
BeauCoup: Answering Many Network Traffic
Queries, One Memory Update at a Time

Xiaoqi Chen, Shir Landau-Feibish, Mark Braverman, Jennifer Rexford

Princeton University

{xiaoqic,sfeibish,mbraverm,jrex}@cs.princeton.edu

ABSTRACT
Network administrators constantly monitor network traffic for con-

gestion and attacks. They need to perform a large number of mea-

surements on the traffic simultaneously, to detect different types of

anomalies such as heavy hitters or super-spreaders. Existing tech-

niques often focus on a single statistic (e.g., traffic volume) or traf-

fic attribute (e.g., destination IP). However, performing numerous

heterogeneous measurements within the constrained memory ar-

chitecture of modern network devices poses significant challenges,

due to the limited number of memory accesses allowed per packet.

We propose BeauCoup, a system based on the coupon collector
problem, that supports multiple distinct counting queries simulta-

neously while making only a small constant number of memory

accesses per packet. We implement BeauCoup on PISA commodity

programmable switches, satisfying the strict memory size and ac-

cess constraints while using a moderate portion of other data-plane

hardware resources. Evaluations show BeauCoup achieves the same

accuracy as other sketch-based or sampling-based solutions using

4x fewer memory access.

CCS CONCEPTS
•Networks→Data path algorithms;Networkmeasurement;

KEYWORDS
Streaming Algorithm, Sketching, Distinct Counting, Data Plane,

Programmable Switch, Network Measurement

ACM Reference Format:
Xiaoqi Chen, Shir Landau-Feibish, Mark Braverman, Jennifer Rexford. 2020.

BeauCoup: Answering Many Network Traffic Queries, One Memory Update

at a Time. In Annual conference of the ACM Special Interest Group on Data
Communication on the applications, technologies, architectures, and protocols
for computer communication (SIGCOMM ’20), August 10–14, 2020, Virtual
Event, NY, USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/

3387514.3405865

1 INTRODUCTION
Network operators constantly monitor network traffic to detect

attacks, performance problems, and faulty equipment. To ensure

that networks are functioning properly, network operators often

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7955-7/20/08. . . $15.00

https://doi.org/10.1145/3387514.3405865

need to monitor for multiple kinds of problems simultaneously,
including worms, port scans, DDoS attacks, SYN floods, and heavy-

hitter flows.

A variety of network-monitoring tasks can be modelled as count-

ing the number of distinct attributes seen across a set of packets.

As the simplest example, to detect a host that is spreading a worm

we may look for a super-spreader [31], or a source IP that sends

packets to many (e.g., 1000+) distinct destinations. However, there

may be multiple hosts that are spreading worms, thus we need

to identify all the source IPs sending traffic to many destinations.

Furthermore, different tasks may define their keys differently: to

identify victims of a DDoS attack, for example, we need to instead

look for destination IPs that are receiving from many distinct source
IPs. The diversity of monitoring tasks with different key definitions

makes executing them simultaneously even more challenging.

Emerging programmable switches can analyze traffic directly

in the data plane as packets stream by, making these devices well-

suited for performing such telemetry tasks. However, the memory

and processing resources of these switches are extremely limited.

Traditionally, researchers have focused on the limitedmemory space
in the data plane, designing compact data structures that can com-

pute approximate answers for a single traffic-monitoring query [4,

17, 20, 23, 29, 31, 32], or multiple queries over the same key [22, 32].

Extending these solutions to support multiple queries over differ-

ent keys would require instantiating multiple separate data struc-

tures. Having separate data structures would consume precious

memory space in the data plane, but this is not the only problem. To

maintain line rate, programmable switches only allow a small con-

stant number of memory accesses per packet, making it infeasible

to update multiple data structures for every packet.

Most existing techniques for handlingmultiple queries rely heav-
ily on software running outside of the data plane, introducing

communication overhead and latency. The simplest approach is

to randomly sample packets in the data plane [3, 8], and have the

software compute multiple statistics on the samples. While useful

for detecting high-volume flows, random sampling significantly

reduces the accuracy for queries that count the number of distinct

attributes. To improve accuracy, several recent works collect in-

formation about all potentially relevant flows in the data plane,

and have the software compute the statistics of interest [16, 20, 25].

However, these solutions introduce a tension between the volume

of data exported from the data plane and the number and diver-

sity of queries that can be answered with reasonable accuracy in

real time.

Instead, we need new techniques that can handle numerous

heterogeneous queries directly in the data plane, despite the limited

memory space and memory access. We present BeauCoup, which
supports a general query abstraction that counts the number of

https://doi.org/10.1145/3387514.3405865
https://doi.org/10.1145/3387514.3405865
https://doi.org/10.1145/3387514.3405865

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Xiaoqi Chen, Shir Landau-Feibish, Mark Braverman, Jennifer Rexford

distinct items (i.e., with different attributes) seen across a set of

related packets (with the same key), and flags the keys with distinct

counts above a threshold. For example, when searching for worms,

a packet’s source IP is the key, its destination IP is the attribute,

and the threshold decides how many distinct destination IPs are

needed to flag a source IP as a worm sender. Our goal is to generate

an alarm for those source IPs, approximately, within a reasonable

error such as 20%-30% of the threshold. BeauCoup runs multiple

queries simultaneously, under a strict per-packet memory access

constraint. BeauCoup also allows users to define arbitrary packet-

header field tuples as query keys and attributes, providing great

expressiveness. The query set can be updated on the fly without

the need to re-compile the data-plane program; re-compilation is

required only when new header field tuples are defined.

The design of BeauCoup takes inspiration from the coupon-
collector problem [14]. Using super-spreader detection as an ex-

ample, suppose we want to know if a sender has sent packets to at

least 130 different destination IP addresses. Instead of recording all

destination IPs we see, we define 32 coupons, and map each destina-

tion IP to one of the 32 coupons uniformly at random. Now, for each

packet from that sender, we extract the destination IP and collect
its associated coupon. The coupon may be a duplicate (was already

collected earlier), either because the same destination IP appears

twice, or because two destination IPs map to the same coupon. We

then wait until we have collected each of the 32 coupons at least

once to flag the sender as a super-spreader.

The coupon-collector problem asks how many random draws

(with replacement) are needed to collect all of the coupons, i.e., have

every coupon drawn at least once. With 32 coupons, we need 129.9

draws in expectation. We therefore can use a 32-coupon collector

to identify if a particular sender is sending to 130 (or more) distinct

destination IPs. Answering a query with a different threshold (say,

1000 destination IPs) requires tuning the coupon collector’s config-

uration, by changing the number of coupons (𝑚), the probability (𝑝)

of drawing each coupon for a new destination IP, or the number of

coupons that must be collected (𝑛). Essentially, we are using a𝑚-bit

vector to estimate whether the number of distinct items seen has

exceeded a threshold. A naive𝑚-bit coupon collector is equivalent

to either a HyperLogLog [13] register with𝑚 1-bit hash functions,

or a𝑚-bit Bloom Filter [1] with only 1 hash function. We discuss

the equivalence in more detail in Section 7.

The challenge in designing BeauCoup lies in applying the coupon-

collection problem to multiple queries, each with different keys and
attributes entirely in the data plane, under strict memory constraints.

To limit memory size, BeauCoup must keep coupon state small,

devote state to a key only when needed, and share memory across

queries and keys. Furthermore, to limit the memory accesses when

processing a packet, BeauCoup collects at most one coupon per

packet. BeauCoup must ensure each query only draws a coupon

with a small enough probability, and coordinate among different

queries to avoid collecting many coupons concurrently. Thus, Beau-

Coup must tune the coupon-collector parameters (i.e.,𝑚, 𝑝 , and 𝑛)

carefully to simultaneously achieve accurate results for each query

and ensure that the combination of queries does not violate the

memory access constraint. Finally, we must implement each part

of the BeauCoup algorithm using only the operations available in

high-speed programmable switches.

Name Key Attribute Threshold
Super-spreader 𝑠𝑟𝑐𝐼𝑃 𝑑𝑠𝑡𝐼𝑃 1000

DDoS victim 𝑑𝑠𝑡𝐼𝑃 𝑠𝑟𝑐𝐼𝑃 1000

Port scan {𝑠𝑟𝑐𝐼𝑃,𝑑𝑠𝑡𝐼𝑃 } 𝑑𝑠𝑡𝑃𝑜𝑟𝑡 100

Heavy hitter

IP pair

{𝑠𝑟𝑐𝐼𝑃,𝑑𝑠𝑡𝐼𝑃 } 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 10000

Heavy hitter

IP&Port pair

{𝑠𝑟𝑐𝐼𝑃, 𝑠𝑟𝑐𝑃𝑜𝑟𝑡,
𝑑𝑠𝑡𝐼𝑃,𝑑𝑠𝑡𝑃𝑜𝑟𝑡 } 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 10000

SYN-flood {𝑑𝑠𝑡𝐼𝑃,𝑑𝑠𝑡𝑃𝑜𝑟𝑡 }
{𝑠𝑟𝑐𝐼𝑃, 𝑠𝑟𝑐𝑃𝑜𝑟𝑡 }

if TCP SYN,

otherwise ∅
5000

Table 1: Examples of count-distinct query definitions.

In designing and implementing BeauCoup, we make the follow-

ing contributions:

• Algorithm (§2): Data-plane algorithm formultiple count-distinct

queries under memory size and access constraints.

• Compiler (§3): Method for optimizing the accuracy of a set of

queries subject to the memory constraints.

• Prototype (§4): System that translates high-level queries into

data-plane configuration that runs on a PISA hardware switch.

We evaluate our prototype in §5, discuss future work in §6, compare

with related work in §7, and conclude in §8.

Ethics Statement: This work does not raise any ethical issues.

2 THE BEAUCOUP ALGORITHM
We now show the BeauCoup algorithm for network-monitoring

queries. We first present a query model based on distinct counting,

that supports a variety of network-monitoring tasks. Next, we

discuss how to use coupon collectors to implement these queries.

Finally, we discuss how to use coupon collectors to run multiple

queries simultaneously, under a strict per-packet memory access

constraint.

2.1 Query: Count-Distinct with Threshold
Awide variety of network-monitoring tasks can be characterized as

a query 𝑞 which (1) maps each packet 𝑖 to a key 𝑘𝑒𝑦𝑞 (𝑖), (2) counts
the number of distinct attributes 𝑎𝑡𝑡𝑟𝑞 (𝑖) that appear for each key,

and (3) applies a threshold 𝑇𝑞 to the count to decide whether to

report a key. That is, BeauCoup should output an alert (𝑞, 𝑘) for
query 𝑞 and key 𝑘 , when the packets in a time window𝑊 satisfy:��{𝑎𝑡𝑡𝑟𝑞 (𝑖) | 𝑘𝑒𝑦𝑞 (𝑖) = 𝑘}

�� > 𝑇𝑞 .

For the super-spreader example in the Introduction, the key is the

packet’s source IP, the attribute is the destination IP, and the thresh-

old is 1000. For DDoS detection, we can instead use the destination

IP as a packet’s key, use the source IP as the attribute, and perhaps

use a higher threshold like 10000.

In Table 1, we present more examples of common network-

monitoring tasks under our query model. In particular, the special

attribute 𝑖 .𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 is unique across all packets, so the user may

write a query to count packets by defining𝑎𝑡𝑡𝑟𝑞 (𝑖) = {𝑖 .𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝},
i.e., counting the number of unique timestamps seen. Filtering op-

erations can also be expressed in this query formulation, as shown

in the SYN-flood example above—by mapping irrelevant packets to

a fixed value, the distinct counting query effectively ignores them.

BeauCoup: Answering Many Network Traffic Queries SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

Notation Definition
𝑘𝑒𝑦𝑞 (·) Key definition for query 𝑞

𝑎𝑡𝑡𝑟𝑞 (·) Attribute definition for query 𝑞

𝑇𝑞 Threshold for query 𝑞

𝑊 Time window for answering queries

Γ Maximum memory access per packet

𝑐 Number of accesses for collecting one coupon

𝑆 Memory size

𝑚𝑞 Total number of coupons for query 𝑞

𝑝𝑞 Probability of drawing a particular coupon

𝑛𝑞 Number of different coupons to collect

𝛾𝑞 Average number of coupons activated per packet

Table 2: Notations used in the paper.

Q , Key Coupons
1, A
1, B
1, C
2, A

1 2 3 4
1 3 4

1 2 3 4Packet #42
SrcIP: C
DstIP: Y

Alert:
Query 1
Key C

Select Query
and Coupon

1 2 3 4

Query: 1
Key: C

Coupon: 2

…

Figure 1: We collect coupons by updating bit vectors in an
in-memory coupons table.

Many other network-monitoring tasks can be expressed in this

formulation by using a combination of packet IP addresses, ports,

timestamps, etc. as the query key and attribute.

Our goal is to build a system that simultaneously executes a

set of queries Q = {𝑞1, 𝑞2, . . . } and outputs alerts (𝑞 𝑗 , 𝑘 𝑗), subject
to the hardware constraints of a maximum memory size 𝑆 and at

most Γ memory accesses per packet. In the rest of this section, we

discuss how BeauCoup achieves Γ = 𝑂 (1), i.e., answering multiple

queries in the data plane using a small constant number of memory

accesses per packet, independent of the number of queries.

2.2 Updating the Coupon-Collector Table
We maintain a table with bit vectors representing the coupon col-

lectors, as shown in Figure 1. Upon collecting the first coupon

for the query-key pair (𝑞, 𝑘), BeauCoup creates a new table entry;

when the bit vector indicates enough coupons have been collected,

BeauCoup generates an alert for (𝑞, 𝑘).
The example in Figure 1 uses 4-coupon collectors for all queries.

When a packet arrives at the switch, BeauCoup first selects a query

and a coupon. In this case, coupon #2 for query 𝑞1 is selected, and

we can extract the query key 𝐶 from the packet, using the query’s

key definition. Now BeauCoup finds the coupon collector in the

in-memory coupon table under row (1,𝐶), and collects the second

coupon by marking the bit vector’s second bit to 1. If there is no

such row in the table, we allocate a new row and collect the single

coupon. Since now all four coupons are collected at least once for

row (1,𝐶), BeauCoup reports that key 𝐶 satisfied query 𝑞1. Other

packets may collect coupons for other queries, or do not collect any

coupon at all.

The coupon table shown in Figure 1 is designed to fit the hard-

ware constraints of PISA programmable switches:

• Compact rows: Each row of the table stores one 𝑤-bit word

as a bit vector, representing at most𝑤 coupons, where each bit

represents whether a particular coupon has been collected at

least once. (We also store two more words of auxiliary data per

row, to record a timestamp and a checksum of the query key,

which are used for detecting timeouts and hash collisions.)

• Space efficiency: We only maintain the bit vector for a query

key when there’s at least one coupon collected for that key. There-

fore, although each query has many keys (e.g., 2
32
), only a small

fraction of active keys occupies memory. Different keys (such

as keys A, B, and C for query 𝑞1) and different queries (such as

queries 𝑞1 and 𝑞2) effectively multiplex a shared memory space,

and a new entry is created when a key collects its first coupon.

• Limited access: BeauCoup only needs to access the in-memory

table when it needs to collect a coupon. When a packet does

not produce any coupon for a query, we do not need to access

memory. This effectively allows us to multiplex memory accesses

across queries, by having different packets updating the table for

different queries.

A coupon collector defines𝑚 coupons, a probability 𝑝 for draw-

ing each coupon in a random draw, and stops when there are at

least 𝑛 different coupons collected, i.e., each of these 𝑛 coupons

had been drawn at least once. Since BeauCoup uses a random (yet

fixed) mapping from attributes to coupons, observing a new, unseen

attribute is equivalent to randomly drawing a coupon. Seeing the

same attribute more than once has no effect on the coupon collector,

as it merely draws the same coupon again. With an appropriate

combination of parameters (𝑚, 𝑝, 𝑛), the coupon collector can be

used to indicate if there are more than 𝑇𝑞 distinct attributes seen,

while automatically ignoring duplicate attributes.

2.3 Selecting a Query and a Coupon
We now discuss how we select one coupon for a given query, and

how we coordinate between multiple queries.

Selecting one of𝑚 coupons. For every query 𝑞, with key def-

inition 𝑘𝑒𝑦𝑞 and attribute definition 𝑎𝑡𝑡𝑟𝑞 , BeauCoup applies a

random hash function ℎ on packet 𝑖’s attribute 𝑎𝑡𝑡𝑟𝑞 (𝑖), where
ℎ : {𝑎𝑡𝑡𝑟𝑞 (𝑖),∀𝑖} → [0, 1), and checks if the output of the hash

function falls into a range. For example, suppose query 𝑞 uses

four coupons (𝑚𝑞 = 4) and selects each coupon with probability

𝑝𝑞 = 1/8. Then, BeauCoup would map all attributes satisfying

ℎ(𝑎𝑡𝑡𝑟𝑞 (𝑖)) ∈ [0, 1/8) to coupon #1; similarly, coupons #2, #3, and

#4 are associated with output ranges [1/8, 2/8), [2/8, 3/8), and
[3/8, 4/8), respectively. If the output of the hash function for packet
𝑖 falls in [0, 4/8), BeauCoup sets the bit for the associated coupon

to 1 for that query-key pair, creating an entry in the table if needed.

If the output of the hash function falls in [4/8, 1), BeauCoup does
not need to access memory for this query on behalf of this packet,

and it can use the memory access for other queries. We define 𝛾𝑞
as the average number of activated coupons allowed per packet for

query 𝑞; with the random hash function ℎ, the example query only

activates 𝛾𝑞 =𝑚𝑞 · 𝑝𝑞 = 1/2 coupons per packet in expectation. A

small 𝛾𝑞 < 1 has two main advantages. First, the coupon table does

not need to maintain state for every active key. Instead, BeauCoup

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Xiaoqi Chen, Shir Landau-Feibish, Mark Braverman, Jennifer Rexford

only allocates memory for a query-key pair upon collecting the

first coupon for that key. Second, a small 𝛾𝑞 allows multiple queries

to run concurrently under a maximum memory access constraint

Γ = 𝑂 (1). In particular, when a particular query𝑞 is not collecting a
coupon, BeauCoup can devote the unused memory access “budget”

to collect a coupon for another query, as we discuss next.

Each query 𝑞 has its own limit 𝛾𝑞 on how many coupons to

collect per packet. For simplicity, we assume a naive fair allocation

that gives each query the same share of memory accesses. Given

that collecting a coupon costs 𝑐 memory accesses and a total mem-

ory access budget of Γ per packet, we limit each query to collect at

most 𝛾𝑞 = Γ/|𝑐 · Q| coupons per packet on average. Therefore, each

query’s coupon-collector configuration should satisfy𝑚𝑞 · 𝑝𝑞 ≤ 𝛾𝑞 .
However, a naive choice of hash functions could have a single

packet need to collect a coupon for many different queries, even

if the average rate of memory accesses is constant. To obey the

strict per-packet memory access constraint Γ, BeauCoup coordi-

nates the hash functions across the queries, first among all queries

using the same attribute, and second across sets of queries using

different attributes.

Grouping querieswith the same attribute.Queriesmay have

the same attribute definition (say, destination IP) but with differ-

ent key definitions (say, source IP for query 𝑞1, and source IP and

source port tuple for query 𝑞2). These queries can use the same hash
function, applied to their common attribute, to draw their coupons.

To guarantee that at most one query collects a coupon, BeauCoup

divides the hash output across the queries. For example, suppose

query 𝑞1 uses 𝑚1 = 2 coupons each with probability 𝑝1 = 1/4,
while query 𝑞2 uses𝑚2 = 2 coupons each with probability 𝑝2 = 1/8.
We partition the range [0, 1) of the hash output as follows: [0, 1/4)
for coupon #1 of 𝑞1, [1/4, 2/4) for coupon #2 of 𝑞1, [2/4, 2/4 + 1/8)
for coupon #1 of 𝑞2, and [2/4 + 1/8, 2/4 + 2/8) for coupon #2 of

𝑞2. Other output values are not associated with any coupon. We

illustrate this example in Figure 2. We can stack additional queries

using the same attribute accordingly. Note that we never run out

of the [0, 1) range, as long as the total memory accesses across all

queries (

∑
𝑞𝑚𝑞 · 𝑝𝑞) is bounded by Γ ≤ 𝑐 , i.e., each packet collects

at most one coupon.

h(dstIP)
1/4 1/2 5/8 3/4 10

Coupon #1 Coupon #2 C #1 C #2

Query 1, p=1/4 Query 2, p=1/8

No Coupon

Figure 2: Different queries use disjoint ranges to map the
random hash function’s output to coupons.

Coordinating across queries with different attributes. To
support queries with different attribute definitions, BeauCoup con-

structs one random hash function for each unique attribute (e.g.,

one hash function for destination IP, one for timestamp, and so

on). When a packet arrives, BeauCoup computes all of these ran-

dom hash functions to determine if any hash function’s output

value is associated with a coupon for some query. If only one hash

function draws a coupon, BeauCoup collects the coupon for the

associated query and key. However, if multiple coupons are drawn,

we perform tie-breaking. Currently, BeauCoup only tie-breaks if

exactly two hash functions draw coupons, by tossing a coin and

allowing each coupon to succeed with 50% probability; we discuss

how to implement the coin toss in Section 4.1. When more than

two hash functions draw coupons, we do not collect any of them;

this has little effect on accuracy, as we prove in Appendix B that the

probability of drawing many coupons for one packet is very small.

With the coordination within and across hash functions, Beau-

Coup can now guarantee collecting at most one coupon per packet,

without meaningfully impacting the accuracy of individual query’s

coupon collectors. Each individual query still collects coupons with

the right probability, as if it is the only query running in the system.

Given the strict memory access constraint, such coordination is

what makes it possible to run many queries simultaneously while

maintaining reasonable accuracy for all of them.

3 THE BEAUCOUP QUERY COMPILER
For each query 𝑞, BeauCoup computes three coupon-collector pa-

rameters: collect 𝑛𝑞 out of𝑚𝑞 coupons, each with probability 𝑝𝑞 .

Taking the threshold 𝑇𝑞 and the average per-packet coupon limit

𝛾𝑞 for all queries 𝑞 ∈ Q as input, the BeauCoup compiler produces

the configuration of {𝑚𝑞, 𝑝𝑞, 𝑛𝑞} that maximizes accuracy. A con-

figuration satisfies the average per-packet coupon limit as long as

𝑚𝑞 ·𝑝𝑞 ≤ 𝛾𝑞 , which means a query produces at most𝛾𝑞 coupons per

packet in expectation. However, characterizing a coupon collector’s

accuracy for tracking the threshold 𝑇𝑞 is less straightforward. We

want the number of random draws needed until the coupon col-

lector collects enough coupons to both be unbiased (close to 𝑇𝑞 in

expectation) and stable (has small variance). In this section, we first

define and analyze an accuracy metric for coupon-collector configu-

rations, then present our method for finding the best configuration

for each query.

3.1 Coupon Collector’s Accuracy
Given a specific query threshold 𝑇𝑞 , a coupon-collector configu-

ration is accurate if the number of random draws it needs has an

expectation close to𝑇𝑞 and a small variance. Let us first analyze the

expectation. We note that the traditional coupon-collector problem

requires 𝑛 =𝑚 = 1/𝑝 , so we present the following analysis for our

generalized coupon-collector problem (1 ≤ 𝑛 ≤ 𝑚, 0 ≤ 𝑝 ≤ 1/𝑚):

Lemma 3.1. A generalized coupon collector with 𝑚 coupons in
total, each coupon having probability 𝑝 being drawn upon each ran-
dom draw, and stops after collecting 𝑛 different coupons, needs in
expectation 𝐶𝐶 (𝑚, 𝑝, 𝑛) ≜ ∑𝑛−1

𝑗=0
1

𝑝 (𝑚−𝑗) draws.

Proof. With 𝑗 coupons already collected, the probability that

the next draw produces a new, unseen coupon (out of the𝑚 − 𝑗

remaining) is 𝑝 (𝑚 − 𝑗). Thus, the number of draws needed until re-

ceiving a new coupon is a geometric random variable𝐺𝑒𝑜 (𝑝 (𝑚− 𝑗))
with expectation

1

𝑝 (𝑚−𝑗) . We need to collect 𝑛 new coupons, hence

the total number of draws is

∑𝑛−1
𝑗=0 𝐺𝑒𝑜 (𝑝 (𝑚 − 𝑗)) = ∑𝑛−1

𝑗=0
1

𝑝 (𝑚−𝑗)
in expectation. □

However, the configurationwith the closest expectation𝐶𝐶 (𝑚, 𝑝, 𝑛)
from 𝑇𝑞 may have a large variance in the number of draws needed.

Therefore, we define Relative Error, an accuracy metric for a dis-

tinct counting algorithm running query 𝑞 with threshold 𝑇𝑞 , that

BeauCoup: Answering Many Network Traffic Queries SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

simultaneously captures the bias and variance of a coupon-collector

configuration.

• True count: Say the algorithm first outputs an alert (𝑞, 𝑘) after
observing the input stream 𝑖1, 𝑖2, . . . , 𝑖𝑡 ; at this time, the ground

truth number of distinct attributes seen by the algorithm is

T =
��{𝑎𝑡𝑡𝑟𝑞 (𝑖) | 𝑘𝑒𝑦𝑞 (𝑖) = 𝑘, 𝑖 ∈ 𝑖1, 𝑖2, . . . , 𝑖𝑡 }

��
.

• Absolute error: However, the algorithm should generate an

alert when there are exactly 𝑇𝑞 distinct attributes. We define the

absolute error as |T −𝑇𝑞 |.
• Relative error: We normalize and use

|T−𝑇𝑞 |
𝑇𝑞

as the relative

error of output (𝑞, 𝑘). This scaled error includes both the bias

𝐸 [T] −𝑇𝑞 and the variance of T .
By running the same algorithm many times with different random

hash functions, we can have many observations of Relative Error

for the same query, and we can subsequently define Mean Relative
Error as the mean of all observations.

Next, we discuss how BeauCoup finds a coupon-collector con-

figuration with small Mean Relative Error for every query.

3.2 Finding the Best Configuration
The BeauCoup compiler needs to identify one coupon-collector

configuration for every query given the query’s threshold 𝑇𝑞 , and

we focus on how we satisfy the strict per-packet memory access

constraint. When implementing BeauCoup on PISA switches, our

choice for𝑚𝑞 , 𝑝𝑞 , and𝑛𝑞 is subject to hardware constraints. Namely,

since a memory word is 𝑤 = 32-bit we require𝑚𝑞 ≤ 32, and to

facilitate efficient mapping from random hash function to coupons

we require 𝑝𝑞 to be an integer power of two. Also, we must satisfy

the average per-packet coupon limit 𝛾𝑞 : we require in expectation

that we collect fewer than 𝛾𝑞 coupons per packet, i.e.,𝑚𝑞 · 𝑝𝑞 ≤ 𝛾𝑞 .
Thus, we use the following procedure to find the configuration

given threshold 𝑇𝑞 and per-packet coupon limit 𝛾𝑞 :

(1) For all feasible coupon probabilities 𝑝𝑞 = 2
−𝑗
, we calculate the

maximum number of coupons allowed, based on both the per-

packet coupon limit and the word length:𝑚𝑞 =𝑚𝑖𝑛(𝑤,𝛾𝑞/𝑝𝑞).
We stop if𝑚𝑞 < 1.

(2) For each 𝑝𝑞 , we identify all feasible configurations 1 ≤ 𝑛𝑞 ≤
𝑚𝑞 ≤ 𝑚𝑞 . We then calculate their expected number of draws

𝐶𝐶 (𝑚𝑞, 𝑝𝑞, 𝑛𝑞) for all feasible configurations, and accept a con-

figuration as reasonable when it is within a 5% tolerance from

𝑇𝑞 , i.e., 0.95𝑇𝑞 < 𝐶𝐶 (𝑚𝑞, 𝑝𝑞, 𝑛𝑞) < 1.05𝑇𝑞 . The 5% tolerance

is selected because the minimum relative error for the opti-

mal collectors is about 10%, and is relaxed when no reasonable

configuration was found.

(3) Given all of the reasonable configurations, we choose the op-

timal configuration based on their minimum relative error, ac-

cording to a lookup table prepared via simulations (shown later

in the Evaluation section in Figure 5).

4 BEAUCOUP ON PISA HARDWARE
In this section, we describe how we implement BeauCoup on PISA

programmable switches. PISA switches always process packets

at line rate (at least 100Gbps per port), which requires the algo-

rithms running on it to comply with several hardware-imposed

resource constraints.

EgressIngress

TCAM
matching rules

Key fields Attribute tuples Query 1, Query 2, Query 3, …

P4 Code
GeneratorTemplate

Query
Compiler

P4 Code (mq,pq,nq)
Rules

Generator
P4

Compiler
Data plane
program

Packets Alerts

Figure 3: BeauCoup runs queries by installing a static data-
plane program on the PISA switch, then generating and in-
stalling TCAM rules on the fly.

PISA switches have two kinds of memory. Ternary Content-

Addressable Memory (TCAM) holds match-action rules installed by

the control software, while Static Random Access Memory (SRAM)

holds general-purpose register arrays that can be updated within

the data plane. TCAM can simultaneously match a bit string with

many match rules, and is typically used for forwarding packets by

matching on the IP prefix. BeauCoup utilizes a small fraction of the

available TCAM space to efficiently implement both the mapping

from attributes to coupons and the tie-breaking process between

queries. Meanwhile, BeauCoup collects coupons by updating SRAM

entries. The SRAM memory space is limited (several megabytes),

and more importantly we can only perform a small, constant num-

ber of memory accesses to SRAM per packet. In this paper, we

primarily focus on the limited SRAM space and the limited number

of SRAM accesses allowed.

BeauCoup’s implementation has two components: the data-plane

program executes the logic for collecting coupons, and the control

algorithm transforms queries into coupon-collector configurations,

as illustrated in Figure 3. Now we first introduce how we imple-

ment the data-plane program to run the coupon collectors on PISA

hardware, then discuss how BeauCoup as a whole executes and

updates queries.

4.1 Using TCAM for Drawing Coupons
BeauCoup needs to draw coupons based on the output of random

hash functions. Since each hash function maps to a large num-

ber of coupons, we utilize the TCAM to efficiently check if the

hash function’s output value maps to any of the ranges defined by

the coupons.

Each random hash function’s output is encoded into 16 bits, and

each coupon’s corresponding range is translated to a bit prefix

match for these random bits. For example, we translate the coupons

of 𝑞1 and 𝑞2 shown in Figure 2 into matching rules in Table #1 in

Figure 4. Coupon #1 of query 𝑞1 matches on range [0, 1/4), which
is transformed to a bit prefix match 00* (the first rule in Table #1).

Coupon #2 of query 𝑞2 matches on [2/4 + 1/8, 2/4 + 2/8), which is

transformed to prefix 101* (the last rule in Table #1).

After we use TCAM tables to match on every hash function’s

output, we use a bit vector to represent if any one of the many hash

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Xiaoqi Chen, Shir Landau-Feibish, Mark Braverman, Jennifer Rexford

Table
#1

Table
#2

Table
#3

Table
#4

Match h(i.dstIP) Query#,Coupon#
00***** (1,0)
01***** (1,1)
100**** (2,0)
101**** (2,1)

No match
No match
No match
No match

Match h(i.srcIP) Query#,Coupon#
00000** (6,0)
00001** (6,1)
00010** (6,2)

Match
h(i.dstIP,i.dstPort) Query#,Coupon#

Match
h(i.srcIP,i.srcPort) Query#,Coupon#

Matched

No match

Matched

No match

Match (matched,rnd)Which coupon?
0000,* No coupon
1000,* From table #1
0100,* From table #2
0010,* From table #3
0001,* From table #4
1100,0 From table #1
1100,1 From table #2
1010,0 From table #1
1010,1 From table #3
1001,0 From table #1
1001,1 From table #4
0110,0 From table #2
0110,1 From table #3

… …

… …

… …

… …

Figure 4: Using TCAM rules to draw coupons.

functions had matched with a coupon. As there could be zero or

more coupons, we again use the TCAM to efficiently tie-break and

select one coupon to collect when there may be multiple coupons

available. The matching rules are trivial when there are zero or

exactly one coupon matched. If there are exactly two coupons

available, we flip a random coin (by using a random bit from the

random number generator) to fairly tie-break and select one of the

two for collection. We ignore all coupons if there are more than

three; this has very minor effect on BeauCoup’s accuracy, as we

discuss in Appendix B.

We illustrate the coupon matching and the tie-breaking pro-

cess in Figure 4. There are four random hash functions and four

corresponding match tables (on the left) to draw coupons. After

matching, Table #1 and #2 produced coupons while Table #3 and

#4 did not. We use the bit vector 1100 to represent which tables

produced coupons. A tie-breaking table (on the right) uses TCAM

match rules to match on the bit vector 1100, and there are two

matching rules (highlighted in yellow). The table matches on the

random bit to tie-break, and chooses either the coupon from Table

#1 or the one from Table #2 as the final coupon for collection.

4.2 Recording Coupons in SRAM
After BeauCoup has selected a query 𝑞 and chosen a coupon 𝑐 for

packet 𝑖 (using TCAM matching), we need to collect 𝑐 into the

in-memory coupon table. We used the SRAM-based register arrays

on PISA switches to record coupons and other states. Each array

holds 𝑆 memory words, indexed 0, 1,. . . , 𝑆-1, and each word has 32

bits. Given an index, we can read the existing value at this index,

perform arithmetics, and write a new value; this counts as one

memory access.

BeauCoup first extracts the query key 𝑘𝑒𝑦𝑞 (𝑖) from the packet,

then locates an index using the tuple (𝑞, 𝑘𝑒𝑦𝑞 (𝑖)). We use an index-

ing random hash function 𝐻 to map the tuple into an array index,

denoted 𝑖𝑑𝑥 = 𝐻 (𝑞, 𝑘𝑒𝑦𝑞 (𝑖)).
BeauCoup defines three register arrays, eachwith 𝑆 words.TS[·]

stores timestamps, and is used to enforce the query time window

𝑊 for every coupon collector; we reclaim memory when a collec-

tor is timed out before collecting enough coupons. QK[·] stores
32-bit checksums 𝑐ℎ𝑒𝑐𝑘𝑠𝑢𝑚(𝑘𝑒𝑦𝑞 (𝑖)) and is used to detect hash col-

lisions in the indexing hash function 𝐻 , avoiding two keys adding

coupons into the same collector bit vector. Finally, CC[·] stores all
the coupon collector bit vectors.

The process for collecting the coupon 𝑐 for query 𝑞 and key

𝑘𝑒𝑦𝑞 (𝑖) is as follows, accessing at most three words of memory,

First, we calculate the array index 𝑖𝑑𝑥 = 𝐻 (𝑞, 𝑘𝑒𝑦𝑞 (𝑖)), and en-

code the coupon into a variable 𝑜𝑛𝑒ℎ𝑜𝑡 (𝑐), a 32-bit binary string

“000...010...0” with all bits 0 except one 1 at the location corre-

sponding to the coupon 𝑐 . Subsequently, we check whether we

are creating a new coupon collector or adding this coupon to

an existing collector, using query time window 𝑊 and current

timestamp 𝑖 .𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝:

• Create new collector: If TS[𝑖𝑑𝑥] < 𝑖 .𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 −𝑊 , the cur-

rent collector has expired. We allocate a new coupon collector

by setting TS[𝑖𝑑𝑥] ← 𝑖 .𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 as well as QK[𝑖𝑑𝑥] ←
𝑐ℎ𝑒𝑐𝑘𝑠𝑢𝑚(𝑘𝑒𝑦𝑞 (𝑖)). We initialize the collector bit vector with

one coupon: CC[𝑖𝑑𝑥] ← 𝑜𝑛𝑒ℎ𝑜𝑡 (𝑐).
• Update existing collector: If TS[𝑖𝑑𝑥] ≥ 𝑖 .𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 −𝑊
and QK[𝑖𝑑𝑥] = 𝑐ℎ𝑒𝑐𝑘𝑠𝑢𝑚(𝑘𝑒𝑦𝑞 (𝑖)), we accumulate into an ex-

isting coupon collector. We update its bit vector using bitwise-OR:

CC[𝑖𝑑𝑥] ← (CC[𝑖𝑑𝑥] ∨ 𝑜𝑛𝑒ℎ𝑜𝑡 (𝑐)). Now, if the number of one

bits in CC[𝑖𝑑𝑥] reaches 𝑛𝑞 , we output an alert (𝑞, 𝑘𝑒𝑦𝑞 (𝑖)).
• Handle collision: IfTS[𝑖𝑑𝑥] ≥ 𝑖 .𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝−𝑊 yetQK[𝑖𝑑𝑥] ≠
𝑐ℎ𝑒𝑐𝑘𝑠𝑢𝑚(𝑘𝑒𝑦𝑞 (𝑖)), we encountered a hash collision; the system

ignores this coupon. This indicates there are too many active

coupon collectors, hence the system is running out of memory.

We discuss how to address memory size constraint and hash

collisions in Section 6.

We note that coupon collectors for different queries uses the same

block of memory space, statistically multiplexing their memory

demand. Therefore, we may encounter high memory load when

many different queries simultaneously collect coupons for many

keys. We discuss BeauCoup’s memory size requirement under real-

world traffic settings in Section 5.2.3.

4.3 Query Compiler and Code Generation
Figure 3 presents the high-level architecture of the BeauCoup

system. Given a set of queries Q, we first run a query compiler

(using the algorithm in Section 3.2) to compute a configuration

{𝑚𝑞, 𝑝𝑞, 𝑛𝑞} for each query 𝑞, and produce the hash functions for

attributes. The query compiler generates an intermediate represen-

tation with the mapping from each hash function’s output values to

all of the coupons. Subsequently, the rules generator uses these map-

pings to generate the TCAM matching rules and the corresponding

action parameters, representing the query set Q.
Meanwhile, BeauCoup generates the P4 code for the switch us-

ing a python-based code generator. The generator uses an algorithm

template (approximately 750 lines), written under the Jinja [28]

templating language, that implements BeauCoup’s data-plane algo-

rithm. Jinja enables auto-generating repeated P4 elements, such as

defining multiple hash functions and variables, as demonstrated in

Appendix A. Given the queries’ key fields and attribute tuples as

input, the code generator prepares the definition for hash functions,

then expands the template into a P4 [9] program (approximately

1500 lines), which is subsequently compiled and installed into the

PISA switch. When the TCAM matching rules are installed in the

tables specified by the P4 program, the switch executes the query

BeauCoup: Answering Many Network Traffic Queries SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

set Q. We have open-sourced the complete template program, the

code generator, as well as the query compiler on GitHub
1
.

Although the packet parser (header field definitions), hash func-

tions, and query key extraction rules are part of the P4 data-plane

program, the TCAM matching rules can be updated on the fly. The

user may frequently change the query set Q, by first running the

query compiler and the rules generator, then installing the new

matching rules, as long as all queries are using existing key fields

and attribute tuples already defined in the data-plane program. This

also avoids the potential network downtime caused by re-installing

a new data-plane program, which would temporarily interrupt the

switch’s normal operation. The green shaded box on the left half

of Figure 3 represents the heavy-weight update of the data-plane

program, which is largely static, while the yellow shaded box on the

right represents light-weight update of query matching rules, which

can be installed swiftly without causing downtime. Still, using a

new header field in a query’s key or attribute definition requires

re-generating P4 code and re-compiling the data-plane program.

5 EVALUATION
In this section, we demonstrate that BeauCoup can accurately and

efficiently execute multiple queries. We first show that the query

compiler produces good parameters for coupon collection. Then, we

investigate BeauCoup’s performance when answering queries over

a real-world traffic trace, under limited memory access constraint,

and show it achieves the same accuracy using 4x fewer memory

accesses than alternatives. Finally, we show BeauCoup ’s data-plane

program only uses a modest fraction of the available hardware

resources on a commodity switch.

5.1 Evaluating the Query Compiler
We now investigate the coupon-collector configurations generated

by the query compiler under different thresholds𝑇𝑞 and average per-

packet coupon limit 𝛾𝑞 . The compiler’s running time is negligible

(< 1ms) given its time complexity 𝑂 (𝑤2 |Q|).
Recall that the query compiler outputs the configuration {𝑚𝑞, 𝑝𝑞, 𝑛𝑞}

with the lowest Mean Relative Error given that its expected num-

ber of draws 𝐶𝐶 (𝑚𝑞, 𝑝𝑞, 𝑛𝑞) is close to the query threshold 𝑇𝑞 . In

Figure 5 we plot the minimum possible Mean Relative Error of

various configurations, when the expected number of draws ex-

actly matches the threshold (𝑇𝑞 = 𝐶𝐶 (𝑚𝑞, 𝑝𝑞, 𝑛𝑞)). We note that

adjusting 𝑝𝑞 does not noticeably change the error, and only plotted

the relationship between Mean Relative Error and (𝑚𝑞, 𝑛𝑞) for all
configurations in 2 ≤ 𝑛𝑞 ≤ 𝑚𝑞 ≤ 64.

As we can see from Figure 5, in general, using more coupons

leads to lower error. We can further observe that for any given

𝑚𝑞 (total coupons), the configuration with minimal Mean Relative

Error corresponds to a choice of 𝑛𝑞 around 0.75𝑚𝑞 . That is, the

coupon-collector configuration should stop when around three-

fourths of coupons are collected, as this leads to the least variance

in the number of random draws required. We also verified that

the 𝑛𝑞 ≈ 0.75𝑚𝑞 heuristic still holds with thousands of coupons,

although we defer a rigorous analysis to future work. However,

when memory access is extremely constrained, the compiler often

1
https://github.com/Princeton-Cabernet/BeauCoup

0 20 40 60
Coupons to collect (n)

0

10

20

30

40

50

60

To
ta

l c
ou

po
ns

 (m
)

n=0.75m

10%

30%

50%

M
ea

n
Re

la
tiv

e
Er

ro
r

Figure 5: When using various coupon collector configura-
tions, we find that collecting approximately 𝑛 = 0.75𝑚 out of
𝑚 coupons produce the lowest error.

1 16 32 64 128 192 256
Number of total coupons (m)

0%

10%

20%

30%

40%

50%
M

in
im

um
 M

ea
n

Re
la

tiv
e

Er
ro

r

Figure 6: Using more coupons lead to lower Mean Relative
Error. A coupon collector can achieve 13.7% minimum error
when using𝑚 = 32 coupons.

selects 𝑛𝑞 = 𝑚𝑞 = 1, as the configurations using more coupons

consume many more memory accesses per packet.

We now look at the relationship between the minimum Mean

Relative Error and the total number of coupons (𝑚𝑞), as shown in

Figure 6. In our current prototype implementation, we restrict the

query compiler to use at most𝑚𝑞 = 32 coupons, as one memory

read on the PISA hardware reads a 32-bit memory word. Using

𝑚𝑞 = 32 coupons achieves 13.7% minimum error, which means

BeauCoup may send a super-spreader alert upon seeing 860∼1140
distinct IP addresses, given the threshold 1000. We note that Beau-

Coup can maintain more coupons in a collector by using multi-

ple memory words, if a higher accuracy is desired. Using𝑚𝑞 = 64

coupons achieves 9.8% minimum error, while using 128, 256, or

1024 coupons achieves 6.9%, 5.0%, or 3.1% error respectively. These

errors are comparable with the HyperLogLog distinct counting

algorithm using the same memory space.

https://github.com/Princeton-Cabernet/BeauCoup

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Xiaoqi Chen, Shir Landau-Feibish, Mark Braverman, Jennifer Rexford

5.2 Query Accuracy
Nowwe evaluate the accuracy of BeauCoup queries over real-world

network traffic, by first running a single query and comparing Beau-

Coup with related works, then run many queries simultaneously.

Our experiments mostly focus on BeauCoup’s accuracy under the

limited memory access constraint by providing abundant memory

for all algorithms. We also present some results regarding limited

memory space.

5.2.1 OneQuery and One Key. Wefirst demonstrate BeauCoup’s

coupon collectors are an efficient way to perform distinct count

queries, by comparing them against other approximate distinct

counting algorithms. Here we only focus on counting distinct at-

tributes for one particular query and one particular key, as other

distinct counting algorithms are designed for only one key and

cannot support multiple keys.

In this experiment, we use different algorithms to count the num-

ber of distinct source-destination IP pairs in the traffic, and stop

when the estimate exceeds𝑇 = 1000 distinct IP pairs. All algorithms

are implemented in Python. We use the CAIDA Anonymized Inter-

net Traces Dataset 2018 [5] (CAIDA trace), and repeat all runs 100

times with different random seeds.

HyperLogLog [13] is a widely-used approximate distinct count-

ing algorithm, that counts distinct items by counting the maximum

number of leading zeros seen from a random hash function. The

algorithm splits its input and feeds them to multiple independent

estimators, and outputs the harmonic mean across all estimators.

We use a HyperLogLog instance with 64 estimators.

UnivMon [22] is the state-of-the-art multi-purpose measure-

ment sketch that runs on PISA programmable switches, and can

compute various functions over a set of attributes, including dis-

tinct counting. NitroSketch [21] performs sampling over sketch

memory updates to reduce a sketching algorithm’s memory access

while preserving its accuracy. The authors of NitroSketch had pro-

posed applying the NitroSketch technique to UnivMon to reduce

UnivMon’s average memory access per packet. We hereby refer to

the new algorithm as NitroSketch-UnivMon. NitroSketch-UnivMon

supports all the queries supported by UnivMon, including distinct

counting. NitroSketch-UnivMon is the only sketch we are aware

of that achieves fewer than one memory access per packet on av-

erage and supports distinct counting. We use 16 layers of 4x1024

CountSketch for UnivMon, and change NitroSketch’s sampling

parameters to let NitroSketch-UnivMon achieve different average

memory access per packet.

We also include a packet sampling approach in the comparison.

As analyzed by Spang and McKeown [30], it is possible to estimate

the distinct number of flows (attributes) given a sampled subset of

all packets, using a statistical estimator [6]. We sample each packet

with a small probability 𝑝 , and record each sampled packet’s IP pair.

Subsequently, we feed the sampled subset to the estimator.

We first note that the memory size used by BeauCoup is mini-

mal: a coupon collector uses one word of memory, at most𝑤 = 32

bits. Including auxiliary data (timestamp and checksum), each key

uses three words, or 96 bits. Meanwhile, one HyperLogLog in-

stance with 64 estimators uses 320 bits of memory. As we dis-

cussed in Section 5.1, when using the same number of bits of

10 2 10 1 100

Average memory access per packet ()

0%

20%

40%

60%

80%

100%

M
ea

n
Re

la
tiv

e
Er

ro
r Sampling

NS-UnivMon
BeauCoup
HyperLogLog

Figure 7: BeauCoup’s coupon collector approach uses 4x
fewer memory access than NitroSketch-UnivMon or sam-
pling to achieve the same accuracy.

memory space, coupon collectors can achieve comparable accu-

racy as HyperLogLog.

On the other hand, NitroSketch-UnivMon uses 256 kilobytes

of memory space and is not directly comparable, as it is a multi-

purpose sketch supportingmore than distinct counting. It is possible

to fit a handful of instances of NitroSketch-UnivMon into a switch’s

data-planememory space, but it is unfeasible to runmultiple queries

with multiple keys, which requires thousands of instances. Packet

sampling uses𝑂 (𝑝 ·𝐿) memory space, proportional to the sampling

probability and stream length.

Since we need to simultaneously answer multiple queries under

a total per-packet memory access constraint, each BeauCoup query

can only make a very small number of memory accesses per packet.

We now compare the accuracy of each distinct counting algorithm

under the same average memory access constraint of 𝛾 ≤ 1 words

per packet:

• When using packet sampling, for each sampled packet, we need

to access two words of memory to save its IP pair. Thus, we can

satisfy the per-packet memory access constraint by setting the

sampling probability to 𝑝 = 𝛾/2.
• For NitroSketch-UnivMon, we tune each layer’s NitroSketch sam-

pling probability individually to achieve 𝛾/16 average memory

access, thus making total memory access across all layers to

fit within 𝛾 words per packet. Since not all layers use their ac-

cess budgets fully, we record the actual number of total memory

accesses in experiments.

• For BeauCoup coupon collectors, recall that collecting each coupon

requires accessing 𝑐 = 3 words (for coupon vector, timestamp,

and checksum). We specify an average per-packet coupon limit

𝛾𝑞 = 𝛾/𝑐 , and use the BeauCoup query compiler to find the

coupon collector configuration that satisfies the constraint. Here

we also record the actual number of memory accesses.

• Finally, although HyperLogLog is very accurate, it always ac-

cesses exactly one word of memory per packet, regardless of

the number of estimators. We nevertheless included its accuracy

for reference.

BeauCoup: Answering Many Network Traffic Queries SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Allowed total memory access per packet ()

0%

20%

40%

60%

80%

100%

M
ea

n
Re

la
tiv

e
Er

ro
r

Figure 8: The average error of all queries gradually improve
aswe allowmorememory access per packet, which is shared
among all queries.

In Figure 7, we show that BeauCoup’s coupon collector achieves

the same accuracy (Mean Relative Error, plotted on 𝑦-axis) using

at least 4x fewer memory accesses (𝛾 , plotted on 𝑥-axis with log

scale), compared with NitroSketch-UnivMon, packet sampling, or

HyperLogLog.

We note that the statistical estimator used by the packet sampling

approach [30] is designed for sparse samples, looking at IP pairs

sampled exactly once or twice. Thus, it works better for sparse

samples and performs poorly with a very high sampling rate above

0.5, creating non-monotonicity in the figure.

To achieve less than 25% Mean Relative Error for queries, Beau-

Coup needs 0.04 words of memory access per packet, which means

we can run about 25 queries together per word of memory access

per packet, while NitroSketch-UnivMon requires 0.2 words of mem-

ory access, and can only run about five queries for the samememory

access limit. At higher error ranges (e.g., to achieve less than 50%

Mean Relative Error), BeauCoup only needs 0.009 words of memory

access, while NitroSketch-UnivMon requires 0.09, yielding a 10x

saving. The improvements are similar for other attribute definitions

and thresholds.

5.2.2 Multiple Queries and Keys. Next, we run BeauCoup with

multiple queries and observe the average relative error under vary-

ing memory access constraints. We wrote |Q| = 26 queries that

resemble monitoring demands a network administrator may have,

with keys and attributes defined using combinations of source and

destination IP addresses and TCP/UDP ports. The queries use vari-

ous different combinations of packet header fields as their key and

attribute definitions. Some queries also use the timestamp as the

attribute definition—recall that we can count the number of packets

by performing distinct counting over timestamps. The thresholds

range from 100 to 10000, and are selected based on the likely use

cases of the particular queries. In each experiment, we set Γ, the
total memory access constraint for all queries, from 0.1 to 1 ac-

cess per packet. We then run the query compiler to fairly allocate

memory access and generate the coupon-collector configuration

for each query.

After obtaining the coupon-collector configurations, we run

BeauCoup in a python-based simulator, which is behaviorally equiv-

alent to the data-plane P4 program, but allows us to freely tune

all parameters and concurrently run many simulations with dif-

ferent random seeds. We once again use the CAIDA trace in the

following experiments.

Average accuracy across queries. Figure 8 shows the overall
accuracy of all queries, measured by Mean Relative Error, given

different total memory access limits Γ. We can observe that when

the memory access limit becomes lower, the error becomes higher,

and the accuracy of different queries gradually converges. This is

because when we have abundant memory accesses, the queries with

higher thresholds do not need to use all of their fair share of mem-

ory accesses, and can achieve better accuracy than those actually

constrained by memory access; when all queries are constrained,

the fair allocation policy leads to similar accuracy for all queries.

Per-query accuracy. Now we scrutinize the accuracy of each

query. We first compare the effect of increasing memory access

limit Γ on each query’s average relative error. In Figure 9, we choose
four different queries with various 𝑇𝑞 from 100, 500, 5000, to 10000

and analyze their accuracy. Naturally, the query with the lowest

threshold is the hardest to execute, as it requires coupons with

larger probability 𝑝𝑞 and easily exhausts its memory access budget.

Increasing Γ allows the query to increase accuracy significantly.

For queries with larger 𝑇𝑞 , the improvement is not as significant.

Notably, the query with 𝑇𝑞 = 10000 reaches its optimal accuracy

when Γ = 0.2, and its accuracy slightly deteriorates when we allow

more memory accesses. This is due to having collisions with other

queries when the system draws more than one coupon and enters

tie-breaking more often, which slightly skews the probability of

drawing each coupon.

We also compare different queries with the same 𝑇𝑞 = 1000 yet

with different 𝑘𝑒𝑦𝑞 and 𝑎𝑡𝑡𝑟𝑞 definitions. Here we use four queries

as an example, the first one being super-spreader. As we can see

from Figure 10, their average relative error has almost the same

relationship regarding the total memory access constraint Γ. The
third plot in Figure 10 has a slightly higher variance, and is because

this particular query outputs fewer alarms in our experiment trace,

hence has more outliers for the average relative error statistics.

5.2.3 Memory Size. So far, we have focused on limited mem-

ory access and assumed unlimited memory size and an infinite

time window. However, practical systems have a limited amount of

memory (𝑆) and can run out of space for large window size𝑊 .

We first observe that the number of unique query keys present

in the traffic usually follows power law. For a stream of 𝐿 pack-

ets, we can observe 𝐿𝛼𝑞 unique keys, with 𝛼𝑞 being specific to

the traffic and different key definitions. For the CAIDA trace, 𝛼𝑞
ranges between 0.7 to 0.85. Therefore, given the average per-packet

coupon limit 𝛾𝑞 , we can give an upper bound (𝛾𝑞𝐿)𝛼𝑞 for the num-

ber of coupon collectors needed for query 𝑞, and therefore the

maximum total memory needed by all queries is upper-bounded

by

∑
𝑞∈Q (𝛾𝑞𝐿)𝛼𝑞 .

Figure 11 shows the actual memory space requirement of Beau-

Coup with regards to different time window sizes𝑊 , when process-

ing the same query set Q under the CAIDA trace, under a log-log

scale. We can observe that the relationship between the memory

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Xiaoqi Chen, Shir Landau-Feibish, Mark Braverman, Jennifer Rexford

0.2 0.4 0.6 0.8 1.0
0%

20%

40%

60%

80%

100%

M
ea

n
Re

la
tiv

e
Er

ro
r

Threshold=100

0.2 0.4 0.6 0.8 1.0
0%

20%

40%

60%

80%

100%
Threshold=500

0.2 0.4 0.6 0.8 1.0
0%

20%

40%

60%

80%

100%
Threshold=5000

0.2 0.4 0.6 0.8 1.0
0%

20%

40%

60%

80%

100%
Threshold=10000

Allowed total memory access per packet ()
Figure 9: Query with the lowest threshold experiences the most significant accuracy improvement when allowing more mem-
ory access per packet.

0.2 0.4 0.6 0.8 1.0
0%

20%

40%

60%

80%

100%

M
ea

n
Re

la
tiv

e
Er

ro
r

Key=ipv4.src
Distinct(ipv4.dst)>1000

0.2 0.4 0.6 0.8 1.0
0%

20%

40%

60%

80%

100%

Key=ipv4.src
Distinct(ipv4.dst+tcp.dst)>1000

0.2 0.4 0.6 0.8 1.0
0%

20%

40%

60%

80%

100%

Key=ipv4.dst+tcp.dst
Distinct(ipv4.src)>1000

0.2 0.4 0.6 0.8 1.0
0%

20%

40%

60%

80%

100%

Key=ipv4.dst+tcp.dst
Distinct(ipv4.src+tcp.src)>1000

Allowed total memory access per packet ()
Figure 10: Queries with the same threshold exhibits similar accuracy improvement trend when given more allowed memory
access, despite different key and attribute definitions.

10 1 100 101 102

Query time window (W, seconds)

210

212

214

216

218

M
em

or
y

sp
ac

e
(S

)

=0.80
=0.40
=0.20
=0.10

Figure 11: The query time window size𝑊 and the memory
space 𝑆 (number of coupon collector bit vectors) required by
BeauCoup follows power law.

size and window size closely follow a power law with an exponent

𝛼 = 0.80. For example, for a time window of𝑊 = 1 second and

memory access limit of Γ = 0.1 word per packet, BeauCoup needs to

store 4096 coupon collectors (48 kilobytes), while doubling the time

window to𝑊 = 2 seconds enlarges the memory size requirement

by 2
𝛼 = 1.74 times, to 7150 collectors (84 kilobytes). A practical

system on PISA switches can easily support 65, 536 collectors, cor-

responding to a time window𝑊 = 30 seconds for the CAIDA trace.

Still, BeauCoup is optimized for memory access constraint, and we

defer the discussion on how to adapt BeauCoup with insufficient

memory in Section 6.

Component Match
Coupons

Extract
Key

Collect
Coupons Teardown Overall

TCAM 39.6% 2.3% 0% 0% 13.2%
SRAM 9.1% 2.1% 26.3% 0% 12.3%

Instruction 25.0% 7.3% 5.4% 3.1% 12.8%
Hash Unit 50.0% 61.1% 29.1% 0% 41.7%

Table 3: BeauCoup’s hardware resource utilization, catego-
rized into four functional components.

5.3 Hardware Resource Utilization
To run on PISA switches and process packets at 100Gbps line rate,

BeauCoup’s data-plane program must satisfy other resource con-

straints beyond limited memory access. BeauCoup’s auto-generated

P4 data-plane program runs on an EdgeCore Wedge100-32BF pro-

grammable switch. It consumes about 40% of the programmable

switch’s hash calculation units and less than 15% of other resources.

We note that BeauCoup is not bottlenecked by TCAM match ta-

ble size. The current version of our data-plane program supports

matching each attribute’s hash function output to 4096 different

coupons; since every query uses at most 32 coupons, the program

supports at least
4096

32
= 128 queries for each attribute. 4096 is the

default size for the TCAM match tables set by the compiler, and

can be extended as needed. Resource utilization other than TCAM

is independent of the number of simultaneous queries we run.

To produce a more detailed picture of BeauCoup’s resource uti-

lization, we slice the data-plane program into four sequential func-

tional components, and in Table 3 we drill down the utilization for

different types of resources by each component.We can see different

functional components have distinctive resource utilization profiles.

BeauCoup: Answering Many Network Traffic Queries SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

0.0 0.1 0.2 0.3 0.4 0.5
Allowed per-packet coupon limit (q)

0.0

0.1

0.2

0.3

0.4

0.5

Ex
pe

ct
ed

 #
co

up
on

s (
m

q
p q

)

Tq=100
Tq=200
Tq=500
Tq=1000
Tq=2000

Figure 12: Querieswith higher threshold𝑇𝑞 need fewermem-
ory accesses per packet.

For example, matching coupons extensively uses hash units to calcu-

late random hash functions and uses TCAM to draw coupons, while

not using much SRAM; in contrast, collecting coupons requires no

TCAM, but uses SRAM to store the bit vectors.

Although the BeauCoup data-plane program usesmore hardware

resources than running one instance of HyperLogLog or UnivMon

for a single key definition, we note that the data-plane program

already supports various different key and attribute definitions,

allowing us to install new queries on the fly without re-compiling

the data-plane program. Furthermore, BeauCoup does not exhaust

any one switch resource, and its unique resource usage profile co-

habitates well with other typical resource-heavy switch functions or

algorithms.When two algorithms use the same resource heavily but

at different pipeline stages, we can tessellate them without causing

resource contention. For example, performing Equal-Cost Multi-

Path (ECMP) routing requires computing hash functions late in the

switching pipeline, where BeauCoup does not compute many hash

functions when collecting coupons; running network measurement

sketches like UnivMon [22] or PRECISION [4] requires using SRAM

memory early in the pipeline, whereas BeauCoup does not consume

a lot of SRAM early in the pipeline when it is matching coupons.

6 DISCUSSION
Fairness between queries. In this paper, we use a fair alloca-

tion policy to distribute the limited memory access among all

queries.However, queries with larger thresholds require fewer mem-

ory accesses to achieve the same accuracy. Figure 12 evaluates the

optimal configurations found by the query compiler under differ-

ent per-packet coupon limit 𝛾𝑞 , for various query thresholds 𝑇𝑞 .

A query with a small threshold of 𝑇𝑞 = 100 almost always uses

all of its budget (with𝑚𝑞 · 𝑝𝑞 very close to 𝛾𝑞), while queries for

larger thresholds do not need their full share. We can improve the

allocation policy to redistribute these “leftover” budget to improve

the accuracy of the queries with the lowest thresholds. We can

repeat the process until the leftover is negligible or no query can

be improved.

Multi-stage coupon table. Our current prototype uses a single
hash-indexed array for storing coupons. Extending this structure

to a multi-stage table would offer several benefits. First, hash colli-

sions are inevitable even when the hash table is lightly filled; using

multiple tables can provide a query-key pair more chances to insert

successfully despite hash collisions. With more memory accesses,

we can also allow simultaneously collecting at most 2 or 3 coupons

per packet. Second, we can use multiple stages of tables to assign

more coupons to each collector, for example by using two tables to

implement𝑚 = 64 coupons per collector.

Memory space. In designing BeauCoup our main concern was

supporting multiple queries with limited memory access. If memory

size becomes constrained, BeauCoup has two possible ways to

address the issue. First, we can voluntarily limit memory access

(Γ) below the limit imposed by the hardware; a smaller Γ reduces

space requirements, as demonstrated in Figure 11. Second, we can

implement an eviction mechanism that finds the coupon collectors

least likely to succeed; for example, we could look at the number

of coupons not yet collected, and how much time has elapsed since

the last coupon was collected by this collector.

Distributed Monitoring. Currently, BeauCoup processes traf-

fic at a single switch. To extend BeauCoup to multiple vantage

points, we could use multiple switches to run the same random

hash functions and a centralized collector to collect all the coupons.

Each switch only needs to send packet to the centralized collec-

tor when a new coupon is collected. We can minimize the traffic

overhead by specifying a small per-packet coupon limit, and de-

duplicating the coupons at the switches before sending. Similar

to HyperLogLog registers, BeauCoup coupon collector vectors are

trivially mergeable.

Security. Some network queries look for adversarial traffic, and

an attacker is motivated to craft its attacking traffic to disrupt those

queries. As BeauCoup uses random hash functions with random

seeds, the attacker cannot predict which packets lead to coupon col-

lection without knowing the seeds. However, with the seeds leaked,

the attacker can precisely know which packets trigger a coupon,

and thus can deliberately craft traffic to avoid being reported. We

therefore should periodically replace the hash seeds and make sure

they are not leaked.

Our current prototype uses the CRC-32 family of hash functions

with different polynomials, natively available on the programmable

switch hardware. CRC-32 is prone to linear correlation, and an

attacker may recover the seed when it simultaneously controls the

input packets and observes the output coupon activation (perform-

ing a Known Plaintext Attack). To defend against powerful attackers,
a more secure BeauCoup implementation should use cryptographic

hash functions. We leave this as future work.

7 RELATEDWORK
Approximate distinct counting. Plenty of relatedwork discusses
how to approximately count distinct elements under limited mem-
ory space, culminating in the widely-used HyperLogLog [13] dis-

tinct counting algorithm. [10] surveyed these prior works, which

can be roughly categorized into two flavors: K-Minimum-Value

and Distinct Sampling. K-Minimum-Value [2] computes a random

hash function over all input elements, and uses the 𝑘 smallest val-

ues observed to infer how many distinct elements exist. Distinct

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Xiaoqi Chen, Shir Landau-Feibish, Mark Braverman, Jennifer Rexford

Sampling [15] samples new distinct elements at a small probabil-

ity, and infers the count by the number of items sampled. We can

sample an item out of 2
𝑛
distinct items, if we wait for 𝑛 consec-

utive leading zeros in the output bits of a random hash function.

HyperLogLog [12, 13] builds upon the idea of Distinct Sampling but

instead partitions the incoming stream into 𝑘 sub-streams and uses

𝑘 independent estimators, and outputs the harmonic mean of their

estimates. Each estimator records the longest consecutive leading

zeros seen from the output bits of a random hash function. We

note that our implementation of a𝑚-bit coupon collector is in fact

equivalent to the HyperLogLog algorithm using 1/𝑝 sub-streams,

with the 1/𝑝 estimators each output only one bit. However, we only

store the output of first𝑚 estimators, truncating the other 1/𝑝 −𝑚
estimators to reduce memory access. Alternatively, a coupon col-

lector can be viewed as a 1/𝑝-bit Bloom Filter with only one hash

function, truncated to the first 𝑚 bits to reduce memory access.

Bloom Filters are originally designed for membership queries but

can also be used for approximate distinct counting, as analyzed by

Assaf et al. [1].

We also note that universal sketching (UnivMon [22]) can com-

pute many different functions over the input frequency vector, as

long as the function is monotonic and bounded by the 𝑙2-norm.

In particular, it can compute distinct counting (the 𝑙0-norm). For

input length 𝐿 with 𝐴 unique items (attributes), UnivMon main-

tains 𝑙𝑜𝑔(𝐴) different count sketches, and requires Γ = 𝑂 (𝑙𝑜𝑔(𝐴))
memory access per packet in the worst case.

Memorymodel. In [24], Muthukrishnan surveyed several estab-

lished streaming analysis models, and used an abstraction of main-

taining one high-dimensional vector. Each incoming item changes

one entry in the vector. The streaming models differ in the changes

they can make to items in the vector: cash register is addition only,

turnstile allows addition and subtraction, and strict turnstile allows
addition and subtraction, yet requires the entries to be always non-

negative. Subsequently, queries are made against this high dimen-

sional vector. Our paper falls under the cash register model, for each

individual query and sub-streams of the input stream partitioned

by the query key.

The cell probe model [19, 26, 33] is a limited memory access

model often used to prove data structure lower bounds. In [33], Yao

proved that ⌈log(𝑆)⌉ probes (memory accesses) are necessary to

check whether an item exists in a memory array of size 𝑆 . Larsen

et al. [19] discussed other similar lower bounds on how many mem-

ory accesses are necessary to solve a certain problem. Usually,

in the cell probe model the algorithm is allowed to be adaptive,

meaning that it can decide which memory address to look at next

based on the content of memory it has already read earlier. We

adapt cell probe into stream processing to allow at most Γ memory

words to be accessed per packet, while introducing a new notion

of sub-constant memory access, requiring each query to access

fewer than one memory word per packet on average. This model

is abstracted from our experience working with high-speed pro-

grammable switches, yet we can also identify similar situations in

other computing architectures where low latency is required or a

memory cache hierarchy exists. For example, a modern CPU has

a cache size of a few megabytes. The traditional streaming algo-

rithm model strives to fit an entire data structure (sketch) within

this cache size, while our model resembles limiting the number of

accesses to external memory or disks, which are slower to access

but considerably larger.

In [27], Pontarelli et al. proposed a related model where a system

has both faster on-chip memory and slower, larger off-chip memory,

and can only perform a limited number of off-chip memory accesses

per packet. In [18], Kim et al. implemented a practical off-chip

memory for PISA switches.

Reducing memory access. NitroSketch [21] is a novel tech-

nique that reduces memory access for sketching algorithms. The

authors identified memory access as one of the most expensive

operations when running network measurement tasks on CPUs,

and proposed to sample on memory accesses to improve perfor-

mance. Given a sampling probability 𝑝 , all the +1 updates to the

original sketch data structures are changed to +1/𝑝 updates with

probability 𝑝 . A smaller 𝑝 can further reduce memory accesses and

accommodate faster packet processing. NitroSketch can be applied

to many exising measurement sketches, including Count Sketch [7]

and Count-Min Sketch [11], to improve performance without sig-

nificantly impact accuracy. Compared with the naive approach of

sampling packets, NitroSketch achieves better accuracy when given

the same amount of memory access.

NitroSketch can be applied to UnivMon and produce a distinct

counting algorithm with sub-constant memory access. UnivMon

consists of multiple layers each hosting a Count Sketch. For every

incoming packet, we first select which UnivMon layers to update

using the original UnivMon mechanism, then each layer indepen-

dently samples the counter updates into its Count Sketch using

the NitroSketch mechanism, possibly using different sampling pa-

rameters according to the rate of each layer’s incoming packets.

The combined data structure NitroSketch-Univmon now uses sub-

constant average memory access, and the accuracy loss is negligible

when we reduce memory access by 50%-75% percent. However, the

accuracy for distinct counting suffers greatly when we reduce mem-

ory access by 90%-99%, as we have shown in Section 5.2.

8 CONCLUSION
We present BeauCoup, a system for simultaneously running many

distinct-counting based network monitoring queries, under limited

memory access per packet. BeauCoup is implemented on PISA

programmable switches and consume only moderate hardware

resources, and evaluation showed it uses 4x fewer memory accesses

to achieve the same error rate compared with other state-of-the-art

measurement sketch.

ACKNOWLEDGMENTS
This research is supported in part by NSF Grant No. CNS-1704077,

the NSF Alan T. Waterman Award Grant No. 1933331, a Packard

Fellowship in Science and Engineering, the Simons Collaboration

on Algorithms and Geometry and The Eric and Wendy Schmidt

Fund for Strategic Innovation.

We sincerely thank the anonymous reviewers and our shep-

herd Dave Levin for their thoughtful comments and feedback. We

also thank David Walker, Satadal Sengupta, and Mina Tahmasbi

Arashloo for their help and feedback for this paper.

BeauCoup: Answering Many Network Traffic Queries SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

REFERENCES
[1] Eran Assaf, Ran Ben Basat, Gil Einziger, and Roy Friedman. 2018. Pay for a sliding

bloom filter and get counting, distinct elements, and entropy for free. In IEEE
INFOCOM 2018. IEEE, 2204–2212.

[2] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, D Sivakumar, and Luca Trevisan. 2002.

Counting distinct elements in a data stream. In International Workshop on Ran-
domization and Approximation Techniques in Computer Science. Springer, 1–10.

[3] Ran Ben Basat, Xiaoqi Chen, Gil Einziger, Shir Landau Feibish, Danny Raz, and

Minlan Yu. 2020. Routing Oblivious Measurement Analytics. In IFIP Networking.
[4] Ran Ben Basat, Xiaoqi Chen, Gil Einziger, and Ori Rottenstreich. 2020. Designing

Heavy-Hitter Detection Algorithms for Programmable Switches. IEEE/ACM
Transactions on Networking 28, 3 (2020), 1172–1185.

[5] CAIDA. 2018. The CAIDA UCSD Anonymized Internet Traces 2018 - March 15th.

(2018). https://www.caida.org/data/passive/passive_dataset.xml

[6] Anne Chao. 1984. Nonparametric estimation of the number of classes in a

population. Scandinavian Journal of Statistics (1984), 265–270.
[7] Moses Charikar, Kevin C. Chen, andMartin Farach-Colton. 2004. Finding frequent

items in data streams. Theoretical Computer Science 312, 1 (2004), 3–15.
[8] Benoit Claise. 2004. Cisco Systems NetFlow Services Export Version 9. RFC 3954

(2004).

[9] The P4 Language Consortium. 2018. 𝑃416 Language Specifications. (2018).

https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.pdf

[10] Graham Cormode. 2011. Sketch techniques for approximate query processing.

Foundations and Trends in Databases. NOW publishers (2011).
[11] Graham Cormode and S. Muthukrishnan. 2005. An improved data stream sum-

mary: The count-min sketch and its applications. Journal of Algorithms 55, 1
(2005), 58–75.

[12] Marianne Durand and Philippe Flajolet. 2003. Loglog counting of large cardinali-

ties. In European Symposium on Algorithms. Springer, 605–617.
[13] Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric Meunier. 2007. Hyper-

LogLog: The analysis of a near-optimal cardinality estimation algorithm. In

Analysis of Algorithms (AOFA).
[14] Philippe Flajolet, Danièle Gardy, and Loÿs Thimonier. 1992. Birthday Paradox,

Coupon Collectors, Caching Algorithms and Self-Organizing Search. Discrete
Applied Mathematics 39, 3 (1992), 207–229.

[15] Phillip B Gibbons. 2001. Distinct sampling for highly-accurate answers to distinct

values queries and event reports. In VLDB, Vol. 1. 541–550.
[16] Arpit Gupta, Rob Harrison, Marco Canini, Nick Feamster, Jennifer Rexford, and

Walter Willinger. 2018. Sonata: Query-driven streaming network telemetry. In

ACM SIGCOMM. 357–371.

[17] Rob Harrison, Qizhe Cai, Arpit Gupta, and Jennifer Rexford. 2018. Network-

Wide Heavy Hitter Detection with Commodity Switches. In ACM SIGCOMM
Symposium on SDN Research. 8:1–8:7.

[18] Daehyeok Kim, Yibo Zhu, ChanghoonKim, Jeongkeun Lee, and Srinivasan Seshan.

2018. Generic External Memory for Switch Data Planes. In ACM Workshop on
Hot Topics in Networks. 1–7.

[19] Kasper Green Larsen, Jelani Nelson, and Huy L Nguyên. 2015. Time lower bounds

for nonadaptive turnstile streaming algorithms. In ACM Symposium on Theory of
Computing. ACM, 803–812.

[20] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. 2016. FlowRadar: A Better

NetFlow for Data Centers. In USENIX NSDI. 311–324.
[21] Zaoxing Liu, Ran Ben Basat, Gil Einziger, Yaron Kassner, Vladimir Braverman, Roy

Friedman, and Vyas Sekar. 2019. NitroSketch: Robust and general sketch-based

monitoring in software switches. In ACM SIGCOMM. 334–350.

[22] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and Vladimir

Braverman. 2016. One Sketch to Rule Them All: Rethinking Network Flow

Monitoring with UnivMon. In ACM SIGCOMM. 101–114.

[23] Zaoxing Liu, Samson Zhou, Ori Rottenstreich, Vladimir Braverman, and Jennifer

Rexford. 2020. Memory-efficient performance monitoring on programmable

switches with lean algorithms. In SIAM-ACM Symposium onAlgorithmic Principles
of Computer Systems. 31–44.

[24] S. Muthukrishnan. 2005. Data Streams: Algorithms and Applications. Foundations
and Trends in Theoretical Computer Science 1, 2 (2005).

[25] Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan, Prateesh Goyal, Venkat

Arun, Mohammad Alizadeh, Vimalkumar Jeyakumar, and Changhoon Kim. 2017.

Language-Directed Hardware Design for Network Performance Monitoring. In

ACM SIGCOMM. 85–98.

[26] Mihai Patrascu. 2008. Lower Bound Techniques for Data Structures. Ph.D. Disser-
tation. Massachusetts Institute of Technology, Cambridge, MA, USA.

[27] Salvatore Pontarelli, Pedro Reviriego, and Michael Mitzenmacher. 2018. EMOMA:

Exact Match in One Memory Access. IEEE Transactions on Knowledge and Data
Engineering 30, 11 (2018), 2120–2133.

[28] Daniel Rubio. 2017. Jinja templates in Django. In Beginning Django. Springer,
117–161.

[29] Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rottenstreich, Shan Muthukr-

ishnan, and Jennifer Rexford. 2017. Heavy-hitter detection entirely in the data

plane. In ACM SIGCOMM Symposium on SDN Research. 164–176.

[30] Bruce Spang and Nick McKeown. 2019. On estimating the number of flows. In

Stanford Workshop on Buffer Sizing.
[31] Shobha Venkataraman, Dawn Xiaodong Song, Phillip B. Gibbons, and Avrim

Blum. 2005. New Streaming Algorithms for Fast Detection of Superspreaders. In

Network and Distributed System Security Symposium.

[32] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang Zhou, Rui Miao,

Xiaoming Li, and Steve Uhlig. 2018. Elastic Sketch: Adaptive and fast network-

wide measurements. In ACM SIGCOMM. 561–575.

[33] Andrew Chi-Chih Yao. 1978. Should Tables Be Sorted? (Extended Abstract). In

Foundations of Computer Science. 22–27.

Appendices are supportingmaterial that has not been peer-reviewed.

A TEMPLATING P4
We use the python-based Jinja templating library to automatically

expand our code template into P4 code. Here, we show two ex-

cerpts from the template that highlights how templating helps us

efficiently generate the P4 data plane program.

Example 1: generate code for every hash function.

struct ig_metadata_t {
{% for h in hash_functions %}

bit <16> h_{{h.id}};
bit <1> h_{{h.id}} _matched;
bit <8> h_{{h.id}} _query_id;
bit <8> h_{{h.id}} _coupon_id;
bit <8> h_{{h.id}} _query_n;
bit <4> h_{{h.id}} _query_keydefn;

{% endfor %}
bit <32> coupon_onehot;
bit <1> random_coin;
//...

}
{% for h in hash_functions %}

action calc_hash_ {{h.id}}(){
ig_md.h_{{h.id}}=hash_{{h.id}}.get({ {{h.fields }} });

}
action set_h_ {{h.id}} _matched(bit <8> qid , bit <8> cid ,

bit <8> n, bit <4> kdf){
ig_md.h_{{h.id}} _matched=1;
ig_md.h_{{h.id}} _query_id=qid;
ig_md.h_{{h.id}} _coupon_id=cid;
ig_md.h_{{h.id}} _query_n=n;
ig_md.h_{{h.id}} _query_keydefn=kdf;

}
action set_h_ {{h.id}} _no_match (){

ig_md.h_{{h.id}} _matched=0;
}

{% endfor %}

Example 2: generate match-action logic.

action write_onehot(bit <32> o){
ig_md.coupon_onehot = o;

}
table tb_set_onehot {

key = {
ig_md.h_selected_coupon_id: exact;

}
size = 32;
actions = {

write_onehot;
}
default_action = write_onehot(0);
const entries = {

{% for i in range(32) %}
{{i}} : write_onehot(32w{{2**i}});

{% endfor %}
}

}

https://www.caida.org/data/passive/passive_dataset.xml
https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.pdf

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Xiaoqi Chen, Shir Landau-Feibish, Mark Braverman, Jennifer Rexford

B COUPON COLLISION PROBABILITY
In this section, we show that ignoring all coupons when there are

more than three coupons simultaneously matched by multiple hash

functions only affects BeauCoup’s accuracy by a few percent.

Although we restrict the expected number of coupons drawn

per packet

∑
𝑞∈Q 𝛾𝑞 be bounded by 1, it is possible to have multi-

ple coupons drawn simultaneously, triggering a tie-break. We can

bound the probability of tie-breaking events as follows:

Recall that coupons defined over the same attribute are all grouped

together and use different output ranges of one random hash func-

tion, so they will never collide. Thus, collision happens across mul-

tiple hash functions. Now we analyze the probability for having

multiple hash functions where each reports drawing one coupon.

We consider the system uses𝐻 ≥ 3 random hash functions, each

with activation probability 𝑥1, 𝑥2, . . . , 𝑥𝐻 , and we have

∑
𝑥𝑖 ≤ 1.

Each random hash function will activate coupons independently,

hence the total number of coupons drawn is the sum of𝐻 Bernoulli

random variables.

In our current system implementation, we only perform tie-

breaking when 𝐶 = 2 and ignore all coupons when 𝐶 ≥ 3. We can

prove that the probability for having more than 𝐶 ≥ 3 coupons

drawn is maximized when all hash functions share the same proba-

bility, i.e., 𝑥𝑖 =
1

𝐻
, due to the inequality of arithmetic and geometric

means. In this case, the number of coupons drawn follows a bino-

mial distribution 𝐵(𝑛 = 𝐻, 𝑝 = 1

𝐻
). Hence, plug in 𝐻 = 11 (from

the example query set we used in Section 5), we have

Pr

[
𝐵(𝑛 = 𝐻, 𝑝 =

1

𝐻
) ≥ 3

]
= 7.11%.

That is, the probability for a packet matches with more than 3

coupons is at most 7.11%.

This is smaller than or on par with the optimal average relative

error achieved by coupon collectors for distinct counting (about

10% ∼ 20%), and therefore not fundamental to BeauCoup’s error.

We further note that this probability grows very slowly with 𝐻 ,

and is only 8.0% when 𝐻 = 10
4
.

Still, it creates a small bias for individual coupon’s activation

probability; we leave the correction for this bias in the query com-

piler for future work.

	Abstract
	1 Introduction
	2 The BeauCoup Algorithm
	2.1 Query: Count-Distinct with Threshold
	2.2 Updating the Coupon-Collector Table
	2.3 Selecting a Query and a Coupon

	3 The BeauCoup Query Compiler
	3.1 Coupon Collector's Accuracy
	3.2 Finding the Best Configuration

	4 BeauCoup on PISA Hardware
	4.1 Using TCAM for Drawing Coupons
	4.2 Recording Coupons in SRAM
	4.3 Query Compiler and Code Generation

	5 Evaluation
	5.1 Evaluating the Query Compiler
	5.2 Query Accuracy
	5.3 Hardware Resource Utilization

	6 Discussion
	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A Templating P4
	B Coupon Collision Probability

