Flow-Level Loss Detection with A-Sketches

Shir Landau Feibish
The Open University of Israel

Xiaoqi Chen

Princeton University

ABSTRACT

Packet drops caused by congestion are a fundamental prob-
lem in network operation. Yet, it is difficult to detect where
drops are happening, let alone which flows are most affected.
Detecting the small-timescale drops caused by short bursts of
traffic is even more challenging, and traditional monitoring
techniques can easily miss them. To uncover packet drops
as they occur inside a switch, the analysis must be real-time,
fine-grained, and efficient. However, modern switches have
distributed packet-processing pipelines that see either the
arriving or departing traffic, but not the packet drops. Addi-
tionally, they do not have enough memory to store per-flow
state. Our MIDST system addresses these challenges through
a distributed compact data structure with lightweight co-
ordination between ingress and egress pipelines. MIDST
identifies the flows experiencing loss, as well as the bursty
flows responsible, across different burst durations. Our eval-
uation with real-world traces and TCP connections shows
that MIDST uses little memory (e.g., 320KB) while providing
high accuracy (95% to 98%) under varying loss rates and
burst durations. We evaluate a low-rate DDoS attack and
demonstrate the potential use of our measurement results
for attack detection and mitigation.

CCS CONCEPTS
« Networks — Data path algorithms.

KEYWORDS

Network Monitoring, Programmable devices, Sketches

ACM Reference Format:
Shir Landau Feibish, Zaoxing Liu, Nikita Ivkin, Xiaoqi Chen, Vladimir
Braverman, and Jennifer Rexford. 2022. Flow-Level Loss Detection

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

SOSR 22, October 19-20, 2022, Virtual Event, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9892-3/22/10...$15.00
https://doi.org/10.1145/3563647.3563653

Zaoxing Liu
Boston University

Vladimir Braverman
Rice University

Nikita Ivkin

Amazon

Jennifer Rexford
Princeton University

with A-Sketches. In The ACM SIGCOMM Symposium on SDN Re-
search (SOSR) (SOSR °22), October 19-20, 2022, Virtual Event, USA.
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3563647.
3563653

1 INTRODUCTION

Packet loss is one of the more puzzling problems that occur
inside a network. Losses/drops can take place for any num-
ber of reasons, including congestion, hardware failures, soft-
ware bugs, blackholes, and configuration mistakes, among
others [22, 32]. Dropped packets can cause significant dis-
ruption to network operation, yet they are difficult to detect
in a timely manner. Furthermore, even if a drop is eventually
detected, it is hard to pinpoint exactly where and why the
packet loss took place, let alone respond to the problem.

The losses caused by microbursts are especially difficult to
detect, diagnose, and mitigate [17, 29, 34, 37]. Microbursts
are bursts of traffic that are short-lived, yet they can cause
massive congestion in switch queues, leading to immedi-
ate packet loss. Microbursts are often associated with data
centers, yet such short bursts of traffic can occur in any net-
work. For example, past measurement studies have shown
microbursts in a campus network (due to active-monitoring
tasks running concurrently in the network) [18] and a carrier
network (due to customers simultaneously sending bursts) [3].

When bursts happen, timely and accurate measurements
of both the flows responsible for the burst and those ex-
periencing loss are critical. Based on this information, the
network can target remedies to the responsible flows, without
disadvantaging other flows. For example, the switch could
mark, drop, rate-limit, or reroute the offending flows. In con-
trast, other countermeasures, such as congestion control and
load balancing, typically affect all of the flows impacted by
the congestion. Thus, an effective technique for measuring
packet drops should satisfy three main goals:

o real-time (i.e., within a few microseconds) in detecting
bursts to enable rapid mitigation;

o fine-grained in identifying the flows experiencing high
loss and those responsible for congestion; and

e efficient in supporting analysis of many concurrent flows
and varying loss rates in high-speed switch hardware.

Unfortunately, existing solutions compromise on one or more
of these dimensions. Traditional NetFlow [8] and SNMP [4]

https://doi.org/10.1145/3563647.3563653
https://doi.org/10.1145/3563647.3563653
https://doi.org/10.1145/3563647.3563653

SOSR ’22, October 19-20, 2022, Virtual Event, USA

only provide slow and coarse-grained loss statistics. Other
approaches collect fine-grained statistics [2, 13-15, 22, 24,
27,31, 39], but rely on offline analysis to detect packet loss or
bursts “after the fact”. More recently, NetSeer [38] supports
real-time, in-switch loss detection through a “negative mir-
roring” feature that forwards dropped packets to an alternate
egress pipeline for analysis. However, negative mirroring
introduces high overhead under large bursts, essentially mov-
ing the heavy congestion elsewhere in the switch; some of
the mirrored lost packets may themselves be lost. Plus, the
results of the analysis are not readily available for taking
action on the offending traffic as it streams by.

In this paper, we present MIDST (Monitoring Intra-switch
with Delta SkeTch), which performs real-time measurement
of the most lossy flows (the “heavy losers”) and the heavy-
hitters (the “bursty flows”) within the data plane. Designing
MIDST is challenging because modern high-speed switches
are inherently distributed, with multiple ingress and egress
pipelines that each have only a partial view of the traffic.
In addition, each pipeline has limited memory for storing
data structures; per-flow state is simply not an option. Plus,
since detecting and reacting to packet drops must happen
on a small timescale, the analysis cannot be offloaded to the
control plane. We make several research contributions:

¢ Estimating flow-level drops in modern switches (§2):
Dropped packets cannot be directly monitored in a dis-
tributed switch, as the ingress pipeline does not know
they will be dropped and the egress pipeline does not see
them at all. To overcome this limitation, MIDST has the
ingress pipeline piggyback traffic counts so that the egress
pipeline can compute per-flow loss statistics as packets
that do not get lost depart. MIDST maintains a sketch of
arriving packets and a sketch of departing packets. The dif-
ference of these two sketches (called a A-sketch) is equivalent
to a sketch of the difference, thus the A-sketch measures the
stream the lost packets, without even accessing them. To
the best of our knowledge, A-sketch is the first data-plane
sketch that can find the few “heavy loser” flows even if
there are thousands of much heavier flows without loss.

e Adapting measurement to burst duration (§3). Traffic
bursts vary in frequency and duration, from microbursts
of a few milliseconds to heavy load over multiple seconds.
Rather than impose an artificial time window on loss mea-
surements, MIDST automatically tracks the traffic for the
duration of the burst—initiating sketches as congestion
builds and quickly resetting them as congestion wanes.
Initiating and resetting the sketches in the data plane (via
recirculated packets and subsequent traffic) is much faster
(4ms) than relying on the control plane (730ms) to clean
the data structures between consecutive burst events.

Landau Feibish et al.

— T
—

Dropped

KEEEEEE)) B~

Egress Pipeline

Ingress Pipelines Queues

Figure 1: Packet drops within a multi-pipe switch.

e Hardware implementation (§4): We implement a MIDST
prototype in a Tofino switch using the P4 language. Since
A-sketches are essentially measuring the set of lost pack-
ets, each sketch instance can be small, enabling us to merge
smaller counter arrays into larger ones to save data-plane
resources (e.g., hashes and memory accesses). We perform
arange of experiments on a real-world testbed of a 3.2Tbps
switch and three commodity servers, shows that MIDST
(1) offers high accuracy (95% to 98%) with small memory
footprints (e.g., 320KB) under varying loss rates and burst
durations, (2) accurately detects real-world lossy TCP and
UDP flows during short congestion events, and (3) enables
the detection and potential mitigation of low-rate DoS
attacks by providing fine-grained heavy loser and bursty
flow information.

2 COUNTING FLOW-LEVEL DROPS

MIDST identifies the flows experiencing the most packet loss
(i.e., the heavy losers). Performing this analysis is challenging
because high-speed switches process packets in a distributed
fashion, as shown in Figure 1. Ingress pipelines see arriving
packets, and egress pipelines see departing packets (after
some queuing delay), but neither see the packets dropped
due to congestion. So, MIDST computes drop statistics by
piggybacking “counts” on packets traveling from ingress to
egress (Section 2.1). The pipelines have too little memory to
maintain per-flow state. So, MIDST maintains approximate
counts in each pipeline and uses them to emulate a sketch
of lost packets (Section 2.2).

2.1 Piggyback Counts on Delivered Packets

As a packet traverses the switch, MIDST estimates the loss of
the packet’s flow. If the loss is significant, the egress pipeline
can take immediate action such as generating a report, mark-
ing the packet’s Early Congestion Notification (ECN) bit,
rerouting the packet, or relaying congestion feedback to the
ingress port or upstream switch.

Monitoring packet drops is challenging because the loss
occurs inside the switch, when packets encounter a con-
gested queue. The packet-processing pipelines cannot “see"

Flow-Level Loss Detection with A-Sketches

S

in

@)
Al [T]]]

1 2 3 45 6 7 8 910111213

[p peddebdobarblol [1] s, > EEE

Sl e o (7,u)

Queue

B
o
(=
<
B
o
(=
<

SOSR ’22, October 19-20, 2022, Virtual Event, USA

S

out

3)
el [ITTTTITTT]

123456 7 8 910111213

p
L 2 7 I

(ug-vy),
- (7,u) \ gk

MW TTTTT]| Bt

Figure 2: MIDST uses the difference between sketches to emulate the loss stream.

the dropping of the packets directly. Certain switches pro-
vide some visibility through a negative mirroring feature that
directs a copy of dropped packets to a separate monitoring
pipeline for analysis. However, negative mirroring is not ef-
ficient under high packet-loss rates, as it requires processing
of every dropped packet, which may be infeasible in high
loss rates. Plus, the loss statistics are collected in a separate
pipeline, and are therefore not readily available to the egress
pipeline serving that flow, thus hindering corrective action.

Instead, MIDST counts both the arriving packets (on ingress
pipelines) and the departing packets (on egress pipelines),
and computes the difference between the two to determine
the number of lost packets. However, the ingress and egress
counts are not synchronized, due to variable queuing delay.
So, MIDST uses the packets themselves to carry and synchro-
nize the counts between the ingress and egress pipelines.
That is, the delivered (i.e., not dropped) packets allow MIDST
to compute the statistics about the dropped packets of the
flow to affect the scheduling or routing of future packets. In
order to add the information on the packet, we would need
to add an additional header to the packet. This header can
be added in the ingress and removed in the egress so the
packets exiting the switch remain unchanged.

The simplest approach would maintain a per-flow counter
on the ingress and egress pipelines, and have each delivered
packet carry the current ingress count to the egress. Then,
the egress pipeline could compute the difference between
the two counts to determine the number of lost packets.

2.2 Approximate Loss Using A-Sketches

Maintaining per-flow counters is too expensive, given the
limited data-plane memory. Instead, each pipeline should
maintain an approximate data structure, as shown in Figure 2.
The ingress pipeline has a sketch S;;, of arriving packets, and
the egress pipeline has a sketch S,,; of departing packets.
For example, a count-min sketch [10] contains r rows, with ¢
columns in each row, where each entry stores a count. When
a packet arrives for flow f, the ingress pipeline updates S;,
by computing r hashes on the flow identifier f to compute
indices aj, ..., a, and incrementing the associated counters

to new values uy, ..., u, before directing the packet to the
appropriate queue. Similarly, in processing a packet from
the head of the queue, the egress pipeline updates the sketch
Sout of the number of departing packets with counts vy, ..., v,.
Subtracting sketches to find loss: Each pipeline could pro-
duce its own estimate of the number of arriving or departing
packets for a flow, respectively, and combine the results, but
that approach is not necessarily accurate. That is, the ingress
pipeline could compute u,,;, = min{u, ..., u, } and relay u,,;,
to the egress for comparison with v,,;, = min{oy, ..., 0, }.
However, both sketches may overestimate their counts due
to hash collisions with other flows. Subtracting the two esti-
mates could lead to large errors in estimating the number of
lost packets. For example, suppose that a packet from flow
f observes the values (uy, uz, u3) = (25,40,30) in S;, and
the values (v1, v3,03) = (20,10, 5) in S,y;, respectively. The
ingress pipeline would compute an estimate of u,,;, = 25
arriving packets, and the egress pipeline would compute an
estimate of v,,;, = 5 departing packets, leading to an estimate
of Umin — Umin = 20 dropped packets.

Instead, MIDST capitalizes on how sketches like the count-
min sketch are linear operators, when the sketches have the
same size (i.e., r and c) and the same random hash functions.
In particular, MIDST can subtract one sketch from the other
to compute the sketch S, of the stream of lost packets
that neither pipeline can observe directly! That is, Sj;,ss =
Sin — Sout» where the subtraction is matrix difference of the
sketches. We call such difference sketches a A-sketch.
Introducing A-sketches: More formally, let A C B be two
sets and let sketches S4 and Sp be the compressed summaries
of A and B, respectively, of the same size. The matrix dif-
ference A = Sp — S4 is a sketch of B — A. Critically, we can
compute the A-sketch even when we do not have access to
the set of lost packets B — A.

A-sketches in MIDST: Returning to the example, the S;,5
sketch would have entries (u;—v1, uy—vs, u3—03), or (5, 30, 25)
for flow f. So our estimate would be 5, which is the minimum
of these values, which is a better estimate of the number of
lost packets than 20. In short, the “minimum of the differ-
ences” (min{u; — vy, uy — vy, U3 — v3}) is a better estimate
than the “difference of the minimums” (4,,;, — Uymin). This

SOSR ’22, October 19-20, 2022, Virtual Event, USA

example also shows how collisions may affect A-sketches.
If, for example, due to collisions u,;, and v,,;, significantly
overestimate the count of f, this overestimation is likely to
be cancelled out when computing the difference between
the sketches. In this case, the accuracy of the A-sketch is
influenced by the number of packets lost and not by the size
of the flows.

MIDST does not need to materialize the S5 sketch explic-
itly. Instead, the ingress pipeline simply tags each packet with
the r associated counts (uy, up, u3), and the egress pipeline
looks up (1,93, v3) to compute (u; — vy, Uy — vy, us — v3) and
the minimum of these three values. As an additional opti-
mization, the ingress can tag the packet with the indices
(a1, az, as)—with values 2, 10, and 7 in the above example so
the egress pipeline doesn’t need to re-compute these hashes.
Finding the bursty flows. So far we have discussed how
MIDST can identify packet losses. Surprisingly, MIDST can
also identify bursty flows, free. Intuitively, the bursty flows
are the flows which inserted many packets into the queue,
meaning, the flows which had many packets at ingress. The
sketch S;, maintains the aggregated measurement of the
number of packets that entered the switch and should have
been processed by the egress pipeline, so flows which are
heavy hitters in S;;, are, in fact, the bursty flows. Therefore
we can identify if a packet is part of a bursty flow simply by
computing its flow’s count in S;,.

In-flow FIFO. Thus far we have assumed that each egress
pipeline serves a single FIFO queue, meaning that each flow
maintains a FIFO order of its packets for each ingress pipeline.

In reality, each egress pipeline may have multiple FIFO queues.

An ingress pipeline could map the same flow to different
egress queues, however that may create out-of-order pack-
ets. In practice, packets of the same flow would normally be
mapped to the same queue, and the relative order of pack-
ets within a flow is preserved on ingress and egress. This
assumption can be violated if flow routing changes within
a short time span. This can happen, for example, if there
is a link failure causing the flow’s route to be modified. In
this case, MIDST may temporarily behave poorly as it may
overestimate the loss. Once in-flow FIFO is restored, MIDST
should quickly resume its regular behaviour.

3 REACTIVE MONITORING

The data structure in §2 estimates per-flow drop counts over
a long time period. However, many congestion events are
short-lived, requiring monitoring on a smaller timescale. The
right time granularity depends on when the congestion event
begins and ends, making it hard to adopt a fixed monitoring
interval. Instead. MIDST triggers loss monitoring based on
changes in the queue depth, and automatically “cleans” the
data structures between congestion events.

Landau Feibish et al.

Recirculated
Cleaning sketch

packets
Queue length

—

L queue 1
Ingress Pipeline 1

MIDST
Queue Ingress
Lengths Sketches
Ingress indicates to start monitoring
— —
Queue Ingress

Lengths Sketches

Egress Pipeline 1

MIDST Egress
Sketches

Egress Pipeline j

MIDST Egress
Sketches

queue j

Queue length

Figure 3: MIDST reactive monitoring.

3.1 Trigger on Changes in Queue Depth

Most network telemetry systems monitor traffic over long
time intervals [22, 23, 30] or adopt fixed-length sliding win-
dows [6]. However, congestion events can arise at any time,
and last for any duration. As such, any fixed timescale for loss
monitoring can introduce inaccuracy. Long time windows
can obscure the effects of short-lived spikes in queue length
caused by microbursts. Small time windows raise challenges
in resetting the data structure between successive intervals,
or alternating between multiple data structures. Given most
network queues are underutilized most of the time, more
efficient monitoring techniques should be possible.

Instead of resorting to fixed time intervals, MIDST intro-
duces a novel reactive monitoring procedure. That is, MIDST
identifies when congestion starts to build up and promptly
starts monitoring. Reactive monitoring enables MIDST to
adapt the monitoring to the duration of the burst, and provide
information about an interval of time that tightly encapsu-
lates the burst. So, MIDST only reports the “heavy losers”
and “bursty flows” associated with the burst.

MIDST starts monitoring traffic destined to a queue when
the queue depth crosses a high-water mark h, and stops
monitoring when queue depth falls below a low-water mark
I. The ingress and egress pipelines each have an important
role to play in triggering a new monitoring interval. The
ingress pipeline must initiate monitoring, to ensure that
both pipelines maintain counts over the same time interval
of packets; however, only the egress pipeline has direct access
to the depth of the queue. For every fixed (small) interval,
MIDST recirculates packets and piggybacks information on
queue depth from the egress pipeline back to the ingress
pipelines on the recirculated packets, as depicted in Figure 3.

If a queue exceeds length h, the ingress pipeline starts mon-
itoring the traffic directed toward that queue. The ingress
pipeline alerts the egress pipeline to start monitoring, by
marking each packet destined to the associated queue. That
is, any packet p “counted” in the ingress pipeline is marked so
that the egress pipeline knows to “count” the packet as well.

Flow-Level Loss Detection with A-Sketches

32 Registers 32 Bits
1 (0] 1

s alaole

1 111
1 110
1 0|1
1 1(1

N) N N

111
01
111

1
1
0
. Clean/
0| Dirty 1 In Use

Figure 4: Auxiliary register for quick cleaning.

Upon learning that the queue depth has fallen below length I,
the ingress pipeline stops monitoring by (un)marking pack-
ets accordingly.

3.2 Clean Sketches Between Monitoring

Once monitoring has stopped, all relevant sketches on ingress
and egress need to be cleaned up. Yet, since the next mi-
croburst can arrive almost instantly, MIDST needs to clean
up quickly to prepare for the next possible burst. One stan-
dard way to clear out and reset register arrays is to use the
control-plane API (e.g., counter write or reset via Thrift [1]).
However, as pointed out by prior work [25], accessing the
data plane via control API presents a non-trivial delay. In-
stead, our implementation runs entirely in the data plane.

We use the packets being processed to clean the registers.
Each packet that traverses through the switch is assigned a
group of indexes to reset. To avoid a situation in which there
are not enough packets going through the switch to reset all
registers, MIDST also generates a packet which recirculates
through the switch until the cleaning process has completed.

To expedite the cleaning process even further, we maintain
an auxiliary register array that allows us to quickly “clear
out” sketch memory. As seen in Figure 4, for each 32 register
arrays, MIDST maintains a single 32-bit register. Each bit cor-
responds to one of the registers in the sketch, and indicates
whether the corresponding register is clean or not. This array
starts out with a 0 value in each bit. Once monitoring starts,
when any register in the sketch needs to be updated for the
first time in that monitoring interval, the corresponding bit
is flipped to 1 and the register is reset before it is written
to. Consequent packets writing to that register (during that
interval) do not reset the bit or the register. As shown, “or-
ange” registers are considered dirty and their corresponding
bit is set to 0, whereas “white” registers are in use and their
corresponding bit is set to 1. When monitoring stops, all 32
bits are reset to 0 by resetting a single 32-bit register to 0.
This way MIDST can speed up the cleaning process by 32x.

We note that there is a certain trade-off between the over-
head of sketch cleaning (i.e., the recirculation frequency of
the cleaning packet) and how quickly we can treat the next
burst. With this trade-off in mind, we set [<< h, to ensure
that, once cleaning has started, monitoring does not restart
before the cleaning phase has completed.

SOSR ’22, October 19-20, 2022, Virtual Event, USA

160KB 320KB 640KB 1280KB
Control Plane API 95.32ms 187.46ms 370.12ms 730.36ms
Recirculation only 4.53ms 9.06ms 18.13ms 36.47ms

10G traffic+recirculation 0.55ms 1.09ms 2.20ms 4.39ms

40G traffic+recirculation 0.13ms 0.27ms 0.54ms 1.07ms

Cleanup Mechanism

Table 1: Comparing sketch cleaning delays.

4 PERFORMANCE EVALUATION

We evaluate MIDST under various algorithm parameters and
hardware settings. Our major findings are:

e MIDST can accurately detect the flows with high intra-
switch loss using small memory, under various loss rates.

e MIDST is able to estimate the loss with high accuracy
in a real-world testbed. We evaluate a low-rate DDoS at-
tack [20] and demonstrate the potential use of our mea-
surement results for attack detection and mitigation.

Testbed: We have implemented a prototype of MIDST in P4
and conduct experiments in a real-world hardware testbed
with one Intel Barefoot Tofino switch and three commodity
servers. Each server is equipped with two Intel Xeon Sil-
ver 4110 CPUs and a Mellanox CX-4 Pro 2x100G NIC. Our
testbed has three hosts as the data plane connected through
the Tofino switch using 100Gbps links.

In particular, we run the following experiments:
Latency in reactive monitoring. We evaluate the latency
in stopping the monitoring in MIDST and cleaning up the
counters. Specifically, we measure the time it takes for a full
sketch cleaning using different methods, as depicted in Ta-
ble 1. Compared to counter cleaning using the control plane
API (same as measured in [25]), our recirculation-assisted ap-
proach runs significantly faster and leverages the subsequent
traffic to accelerate the cleaning process. When there is no
current traffic, the recirculation still guarantees finishing the
sketch cleaning in a few milliseconds.

LDoS Attacks. In low-rate denial of service (LDoS) attacks [35,
36], concentrated attack traffic is sent in short-lived pulses.
That is, as opposed to volumetric distributed denial of service
(DDoS) attacks which use a large volume of traffic to exhaust
the network bandwidth or host resources, LDoS attacks tar-
get the flow adaptive mechanisms in the network (e.g. one
representative LDoS attack known as the shrew attack [20]
targets the TCP retransmission time out mechanism). Thus,
in LDoS attacks, the average attack traffic volume is low in a
large time window, therefore allowing such attacks to evade
volumetric detection mechanisms.

Methodology: To demonstrate MIDST can be used effec-
tively to analyze losses suffered by real-world flows, we set
up a Shrew attack scenario on the hardware testbed:

e We use iperf3 to generate a total of 100 TCP flows be-
tween a sender and a receiver as workload. The sender
and receiver connect to the switch using 100Gbps links.

SOSR ’22, October 19-20, 2022, Virtual Event, USA

S i

| i

(T
< i
< i

RTT=100ms

Throughput (Gbps)

o OFH OFr OHFH O

TCP Flows

Figure 5: Shrew attack scenarios.

1.00 W-*-——-—l———-—'-'“""

4] | -e- 30ms Latency Flows
o -

S 0.50 { ~* 50ms Latency Flows
i —+— 70ms Latency Flows

0 2 4 6
Memory (MB)

Figure 6: Detection in Shrew attacks.

100 7 --4— True Loss
—+— MIDST
—<— Negative Mirroring

~
a

N
(6)}

Loss Volume (Gbps)
(&)
o

0 iH——:/T
1510 20 30 40 50 60 70
Sending Rate (Gbps)

Figure 7: High-volume losses.

e Since the LDoS Shrew attack hurts the throughput of spe-
cific flows with a certain round-trip time (RTT), we use
the tc utility to add varying latency to different flows us-
ing Linux kernel’s queuing discipline. The added latency
ranges from 1ms to 100ms for the 100 TCP flows created by
iperf3. The testbed fabric only introduces 0.02ms latency
between servers.

e We implement a custom script written in MoonGen [11] to
generate periodic bursts from the attacker server, at an
interval of 30, 50, 70ms, separately. Each burst contains
about 2 Million UDP packets (64 bytes per packet) with a
sending rate of 10Gbps.

Results: Under normal circumstances, the payload flows
will run at the full 10Gbps line rate, and TCP congestion
control guarantees minimal losses. When a shrew attack

Landau Feibish et al.

is launched, we can immediately observe the victim flow
suffered from decreased throughput. For example, in Figure 5
(Shrew Attack-1), when we start the shrew attack with an
interval of 30ms, only one TCP flow with that particular RTT
suffered from significantly decreased throughput (dropped
from 8.2Gbps to 0.97Gbps). We also observe that, due to the
inherent measurement errors from injected latency, the TCP
flows with RTTs around 30ms (e.g., 28ms to 32ms) are also
affected with a decreased throughput.

We now show how network operators can potentially
use MIDST to analyze packet loss and accurately identify
the attacker and victim of an LDoS attack. Under normal
conditions, the TCP flows in our testbed will lose no more
than approximately 0.005% of packets due to congestion
control. When we launch the attack with 30ms, 50ms, and
70ms interval (Attack-1 to 3 in Figure 5), the victim TCP flows
start to lose as much as 98.1% of packets, while other flows
(with varying RTTs) stay at a relatively stable throughput
and we do not observe significant changes in their loss rates.
MIDST accurately reports the victim TCP flow as the “heavy-
loser”, as shown in Figure 5. Out of ten repeated runs, MIDST
identified LDoS victim flows correctly with no errors.

Meanwhile, we also correlate our heavy loser analysis
with heavy flow analysis (which is a part of MIDST’s ingress
pipeline) to provide information about the culprit of the
attack. By only looking at the ingress sketch S;;,, we can find
the heavy-hitter senders at the time when the victim flows
are experiencing high losses and low volumes. This will help
identify the potentially malicious sender that suddenly sends
bursty traffic, and correlate it with the victim’s high drop rate.
Using this method, we identify the potential LDoS attacker
flows with 0.912 to 0.981 F-scores under varying memory
configurations, as shown in Figure 6. Note we define F-score
as %, where FP is the false positive rate (i.e., how many
non-heavy loss flows are mistakenly identified as heavy lossy
flows) and TN is the true negative rate (i.e., how many heavy
loss flows were not identified).

Accuracy under high-volume drops. In this experiment,
we generate a large number of dropped packets by sending
an excessive volume of UDP traffic, leading to severe con-
gestion. We show that the high volume of dropped packets
overwhelmed the negative mirroring link, while MIDST still
accurately tracks the amount of dropped packets. Specifi-
cally, an excessive amount of UDP traffic is sent to a bottle-
neck 10Gbps link. We use pktgen-DPDK to generate and send
minimum-sized UDP packets to the switch via a 100Gbps
link, varying the sending rate from 1Gbps to 70Gbps.

As shown in Figure 7, when the incoming traffic rate ex-
ceeds 10Gbps, the number of dropped packets starts to in-
crease. The negative mirroring port is overwhelmed after the
sending rate exceeds 20Gbps, and can only mirror a small

Flow-Level Loss Detection with A-Sketches

fraction of all dropped packets. Meanwhile, MIDST accu-
rately tracks the dropped packets. We note that the accuracy
of MIDST only depends on the number of lossy flows tracked,
and is not affected by the high volume of drops.

5 RELATED WORK

We summarize related work not covered in previous sections.
Network performance monitoring tools: Existing solu-
tions for network performance monitoring (e.g., Dapper [13],
Marple [27], and Lean [24]) support detecting TCP/UDP
packet loss by measuring the number of un-acked packets
in the flows. Additionally, LossRadar [22] detects loss in a
network by collecting flow counters of traffic as it enters
and right before it leaves the network and analyzing these
counters for differences. While MIDST can detect and an-
alyze intra-switch packet loss, these tools can only detect
the packet losses that did not happen within the switch (i.e.,
somewhere else along the flow path). Thus, the fundamental
difference from our work lies in the new ability to efficiently
measure the flow-level loss between the ingress and egress
pipelines inside switches.

Sketch-based change detection: Intra-switch loss detec-
tion can be reformulated as a problem of change detection.
Given two packet streams, change detection algorithms aim
to find the flows whose sizes (e.g., the number of packets)
have changed the most between two time intervals. Similarly,
our goal is to identify the flow changes between the ingress
and the egress as losses. While there are significant efforts in
designing sketches for change detection [16, 19], we need to
consider several subtle differences in the real-world setting,
including hardware constraints and the limitations caused
by the duration of the bursts.

Other efforts in switch measurement: In addition to loss
detection, there are complementary telemetry capabilities
that focus on switch-level measurement. For instance, Con-
Quest [6] can detect the heavy flows inside a queue when
the queue is congested. While heavy flows in the queue can
be the major contributor of the congestion, they may not be
the victims that lose a significant portion of their packets.
Instead, our work detects the victim flows with significant
losses and provides further insights to understand the corre-
lations between the heavy flows and heavy losers. Further,
PacketScope [33] monitors the entire life-cycle of a packet in
a switch and is capable of understanding the queuing delays
and losses. However, PacketScope cannot aggregate packet-
level information into the flow level and thus cannot report
the lossy flows. Additionally, sketch-based algorithms can
support others flow-level measurements, including heavy
hitters [5, 10, 23, 30], flow size distribution [10, 21], entropy
estimation [9, 26, 28] and distinct flows [7, 12, 23].

SOSR ’22, October 19-20, 2022, Virtual Event, USA

6 CONCLUSION

MIDST detects and diagnoses congestion problems quickly
and accurately, directly in the data plane of modern pro-
grammable switches. The design makes several novel contri-
butions to compact data structures to monitor loss in a dis-
tributed setting, both within a high-speed switch and across
the wide area. Through a combination of small sketches and
lightweight synchronization protocols, MIDST can both (i)
identify the “heavy losers" that neither the ingress nor egress
pipelines can observe directly and (ii) monitor loss on the
timescale of traffic bursts while quickly cleaning the data
structures in between congestion events.

ACKNOWLEDGMENTS

We thank the anonymous SOSR reviewers and our shepherd
Fernando Ramos for their valuable feedback. This work is
supported in part by the Israel Science Foundation under
grant No. 980/21, and NSF grants CNS-2106946, CNS-2107239,
and CNS-1704077.

REFERENCES

[1] Apache Thrift. https://thrift.apache.org/.

[2] Paramvir Bahl, Ranveer Chandra, Albert G. Greenberg, Srikanth Kan-

dula, David A. Maltz, and Ming Zhang. Towards highly reliable enter-

prise network services via inference of multi-level dependencies. In

ACM SIGCOMM, pages 13-24. ACM, 2007.

Swapna Buccapatnam, Xiaoqi Chen, Ken Duell, Shir Landau Feibish,

Kathleen Meier-Hellstern, Yaron Koral, Steven A. Monetti, Aswat-

narayan Raghuram, Jennifer Rexford, Joe Stango, Simon T. Tse, John

Tulko, and Tzuu-Yi Wang. Fine-grained P4 measurement toolkit for

buffer sizing in carrier grade networks. Workshop on Buffer Sizing,

2019.

[4] J. D. Case, M. Fedor, M. L. Schoffstall, and J. Davin. RFC 1157: Simple
network management protocol (SNMP), 1990.

[5] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding
frequent items in data streams. ICALP, 2002.

[6] Xiaogi Chen, Shir Landau Feibish, Yaron Koral, Jennifer Rexford, Ori
Rottenstreich, Steven A. Monetti, and Tzuu-Yi Wang. Fine-grained
queue measurement in the data plane. In ACM SIGCOMM Conference
on Emerging Networking Experiments and Technologies, pages 15-29.
ACM, 2019.

[7] Xiaoqi Chen, Shir Landau-Feibish, Mark Braverman, and Jennifer Rex-
ford. BeauCoup: Answering many network traffic queries, one memory
update at a time. In ACM SIGCOMM, 2020.

[8] Benoit Claise. Cisco Systems NetFlow Services Export Version 9. RFC
3954, 2004.

[9] Peter Clifford and Ioana Cosma. A simple sketching algorithm for
entropy estimation over streaming data. In International Conference
on Artificial Intelligence and Statistics, 2013.

[10] Graham Cormode and Shan Muthukrishnan. An Improved Data Stream
Summary: The Count-Min Sketch and Its Applications. Journal of
Algorithms, 2005.

[11] Paul Emmerich, Sebastian Gallenmiiller, Daniel Raumer, Florian Wohl-
fart, and Georg Carle. MoonGen: A Scriptable High-Speed Packet
Generator. In ACM SIGCOMM Internet Measurement Conference, Tokyo,
Japan, October 2015.

3

[t

https://thrift.apache.org/

SOSR ’22, October 19-20, 2022, Virtual Event, USA

[12] Philippe Flajolet, Eric Fusy, Olivier Gandouet, and Frederic Meunier.
Hyperloglog: The analysis of a near-optimal cardinality estimation
algorithm. In Conference on Analysis of Algorithms, 2007.

[13] Mojgan Ghasemi, Theophilus Benson, and Jennifer Rexford. Dapper:
Data plane performance diagnosis of TCP. In ACM Symposium on SDN
Research, pages 61-74, 2017.

[14] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong Dang, Ray

Huang, David A. Maltz, Zhaoyi Liu, Vin Wang, Bin Pang, Hua Chen,

Zhi-Wei Lin, and Varugis Kurien. Pingmesh: A large-scale system

for data center network latency measurement and analysis. In ACM

SIGCOMM, pages 139-152, 2015.

Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, David Maz-

ieres, and Nick McKeown. I know what your packet did last hop: Using

packet histories to troubleshoot networks. In USENIX Networked Sys-

tems Design and Implementation, pages 71-85, 2014.

Monika R Henzinger. Algorithmic challenges in web search engines.

Internet Mathematics, 1(1):115-123, 2004.

Raj Joshi, Ting Qu, Mun Choon Chan, Ben Leong, and Boon Thau Loo.

BurstRadar: Practical real-time microburst monitoring for datacenter

networks. In Asia-Pacific Workshop on Systems (APSys), 2018.

Hyojoon Kim, Xiaoqi Chen, Jack Brassil, and Jennifer Rexford.

Experience-driven research on programmable networks. ACM SIG-

COMM Computer Communications Review, 51(1):10-17, 2021.

Balachander Krishnamurthy, Subhabrata Sen, Yin Zhang, and Yan

Chen. Sketch-based change detection: methods, evaluation, and appli-

cations. In ACM SIGCOMM Internet Measurement Conference, pages

234-247, 2003.

Aleksandar Kuzmanovic and Edward W. Knightly. Low-rate TCP-

targeted denial of service attacks: The shrew vs. the mice and elephants.

In ACM SIGCOMM, pages 7586, 2003.

Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. FlowRadar: A

better NetFlow for data centers. In USENIX Networked Systems Design

and Implementation, pages 311-324, 2016.

Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. LossRadar: Fast

detection of lost packets in data center networks. In ACM SIGCOMM

CoNEXT Conference, pages 481-495. ACM, 2016.

Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and

Vladimir Braverman. One sketch to rule them all: Rethinking network

flow monitoring with UnivMon. In ACM SIGCOMM, 2016.

[24] Zaoxing Liu, Samson Zhou, Ori Rottenstreich, Vladimir Braverman,
and Jennifer Rexford. Memory-efficient performance monitoring on
programmable switches with lean algorithms. In Symposium on Algo-
rithmic Principles of Computer Systems, pages 31-44, January 2020.

[25] Hun Namkung, Daehyeok Kim, Zaoxing Liu, Vyas Sekar, and Peter
Steenkiste. Telemetry retrieval inaccuracy in programmable switches:
Analysis and recommendations. In ACM Symposium on SDN Research,
2021.

[26] Hun Namkung, Zaoxing Liu, Daehyeok Kim, Vyas Sekar, Peter

Steenkiste, Guyue Liu, Ao Li, Christopher Canel, Adithya Abraham

Philip, Ranysha Ware, et al. Sketchlib: Enabling efficient sketch-based

monitoring on programmable switches. In USENIX Networked Systems

Design and Implementation, 2022.

Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan, Prateesh

Goyal, Venkat Arun, Mohammad Alizadeh, Vimalkumar Jeyakumar,

and Changhoon Kim. Language-directed hardware design for network

performance monitoring. In ACM SIGCOMM, pages 85-98, 2017.

George Nychis, Vyas Sekar, David G. Andersen, Hyong Kim, and Hui

Zhang. An empirical evaluation of entropy-based traffic anomaly

detection. In ACM SIGCOMM Internet Measurement Conference, 2008.

Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armis-

tead, Roy Bannon, Seb Boving, Gaurav Desai, Bob Felderman, Paulie

Germano, Anand Kanagala, Jeff Provost, Jason Simmons, Eiichi Tanda,

(15

[

(16

=

(17

—

(18

—

(19

[’

[20

=

[21

—

[22

—

[23

[t

(27

—

[28

=

[29

—

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Landau Feibish et al.

Jim Wanderer, Urs Holzle, Stephen Stuart, and Amin Vahdat. Jupiter
rising: A decade of Clos topologies and centralized control in Google’s
datacenter network. In ACM SIGCOMM, pages 183-197, 2015.
Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rottenstreich,
S. Muthukrishnan, and Jennifer Rexford. Heavy-hitter detection en-
tirely in the data plane. In ACM Symposium on SDN Research, 2017.
Joel Sommers, Paul Barford, Nick G. Duffield, and Amos Ron. Im-
proving accuracy in end-to-end packet loss measurement. In ACM
SIGCOMM, pages 157-168. ACM, 2005.

Cheng Tan, Ze Jin, Chuanxiong Guo, Tianrong Zhang, Haitao Wu, Karl
Deng, Dongming Bi, and Dong Xiang. NetBouncer: Active device and
link failure localization in data center networks. In USENIX Networked
Systems Design and Implementation, pages 599-614, 2019.

Ross Teixeira, Rob Harrison, Arpit Gupta, and Jennifer Rexford. Pack-
etScope: Monitoring the packet lifecycle inside a switch. In ACM
SIGCOMM Symposium on SDN Research, pages 76—-82, March 2020.
Jackson Woodruff, Andrew W. Moore, and Noa Zilberman. Measuring
burstiness in data center applications. In Workshop on Buffer Sizing,
pages 5:1-5:6, 2019.

Zhijun Wu, Xu Qing, Jingjie Wang, Meng Yue, and Liang Liu. Low-rate
DDoS attack detection based on factorization machine in software
defined network. IEEE Access, 8:17404-17418, 2020.

Changwang Zhang, Zhiping Cai, Weifeng Chen, Xiapu Luo, and Jian-
ping Yin. Flow level detection and filtering of low-rate DDoS. Computer
Networks, 56(15):3417-3431, 2012.

Qiao Zhang, Vincent Liu, Hongyi Zeng, and Arvind Krishnamurthy.
High-resolution measurement of data center microbursts. In ACM
SIGCOMM Internet Measurement Conference, pages 78—85, 2017.

Yu Zhou, Chen Sun, Honggiang Harry Liu, Rui Miao, Shi Bai, Bo Li,
Zhilong Zheng, Lingjun Zhu, Zhen Shen, Yongqing Xi, Pengcheng
Zhang, Dennis Cai, Ming Zhang, and Mingwei Xu. Flow event teleme-
try on programmable data plane. In ACM SIGCOMM, pages 76—89.
ACM, 2020.

Yibo Zhu, Nanxi Kang, Jiaxin Cao, Albert G. Greenberg, Guohan Lu,
Ratul Mahajan, David A. Maltz, Lihua Yuan, Ming Zhang, Ben Y. Zhao,
and Haitao Zheng. Packet-level telemetry in large datacenter networks.
In ACM SIGCOMM, pages 479-491, 2015.

	Abstract
	1 Introduction
	2 Counting Flow-Level Drops
	2.1 Piggyback Counts on Delivered Packets
	2.2 Approximate Loss Using -Sketches

	3 Reactive Monitoring
	3.1 Trigger on Changes in Queue Depth
	3.2 Clean Sketches Between Monitoring

	4 Performance Evaluation
	5 Related Work
	6 Conclusion
	References

