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ABSTRACT
Detecting “heavy hitter” flows is the core of many network secu-
rity applications. While past work shows how to measure heavy
hitters on a single switch, network operators often need to identify
network-wide heavy hitters on a small timescale to react quickly
to distributed attacks. Detecting network-wide heavy hitters effi-
ciently requires striking a careful balance between the memory and
processing resources required on each switch and the network-wide
coordination protocol. We present Carpe, a distributed system for
detecting network-wide heavy hitters with high accuracy under
communication and state constraints. Our solution combines prob-
abilistic counting techniques on the switches with probabilistic re-
porting to a central coordinator. Based on these reports, the coordi-
nator adapts the reporting threshold and probability at each switch
to the spatial locality of the flows. Simulations using traffic traces
show that our prototype can detect network-wide heavy hitters
with 97% accuracy, while reducing the communication overhead
by 17% and switch state by 38%, compared to existing approaches.

CCS CONCEPTS
• Networks→ Network monitoring.
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Network-wide monitoring, Heavy hitters

1 INTRODUCTION
Network operators continuously monitor their traffic to detect the
heavy-hitter flows responsible for attacks and congestion. How-
ever, the recent proliferation of IoT (Internet of Things) and mobile
devices makes network measurement more challenging. Even if
each device sends a small volume of traffic, a large group of de-
vices can easily create a substantial DDoS (Distributed Denial of
Service) attack. Such traffic would not necessarily be “heavy” at
any single vantage point, leading to the need to detect network-
wide heavy hitters [5]. Furthermore, even short-term traffic bursts,
such as TCP incast [6] or Slowloris attacks [21], can cause signifi-
cant disruptions for interactive applications like videoconferencing,
augmented/virtual reality, and cyberphysical systems. Supporting
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these applications requires effective ways to detect network-wide
heavy hitters in real time.

In currently deployed solutions like sFlow [17] and NetFlow [7],
each switch sends a small sample of traffic (e.g., 1 out of 4000
packets [15]) to a central collector for network-wide analysis. Un-
fortunately, the low sampling rates needed for reasonable overhead
also lead to low accuracy for detecting heavy hitters on a small
timescale. To achieve higher accuracy without excessive overhead,
the switches must play a bigger role in identifying the heavy hitters.
Indeed, approximate streaming algorithms can identify heavy-hitter
flows on a single switch, despite limited memory and processing
resources [3, 16, 20, 26]. Nonetheless, flows that generate a large
volume of traffic for the network in total, but are not heavy at any
one switch, can go undetected.

To achieve high accuracy at reasonable overhead, we need coordi-
nation between the collector and the distributed set of switches [8].
The central coordinator should aggregate the information observed
at each switch to identify flows whose aggregate count exceeds a
global threshold. Deciding what a switch should report, and when,
determines the communication overhead and the accuracy of the
results. For example, recent work [2, 4, 15] shows how to peri-
odically collect and combine sketches from multiple locations to
compute a network-wide estimate of the traffic. However, these
techniques fail to strike the balance between real-time analysis and
low communication overhead. Previous theoretical work [9] pre-
sented techniques that can reduce communication overhead, but
requires per-flow state in the switches.

We present Carpe (Counting And Reporting Probabilistically for
Estimation), a practical monitoring system for detecting network-
wide heavy hitters in real time, with high accuracy, and under
communication and state constraints. We extend the standard tax-
onomy of mice and elephant flows to more accurately describe
the costs of performing heavy-hitter detection in a network-wide
setting. Carpe instructs each switch to probabilistically identify
and report potentially important flows, while accounting for the
locality of flows to minimize communication. Our solution extends
the probabilistic reporting techniques presented in [25] by com-
bining them with a probabilistic flow count mechanism, to report
measurements of individual flows in real time. Using this approach
we are able to get the benefits of the probabilistic reporting while
limiting the required memory on the switches. We summarize our
contributions as follows:

Continuous, communication-efficient coordination.Wede-
veloped a new coordination protocol for detecting network-wide
heavy hitters that uses adaptive thresholds to account for flow
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locality. This protocol probabilistically reports when switches ob-
serve a non-trivial contribution from a monitored flow and infers
network-wide heavy hitters at the coordinator from these reports.
Probabilistic reporting can scale to large networks, as it achieves an
error bound on the network-wide count that is independent of the
number of switches in the network [25]. Our analysis shows that
this protocol reduces the communication cost by 17% for achieving
97% accuracy compared to sampling.

Memory-efficient switch data structure. We present a data
structure that efficiently stores the counters for flows that make an
important contribution to a network-wide count. This data struc-
ture probabilistically determines the subset of flows to monitor
at the switch from a larger traffic stream. This data structure can
be implemented in modern PISA (Protocol Independent Switch
Architecture) switches. Our evaluation shows that our solution
requires 40% less switch memory at the expense of 3% degradation
in detection accuracy when compared to counting all of the flows.

In § 2, we present a taxonomy of flows relevant to detecting
heavy-hitters in a network-wide setting. We present the design
of the coordination protocol to detect these flows in § 3, and the
switch data structure and prototype in § 4. We evaluate Carpe in
§ 5. Related work is discussed in § 6, and a summary in § 7.

2 CARPE: WHO’S WHO IN THE ZOO
The Carpe system consists of a distributed set of tens, hundreds,
or even thousands of switches and a centralized coordinator. The
coordinator aggregates the partial information observed at each
switch to identify the network-wide elephant flows whose aggre-
gate counts exceed a threshold. To minimize overhead, the switches
use probabilistic techniques to decide both when to maintain state
about a given flow and also which flows to report to the coordina-
tor. Figure 1 shows a simple example where two switches (𝐴 and
𝐵) communicate with a central coordinator (𝐶) to determine the
network-wide elephants. The tables below each switch show the
actual counts observed for flows 𝑓1-𝑓5 at each switch.

Mice (no state or communication): Each switch will observe
a large number of mice, i.e., flows that will never become local, let
alone network-wide, heavy hitters. Traditional approaches have
typically employed approximate data structures to deal with the
numerous mouse flows. However, the many mice flows can com-
promise the accuracy of the counts stored in an approximate data
structure–even those for other non-mouse flows. Rather than over-
provisioning an approximate data structure to achieve high accu-
racy in the face of numerous mouse flows, Carpe switches do not
waste scarce resources maintaining state for mice. Instead, Carpe
samples the flows observed at each switch and only stores counts
for the sampled flows. Rather than storing more state to cope with
these numerous, tiny flows, we ignore them entirely. In Figure 1,
we consider flows of fewer than 5 packets as mice (colored red).

Moles (local state, no communication): Sampling flows re-
duces the amount of state required at each switch by filtering out
most mice, but not all sampled flows will ever become a global
heavy hitter. A flow that is sampled becomes amole that the switch
counts locally while waiting to determine whether the flow’s count
grows large enough to consider reporting it to the coordinator. By
requiring that moles reach some threshold before reporting them
to the coordinator, each switch can sample packets aggressively

flow count

f1 40
f3 2
f5 1

flow count

f1 80
f2 200
f3 99
f4 10

C

A B

flow count

f1 120
f2 200
f3 80

mule >20

mole <20

mice <5

Local

Global

Elephant >100

Figure 1: Example with mice, moles, mules, and elephants.

enough to catch flows that may have global significance, while still
limiting the number of reports sent to the coordinator. Each switch
maintains a “sample and hold” data structure [11] for all moles. On
each incoming packet, switches check whether the packet’s flow
is already stored in the data structure. If so, the switch increments
the corresponding counter; otherwise, the switch creates a new
counter for the flow with sampling rate 𝑠 . This approach inherently
defines the set of moles as those whose count is greater than (1/𝑠),
in expectation. For example, a sampling rate of 0.2 would, on aver-
age, result in a set of mole flows which all consist of five or more
packets, as shown by the purple flows in Figure 1.

Mules (state and communication): When a mole becomes
large enough to impact a global heavy-hitter count, the flow be-
comes a mule and the switch considers reporting the flow to the
coordinator. Mules are counted locally at the switch and globally
at the coordinator based on the reports from one or more switches.
We set the reporting threshold 𝜏 > 1/𝑠 to ensure that the set of
mule flows is strictly smaller than the set of moles. A switch could
report to the coordinator each time a flow reaches a count of 𝜏 pack-
ets. However, this would cause the residual counts at each switch
(which are not reported) to make the coordinator’s count have an
error proportional to the number of switches. This would limit our
system’s ability to support large networks. Instead, Carpe generates
a report with probability 𝑟 each time 𝜏 packets are observed for
a sampled flow, allowing Carpe to achieve an error bound that is
independent of the number of switches [25]. Going further, Carpe
sets 𝜏 based on the number of switches that actually observe a flow
to capitalize on spatial locality in network traffic. In Figure 1, flows
with a count of at least 20, in expectation, are considered mules
(see green flows).

Elephants (network-wide counts): The goal of Carpe is to
identify the elephant flows that exceed a global threshold and esti-
mate their packet counts. Based on reports sent from the switches,
the coordinator determines when a mule becomes a network-wide
elephant. The coordinator identifies a mule as an elephant after
receiving a total of 𝑅 reports for a flow from any of the switches.

Example: As seen in Figure 1, flows that exceed a global count
of 100 are elephants (orange flows). The tables below each switch
in the figure show the actual packet counts observed for each flow
at that switch. The coordinator’s count for each flow is based on
reports sent by the switches. The coordinator is aware of all the
mules (𝑓1, 𝑓2, and 𝑓3) from both switches, but determines that only
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Symbol Meaning

𝑇 Global threshold
𝑘 Total number of ingress switches
𝑙 Number of switches which observe a flow
𝜖 Approximation factor
𝜏 Local (mule) threshold
𝑟 Reporting probability to coordinator
𝑠 Sampling probability at a switch
𝑅 Number of reports expected at coordinator
Table 1: Network-Wide Heavy Hitter Parameters

𝑓1 and 𝑓2 are elephants. In the case of 𝑓3, notice how both switches
and the coordinator all have different views of the total count for
this flow. Since 𝑓3 is a mouse at switch𝐴, the switch should actually
store no information about the flow’s count at all. At switch 𝐵, flow
𝑓3 is a mule locally, but since the switch reports to the coordinator
only once every 20 counts (the mule threshold), the coordinator
believes the global count of 𝑓3 is only 80. In fact, the global count
of 𝑓3 meets the network-wide threshold of 100, but our taxonomy
of flows and their reporting requirements would not identify 𝑓3 as
a network-wide elephant; this is by design.

3 COORDINATION PROTOCOL
Switches must efficiently communicate to the coordinator when
they have observed counts that could be significant network-wide.
In this section, we describe a coordination protocol that determines
when a switch should report a flow, and how the coordinator uses
these reports to determine the network-wide elephant flows. We
then describe an extension to this protocol that leverages the spatial
locality of network traffic to reduce the communication cost of the
protocol. Table 1 summarizes the relevant system parameters.

3.1 Probabilistic Reporting of Local Counts
Scaling to Large Networks: A switch could report to the coordi-
nator, each time a bundle of 𝜏 packets from a mule flow is observed
at each switch. However, the communication cost of this strat-
egy grows proportional to the number of switches in the network.
Because a switch only reports a flow once for every 𝜏 packets it ob-
serves, other switches may have residual flow counts smaller than
𝜏 which have not yet been reported. In aggregate, these residual
counts represent a “blind spot” for the coordinator and necessarily
cause inaccuracies in the global estimate that it maintains.

As 𝜏 increases or the number of switches grows large, the in-
accuracy of the final results will increase. One possible way to
reduce the inaccuracy is to significantly lower 𝜏 . However, that
would increase communication between the switches and the co-
ordinator, because each switch will produce many more reports
for each mule flow. Prior work proposed a probabilistic reporting
approach that scales to networks with a large number of switches
and proved its efficiency [9]. Specifically, they show that for a given
error probability, the communication complexity of their algorithm
is independent of 𝑘 . However, this technique requires maintaining
unlimited state and performing advanced computations, such as an
arbitrary number of coin tosses with varying probabilities. There-
fore, implementing this technique has proven to be challenging, and
has yet to be implemented in production systems [8]. We adapt this

technique to account for flow locality and enable it to be executed
on modern programmable switches.

Probabilistically Separating Elephants and Mules: For ev-
ery packet received by the switch, a flow identifier 𝑓 is extracted.
Our algorithm then updates the counter for 𝑓 and checks if the
counter has exceeded the local threshold (𝜏) (see Section 4 for
further details), in which case the switch reports the flow to the
coordinator with probability 𝑟 . A simple key-value store (𝐷), in-
dexed by flow identifier, stores the counts at the switch and the
parameters 𝜏 and 𝑟 apply to all flows. By reporting with probability
𝑟 , each reported bundle now represents a count of 𝜏/𝑟 in expecta-
tion, which reduces the total number of reports that must be sent.
When the coordinator receives a report for flow 𝑓 , it increases the
number of reports for 𝑓 by 1. When the number of reports received
for flow 𝑓 exceeds the threshold 𝑅, the coordinator determines that
it is an elephant flow.

Configuring Parameters: Configuring the parameters (𝜏 , 𝑟 ,
and 𝑅) to strike a balance between accuracy and communication
cost is non-trivial. For example, we want to set 𝜏 high enough such
that it reduces the number of reports sent to the coordinator for
mule flows but low enough so that the size of the bundles does
not reduce the accuracy of the global count estimates. Previous
work [9] demonstrated tight bounds on communication and er-
ror by selecting an approximation factor (𝜖) and reporting with
a probability 𝑟 = 1/𝑘 . Their results show that this approach can
achieve high accuracy with modest communication overhead that
does not grow proportionally to the number of switches in the net-
work. We generalize the results from prior work by setting 𝑟 = 1/𝑘 ,
𝜏 = 𝜖𝑇 /𝑘 , for 0 < 𝜖 < 1; the coordinator then determines that a
flow is an elephant after receiving 𝑅 = 𝑘𝑟/𝜖 reports. When 𝑟 = 1/𝑘
this threshold simplifies to 𝑅 = 1/𝜖 , which is independent of the
number of switches in the network.

3.2 Locality-aware Reporting Parameters
The protocol we described in the previous section implicitly as-
sumes that all of the 𝑘 switches in the network are equally likely to
observe a portion of the traffic for a given flow. This assumption re-
sults in lower local thresholds (𝜏 ) as networks grow large. A smaller
𝜏 will result in the switch determining that more mole flows are
mules, and, ultimately, increase the communication cost. However,
in practice, most flows exhibit spatial locality, i.e., only a subset of
switches observe traffic for a given flow. If a flow is only observed
at 𝑙 << 𝑘 locations, then we should configure the parameters based
on this smaller number of switches. Accounting for this locality
would increase 𝜏 , which, in turn, ensures that fewer moles are un-
necessarily promoted to mules, thus reducing the communication
cost.

Configuring Parameters: We now require an additional pa-
rameter 𝑙𝑓 to account for the spatial locality. Here, 𝑙𝑓 denotes the
number of switches that observe flow 𝑓 . For now, we can assume
that we know the locality parameters for all flows a priori because
forwarding state can be used to infer this information. Account-
ing for this locality parameter, we adjust the local threshold as
𝜏𝑓 = 𝜖𝑇 /𝑙𝑓 and reporting probability as 𝑟 𝑓 = 1/𝑙𝑓 for each flow at
the switch. The coordinator reports flow 𝑓 as a heavy hitter when
it receives 𝑅 = 1/𝜖 reports from the switches. The key-value store
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𝐷 in the switch must be augmented to maintain the values for 𝜏𝑓
and 𝑟 𝑓 for each flow.

Example: Let us consider an example topology with 𝑘 = 10
switches, global threshold 𝑇 = 2500 and we choose an approxima-
tion factor of 𝜖 = 0.1. Without considering locality, switches would
report every 𝜏 = 25 packets to the coordinator with probability
𝑟 = 0.1, and the coordinator would declare any mule an elephant
after receiving 𝑅 = 10 reports. Here, a single 𝜏 and 𝑟 apply to all
flows at all switches in the network. If we account for locality, con-
sidering a particular flow 𝑓 that is observed only at 𝑙𝑓 = 2 switches,
we can increase both our bundle size to 𝜏𝑓 = 125 and reporting
probability to 𝑟 𝑓 = 0.5. The coordinator would still declare a mule
an elephant after receiving 𝑅 = 10 reports for the flow, but there
are now fewer mules sending reports to the coordinator due to the
larger bundle size. Here, 𝜏 and 𝑟 can vary based on the number of
switches that observe the flow.

Tracking Spatial Locality: However, the locality of flows is
not static; it changes due to failures and routing updates. Carpe
tracks changes in the spatial locality for flows directly in the data
plane. At all times, a switch has knowledge of which flows it expects
to observe. Upon receiving a packet from an unexpected flow, the
switch sends a Hello message to the coordinator. The coordinator
extracts the flow (𝑓 ) and switch identifier (𝑠) from the Hello mes-
sage, and updates the value of 𝑙𝑓 . To avoid putting that computation
in the data plane, the coordinator calculates the parameters 𝑟 𝑓 and
𝜏𝑓 accordingly. Finally, it sends the updated 𝑟 𝑓 and 𝜏𝑓 parameters to
the switch that sent the Hellomessage. In addition, the coordinator
maintains a mapping of flows to switches. The set 𝑆𝑓 of switches
that also observe the flow should be notified of the updated param-
eters. However, to avoid updating the parameter due to spurious or
transient conditions, we update the locality parameters for a flow
only when the size of 𝑆𝑓 doubles.

Security Benefits of Spatial Locality: Most DDoS attacks are
launched from huge botnets, causing attack traffic to be widely
dispersed [23], and difficult to detect. If the local threshold is a
predefined constant [1], an attacker could potentially learn that
threshold and send their traffic so that the count observed at each
switch stays below the threshold. Carpe decreases reporting thresh-
olds as a flow’s traffic becomes more widespread making this type
of evasion more difficult.

Coordinator Structures and Security: As shown in Figure 2,
the coordinator tracks the set of switches that observe each reported
flow 𝑓 1, as well as the number of reports received for 𝑓 . While
the switch may observe a large number of flows, the coordinator
is only required to maintain state for a smaller number of mule
flows reported by the switches. The coordinator data structures are
resilient to DDoS attacks for two main reasons: first, an adversary
would need to create a very large amount of traffic in order to
trigger an overwhelming number of reports to the coordinator.
Second, the coordinator only receives and handles reports from the
switches in its own network; it should not be publicly accessible to
the rest of the Internet.

1This information will be maintained at the granularity of groups as described in
Section 4.

f cnt

f1 10
f2 25
f3 44

src dest 𝛕g rg
10.0.0.0/8 20.0.0.0/8 25 0.25
5.0.0.0/8 6.0.0.0/8 50 0.5

*.*.*.* *.*.*.* 10 0.1
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8.0.0.0/8 3.0.0.0/8 s7 1
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f2

f2
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Figure 2: Data structures at a single switch and the coordina-
tor, 𝑇 = 1000, 𝜖 = 0.1, 𝑘 = 10.

4 SWITCH DATA STRUCTURE
Carpe’s coordination protocol assumes that switches store the re-
porting probability (𝑟 𝑓 ) and local threshold (𝜏𝑓 ) for each flow based
on the locality parameter (𝑙𝑓 ). However, the memory in modern
programmable switches is orders of magnitude too small to store
per-flow state. Specifically, in PISA switches [22], packet processing
is done in a multi-stage pipeline. Each stage consists of one or more
match-action tables (MAT) that consume the finite TCAM, SRAM,
and ALUs to match on and transform fields in packet headers. Carpe
efficiently uses the finite switch memory by decoupling the gran-
ularity at which flows must be counted from the granularity at
which locality may be observed. We store reporting parameters at
the granularity of groups of related flows, while storing counters
separately for individual flows that have been sampled.

Retrieving Flow Parameters: We observe that routing and
forwarding decisions affecting flow locality are usually made at a
coarser granularity, e.g., source-destination IP prefix pairs, while
individual flows are often monitored at a finer granularity. There-
fore, we have the switch store reporting parameters at this coarser
granularity, while storing traffic counts at a finer granularity (e.g.,
five-tuple). We define a group (𝑔𝑠𝑟𝑐,𝑑𝑠𝑡 ) based on source-destination
IP prefix pairs, such that𝑔𝑠𝑟𝑐,𝑑𝑠𝑡 = {𝑓 |𝑓 .𝑠𝑟𝑐𝐼𝑃 ∈ 𝑠𝑟𝑐, 𝑓 .𝑑𝑠𝑡𝐼𝑃 ∈ 𝑑𝑠𝑡}.
We store a group (𝑔) at a switch if at least one flow 𝑓 ∈ 𝑔 is observed
at the switch. In addition, default parameters are stored for groups
that are observed but have not yet been stored. The coordinator
keeps track of the groups that are observed at each switch and
updates the switch with the appropriate parameters.

Each flow group 𝑔 stored in the switch has an associated match-
action table (MAT) rule, implemented using TCAM to match on
source and destination IP prefixes. The action of each rule reads
the associated local threshold (𝜏𝑔 ) and reporting probability (𝑟𝑔 ).
As seen in Figure 2, when a packet enters the PISA pipeline, we
first determine to which group (𝑔) the packet belongs. The group
identifier of each packet is matched against the relevant MAT rule
to identify the correct reporting parameters for that group. Note
that for a network with 𝑘 switches, each switch only needs to store
𝑘 different sets of locality parameters.
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Coin Toss: We use sampling to effectively filter out the small
flows, in expectation. As a packet traverses the switch, once the
group identifier and locality parameters are determined, two inde-
pendent but biased coin flips are performed; the first coin flip is
based on the sampling probability (𝑠) and the second based on the
reporting probability (𝑟𝑔 ) values. Both coin flip results are stored as
packet metadata values 𝑓 𝑙𝑖𝑝1 and 𝑓 𝑙𝑖𝑝2, respectively, for use later
in the pipeline. Existing PISA switches do not support floating point
operations. Therefore, each 𝑓 𝑙𝑖𝑝 is performed similarly to [3], by
representing a floating value as an unsigned integer (0 < 𝑖 ≤ 1.0),
then using packet header fields to compute a 32-bit hash value and
testing if it is smaller than

⌈
232𝑖

⌉
. Note that this approach introduces

a small quantization error since we can only represent probabilities
as multiples of 1

232 .
Count and Reset: For flows that we do sample, we store an

exact counter. The switch checks if 𝑓 is currently in the key-value
store 𝐷 , which is a hash-indexed register array of limited size. To
reduce collisions,𝐷 may be implemented as amulti-stage hash-table
that uses a different hash function in each stage. When collisions
do occur, one possible approach would be to offload treatment of
those flows to the control plane — trading communication cost
for accuracy. If the flow is in 𝐷 , its counter is incremented by 1.
Otherwise, if 𝑓 𝑙𝑖𝑝1 == true, i.e. the flow is “sampled”, the switch
inserts 𝑓 into 𝐷 and initializes the count in 𝐷 to an initial value
𝑣 = 1

𝑠 . If the counter is greater than 𝜏𝑔 , it is reset to 0.
Report: If 𝑓 𝑙𝑖𝑝2 == true, a report is then sent for this flow.

Note that we reset the count regardless of whether the report had
been sent or not. As seen in Figure 2, the coordinator receives
the report and updates the number of reports received for that
flow, which is used by the coordinator to classify the flow into the
appropriate category.

5 PERFORMANCE EVALUATION
In this section, we quantify how Carpe makes efficient use of lim-
ited communication and memory resources to detect network-wide
heavy hitters with as high accuracy as possible. We use real-world
packet traces [18] to demonstrate how combining probabilistic
counting with probabilistic reporting reduces Carpe’s memory
footprint by 38% and bandwidth footprint by 17% (compared with
sampling) to report network-wide heavy hitters with up to 97%
accuracy.

5.1 Trace-Driven Simulation Model
To quantify Carpe’s performance, we run a simple network-wide
heavy-hitter query to determine which flows (based on the standard
five-tuple of source/destination IP address, source/destination port,
and transport protocol) send a number of packets greater than a
global threshold (𝑇 ) during a sliding time window.

Simulation experiments. For our experiments, we assume that
we monitor at the edge switches of the network where the number
of edge switches (𝑘) is 10—representative of a wide-area network
connecting multiple data centers for cloud providers [14]. For all
experiments, each flow shows affinity for two ingress switches,
i.e., 𝑙 = 2, based on the source IP address. For the purpose of
evaluation, we choose a global threshold that corresponds to the
99.99𝑡ℎ percentile flow count in the packet trace. In practice, an
operator could select whatever threshold is important to them. We

Technique Prob. Count Prob. Report State

Strawman ✗ ✗ 345K
RLA ✗ ✓ 345K
Sampling ✗ ✓ N/A
Carpe ✓ ✓ 211K
Table 2: Comparison with other Heavy-Hitter Detection
Techniques. Carpe uses both probabilistic counting and re-
porting where other approaches use only one.

also note that our simulations use a real-world data trace from a
single point-to-point link in a production Internet service provider
(ISP) network. Therefore, we limit our evaluation to a network
of 10 simulated switches because dividing this traffic across more
simulated switches would only create smaller, unrealistic workloads
on each switch. Instead we seek to preserve, as much as possible, the
real-world flow size distributions and minimize the artifacts created
by spreading the traffic across simulated switches. Furthermore,
experimenting with a larger network would not provide additional
insight. Since spatial locality is often limited to a subset of nodes in
a network, adding more switches to the network should not affect
the subset of nodes that display locality.

Packet traces. To emulate real-world traffic distributions, we
used CAIDA’s anonymized Internet traces from 2016 [18]. These
traces consist of all the traffic traversing a single OC-192 link be-
tween Seattle and Chicago within a major ISP’s backbone network.
Each minute of the trace consists of approximately 64 million pack-
ets. For our experiments, we use a time window of five seconds
resulting in around 5 million packets and hence ≈ 270K unique
flows per window.

Since the packet traces are collected from a single link only, we
associate packets from the trace with a given ingress switch based
on a hash of the source IP address. For each source IP address,
we assign an affinity for a specific ingress switch with probability
𝑝 . Packets from a given source IP are, therefore, processed at a
“preferred” switch with probability 𝑝 and at the other switches with
probability (1 − 𝑝). For the case of 𝑙 = 2, this distribution simulates
a primary/alternate relationship on ingress for a single source and
𝑝 = 0.95.

5.2 Carpe Accuracy and Overhead
To demonstrate the benefits of combining probabilistic counting and
reporting, we quantify the memory and communication overhead
for Carpe and compare it with the existing heavy-hitter detection
techniques that either employ probabilistic counting or reporting,
but not both.

Alternative Approaches. First, we consider a strawman solu-
tion that makes use of neither probabilistic counting or reporting;
each switch maintains counters for every flow (all flows are moles)
and reports all the counters to a central coordinator at the end of a
window. Second, we consider RLA (randomized locality-agnostic), a
solution based on the randomized reporting technique [9]; where
the switch still treats all flows as moles, but it probabilistically
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Figure 3: Accuracy comparison
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Figure 4: Precision vs. overhead
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Figure 5: Recall vs. overhead

reports mules to the coordinator with parameters that ignore local-
ity. Finally, we consider a solution based on packet sampling (e.g.,
sFlow) [17], which probabilistically samples packets and reports all
of those samples to the coordinator. Performance of sampling-based
solutions depend on sampling rate; high sampling rates result in
higher accuracy but prohibitively costly communication overhead,
and vice versa. For our experiments, we chose sampling rate of
0.001 as the communication overhead was comparable to Carpe
and RLA at this rate. We run Carpe with an approximation factor
of 𝜖 = 0.1.

Communication and State Savings. We quantify the state
overhead as the number of stateful counters required at the switch
and the communication overhead as kilobytes sent to the coordina-
tor for each window interval. We quantify accuracy in terms of both
precision (𝑃𝑅) and recall (𝑅𝐸) and present them as a single 𝐹1 score
calculated as 2×𝑃𝑅×𝑅𝐸

𝑃𝑅+𝑅𝐸 . In Table 2, we see that Carpe achieves 38%
savings in the state required for alternative approaches. In Figure 3,
we compare how much communication is needed to reach a certain
level of accuracy. We see that to achieve an 𝐹1 score of 97%, Carpe
communicates 17% less than sampling packets with a probability
of 0.075.

Sensitivity to Heavy-Hitter Threshold. As the threshold de-
termining heavy-hitters decreases, this advantage becomes more
pronounced. In Figures 4 and 5, we show the communication/accuracy
tradeoff compared with sampling for three different heavy-hitter
thresholds ranging from the 99.99𝑡ℎ to the 99𝑡ℎ percentile thresh-
olds. Carpe performs strictly better than the sampling approach
in all cases, except in the 99.99𝑡ℎ percentile threshold where the
sampling probability is greater than 0.05—an unrealistically-high
sampling probability for modern data centers.

6 RELATEDWORK
Scalable measurement techniques. NetFlow [7], a standardized
approach for collecting telemetry data from network devices, re-
quires significant CPU overhead or specialized hardware to run
efficiently. Packet sampling [17] emerged as the de facto technique
to cope with both the memory and communication limitations.
However, packet sampling can introduce significant inaccuracy to
detecting heavy hitters on small timescales [17]. FlowRadar [15]
reduces the memory and communication overhead using a novel en-
coding of flow counters. Similarly, CSamp [19] provides a sampling
mechanism for network-wide measurements. While both of these
works are general-purpose solutions for performing network-wide

measurement of most flows, we offer a tailored solution for contin-
uous, network-wide monitoring of a global threshold distributed
across several switches.

Heavy hitters with limited state. ElasticSketch [24] offers a
technique to avoid maintaining state for mouse flows in the data
plane by offloading computation to the control plane. Other solu-
tions, such as SketchVisor [13], rely on software packet processing
which limits their abilities to handle high data rates. Our approach,
based on the sample-and-hold [11] technique, uses sampling to
filter mice flows in the data plane and only maintains per-flow state
for potential heavy hitters. Similar techniques have been used for
identifying heavy hitters in a partial deployment setting [10].

Network-wideheavyhitterswith low communication over-
head. Analysis of the continuous distributed monitoring (CDM)
problem [8] provides bounds on communication complexity [9,
25] for both deterministic and randomized solutions. We extend
the model to account for flow affinity and the capabilities of pro-
grammable data planes. Recent work [12] showed that adaptive
local thresholds can reduce communication overhead for computing
network-wide heavy hitters. While this solution reports network-
wide heavy hitters deterministically and without errors, its com-
munication cost grows in proportion to the number of switches
in the network. That solution also reports its cost savings against
a deterministic algorithm not widely used in practice. In contrast,
our solution reports network-wide heavy hitters probabilistically,
which introduces modest inaccuracy, but our solution’s communica-
tion costs do not grow proportionally with the number of switches
as a result.

7 CONCLUSION
Carpe detects network-wide heavy hitters with high accuracy under
communication and state constraints. We combined probabilistic
counting on the switches with probabilistic reporting to the central
coordinator. Based on these reports, the coordinator adapts the
parameters at each switch to the spatial locality of the flows to
compute network-wide heavy hitters accurately and efficiently.
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