
DNSWater Torture Detection in the Data Plane
Alexander Kaplan, Shir Landau Feibish

The Open University of Israel

CCS CONCEPTS
• Networks→ Network security.

KEYWORDS
DNS Security, Programmable Networks, Data Plane, Network Mea-
surement
ACM Reference Format:
Alexander Kaplan, Shir Landau Feibish. 2021. DNS Water Torture Detection
in the Data Plane. In SIGCOMM ’21 Poster and Demo Sessions (SIGCOMM
’21 Demos and Posters), August 23–27, 2021, Virtual Event, USA. ACM, New
York, NY, USA, 3 pages. https://doi.org/10.1145/3472716.3472854

1 INTRODUCTION
DNS Water Torture (also known as Random Subdomain attack)
has been gaining popularity since the severe impact of the 2016
Mirai attack on Dyn DNS servers, which caused a large number
of sites to become unavailable [2]. In these attacks, the attacker
generates an enormous amount of DNS requests to a particular
domain with a random distinct subdomain in each request. The
traffic will usually come from many sources (i.e. a botnet) and will
be seemingly legitimate, causing DNS resolvers to waste much of
their resources looking for non-existent domains.

One existing solution is rate limiting, which is not effective in
cases where the attack is highly distributed [2]. A more robust solu-
tion is provided by DNSSEC, which enables a range of subdomains
to be declared as non-existent following a single NXDOMAIN re-
sponse. However, the deployment of DNSSEC has been limited [3]
and the resolver needs to explicitly support this feature [12]. Our
suggested solution can be applied to traffic on the way to the DNS
resolver, meaning it does not require any resolver compatibility
and can potentially react to the attack at an earlier stage and avoid
much of the malicious traffic generated by the attack.

Our ContributionWe present WORD, a system for statistical
detection of DNS Water Torture that is implemented directly in
the data plane using the P4 language. WORD efficiently collects
data about DNS requests and responses on a per-domain basis,
and alerts the control plane if malicious traffic is detected. The
solution we present succeeds in detecting the attack within the
notably confined resources of the data plane, while reducing false
positives by separately addressing domains which naturally have
large amounts of subdomains (e.g. wordpress). In addition, our
solution is easily expandable to further DNS related data plane
processing, such as other types of DNS attacks, or collection of
other DNS statistics in the data plane.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGCOMM ’21 Demos and Posters, August 23–27, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8629-6/21/08.
https://doi.org/10.1145/3472716.3472854

Figure 1: WORD Overview

2 THEWORD SYSTEM
2.1 WORD Overview
TheWORD (Water tORtureDetection) system is composed of three
main parts highlighted in figure 1. Following is a brief overview of
each.

Splitting Domain and Subdomain.We define the domain to be the
part of the DNS query identifying a site and the subdomain to be
the labels of the query preceding the domain. In order to be able to
detect changes on a per-domain basis, for each DNS packet that is
received, WORD starts by splitting the subdomain and the domain
from the DNS query.

Heavy Domain Extraction. We define a heavy domain to be a
domain that has a large amount of legitimate subdomains. Examples
for such domains include cloud services and blog hosting websites
(e.g. wordpress) [9]. Since heavy domains are expected to produce
plenty of requests for distinct subdomains we adjust the wayWORD
processes these domains. Specifically, for heavy domains, we only
collect statistics on NXDOMAIN responses, which are expected for
non-existent subdomains, such as randomly generated subdomains.

Distinct Count. Finallywemaintain an approximate distinct count
of the subdomains we encounter for each domain. Additionally we
collect more statistics for potentially attacked domains, such as
percentage of NXDOMAIN responses and percentage of requests
answered.

2.2 Processing
Splitting Domain and Subdomain In order to detect the attack
we need to be able to separate the domain and the subdomain from
the DNS query. We use the hash of the top 3 labels in the query
string to determine the top-level domain (TLD) that this domain
belongs to. Using a publicly available list of TLDs [8] we generate
a static mapping from these labels to the total number of labels in
the domain. For example, with “maps.google.com” we would get 2
labels while “maps.google.co.uk” would yield 3. With this number
we are able to split the labels into subdomain and domain, and
use this information to calculate the hash of both. These hashes
will be used in the next stages to approximate the count of distinct
subdomains for each domain. The list of TLD mappings could be
adjusted to fit a more specific environment, e.g. a router serving
a DNS resolver of a predefined DNS zone. It should be noted that
relying on a publicly available list allows us to automate the update
process which ensures the TLDs used are always up to date.

https://doi.org/10.1145/3472716.3472854
https://doi.org/10.1145/3472716.3472854


SIGCOMM ’21 Demos and Posters, August 23–27, 2021, Virtual Event, USA Alexander Kaplan, Shir Landau Feibish

Heavy Domain ExtractionHeavy domains (which have many
legitimate subdomains) are processed separately in WORD; instead
of looking at the DNS requests, we will process only DNS responses
that are of type NXDOMAIN. This has the benefit of avoiding le-
gitimate subdomains while sacrificing some of our reaction ability
to a potential attack, as WORD only begins counting once a re-
sponse has been sent. We conjecture that DNS resolvers that are
in charge of resolving these heavy domains are more tolerant to
large amounts of requests, and will therefore still be able to provide
responses for some duration when an attack starts, thus allowing
us to detect and react accordingly.

Distinct CountWhile ideally we would like to count each dis-
tinct subdomain we see for every domain, the memory constraints
in the data plane wouldn’t be able to support it. As a possible solu-
tion we’ve considered the use of probabilistic data structures - such
as Count-Min Sketch [5], Bloom Filters [11] or HyperLogLog [6].
While these structures are often used in the data plane and could
be used in this case as well, we preferred to use a broader approach
that could be used in conjunction for multiple purposes. We thus
turn to BeauCoup [4] - a coupon collection [7] based system. While
potentially less accurate, it provides the ability to approximate a
distinct count that is within a predetermined margin of error from
the actual result - which could be adjusted depending on the usage.
In addition to providing a statistical approximation of the amount of
distinct subdomains seen for each domain we could potentially col-
lect more data for each DNS request without significantly affecting
performance or the error rate, allowing future expansion.

Optimization of Coupon Collection We attempt to avoid
cases where a small number of coupons are collected. Since we
expect an attack to manifest with an extremely high number of
requests [9] we are not interested in the estimation of domains with
a small number of subdomains, and want to avoid the memory over-
head of collecting coupons for them. We try to lower the probability
of collecting the first coupon by introducing a coin flip following
the first coupon collection, choosing to ignore the coupon with
some probability. Further work is required here to asses how this
affects the expected margin of error, and the approximate count we
are trying to achieve.

Domain Statistics Additional data we can collect once we’ve
decided to collect a coupon for a domain is total, non-distinct, count
of requests, responses and NXDOMAIN responses. Since most do-
mains do not have large amounts of subdomains, coupons are only
expected to be collected for a small amount of domains. We allo-
cate registers and store this data only after the first coupon has
been collected for some domain. Once we have these counters we
can generate alerts for domains presenting a large percentage of
dropped requests (request with no response) or a large percent-
age of NXDOMAIN responses (out of the total responses received
for the domain). We note that due to limitation of the data plane,
percentages are calculated approximately. Additionally, while Beau-
Coup [4] may perform a single memory access per packet, WORD
would need to perform additional memory accesses in order to
maintain these statistics.

Figure 2: Coupons collected over time

3 EVALUATION
We implemented the DNS parsing and processing using P4, and
ran the tests on a BMv2 switch. We set the parameters to process
data in 1 hour windows while creating an alert after 23 coupons
have been collected, approximating 10,000 distinct subdomains.
The evaluation was done using a trace of DNS traffic captured in
a university campus [10]. The trace contains a total of around 1.6
million DNS requests and responses generated by about 4000 users
over the span of an hour. Together with the trace of benign traffic
we used a script to simulate a DNS Water Torture attack featuring
25,000 randomly generated subomdains for a single domain.

Figure 2 shows the coupons collected for the targeted domain
versus the maximum number of coupons collected for all other
domains. Our alert threshold is reached when around 15,000 distinct
queries are sent. While this is a fairly high error rate we do see
the approximation trend is quite similar to the real trend. We note
that the error rate is likely caused by the coin flip we introduced,
a feature which we plan to compensate for in the future. On the
other side we see that no more than 7 coupons are collected for the
rest of the domains, for a trace containing approximately 10,000
distinct domains, out of which only 121 distinct domains collected
at least one coupon.

4 FUTUREWORK
Using our simulated attack data we show an ability to concisely
detect attack traffic in the data plane. In the future we plan to im-
plement our system on a hardware switch and perform further
analysis using real attack traces. In addition we intend to explore
the possibility of mitigating this attack directly in the data plane.
We plan to expand this research to other attacks, such as NXN-
SAttack [1], as well as detecting attempts to perform subdomain
enumeration.

REFERENCES
[1] Yehuda Afek, Anat Bremler-Barr, and Lior Shafir. NXNSAttack: Recursive DNS

inefficiencies and vulnerabilities. In USENIX Security, pages 631–648, 2020.
[2] Akamai. Whitepaper: Dns reflection, amplification, dns water-torture.
[3] APNIC. Dnssec validation rate by country.
[4] Xiaoqi Chen, Shir Landau-Feibish, Mark Braverman, and Jennifer Rexford. Beau-

coup: Answering many network traffic queries, one memory update at a time. In
ACM SIGCOMM, pages 226–239, 2020.



DNS Water Torture Detection in the Data Plane SIGCOMM ’21 Demos and Posters, August 23–27, 2021, Virtual Event, USA

[5] GrahamCormode and ShanMuthukrishnan. An Improved Data Stream Summary:
The Count-Min Sketch and Its Applications. Journal of Algorithms, 2005.

[6] Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric Meunier. Hyperloglog:
the analysis of a near-optimal cardinality estimation algorithm. In Discrete
Mathematics and Theoretical Computer Science, pages 137–156, 2007.

[7] Philippe Flajolet, Daniele Gardy, and Loÿs Thimonier. Birthday paradox, coupon
collectors, caching algorithms and self-organizing search. Discrete Applied Math-
ematics, 39(3):207–229, 1992.

[8] Mozilla Foundation. Public suffix list.

[9] Xi Luo, Liming Wang, Zhen Xu, Kai Chen, Jing Yang, and Tian Tian. A large scale
analysis of dns water torture attack. In International Conference on Computer
Science and Artificial Intelligence, pages 168–173, 2018.

[10] Manmeet Singh. 10 days dns network traffic from april-may, 2016, 2019.
[11] Peng Xiao, Zhiyang Li, Heng Qi, Wenyu Qu, and Haisheng Yu. An efficient ddos

detection with bloom filter in sdn. In 2016 IEEE Trustcom/BigDataSE/ISPA, pages
1–6. IEEE, 2016.

[12] Petr Špaček. NXNSAttack: Upgrade resolvers to stop new kind of random subdo-
main attack. 2020.


	1 Introduction
	2 The WORD System
	2.1 WORD Overview
	2.2 Processing

	3 Evaluation
	4 Future Work
	References

