problem, for example, the solutions suggested in [23],
[5], [11], [14], [21]. A description of a few counter-based
algorithms as well as other significant results regarding the
heavy hitters problem can be found in [9]. For our evaluation,
we chose to implement the algorithm of Metwally et al. [22],
since it provides quite accurate counter estimations for values
seen early in the stream [9]. The pseudo code of the algorithm
in [22] is shown in Procedure Metwally et al. Heavy Hitters.

Algorithm 1: Metwally et.al. Heavy Hitters()
Data: 〈α1, .....αN 〉, constant nv << N
Result: nv heavy hitters
// Maintain nv heavy hitter candidates.

1 Frequent[1...nv] = {item = NULL and count = 0};
2 for i = 1→ N do

// If in Frequent, increment count.
3 if ∃j s.t. Frequent[j].item == αi then

Frequent[j].count++;
4 else

// Look for item with smallest
count, and replace it.

5 find j s.t. ∀h
Frequent[j].count ≤ Frequent[h].count;

6 Frequent[j].item := αi;
7 Frequent[j].count++;
8 return Items;

The error rate ε of this algorithm is ε = N
nv

[22], meaning
that each counter in the output of the algorithm is at most ε
higher than the actual number of times that the value appeared
in the stream. The algorithm performs in O(N) time, it makes
only a single pass over the input, and requires constant space.

B. String Heavy Hitters

Heavy hitters algorithms are usually performed on numeric
data, whereas our work focuses on textual values.



Definition 2. String Heavy Hitter: Given a sequence S =
〈S1, .....SN 〉 of N strings and a constant k, a string s is a
string heavy hitter if it is a substring of one or more strings
in S, is of length at least k, and has a frequency above the
threshold θN . Note that the frequency of a substring s can be
defined as the total number of times s appears in S, or as the
number of strings in S in which s appears. For our purposes
we will be using the latter.

The String Heavy Hitters problem is defined as follows:
given a sequence S = 〈S1, .....SN 〉 of N strings and a constant
k, using a constant amount of space, find nv string heavy
hitters, such that no output string is contained in another output
string.

Notice that although the Hierarchical Heavy Hitters algo-
rithms (see for example [10]), may seem suited for textual
data, they work well on data which forms a well defined hier-
archical structure such as a sequence of IP addresses. Since our
algorithm searches for recurring strings in the traffic, and the
context of the strings is not relevant for our purposes, identical
strings need to be grouped together regardless of what comes
before them or after them in the content. Another related
problem is that of compressed sensing. Many interesting works
have been done in this field such as [6], [13], [27], [30], [38],
[42]. It has yet to be seen if the solutions presented for the
compressed sensing problem can be adapted to outperform the
above heavy hitters algorithms for the frequent items problem.

III. RELATED WORK

A. Automated Signature Extraction

In the past, automated signature extraction has been mostly
used as a tool for identifying computer malware such as
worms and viruses. As such, most algorithms presented for
this problem generally consist of two stages:
1) Identifying suspicious traffic which contains malware with

high probability. This is done using methods such as
honeypots [18], behavioural traffic analysis [32], etc.

2) Generating signatures for the suspicious content.
Therefore, the signature generation process of the previous
works [16], [18], [17], [32], [15], [31] done on malware
identification, was based on the use of traffic that is known
to be malicious. In our work we deal with the scenario in
which the suspicious traffic can not be detected a-priori, but
rather, the suspicious traffic contains some unique prevalent
content which needs to be identified. Meaning, attack-time
traffic is analyzed, parts of it may be malicious and others
may be legitimate. Therefore it is crucial to identify which
prevalent content is found only in malicious content and create
signatures for that content alone. Furthermore, our methods
allow us to identify not only seemingly legitimate malicious
content, but it can in fact, be legitimate in other traffic. For
example, in HTTP level attacks, an attacker can make use of
a legitimate yet not commonly used HTTP header field. Use
of a this field can, in this case, be an identifier of malicious
traffic, yet in a different case be completely legitimate.

In addition, most of the previous works were done for
signatures of a fixed length [16], [32], [15]. Finding varying-
length signatures poses inherent difficulties. We note two

works which have been done which generate varying length
strings. The first is Honeycomb [18] which was presented by
Kreibich and Crowcroft. There, signatures are created for sus-
picious traffic using pattern matching techniques. Specifically
using searches for longest common substrings within packet
payloads, using suffix trees. While this method allows creating
varying-length signatures, and the suffix tree can be created
in linear time using Ukkonen’s online suffix tree construction
algorithm [35], the space complexity of the suffix tree is at
least linear in the size of the input, and therefore not scalable
when dealing with large amounts of data. This is perhaps the
most substantial difference from our solution which uses a
configurable fixed amount of space while still maintaining a
time complexity which is linear in the size of the input.

Another work in which varying-length signatures are gen-
erated, is Autograph [17], presented by Kim et al. To generate
varying length signatures, the payload of suspicious traffic
is divided into variable-length content blocks based on the
Content based Payload Partitioning method first presented
in [24]. Content blocks are chosen as signatures based on
their prevalence in the traffic flows. While the signatures
produced are indeed of varying length, the Content based
Payload Partitioning performed is done using a predetermined
breakmark which is used to partition the payload into blocks
whose size is no more and no less than some predefined values.
Additionally, the average block size is also predetermined.
Evaluation done in [17], shows that a larger minimum content
block, such as 32 or 64 bytes is needed to avoid a high
false positive rate. Signature structure is therefore based on
predefined parameters which determine the breakmark and the
signature length. The system presented in our work allows
shorter signatures to be generated, and more importantly, does
not use a predefined breakmark for content partition so that
signatures can vary significantly from one another.

In [34], the authors present an automated system for detec-
tion of new application signatures for the purpose of traffic
classification. In this work, the authors present a system for
automatically identifying keywords of unknown applications.
The key difference between the solution presented in [34] and
the solution we present here is that in [34] it is assumed that
flows of the same application can be identified and therefore
the analysis can look for the common strings in the specified
flows. In our solution, one of the main difficulties is that we
do not know which of the packets are contained in the attack
and are therefore malicious and we therefore can not process
these packets alone to find the attack signature.

In [40], a mechanism is presented for botnet C&C signature
extraction. The mechanism identifies frequent strings in the
traffic and then rank the frequent strings based on traffic
clustering methods. While in [40] it is not assumed that the
C&C connections can be identified a-priori, their analysis is
based on characteristics of the connection and the traffic. Our
solutions makes no such assumptions and is therefore more
robust for dealing with specially crafted packets and attacks.

It is hard to achieve an ”apples to apples” comparison of all
of the prior signature extraction techniques mentioned above.
This is especially true when comparing with works which use
machine learning techniques such as [15], where time and



space complexity are several orders of magnitude higher than
the requirements of our system. Table I summarizes the main
differences between our work and some of the previous works
described above.

An interesting variation of the above problem is that of
signature extraction solutions with the ability to support mor-
phisms in malware. This problem was addressed in various
works [33], [19], [26], [17], where different algorithms for
automatic signature generation for polymorphic worms are
presented. In future work, we are planning to expand our
solution so that it may deal with such variations as well.

B. DDoS Defense Mechanisms

There has been a great deal of work done on mitigation
of different types of DDoS attacks. Recent advances include
solutions for mitigation of DDoS attacks in Software Defined
Networks or cloud environments (For example [39], [36]).

In order to place our solution on the map of available
DDoS solutions, we follow the classification of DDoS defense
mechanisms according to place and time presented in [41].
The solutions we present are generally destination based
solutions used during an attack (with a preparation stage to be
performed before an attack) targeting application level attacks.
Our solution is a content based packet filtering method and is
not based on the packet route or parameters.

It may seem natural to compare our solution to solutions
based on traffic anomaly detection. While our method does
look for changes in content from peace time to attack time that
exceed some predefined threshold, traffic anomaly detection
methods in DDoS attacks, are usually network or destina-
tion based solutions searching for abnormal traffic patterns.
Unusual traffic patterns may be detected using techniques
such as machine learning [37], [20] or entropy [25], [28].
Our solution is not based on traffic behaviour and makes no
assumptions on normal patterns of traffic. Solutions which
use traffic behavioural analysis, may fail to detect large-scale
DDoS attacks that simulate normal traffic behaviour. Since our
solution makes no assumptions on the traffic behaviour it may
be used to detect such attacks.

IV. THE DOUBLE HEAVY HITTERS ALGORITHM

We propose the Double Heavy Hitters algorithm. An algo-
rithm that identifies frequent substrings of varying lengths in
the given packets. The algorithm is a crucial component in our
signature extraction system. It is constructed from two heavy
hitters modules, hence the name Double Heavy Hitters. The
notations used for the algorithm are summarized in Table II.

A. Packet String Heavy Hitters

We define the packet variant of the String Heavy Hitters
problem (see Definition 2) as follows: Given a sequence P =
〈P1, .....PN 〉 of N packets and a constant k, using a constant
amount of space, find nv heavy hitter strings, such that each
has a frequency (the number of packets in which it appears)
which is higher than θN , and such that no output string is
contained in another output string. We name this variant the
Packet String Heavy Hitters problem.

B. Algorithm Overview

The Double Heavy Hitters algorithm (denoted DHH), uses
two independent heavy hitters components, HH1 and HH2,
as follows:

1) HH1 finds k-grams that appear frequently, i.e., that are
heavy hitters.

2) HH2 combines the k-grams of step 1 into varying length
strings that occur frequently in the input.

Define a k-gram to be a string of chars of length exactly
k. The input to the DHH algorithm is a sequence of np
packets, a constant k which will determine the size of the
k-grams used and a constant r which is the ratio between
the frequencies of consecutive k-grams explained shortly.
Conceptually, the process works as follows: the algorithm
traverses the packets one by one. For each index in the packet,
a k-gram is formed by taking the k characters starting from
that index. These k-grams are given as an input to HH1. To
form the varying length strings which are the input to HH2,
while HH1 processes the k-grams, the algorithm seeks to find
the longest run of consecutive k-grams such that: 1) they are
all already in HH1 (i.e., at this stage they are heavy hitters),
2) they have similar counters. The objective is that combining
two k-grams should occur only if they should be part of the
same signature. Without this ratio r, if some k-gram appears
very frequently, but the character that usually follows this k-
gram is inconsistent, then the preferred signature should not
combine this k-gram with the one that follows it. Specifically,
counters of two consecutive k-grams maintain a ratio of r.
In our experiments we tested values of r from 0 to 1. Since
for our purposes a longer signature was preferable we use a
ratio of 0.1 in our testing. Testing with a ratio of 0.5 or higher
produced significantly shorter signatures. An example of this
process can be seen in Fig. 1. Once the entire input has been
traversed, the algorithm outputs the items found in HH2.

abca cabc bcab k-grams: 

Is already 

in HH1? 
No Yes 

abcabc 

Check ratio 

between grams 

labeled “Yes” 

abca cabc bcab abcd 

Input:     a      b     c     a     b     c     a     b     c    d 

No No No Yes Yes 

Fig. 1: Creating varying length strings from k-grams.

C. Challenges

The Packet String Heavy Hitters problem is closely related
to the heavy hitters problem, defined in section II-A, however,
applying the known heavy hitters algorithms to textual data is
not at all trivial.

Specifically, the main problem is deciding how to partition
the text into items. Since we are looking for varying length
strings, we can not partition the text into disjoint parts as
their length is not known a-priori. We must therefore consider



Solution Signature length Prior classification of attack traffic Space Requirement Passes on input
Our
system

Varying length None Proportional to number of heavy hitters Single pass

[18] Varying Length Malicious traffic known Linear in input Single pass
[16] Fixed length Malicious traffic known Proportional to number of heavy hitters Single pass
[15] Fixed length Malicious traffic known Linear in input Multiple
[32] Fixed length Malicious traffic known Proportional to number of heavy hitters Single pass
[17] Varying length with limitations Malicious traffic known a-priori Linear in input Multiple pass
[34] Varying length Content groups known a-priori Linear in input Single Pass
[40] Varying length Traffic clustered based on traffic

characteristics and connections
Linear in input Multiple passes

TABLE I: Comparison to previous techniques

k minimal signature length (gram length)
r ratio between the frequencies of consecutive k-grams
HHj Heavy hitters module j (j ∈ 1, 2, 3)
nHHj

number of items in the HHj data structure (j ∈ 1, 2, 3)

TABLE II: Notations

a partition of the text into items which may overlap. Two
main problems arise when counting the frequency of these
overlapping items: the first is the substring pollution problem,
and the second is the frequency estimation problem.

The substring pollution problem If a string s, |s| > k
appears many times in the input text, then all the k-grams
which are substrings of s show up as heavy hitters and are
output by the heavy hitters algorithm. We name this problem
the substring pollution problem. The following is an example
of the problem: suppose the signature is abcabc and k = 4,
than all the 4-grams which make up the signature, i.e., abca,
bcab and cabc will be heavy hitters and will therefore pollute
the data structure. As explained in Section IV-B, our Double
Heavy Hitters algorithm deals with this problem by combining
k-grams that have repeatedly appeared in sequence, therefore
creating varying length grams. The process of creating a string
from consecutive k-grams, is a key factor in substantially
reducing the substring pollution in the output. For each such
consecutive sequence, the process creates a single input of
varying length to HH2, that has been naturally filtered by a
preceding heavy hitters procedure, HH1.

The frequency estimation problem Another problem
which arises when creating values from textual data is that
heavy hitters may be substrings of one another. This can occur,
for example, if both the strings ABCDEF and BCDE recur
frequently in separate locations in the text. The counter of
BCDE provided by the algorithm would not reflect the times
that BCDE appeared as part of ABCDEF . In order to
provide a better estimation of the frequency of each string, the
algorithm as described in Section IV-B must be modified to
support this. We treat this issue using an additional procedure,
which we describe in section IV-D1.

D. Algorithm Details

The pseudo code of the DHH algorithm is given in
Algorithm DoubleHeavyHitters(), which makes use of
the class HH and its functions: Init(nv), Update(α)
and FixSubstringFrequency(). The output of the
DoubleHeavyHitters() algorithm is a list of heavy

hitter strings found in HH2. The input provided to the
algorithm is a sequence of np packets, and constant integers:
k and r as explained above, and nHH1

and nHH2
which

indicate the number of items HH1 and HH2 will be
configured to hold respectively.

The algorithm works as follows: the packets are traversed
one by one. For each index in the packet, a k-gram is formed
by taking the k characters starting from that index. The k-
gram is given as an input to HH1, which in return provides
the k-gram’s counter in HH1 (a return value of zero indicates
that this is a new k-gram).

In order to account for varying length strings, while per-
forming the above traversal, an additional string stemp is
maintained. For any location in the packet, stemp is the last
longest heavy hitter string found until that location. stemp is
maintained in the following manner: At the beginning of each
packet, the string stemp is empty. For each k-gram that is
inserted to HH1, we check its returned value:

1) If stemp is empty and the returned value is greater than
zero, stemp is set to be this k-gram.

2) Otherwise, if stemp is not empty, one of the following
two occur:
a) If the returned value is equal to zero, stemp which is

the longest ”heavy” string we found until here, is given
as an input to HH2, and stemp is reset to empty.

b) Otherwise, the returned value is greater than zero.
In this case, this value is compared with the counter
value of the previous k-gram. If the ratio between the
two values is over some predefined ratio r, stemp is
concatenated with the last character in the current k-
gram. Else, stemp is given as an input to HH2, and
stemp is set to be this k-gram.

The algorithm then proceeds to treat the next index. When
all of the packets have been traversed, the algorithm outputs
the item in HH2.

We note, that the algorithm also maintains a set of all
the treated strings in each packet so that each string is
counted only once. This allows us to find strings that appeared
frequently in different packets rather than strings that have a
high overall frequency.

The strings are checked for uniqueness before being inserted
into HH2 to ensure that each signature is only counted once
per packet.

1) Improving the frequency estimation: Due to the fre-
quency estimation problem, as explained in Section IV-A, it
is possible that a string t in HH2 may contain a substring



Algorithm 2: DoubleHeavyHitters

1 Class HH
2 Members :
3 Items;
4 Functions :
5 Procedure Init(nv)
6 Items = allocate nv items
7 for i = 1→ nv do
8 Items[i].count = 0
9 Items[i].ID = null

10 Procedure Update(α)
11 if ∃jItems[j].ID == α then
12 Items[j].count++
13 output = Items[j].count
14 else
15 find j s.t. ∀h Items[j].count ≤ Items[h].count
16 Items[j].ID = α
17 Items[j].count++
18 output = 0
19 return output
20 Procedure FixSubstringFrequency()
21 for i = 1→ Items.length() do
22 for j = 1→ Items.length() do
23 if i! = j and Items[i].ID is a substring of

Items[j].ID then
Items[i].count+ = Items[j].count

24 Algorithm DoubleHeavyHitters
Data: sequence of np packets, constants k, nHH1

,
nHH2

, and ratio r
Result: the nHH2

candidates for being the heavy hitters
25 stemp = empty, temp counter = 0
26 HH1 = new HH , HH2 = new HH
27 HH1.Init(nHH1), HH2.Init(nHH2)
28 for i = 1→ np do

// Denote α1, ..., αh the bytes of packet
pi

29 for j = 1→ h− k + 1 do
30 counter = HH1.Update(αj ...αj+k−1)
31 if counter > 0 then
32 if stemp == empty then
33 stemp = (αj ...αj+k−1)
34 temp counter = counter
35 else
36 if counter > r · temp counter then
37 stemp = stemp||αj+k−1
38 temp counter = counter
39 else
40 if stemp! = empty then
41 HH2.Update(stemp)
42 stemp = (αj ...αj+k−1)
43 temp counter = counter
44 else
45 if stemp! = empty then
46 HH2.Update(stemp)
47 temp counter = 0
48 stemp = empty
49 HH2.F ixSubstringFrequency()
50 return HH2.Items
51

t′ which is also a string in HH2. However, when processing
t in HH2, the counter of t′ is not incremented. The goal of
our algorithm is to provide an estimate of the actual number
of times that a string was encountered. In order to achieve
a better estimation, we perform an additional procedure on
the strings found in HH2 at the end of the above algorithm,
to find which items in HH2 are substrings of other items in
HH2. The counter of the contained item is incremented by
all of the counters of the items that contain it. In this manner,
our final counters provide a better estimation of the number
of packets in which each string was encountered.

E. Error Rate Analysis

The heavy-hitters algorithm that we use is an approximation
algorithm, and therefore the DHH algorithm is also an
approximation. As can be seen in the below analysis, the error
rate of our algorithm is only a factor of 3 higher than that of the
heavy-hitters algorithm that we use as a building block. In fact,
as can be seen in the experimental results in Section VI, the
error rate of our algorithm is significantly smaller in practice.

Theorem 1. Bounds of the Double Heavy Hitters Algorithm:
The final counters provided by the algorithm may incur an
error of at most 3 nk

nHH
where nHH = min{nHH1

, nHH2
}

and nk denotes the total number of k-grams processed by
the algorithm.

Proof. In order to analyze the error rate of our algorithm, we
must first analyze the error rate of each of its components.
As described in Section II-A, the error rate of each of the
HH items is ε = N

nHH
, where nHH is the number of items

maintained by the HH , and N is the number of values in the
input. We have defined the number of items maintained by
HH1 and HH2 to be nHH1 and nHH2 respectively. Given an
input sequence of packets, the size of the input is calculated
as follows:

1) For HH1: Define the total number of k-grams in all the
packets in the sequence to be nk which is the bound on
the size of the input to HH1.

2) For HH2: The input to HH2 is made up of the strings
which are a sequence of consecutive k-grams. Denote
nc the number of such strings. nc is maximized when the
inputs to HH2 are all a single k-gram. To understand



how these strings can be formed lets look at the example
in Fig. 2. Suppose the k-gram abcd is a heavy hitter. In
order for the string beginning with this occurrence of abcd
to be made up of a single k-gram, the following character
e must be of a high variability in this context throughout
the input. Otherwise, the k-gram bcde would also be a
heavy hitter, and therefore abcd would be merged with
bcde, meaning the string would be longer than a single
k-gram. One can see that this would be true for all the
following k-grams which contain the character e, and
therefore they too can not be heavy hitters. The closest
following k-gram that can be a valid candidate for being
a heavy hitter is the k-gram following the character e.
It follows that nc ≤ nk

k+1 .

abcd  e  fgab efgfsdghjghn…… 

Heavy 

Hitter 

high variability – 

otherwise we get 

longer consecutive 

Next 

possible 

heavy hitter 

Fig. 2: Non-consecutive heavy hitters

It follows from the above calculation that the error rate
of HH1 is nk

nHH1
, and the error rate of HH2 is nc

nHH2
≤

nk

nHH2
(k+1) .

In order to complete the analysis, it remains to account for
occurrences of strings that are not produced as part of the
input to HH2. Generally, a string s is produced as an input
to HH2, if the k-grams that comprise it are already found in
HH1. Lets take a look at the sequence of k-grams processed
by HH1. For some index j, the jth k-gram will be found in
HH1 only if its frequency is over j

nHH1
. Since this must be

true for all k-grams that comprise s, it follows that there can
be at most nk

nHH1
appearances of S that are not produced as

part of in the input to HH2.
It follows that the overall error rate of our algorithm is

2 nk

nHH1
+ nk

nHH2
(k+1) . Taking nHH = min{nHH1

, nHH2
}, we

get that the error rate of the algorithm is bound by 3 nk

nHH
.

V. THE ZERO-DAY HIGH-VOLUME ATTACK DETECTION
SYSTEM

The main purpose of our system is to efficiently extract a
minimal set of signatures that distinguish malicious packets
from legitimate ones. Therefore, a major factor in producing
signatures which achieve both a low false negative rate (i.e., a
high detection rate) and a low false positive rate (i.e., a low rate
of legitimate traffic that is wrongly identified as malicious), is
the algorithm’s ability to identify strings which appear very
frequently in malicious traffic and which are hardly found in
legitimate traffic.

A. System Overview

Given a sample of peacetime traffic and a sample of the
attack traffic, the following three stages are performed:

1) Analyzing peacetime traffic
2) Analyzing attack traffic: the attack traffic is analyzed to

identify strings that are very frequent in the attack traffic
yet seldom or not found at all during peacetime.

3) Filtering the signature candidates: the strings found in the
above step are filtered according to predefined frequency
and containment requirements as will be explained in the
following sections.

Note that for DDoS mitigation for example, the traffic that
will be analyzed by our system can either be captured in the
DDoS mitigation apparatus or in the cloud by sampling the
traffic from several collectors. The signatures produced by our
algorithm can be used by the anti-DDoS devices and firewalls
to stop the attack. Using our algorithm, mitigation can be
achieved in minutes, allowing proper defense against such
attacks. Also, since DDoS attacks are usually high-volume
attacks, a sample of the traffic is sufficient.

B. System Requirements

Four thresholds tune the operation of the system:
1) Attack-high: a string s is an attack signature if its

frequency in the attack traffic is higher than attack-high.
2) Peace-high: a string s with peacetime frequency higher

than peace-high cannot be a signature of malicious
traffic.

3) Peace-low: a string with a peacetime frequency lower
than peace-low is a signature of an attack provided its
frequency during an attack is higher than Attack-high.

4) Delta: a string s whose peacetime frequency is between
peace-low and peace-high is a signature of malicious
traffic only if its frequency in the attack traffic is higher
by at least delta than its peacetime frequency.

To extract the malicious signatures, the system maintains
a white-list and a maybe-white-list. The white-list contains
the list of strings whose peacetime frequency is higher than
Peace-high. We assume that these strings can not be sig-
natures of an attack as they can not be used to differenti-
ate between peacetime and attack-time traffic, or otherwise
would result in very high false positives. The maybe-white-
list contains strings which are sometimes found in peacetime
traffic, that is, their peace-time frequency is at least Peace-
low and at most Peace-high . These strings may be used
as attack signatures only if their frequency in an attack is
significantly higher than there peacetime frequency. Any string
with a peace-time frequency lower than Peace-low may be
used as signatures for malicious traffic.

Given a sequence of packets P of traffic captured during
peace time and a sequence of packets A of traffic captured
during an attack, and given the thresholds: peace-high, peace-
low, delta and attack-high, and some constant gram size k
the problem is formally defined as follows: Find all strings
s1, ..., sm, s.t. ∀i, 1 ≤ i ≤ m:

1) |si| ≥ k
2) The frequency of si in the attack traffic is at least attack-

high.
3) One of the following holds:



a) The frequency of si in peace time is less than peace-
low.

b) Both of the following hold: 1) The frequency of si
in peace time is between peace-low and peace-high.
2) The difference between the frequencies of si in the
attack traffic and in the peacetime traffic is at least
delta.

4) To avoid redundancy, no string is contained in another
(i.e., @j : sj ⊆ si or si ⊆ sj).

C. System Details
Our zero-day high-volume attack detection system makes

use of our DHH algorithm, to analyze both the peace-time
traffic and the attack traffic.

1) Analyzing peacetime traffic: Here we run the DHH on
the peacetime traffic and categorize the relevant strings into
the white-list and maybe-white-list as explained above.

Note that to speed up mitigation, the peacetime traffic can
be analyzed in advance to produce these lists. Additionally
we note, that in some cases it is difficult to get a capture of
peacetime traffic in advance since the mitigation device only
receives attack time traffic. As can be seen in our evaluation
(Section VI), those cases can be handled by other means.

2) Analyzing attack traffic: Here we run DHH on the
attack traffic, with the modification that the algorithm omits
potential output strings if they are equal to or contained
in a string in the white-list, to reduce false-positives. The
other way around is allowed (i.e., www.facebook.com may
appear frequently in the legitimate traffic, yet the string
www.facebook.com/BadPerson could appear frequently in
the malicious traffic). We name this property the one-way
containment property. Due to this problem, we can not filter
out strings which appear frequently in legitimate traffic a-
priori, but rather a more intricate solution is needed. Intuitively,
the algorithm performs as follows: it receives as an input the
sequence of packets captured during an attack, and a list of
white-list strings. In order to avoid creating a signature for
the attack traffic which appears as a string or a substring of a
string in the white-list, the algorithm will only add a string to
the input of HH2 if it is not contained in a white-list string.

Denote the modified DHH algorithm used during an attack
as Attack-DHH . The main difference, between the DHH al-
gorithm and the Attack-DHH algorithm, is that the Attack-
DHH is provided with the white-list. Therefore, HH2 is now
updated with an stemp only if stemp is not found (as a whole
white-list string or as part of one) in the white-list (see Fig.3).

To accommodate this change in the code of Algorithm
DoubleHeavyHitters, we add the AttackUpdate func-
tion to class HH . As can be seen below in Procedure
AttackUpdate, the function receives both the string and
an additional parameter whiteList which is a pointer to
a list of strings. Only if the input string is not found
in the list pointed to by whiteList, the function will
call Update. Furthermore, lines 41 and 46 in Algorithm
DoubleHeavyHitters should be replaced accordingly with
HH2.AttackUpdate(stemp, white− list).

We note that there can be numerous options for creating a
data structure to support the search in the white-list. In our

implementation we chose to maintain a hash table of all of
the substrings in the white-list of length greater than k. This
implementation is very good in terms of time complexity,
though there is a tradeoff in that it takes a bit more space
than other possible solutions.

Procedure 1: AttackUpdate

1 Class HH
2 Procedure AttackUpdate(α, whiteList)
3 if stemp ∈ whiteList OR stemp substring of

string in whiteList then
4 return 0;
5 else
6 Update(α);

The strings output by the attack traffic analysis will be re-
ferred to as the signature candidates. Fig.3 presents a graphical
depiction of the attack traffic analysis process. The packets are
first processed using the modified DHH algorithm we have
just described. Then, the signatures are filtered according to
the process described in Section V-C3, using the thresholds
presented in Section V-B.

3) Filtering the signature candidates: Notice that all sig-
nature candidates in the output of the attack traffic analysis
have a frequency below peace-high in the peacetime traffic.
The strings in the output of the above step are narrowed down
as follows:

1) Discard strings with a frequency in the attack traffic that
is below the threshold attack-high.

2) Check if any of the strings are equal to or contained in a
string in the maybe-white-list. For such strings, calculate
the difference between the frequency of the string during
the attack and the frequency during peacetime of the
relevant string in the maybe-white-list. If this difference
is greater than the threshold delta, the string is kept,
otherwise, it is discarded.We note that strings not found in
the maybe-white-list must have a frequency below peace-
low in the peacetime traffic, otherwise they would have
been filtered out before entering HH2.

3) Once the final signature candidates are acquired by the
above process, they are checked for containment. If a
signature candidate is contained in another signature
candidate, the algorithm will only choose one signature
based on user policy (i.e., the longest, the shortest, the
one that produces the smaller number of false positives).
Furthermore, the algorithm may further reduce the num-
ber of signatures by finding which signatures usually
appear together in the same packets, therefore removing
the redundant signatures.

D. Identifying common combinations of signatures

In many cases it is interesting to identify signature com-
binations which are often found together in the same packet.
These combinations can be of great use in attack detection
mechanisms. First, they can be used to minimize the number
of signatures which are needed to identify the attack (see



Heavy 
Hitters 1

Heavy 
Hitters 2

hagdhdadjashdklahdjkasfjasbfjabfhfgahfvhsbdfjkasnkiaywtqyeffcgfacsdxasdbas

b1=hagd b2 = agdh b3 = gdhd ……

Output 
values

Signatures

Attack traffic packets payload:

White list:  
discard if equal
to or contained 
in whitelist string 

Maybe white list:

attack-high
≥ delta

peace-highpeace-low peace-highpeace-low

Merged 
string

Attack 
threshold:

Fig. 3: The process of extracting attack content signatures.

subsection V-D2). Second, signature combinations can be used
to increase the confidence level in the detection of the attack
(see subsection V-D3).

1) The Triple Heavy Hitters algorithm: In order to identify
the frequent signature combinations, we propose the Triple
Heavy Hitters algorithm denoted THH . This algorithm makes
use of three heavy hitter modules. Two modules will be used
in a similar manner as was used in the Double Heavy Hitters
algorithm (denoted DHH), and the third module will be
used to find heavy hitters of signature combinations. While
performing the DHH algorithm, for each packet treated, the
THH algorithm maintains the set of strings which were
identified as potential signatures, and therefore inserted into
HH2 while processing the packet. Once the entire packet has
been processed, this set contains all of the signatures found in
the packet and it will be inserted into the third heavy hitters
calculation unit HH3. To do so, each string in the set is
concatenated with a special end-of-string delimiter and the
delimited strings are concatenated together in lexicographical
order to form a single string which is inserted into HH3. Once
all of the packets have been traversed, HH3 contains the heavy
hitter sets of signatures. This procedure is illustrated in Fig. 4.
The pseudo code can be seen in Algorithm TripleHeavyHitters,
which makes use of the class HH and its functions which is
presented in Algorithm Double Heavy Hitters.

The THH algorithm has the same time complexity as the
DHH algorithm, since the input to HH3 is created as the
strings are inserted into HH2. The space complexity of the
THH algorithm is dependent on the number of items in each
of the HH modules.

2) Minimizing the Number of Signatures: Minimizing the
number of signatures can be very significant, as some of
the filtering mechanisms have a limited capacity. In addition,
having less signatures can cause a reduction of the false
positive rate of the signatures.

The ability to minimize the number of signatures is depicted
in an example presented in Fig. 5. There, we look at a scenario
in which there are six different types of attack packets. In this
example, we can see, that four signatures have been extracted.
However, since either the signature ”bad” or ”guy” appear in
all of the different attack packets, they alone can be used,
hence the number of signatures can be minimized without

creating false negatives.
Once the signatures and the frequent signature sets are

extracted by the system, we would like to check if the number
of signatures can be minimized. To do so, we propose a
greedy process. The pseudo code for this process is shown
in Algorithm MinimizeSignatures. Each such set represents
a packet type that had been found in the traffic sample.
Intuitively, if some group of signatures appears together in
some packet type, then only the signature with the highest
frequency is needed to cover this packet type. To identify
these signatures with the highest frequency, the process sorts
all of the signatures according to decreasing frequency. The
signatures are then traversed one by one, and checked to see
how many ”un-covered” packet types are covered by each
signature. We denote a ”covered” packet type as a packet type
that has at least one signature from it that has been chosen as
a final signature. Looking at the example shown in Fig. 5, the
process would work as follows: The signatures are sorted in
decreasing frequency. The most frequent signature is ”bad”,
therefore we start with it. Since ”bad” is the first signature
we deal with, no packet types have been covered yet. Denote
the cover rate of a signature to be the percent of sets that it
covers in this calculation. Therefore ”bad” covers the packet
types:1, 2, 4, 5, 6, and therefore we indicate its cover rate
to be 71%. The next signature we traverse is ”guy”. The
only packet type that remains un-covered is number 3. The
signature ”guy” covers packet type number 3, and therefore we
indicate its cover rate to be 20%. Since all of the packet types
have been covered, the cover rate of the remaining signatures
is 0%. Therefore, the only signatures needed to cover all of
the packet types are ”bad” and ”guy”.

The time complexity of this procedure in the worst case
is O(number of signatures ∗ number of sets) which is
O(nHH2

∗ nHH3
), and is therefore dependent only on the

predefined size of each HH module. Since it is only done
once, it only adds a constant overhead to the time complexity
of the THH algorithm. The space requirements are linear in
nHH1

, nHH2
and nHH3

which are configurable parameters.
3) Reducing the False Positives: Signature combinations

can be used to increase the confidence level in the detection
of the attack, by creating rules which are meant to identify
specific attack content. Such specific rules reduce the chance
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of falsely identifying benign content as malicious, therefore
making the identification of the attack traffic more certain.

In the example presented in Fig. 5, suppose packet type
6 doesn’t contain malicious content. The signature ”bad” is
found in the packet types:1, 2, 4, 5, 6, therefore if we create
a rule which simply searches for the signature ”bad”, it will
catch packets of type 6 as well, creating false positives. These
false positives can be eliminated using detection rules which
combine signatures with ”AND” and therefore can be used
to catch specific types of attack packets. For example, we
can create a rule which catches packets that contain {”bad”
AND ”really”}. Such a rule will catch only packets of type
4. If we specify an additional rule that catches {”bad” AND
”guy”}, the packet types which will be caught are 1, 2, 4, 5,
whereas packet type 6 will not be caught. Using such rules
therefore reduces the likelihood of false positives and increases
the confidence level of the detection.

We leave the process of generating the relevant rules to
the system administrator’s subjective preferences, and thus
this process cannot be done automatically by our system.
That said, the information gathered by the system can be
used as the basis for creating such rules. A fine grained rule
can be created for each packet type by combining all the
signatures found in each packet type. In the above example, a
rule searching for {”really” AND ”bad” AND ”guy”} would
capture only packets of type 2. Alternatively, as shown above,

rules combining less signatures can be used to detect larger
groups of packets. For example, a rule searching for {”really”
AND ”bad”} would capture both packets of types 2 and 4 and
therefore an additional rule for type 4 would not be needed.
These examples exhibit the tradeoff between how specific each
rule is and the number of rules that are maintained.

VI. EVALUATIONS

In our evaluation, we focus on high volume DDoS attacks,
and specifically on unknown application layer attacks in HTTP
requests, commonly known as HTTP-GET flooding attacks.

A. Test Setup

In our evaluations we used real captures from a top security
company. Each test included a real HTTP-GET flooding attack
time capture and a peacetime capture that included either
real traffic or synthetically generated traffic. In some cases
peacetime traffic was not available, and synthetically generated
peace-time was used, such as a result of crawling through the
victim site. If no such capture is available, we synthetically
generate a peacetime capture by sending requests to the
attacked server and capturing the traffic we create (i.e., a
synthetic peacetime traffic capture). Our evaluation included
11 different attacks as follows:

1) We tested 3 attacks for which both the peace time and
the attack time captures were recorded on the same server
during a time of normal functioning and then later during
an actual DDoS attack. We name these tests real-real.

2) We tested 6 attacks for which the attack time capture was
recorded during an actual DDoS attack, and the peace
time capture was created after the attack by recording
traffic created by crawling the victim’s site. We name
these tests real-synthetic.

3) We tested a single attack which included textual log
files of the HTTP GET requests during an actual DDoS
attack, and a log file of HTTP GET requests which were
identified as being legitimate during the time of the attack,
which was used as the peace time traffic. We name these
tests log.



Algorithm 3: TripleHeavyHitters()
Data: sequence of np packets, constants k, nHH1

, nHH2
,

nHH3
, delimiter string Sd and ratio r

Result: list Lsigs of nHH2 candidates for being the
heavy hitters, list Lsets of nHH3 sets of
signatures

1 stemp = empty, temp counter = 0,
strings counter = 0, signature set = empty;

2 HH1 = new HH , HH2 = new HH , HH3 = new
HH;

3 HH1.Init(nHH1), HH2.Init(nHH2),
HH3.Init(nHH3

);
4 for i = 1→ np do
5 signature set = empty;
6 for j = 1→ h− k + 1 do

// Do the same as in the double
heavy hitters algorithm while
keeping the set of signatures
for each packet

7 counter1 = HH1.Update(αi...αi+k−1);
8 if counter1 > 0 then
9 if stemp == empty then

10 stemp = (αi...αi+k−1);
11 temp counter = counter1;
12 else
13 if counter1 > r · temp counter then
14 stemp = stemp||αi+k−1;
15 temp counter = counter1;
16 else
17 if stemp! = empty then
18 counter2 = HH2.Update(stemp);
19 if counter2 > r · strings counter

then
20 signature set.Add(stemp);
21 strings counter = counter2;
22 stemp = (αi...αi+k−1);
23 temp counter = counter1;
24 else
25 if stemp! = empty then
26 counter2 = HH2.Update(stemp);
27 if counter2 > r · strings counter then
28 signature set.Add(stemp);
29 strings counter = counter2;
30 temp counter = 0;
31 stemp = empty ;
32 if signature set.Size > 0 then

// concatenate signatures from
the set of each packet to a
single delimited string

33 sigs = empty;
34 for i = 1→ signature set.Size do

sigs = sigs||Sd||signature set[i] ;
35 HH3.Update(sigs) ;
36 HH2.F ixSubstringFrequency();

Algorithm 4: MinimizeSignatures()
Data: list Lsigs of nHH2

signatures, list Lsets of nHH3

sets of signatures
Result: the final list of signatures
// Initialize the cover_rate of all

signatures to be zero
1 list Lfinal = empty;
2 for i = 1→ nHH2

do Lsigs[i].cover rate = 0 ;
3 Sort Lsigs by frequency;
4 i = 0;
5 while i < nHH2

and Lsets not empty do
6 for j = 0→ Lsets.size() do
7 if Lsets[j] contains Lsigs[i] then
8 Lsigs[i].cover rate+ = Lsets[j].frequency;
9 remove set Lsets[j] from Lsets;

10 for i = 0→ nHH2 do
11 if Lsigs[i].cover rate > 0 then

Lfinal.insert(Lsigs[i]) ;
12 return Lfinal;

4) We tested a single synthetic attack which was made up
of peace time traffic which was captured by us and then
a synthetic attack was merged into the peacetime traffic.
We name these tests synthetic-synthetic.

For each of the above tests, the zero-day high-volume attack
detection system was used to extract attack signatures. In
order to evaluate the system’s results, for each of the above
scenarios, we preformed three tests:

1) System quality testing: Performed by evaluating both the
recall and precision rates of the signatures extracted by
the system. Recall and precision, which we will soon
define, are standard measures of relevance in fields such
as pattern recognition and information retrieval.

2) Frequency estimation accuracy test of the DHH algo-
rithm: Performed by counting the number of packets in
the attack traffic in which each of the attack signatures
appears, and comparing the counters with the counters of
the DHH algorithm.

3) Threshold testing on several threshold value sets.
A summary of the test statistics can be found in Table III

which is explained in the next section. In addition, we per-
formed a separate testing of the use of the Triple Heavy Hitters
algorithm (explained in Section V-D) for identifying frequent
signature combinations to minimize the number of signatures
needed, as described in Section VI-F.

B. System Quality Test Results

A summary of the test statistics is presented in Table III. All
of the attacks analyzed, are attacks that were not detected by
any automated defense mechanism, and these attack samples
were therefore analyzed manually by a human expert. The
columns in the results section of the table are as follows:

1) Manual attack rate estimation: the estimated percent
of the packets in the attack traffic capture, that were
identified as attack packets by the manual analysis.



2) System attack rate estimation: the percent of the packets
in the attack traffic capture, that contain one or more of
the signatures extracted by the system.

3) Recall rate estimation: the percent of packets identified
as attack packets by the manual analysis which were
identified by the signatures extracted by our system.The
recall is an indication of how many of the relevant results
were identified.

4) Precision rate estimation: Precision is an indication of
how many relevant results were returned as opposed to
non-relevant results. We estimate the precision rate of our
system in two ways:
a) Peacetime based precision: the percent of peacetime

traffic packets that were not identified by the signatures
extracted by our system either.

b) Attack based precision: the percent of attack traffic
packets which were not identified by the manual anal-
ysis that were not identified by the signatures extracted
by our system either.

We note several comments and conclusions regarding the
results: 1) For each test, the system identified the signatures
that were found by the human expert in addition to other
signatures which were not identified by the expert.

2) For all of the attacks tested, one or more signature
was found that creates a false positive of 0%, meaning they
do not appear in the peacetime traffic at all. As explained
in section V-C3, item 3, the final signature candidates may
be filtered according to user policy. We chose to select the
candidates with the lowest frequency in peacetime traffic,
meaning the lowest false-positive rate. The final filtering
process of the signature candidates, selected these signatures
alone to achieve the results shown in the table. This filtering
process was done by searching the peacetime traffic for the
final signatures candidates to select those with the lowest
false positive rate. Another option would be to minimize the
signatures based on frequent signature combinations as we
have shown in Section VI-F, this also gives good results.

3) If both the attack and the peacetime captures are real,
the system’s attack detection rate is most likely to be very
close or equal to the estimated detection rate of the manual
analysis. On the other hand, as can be seen in tests 4 and 8 for
example, a synthetic peacetime capture may cause a system
detection rate which is higher than the manual estimation. The
difference between them could indicate the false positive rate
caused by the system’s signatures.

4) All tests were performed with thresholds: attack −
high = 50%, peace − high = 3% peace − low = 2%,
delta = 90%. Except for test 10 which was done with:
attack−high = 10%, peace−high = 3% peace−low = 2%,
delta = 90%. The value of attack − high was selected
based on the characteristics of the attacks themselves and
can be selected based on, for example performance variations
in the attacked site and so forth. The rest of the thresholds
were selected based on testing done, which is presented in
section VI-E. There it is shown that a peace− high value of
3 should be selected and determining the other two thresholds
follows from setting this value.

Our testing included a preliminary phase for determining the
settings and parameters of the DHH algorithm. These include
the values of k, nHH1

, nHH2
, r, attack-high, peace-high,

peace-low and delta. The value k indicates the length of the
k-grams, and nHH1

and nHH2
indicate the number of items

each of the HH modules is configured to hold. The value of
k was set to 8, since testing showed that longer signatures
are likely to increase the rate of false negatives, and shorter
signatures are often not substantial enough therefore increasing
the possibility of false positives. The values of nHH1

and
nHH2

were both set to be 3000. Our tests included values
raging from 1000 to 10000, and it was found that 3000 was
sufficient for our purposes.

Note that as a rule of thumb, the size of nHH1 can
be determined according to the expected frequency of the
signature that the system should identify and the average
length of each packet. In general, in order to extract a signature
which is found in fraction x of the packets (0 ≤ x ≤ 1) with
average packet length being len, we would need to set nHH1

to be no more than len
x . Furthermore, the sizes of nHH2

and
nHH3

are bounded by the size of nHH1
.

The above values of these parameters were kept unchanged
throughout the testing of the detection system. An additional
parameter used by the DHH algorithm is the ratio r explained
in Section IV-B. This value was tested within the detection
system with values ranging from 0 to 1. It was found that
values closer to 1 yielded the extraction of shorter signatures.
This value should therefore be chosen based on the desired
characteristics of the output. The thresholds which are used
to determine the white-lists and the chosen signatures are
configurable in the system and we discuss some tested values
of these thresholds in Section VI-E.

C. Performance

Our implementation was done using C++, and made use
of the implementation provided in [9] of the heavy hitters
algorithm presented in [22]. The code was compiled using
g + +. We ran experiments on a 4-Core Intel(R) Core i7(R)
2.7 GHz with 16 GB of RAM running Mac OS X 10.9
(Mavericks). We ran our algorithm on a variety of real
attack captures, described in Table III. We also ran tests on
synthetically generated traffic as well as a large capture of
peacetime traffic. Using a single core, our algorithm was able
to process between 144 and 232 Mbps when running on
the real traffic traces presented in Table III. When running
our algorithm on synthetically generated traffic which has
skewed data frequencies the algorithm performance reached
approximately 1.1 Gbps.

As we show in our accuracy results, our algorithm is able
to correctly identify the attack signatures even with only
a small traffic sample. That said, we wanted to evaluate
our algorithm’s performance on a larger traffic capture. We
captured over 1GB of real traffic from a web content providing
server, and ran our system for peacetime analysis on this
capture, achieving an average throughput of 206 Mbps.

The string manipulation performed by our algorithm is an
elaborate task and therefore the throughput achieved by our



Test Statistics
Test Capture Files Data Test Results

Test Target
Category Attack Time Test type

attack-peace
Number of Pack-
ets in Sample

Manual
attack rate
estimation

System
attack rate
estimation

Recall rate
estimation

Precision rate estima-
tion

Attack
time

Peace
time

Peacetime
based

Attack
based

1 Telephony sites Nov 2011 Real-Real 407 2347 59% 59% 100% 100% 100%
2 eGaming Jul 2012 Real-Real 157560 2468 98% 98% 99.8% 100% 100%
3 eGaming May 2012 Real-Real 191192 47168 75% 75% 99.8% 100% 100%
4 National bank Jan 2012 Real-Syn. 7050 369 78% 99% 100% 100% 79%
5 News Mar 2012 Real-Syn. 47569 216 99.9% 100% 100% 100% 99.9%
6 eCommerece Jan 2013 Real-Syn. 35014 253 NA 98% NA 100% NA
7 Mobile May 2013 Real-Syn. 608 497 93% 94% 100% 100% 99%
8 Government Mar 2012 Real-Syn. 6875 318 69.5% 90% 100% 100% 79.5%
9 Government Mar 2012 Real-Syn. 5867 77 NA 92% NA 100% NA
10 News May 2013 Log 34721 70322 47% 47% 100% 100% 100%
11 Synthetic NA Syn-Syn 57112 9016 84% 84% 100% 100% 100%

TABLE III: Summary of the statistics of the tests performed. Note that the captures are samples of the traffic.

system for such a task is quite high. Furthermore, as our
system only requires a small traffic sample to extract the attack
signatures, the time required for the system to process the
attack sample and output signatures is extremely short and
provides the ability to promptly mitigate the attack.

We note that most of the running time of our system is spent
updating the heavy hitters data structures. It is possible that
these running times may be improved at the cost of accuracy
by implementing a structure based on static memory allocation
such as that presented in [7]. The running time may be further
improved by using a randomized algorithm as presented in [8].
Since our running times are sufficient for our purpose we
would rather not compromise accuracy for improving them.
The space required by our system is linear in nHH1

, nHH2

and nHH3
, which were set to nHH1

= 3000, nHH2
= 200

and nHH3 = 100.

D. Frequency estimation

Recall that to test the accuracy of the frequency estimation
provided by the algorithm, the estimated frequency of each
signature was compared to an actual count of the signature in
the attack traffic. Fig. 6 shows this comparison for the signa-
tures of a single test. We also note that the average difference
exhibited in this test between the estimated frequency and the
actual frequency was under 1% over all of the 3000 signature
candidates that were produced. This is much better than the
analytical error bounds of the algorithm, which is probably
due to the fact that the number of strings in the input to HH2

is significantly smaller than the worst-case bound provided in
the analysis in Section IV-E. The results of the comparison in
the other tests were similar.

E. Threshold Testing

Both the false positive and false negative rate achieved by
our system are influenced by the values of the thresholds dis-
cussed in Section V-B. We tested a range of thresholds. While
intuitively, it may seem reasonable to take a peace − high
threshold that is relatively high (i.e., at least 50%), testing
showed that this would lead to a very high false positive
rate. An example of this can be seen in Fig. 7. This graph
shows the false positive rates caused by the different peace-
high values, on a single set of files, when all other values
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Fig. 6: Accuracy of algorithm signature frequency estimation

remain unchanged. The false positive rate shown in the dotted
line measures the percent of peacetime packets identified by
the generated signatures. The false positive rate shown in
the whole line measures the percent of attack traffic packets
identified by the generated signatures which are not malicious.
As can be seen, a peace-high value of 3 is the highest values
that minimizes both false positive rates, therefore this is the
value that was chosen for our tests.
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Fig. 7: Comparing peace-high values.

F. Testing Frequent Signature Combinations

We have tested our enhanced system which makes use of
the Triple Heavy Hitters algorithm (explained in Section V-D)
for identifying frequent signature combinations. The graphs
in Fig. 8a and Fig. 8b respectively depict the results of tests
2 and 3 detailed in Table III. As shown in the table, for



both of these tests, we have both real attack traffic captures
and real peacetime traffic captures. The system identified the
frequent signature combinations and then performed the al-
gorithm for minimizing the number of signatures presented in
Section V-D2. The results presented show the tradeoff between
the precision and recall rates when selecting an increasing
number of signatures. The results shown indicate that for the
tested samples the number of signatures can be decreased
substantially, thereby increasing precision significantly with
almost no reduction of the recall rates.

G. Signature Examples

An interesting aspect of testing real attacks is to see the ac-
tual signatures for these attacks. Some examples of signatures
include: An extra carriage-return (i.e., newline) somewhere in
the packet payload where it was not usually found; Use of
upper-case characters in a field which is normally found in
legitimate traffic with lower-case characters; Use of an HTTP
field that is rarely used; Use of a rare user agent. These
signatures are a clear indication of the importance of analyzing
the peacetime traffic.

VII. CONCLUSIONS AND FUTURE WORK

We present a system for zero-day attacks signature ex-
traction, extending our previous work presented in [3]. Our
system makes use of the DHH and THH algorithms which
we devised to solve the string heavy hitters problem. Testing
our system on captures of real life attacks have shown that
the signatures extracted by our algorithm detect high volume
attacks with very high recall and precision rates.

This research opens many further directions which we
would like to explore. Our main future goal is to expand
the variability of the signatures that we are able to extract,
to include, for example, signatures which include regular
expressions, or signatures that contain ”Don’t-Care”s, and
mismatches. We feel that this expansion of the problem may
yield a result which is both of theoretical interest and will be
of great use to the networking community.

Additionally, we would like to improve the robustness of
our algorithm by identifying a generic white-list which would
extenuate the need for acquiring peacetime traffic. We are
also performing tests and adaptations for other attacks and
anomalies that could be identified by this mechanism, for
example, we are using our algorithm for identifying new
malicious command and control servers.
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