
Practical Handling of DNS in the Data Plane
Alexander Kaplan, Shir Landau Feibish

The Open University of Israel

ABSTRACT
The Domain Name System (DNS) is a significant compo-
nent of modern-day internet. Despite this fact, DNS traffic is
mostly unencrypted, and as such a likely target for exploita-
tion by malicious actors. The advancement of programmable
switches presents researchers with the opportunity to ex-
plore DNS traffic from a new vantage point, without sac-
rificing network bandwidth. In spite of the incentive, DNS
research in programmable switches has been scarce, owing
to the difficulty in parsing DNS packets.

We present a general solution to DNS packet parsing that
can handle the vast majority of DNS packets (97%) using cur-
rent hardware and can easily be scaled to parse all DNS pack-
ets as hardware improves. Our highly configurable solution
can be adjusted to fit many distinct use cases. Additionally,
we explore the challenges involved in parsing DNS packets
and present common pitfalls appearing in previous research
attempting to do so.

CCS CONCEPTS
• Networks→ Network protocols.

KEYWORDS
DNS, Programmable Switch, Programmable Networks, Data
Plane, Network Measurement

ACM Reference Format:
Alexander Kaplan, Shir Landau Feibish. 2022. Practical Handling
of DNS in the Data Plane. In The ACM SIGCOMM Symposium on
SDN Research (SOSR) (SOSR ’22), October 19–20, 2022, Virtual Event,
USA. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/
3563647.3563654

1 INTRODUCTION
DNS is a critical infrastructure of the Internet, used to resolve
a human-readable address into an IP address. As an integral
part of modern day internet communication, DNS is a prime
target for exploitation by malicious actors. Attacks based
on the direct or indirect vulnerabilities [1, 4] of the DNS
protocol have been rising in recent years, culminating in a 2
Tbps DNS based DDoS attack at the end of 2021 [9].

Programmable switches provide us with a new vantage
point for analyzing DNS traffic, thus allowing the creation
of new and better mechanisms for securing DNS requests
and responses. Programmable switches enable user-defined
packet parsing; however, parsing is limited both in depth (i.e.

the number of bytes that can be parsed) and in the ability
to parse variable length segments. These limitations make
parsingmost packet payloads challenging, with DNS payload
presenting a particularly difficult case.

Not only can a DNS payload be very long, it is alsomade up
of a varying number of variable length parts. The DNS query
received as part of the payload is constructed by splitting
the domain into labels, and preceding each label with a byte
containing the label length. The end of the query is marked
with a 0 byte. As an example the query for m.example.
comwill be constructed as (1)m(7)example(3)com(0). This
means that when parsing the packet, the parser is unable
to tell the total length of the query until it reaches the last
part of the query, that is, if the length of the packet even
permits us to do so. To further complicate the issue, the
(main) domain part of the query is given only at the end,
however, if the query is too long, this part may not be parsed,
therefore presenting an issue with identifying and using this
crucial bit of information.
Parsing a variable number of variable length items may

seem to be an easy problem. Indeed, several solutions have
been proposed for parsing DNS queries in a programmable
switch. While providing insight into the issues around pars-
ing DNS, the solutions only partially resolve the problem.
Meta4 [16] and P4DNS [21] deliver solutions with concrete
limits in parsing. These solutions parse DNS packets to a pre-
set limit, without deep analysis of the query content (such as
subdomain extraction). Our previous research, WORD [14],
provides a more dynamic solution yet is implemented in a
software switch. The result turned out to be hard to transfer
into a hardware switch without significant changes. P4DDPI
[3] solves the problem of parsing depth by using packet re-
circulation. This approach allows for parsing of the entire
DNS query but has a severe disadvantage, since parts of the
DNS query may need to be discarded with each recirculation.
As a result the packet exiting the switch will not necessarily
contain all the information it held when entering the switch,
resulting in a damaged packet. We further elaborate on this
issue in Section 2.2.
In this paper, we provide insight into how DNS payload

may be parsed. We create a system which can correctly parse
as much as 97% of DNS queries using today’s hardware, while
being easily scalable to further increase this number as pro-
grammable switches improve. We summarize our contribu-
tions as follows:

https://doi.org/10.1145/3563647.3563654
https://doi.org/10.1145/3563647.3563654
m.example.com
m.example.com
(1)m(7)example(3)com(0)

SOSR ’22, October 19–20, 2022, Virtual Event, USA Alexander Kaplan, Shir Landau Feibish

• A parsing algorithm for DNS that is non-destructive (§2.2),
scalable (§3.2), practical (§3.3), and provides good coverage
of DNS requests with hardware available today (§5.1). The
parser cautiously traverses the query, parsing as much as
possible without damaging the contents of the packet.

• A novel approach to processing headers by priority (§3.3).
• Sample implementations of three common use cases that
may be easily implemented based on our solution, allowing
new DNS capabilities in the data plane. We present DNS
metrics (§4.1), caching (§4.2) and firewall (§4.3).

• An open source, fully configurable DNS parsing solution
[15]. Our parsing solution can be used as the basis of any
P4 project targeting DNS.
In the remainder of this paper we evaluate our solution

using an Intel Tofino switch (§5), and finally discuss current
trends in DNS communications and future work (§6).

2 CHALLENGES IN DNS PARSING
In this section we discuss the challenges involved in parsing
DNS packets within the confined resources of programmable
switches. In addition we explore related prior work, and
explain why we believe a practical solution is still necessary.

2.1 DNS Structure
The Domain Name System (DNS) protocol [18] is an appli-
cation layer protocol used to translate domain names into IP
addresses. DNS requests are sent out with queries to DNS
servers, that respond with the relevant answer. The DNS
packet is made up of a header describing the content of the
packet, and a payload which contains at least one query and,
optionally, DNS answers. The unique structure of the DNS
payload presents multiple challenges, presented below.

Multipart. The "domain" being queried in a DNS request
is usually comprised of a domain and subdomain pair, where
the domain is the main identifier of the site, and the subdo-
main is the rest of the query (e.g. in the querymail.example.
com the domain would be example.com and the subdomain
would bemail). From now on we will use the above termi-
nology. To avoid confusion, the term query will be used to
identify the combination of domain with subdomain.
Highly Variable. The difficulty in parsing DNS packets

in programmable switches comes from the highly variable
structure of the packets. Each label in the query is of a vari-
able length, and the number of labels is also heavily varied.
Furthermore, the number of labels is not given as a header in
the packet, meaning the only way to know how many labels
are contained in the packet is to parse all of them, until finally
reaching the predefined ending character. While a variable
length bit string type does exist in P4 [10], its functionality
is extremely limited. Even if we were to choose to use this
type, the variable amount of labels remains an issue.

Long and Complex. In addition to the ability to parse
a DNS query, some use cases require the ability to parse
the IP that is returned in the response (e.g. P4DDPI [3]). A
DNS response packet will contain the original DNS query at
the beginning of the packet payload, with the response data
concatenated immediately afterwards. In order to extract
the resolved IP from the DNS response payload we must be
able to parse the DNS query completely, otherwise we risk
malforming the packet (this is further discussed in Section
2.2). We note the structure of the DNS querymeans the labels
describing the domain appear only after the labels describing
the subdomain, further increasing our motivation to fully
parse the query in order to allow proper attribution.

2.2 Non-destructive DNS Parsing
One of the goals we believe is necessary for any P4 project
to be considered practical is non-destructive parsing. We
define parsing to be destructive when deparsing omits crucial
information that was available before the packet was parsed.
Since programmable switches don’t allow parsing data of
arbitrary length, other solutions need to be used to overcome
this limitation. As we will show in this section, existing
solutions cause a loss of part of the packet data, and thus
other solutions are needed.
We first look at the usage of the ‘advance‘ method. Used

in solutions such as Meta4 [16], the ‘advance‘ method allows
skipping bits in a packet while parsing, potentially allowing
further parsing of the packet. The problem is that skipped
bits are removed from the packet entirely, resulting in the
loss of the data the bits held. The ‘advance‘ method is meant
to be used to skip metadata properties that might be attached
to the packet (such as port information). We note the use of
this method is not unique to DNS and can also be seen in
the OS fingerprinting solution provided by Bai et al. [6].
Another solution, used in P4DDPI [3], requires recircu-

lating the packet multiple times. In the solution, each time
the packet is recirculated part of the packet data is removed,
allowing the same depth of parsing to reach previously un-
parsed data (as the data is shorter). The problem is the dis-
carded data cannot be retrieved, as the recirculated packet
cannot access data from its previous iterations unless stored
in some other form in the switch. Since the data skipped is
quite large, only a hash of it can be stored which would not
help reconstruct the original packet. In the case of P4DDPI
the parsed labels are discarded in each recirculation, to make
room for additional labels. As an example, when parsing
the query a.b.c.example.com, after the first recirculation
the labels for a.b.c.example are dropped (as the label limit
in P4DDPI is 4) and we are left with only one label com.
The packet exiting the switch will therefore only contain
the (invalid) query com. We note using this method will

mail.example.com
mail.example.com
example.com
mail
a.b.c.example.com
a.b.c.example
com
com

Practical Handling of DNS in the Data Plane SOSR ’22, October 19–20, 2022, Virtual Event, USA

always result in data loss, as in order to "defeat" the parsing
limitation we have to free space in some way. Even ignoring
the performance penalty (as rightfully pointed out in the pa-
per, the performance gained compared to existing solutions
heavily negates the performance lost by recirculation), this
approach means the packet exiting the switch loses part of
the query in the DNS packet.

We note that most programmable switches support packet
cloning, which would allow recirculating the cloned packet,
while the original packet continues. However, this solution
lacks the ability to take action (i.e. block) on the original
packet since the original DNS packet already left the switch.

Both of these approaches for parsing of DNS packets suffer
from the same major flaw; the packet leaving the switch is
not the same as the one entering it. While acceptable for
academic purposes it means these solutions in their current
form cannot be used in practice, as network data cannot be
sacrificed for additional switch functionality.

3 DNS PACKET PROCESSING
With the above challenges in mind, we present our solution
for DNS parsing and handling in the data plane. In this sec-
tion we explain how our parsing algorithm makes sensible
compromises in order to achieve useful and scalable parsing,
and further explain how domain and subdomain data can be
effectively extracted from the parsed data.

3.1 Overview
The purpose of our algorithm is to overcome the main hur-
dles associated with DNS parsing, allowing the code follow-
ing the algorithm to directly address all parts of DNS payload
as if they were simple headers.
Our approach to dealing with the dynamic structure of

DNS queries is to extract fixed size pieces of the payload in
each parsing state. We create numerous parsing states per
label that may be called in various combinations to achieve
the exact label extraction for any given length. Our focus is
on exact label extraction as any other method would prevent
us from comparing labels directly. Additionally, we define
parameters for the algorithm that provide concrete limits for
the parsing process, allowing us to stop early in cases that
would exceed our hardware resources. We attempt to achieve
this while minimizing the amount of parsing states expended
for extraction, all the while taking care not to create parsing
loops that might hinder compilation.
Our parsing algorithm is presented in graphical form in

Figure 1. Each rectangle in the figure represents a parsing
state, while rhombuses in the figure signify conditional tran-
sitions between states, implemented as P4 select statements.
The main parsing states used to extract the query labels are
highlighted for convenience. We note that while the label

DNS Packet

Extract DNS Header

N = MaxLen
M = MaxLabels

L = Lookahead Label
Length

ML = MaxLabelLen

YesNo L ≤ ML ?

Extract Label Length
N = N - 1
M = M - 1

x = Closest Power Of
2 s.t. 2x ≤ ML

Extract 2x bytes
ML = ML - 2x

N = N - 2x

YesNo ML > 0 ?

Yes

No
L > 0
and

M > 0

Extract Additional
Query Fields

No

Yes

N < 0 ?

Yes

NoResponse ?

Finish Parsing

Extract Response
Header and Content

Mark Complete

Yes

NoL == 0 ?

1

2

3

4

Figure 1: Parsing DNS Packets

extraction is presented as a loop, the underlying states are
duplicated for each label in the order they appear. For each
label, the algorithm reads the length of the label and based
on the value will go through multiple stages of extracting
constant sizes of bytes that amount to exactly the label size.
The exact operation of the algorithm is explained in more
detail in Section 3.2.
Once we finish parsing the DNS packet we will shift our

focus to extracting the domain and subdomain from the DNS
query. In addition to having access to each label of the query
directly, the domain and subdomain will be hashed to allow
easier handling as a constant sized variable. In Section 3.3
we explain our unique approach to this extraction.

3.2 Parsing DNS Payloads
Since we knowwe are unable to parse every DNS request, our
parsing algorithm will focus on providing sensible compro-
mises that can be adjusted to fit most use cases. As hardware
implementations improve, the algorithm can be scaled up,
eventually reaching full DNS parsing.

In Table 1we present the notation used throughout this pa-
per, including the algorithm description in Figure 1.MaxLen,
MaxLabelLen and MaxLabels serve as parameters to our al-
gorithm, defining which DNS queries we’ll be able to parse;
once any one of the parameters is exceeded, parsing will

SOSR ’22, October 19–20, 2022, Virtual Event, USA Alexander Kaplan, Shir Landau Feibish

halt. The user can adjust these parameters to optimize the
resources designated to this process.

Parsing Algorithm. We approach parsing by addressing
each label in order of appearance. For each label we first
check if we are able to read the label entirely by comparing
the label length (first byte before the label) to MaxLabelLen.
We do so before extraction in order to avoid partially parsed
labels. If the length is within our parameters we extract it and
begin parsing the label. This part of the algorithm is shown
as states 1 and 2 in Figure 1. Once we read the label length
we need to begin parsing the label. A naive approach to this
problem would be to extract the entire label at once. As we
would need to create a header for each size of each label, this
approach would require MaxLabels ·MaxLabelLen headers.
Not only is this approach not scalable, since we don’t know
which headers are occupied we would need to address all
the headers simultaneously or waste resources attempting
to locate the single relevant header for each label.

Our approach to parsing the label is shown in states 3 and
4 in Figure 1. Each state extracts a predefined number of
bytes that is an exact power of 2, a process that is repeated
until the entire label is extracted. For example, with the label
example we would parse 4 bytes, then 2 and finally 1. This
example is also shown in Figure 2.
All the highlighted states in Figure 1 are replicated for

each of the MaxLabels we are able to parse. Additionally,
states 3 and 4 are replicated for each power of 2 that is
smaller than MaxLabelLen. More generally, parsing states 3
and 4 are defined together as 𝐿𝑃 𝑗

𝑖
for 𝑖 ∈ [1, 𝑀𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑠] and

𝑗 ∈ {2𝑘 |∀𝑘 ∈ [1, 𝑓 𝑙𝑜𝑜𝑟 (log2 (𝑀𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝐿𝑒𝑛))]}, where each
such state extracts 𝑗 bytes from the 𝑖-th label. This means
that while our algorithm seems to loop, it actually moves
between distinct states, passing through each state at most
once, guaranteeing a simple parsing graph. As an example,
given the query example.com we would use the following
states in left-to-right order: 𝐿𝑃4

1 , 𝐿𝑃
2
1 , 𝐿𝑃

1
1 , 𝐿𝑃

2
2 , 𝐿𝑃

1
2 , each time

extracting a number of bytes that is equal to the largest power
of 2 that is smaller than the leftover number of bytes from
the label. Our method of parsing guarantees a singular order
of parsing for a given label length, despite states appearing
in various length extractions. Our approach generalizes the
approach taken by Meta4 [16] while resulting in a parsing
chain that has𝑂 (𝑀𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑠 · log(𝑀𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝐿𝑒𝑛)) states, as
opposed to 𝑂 (𝑀𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑠 · 𝑀𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝐿𝑒𝑛) in Meta4. This
improvement allows better scaling when increasing both of
these parameters.
Using a counter 𝑁 initialized to MaxLen we control the

total length of data parsed at any point. Using 𝑁 we have
a more fine-grained control of the total depth of parsing,
which is required by some hardware implementations. Some
DNS queries may have many labels yet have a small total

Table 1: Notation used in the paper
Notation Definition
MaxLen Maximum amount of characters to be

parsed from the entire query
MaxLabelLen Maximum length of a single label that

can be parsed in bytes
MaxLabels Maximum amount of labels that can be

parsed
MaxDomainLabels Maximum amount of labels matched for

domain attribution

length (e.g. a.b.c.d.e.f.example.com which occupies only
23 bytes). Maintaining a total limit of MaxLen allows us to
approach these queries, a use case required by some security
applications such as WORD [14].
Finally, after successfully parsing the DNS query in a

packet we may try to parse the response. Parsing is done by
relying on DNS compression [18], which means the query
is not repeated in the response. DNS compression is widely
used, and means we are able to parse the rest of the response
as a constant header. Due to constraints from hardware today
we chose to focus only on constant size responses (more on
this in Section 5).

Partial Parsing. If we exceed any of our parameters dur-
ing parsing, our parsing process will be interrupted. The
resulting packet will contain some unknown part of the total
DNS query; since we could hit our limit as early as the first
label parsed (e.g. if the first label is longer thanMaxLabelLen),
this could be a very small fragment. In any case we will not
be able to parse response data, as this is provided after the
end of the query.

To better illustrate the issue let us look at the case where
MaxLabels is set to 3 and we receive a packet with the query
mail.google.com.mali.cious.net. After parsing 3 labels we
are left with the query mail.google.com. This case could
result in attributing behavior wrongly, and has the potential
of being exploited by a malicious actor.

Since we aim to provide a practical solution for a general
use case our algorithm does not enforce skipping partially
parsed packets. Instead in our implementation we choose to
enforce this rule directly. We encourage any solutions based
on our implementation to adopt this approach, or address
the problem in some other way.

3.3 Extracting the Domain
Following the parsing steps, we obtain the extracted labels
of the DNS packet. In order for this information to be more
useful we would like to be able to split it into two parts,
domain and subdomain. For the purposes of this work we
define the domain to be TLD (top-level domain) with one
additional label, while the subdomain contains all the re-
maining labels (note that the subdomain might be an empty

example.com
a.b.c.d.e.f.example.com
mail.google.com.mali.cious.net
mail.google.com

Practical Handling of DNS in the Data Plane SOSR ’22, October 19–20, 2022, Virtual Event, USA

a.example.com

Ingress Parser

a

exam pl e

co m

Extract 1st Label

Extract 2nd Label

Extract 3rd Label

Ingress Deparser

com.example.a

Egress Parser

Extract 1st Label

Extract 2nd Label

Extract 3rd Label

Egress Deparser

a.example.com

Figure 2: Parsing Process Example

string). To illustrate we look at a.test.example.com; our do-
main is example.com, while the subdomain is a.test. The split
into domain and subdomain is useful for attributing multiple
packets to a single owner, whether for measurement [7] or
security [14] purposes.

As discussed in Section 2, the structure of the DNS packet
holds the domain information in the last labels of the query.
As a result we are unable to easily gauge the starting posi-
tion of the domain labels. Matching without knowing the
starting position of the domain labels would require use of
additional TCAM resources to compare for every potential
start position, and due to the vast number of bits involved
in a DNS query could also require the use of multiple tables
for the comparison. In an already constrained environment
such waste of resources is problematic.

Our solution for extracting the domain relies on the imple-
mentation of separate ingress and egress pipelines available
in some switches [10], including the Intel Tofino [13]. In
this type of switch the packet will go through parsing and
deparsing twice, once for the ingress pipeline and once for
the egress pipeline. As shown in the example in Figure 2 we
use this two step design to our advantage by reversing the
order of our labels twice, once after the first pipeline and
once after the second one. The result is our packet comes
out of the router unaffected, while the second pipeline re-
ceives the DNS query in reverse order. This works to our
advantage since we receive the domain labels at the start of
the parsed query, simplifying the task of extraction to a few
TCAMs (match-action tables) that determine at which label
the domain ends and the subdomain begins.

In order to split our query into two parts we make use of
the Public Suffix List (PSL) published by Mozilla [11]. The
PSL aims to be an exhaustive list of functional TLDs (named
suffixes), used by multiple browsers for domain highlighting
[11]. Using a table populated with these suffixes we can
match the (now first) labels of our DNS query to get the
number of labels belonging to the domain. With the number

of labels in hand we are able to separate the the domain
labels from the subdomain labels. We note the use of the PSL
as the best solution for common case DNS handling. More
specific scenarios may benefit from smaller lists of TLDs
which could require less TCAMs as well.

4 APPLICATIONS
We have implemented several applications to exhibit how
DNS parsing in the data plane may be utilized. We have
open sourced the code of these applications as well [15].
Additionally, we discuss how our solution can be used for
more applications, such as security and other protocols.

4.1 Metrics
We can use the domain, subdomain or even specific labels to
count how many requests containing certain attributes pass
through our switch. In our implementation we store a count
of first labels of the subdomain (e.g. m in m.example.com),
in addition to storing a count of subdomain hashes. In our
implementation we focused on storing the total count of
packets for a metric (e.g. how many DNS queries we’ve seen
with the subdomainm, regardless of domain), but it would
be possible to use a solution such as Beaucoup [8] to create a
unique count per domain. This information could be useful
in assessing common patterns of internet access, achieved
while the traffic is en-route, with no added latency.

4.2 Caching
Amore ambitious use case we could facilitate is DNS caching.
A DNS response contains both the original query and the
IP it is resolved into (Looking at A records), which could be
used as a cache source.

When receiving a DNS response our implementation will
use the domain and subdomain hashes to calculate a numeric
index. Using this index we will store the IP, TTL and a signa-
ture value composed from the original query. On receiving
a DNS request that is mapped to the same index we will
check the TTL to make sure our cache is not expired, com-
pare the signature to validate a match, and finally wrap the
original DNS packet with the request in a response header.
The packet is then sent back to its sender as a DNS response.

Our implementation only caches responses which contain
a single result. Even with this caveat we managed to achieve
a 10% hit rate when replaying a 24 hour trace [20]. Since our
cache is accessed en-route the response can arrive back to
the client much faster, resulting in significant performance
gain for the client while alleviating the load on DNS servers.

4.3 Firewall
Our breakdown into domain and subdomain is especially
useful when trying to implement a DNS firewall. The firewall

m
m.example.com
m

SOSR ’22, October 19–20, 2022, Virtual Event, USA Alexander Kaplan, Shir Landau Feibish

will block DNS requests by following rules set in advance.
We implement two different types of blocking mechanisms
which could be used in different environments.Domain block-
list support blocking off whole domains, regardless of the
subdomain attached to them. Subdomain allow-list will only
allow certain subdomains to be resolved, blocking off any-
thing not explicitly allowed.

Our implementation of a firewall is relatively bare-bones,
meant mostly to showcase the ability. For future research it
is possible to use IPs resolved in DNS requests to block IP
traffic based on a DNS allow-list/block-list.

4.4 Security
As discussed in the introduction to this paper, the security
aspect of DNS communication is an extremely important
one. As we are unable to parse all DNS queries we are left
with a gap in our implementation that can potentially be
abused by a malicious actor. In this section we cover some
solutions that may help future implementations overreach
this gap.

It is important to note the DNS-based attacks discussed in
the context of programmable switches are usually volumetric.
We can use our metrics application (§4.1) to count all packets
we failed to parse, maintaining an up to date count. We
can further use this information as an indication of attack
(either with a threshold, or a relative change), and set our
switch to drop unparsed packets. This method can be used in
conjunction with any other security application that works
for all packets we did manage to parse correctly.
An additional approach that can be used is forwarding

some of the unparsed packets to the control plane for further
inspection. Since we expect the attack to contain a large
volume of packets, even sampling a small percentage of un-
parsed packets (which are likely to be related to the attack,
once it starts) can allow us to notice a pattern of attack. Once
the attack has been noted we can once again switch to drop
unparsed packets, significantly reducing the attack surface.
We note even without any special consideration for un-

parsed packets a security application based on our solution
would significantly reduce the type of queries that can be
used in a DNS based attack, meaning a packet crafted specif-
ically to circumvent switch detection would likely be easier
to detect using traditional methods.

4.5 Other Protocols
Our paper focuses on the DNS protocol, a protocol that is par-
ticularly complex to parse in programmable switches. Still,
other protocols exist which could benefit from the methods
we’ve developed. One such example is the TCP-based MQTT
protocol [19].

1 2 3 4 5
MaxLabels (#)

0

50

100

Pe
rc

en
t o

f Q
ue

rie
s (

%
)

90

MaxLen 60, MaxLabelLen 7
MaxLen 90, MaxLabelLen 7
MaxLen 60, MaxLabelLen 15

MaxLen 90, MaxLabelLen 15
MaxLen 60, MaxLabelLen 31
MaxLen 90, MaxLabelLen 31

Figure 3: Distribution of DNS Queries

MQTT is an IoT focused messaging protocol, designed
to provide lightweight publish/subscribe communication.
MQTT is available in encrypted and unencrypted variants,
but is commonly used unencrypted due to the costly over-
head of encryption in low power devices [2].
MQTT contains various variable length fields both in its

header and payload. Some of the fields are strings, such as
username and password fields used for authentication. Our
methods for parsing and processing DNS queries can be used
to address MQTT communication, thus providing a better
ability to process the various strings contained in the packet.
This improvement could be used to implement an efficient
in-network MQTT broker, which could provide a perfor-
mance benefit over a software based solution when dealing
with high message throughput, a result previously seen in
MQTT communication implemented using programmable
data planes [5].

5 EVALUATION
As our research ismeant to provide a basis for general DNS re-
search, we chose not to focus on the performance of our spe-
cific applications. Instead, in this evaluation we executed our
implementation on an Edgecore 100BF-32X programmable
switch, based on the Intel Tofino platform. Using two ports
running at 40Gbps we connected two virtual machines to the
switch, one for sending messages and a second for receiving.
To validate the correctness of our solution, we ran a 24

hour trace from a university campus [20] with our full im-
plementation loaded, and validated all DNS packets received
on the other side were undamaged.

5.1 Parameterization
In order to support every DNS query we can gather our
parameters from the DNS specification [18]; each label can
be at most 63 bytes (MaxLabelLen), total length cannot ex-
ceed 255 bytes (MaxLen) and at most there can be 127 labels
(MaxLabels).

Practical Handling of DNS in the Data Plane SOSR ’22, October 19–20, 2022, Virtual Event, USA

4 5 6 7 8 9 10 11 12
MaxLabels (#)

0
20
40
60
80

100

Re
so

ur
ce

s U
se

d
(%

)

PHV Alloc, MaxLabelLength 7
Parser TCAMs, MaxLabelLength 7
PHV Alloc, MaxLabelLength 15

Parser TCAMs, MaxLabelLength 15
PHV Alloc, MaxLabelLength 31
Parser TCAMs, MaxLabelLength 31

Figure 4: Resource Utilization

Since we cannot achieve such parsing using current hard-
ware, we evaluate real world data to figure out what param-
eters would serve our purpose optimally. Figure 3 shows
the distribution of DNS queries based on a public recording
of DNS traffic from a university campus [20]. With these
numbers in mind, we set the following parameters:
• MaxLabelLen is set to 31, meaning we can only parse labels
up to a length of 31. This means each label is split into
sections of 1, 2, 4, 8, and 16 bytes. The sections will be used
depending on the size, for example a label with 7 bytes
will use sections 1, 2 and 4.

• MaxLabels is set to 6, meaning queries with more than 6
labels will be cut off after the 6th label.

• MaxLen is set to 60. While seemingly counter intuitive our
measurements in Figure 3 show the increase in matched
queries from raising the limit to 90 is negligible (0.1%).

• MaxDomainLabels is set to 4, meaning we can at most refer
to a domain made up of 4 labels.
Our chosen parameters should fit the vast majority of

DNS related use cases, with more than 97% of DNS traffic
being compatible. We note use cases requiring analysis of
more labels should be able to reduce MaxLabelLen in order
to increase MaxLabels. 1

5.2 Resource Utilization
In order to further illustrate the generality of our solution,
we attempt to compile our implementation using different
variations of the parameters. We focus our attention on two
main metrics; PHV allocation and Parser TCAM usage. The
resource usage is presented in Figure 4, highlighting the
percentage of each resource spent as a function of our pa-
rameters. The gray line in Figure 4 represents parameters
we have not managed to compile due to at least one of our

1Due to current hardware constraints we are unable to parse multiple
queries, which would be required to address CNAME records. Instead, our
implementation focuses on A-type DNS records (IPv4). It was possible to
also include AAAA-type DNS records (IPv6) as they are also constant in
size, but for brevity we chose to avoid this less common use case.

Table 2: Additional Resource Utilization
Resource Minimum Usage Maximum Usage
Exact Match Xbar 10.1% 62.0%
Hash 18.1% 40.3%
SRAM 7.7% 13.0%
ALU 4.2% 4.2%
TCAM 0.7% 0.7%

resources being exceeded. Our data demonstrates how dif-
ferent parameters can result in different resource utilization,
providing a way for our tool to be used for various goals.
Additional resource usage is shown in Table 2, showing

the minimum and maximum values recorded through all
compilation parameters. These values show that while our
implementation expends some of the switch resources when
the parameters are pushed to the limits, other resources
are left underutilized; leaving room for additional switch
applications.

6 FUTUREWORK AND DISCUSSION
We’ve highlighted how our solution manages to handle 97%
of regular DNS traffic using todays hardware, while being
able to scale easily as the hardware improved. With this
promising result in mind we would like to draw attention to
two current trends in DNS traffic.

Internationalized domain names have been steadily rising
in usage since their creation over 10 years ago [17]. While
providing a functional purpose their implementation entails
translating non-latin script using Punycode; an implementa-
tion which is likely to extend the length of the DNS query.

Cloud services usage is on a significant upwards trajectory
as more enterprises choose to adopt the technology [12]. In
our analysis of DNS traffic [20] we have noticed a significant
portion of DNS traffic that exceeds our chosen constraints
was related to cloud services.

As these trends continue we expect to see more and more
traffic that exceeds the capabilities of existing switches. Even
with that in mind, we believe our solution is able to accom-
modate many DNS related use cases, and we are hoping to
see programmable switches improve further in coming years.
In the future we intend to explore security applications

related to DNS, such as DNS water torture[14] and subdo-
main enumeration. We hope our implementation inspires
additional researchers to examine DNS in the data plane.

ACKNOWLEDGMENTS
We thank the anonymous SOSR reviewers and our shep-
herd Rinku Shah for their valuable feedback. This work is
supported by the Israel Science Foundation under grant No.
980/21.

SOSR ’22, October 19–20, 2022, Virtual Event, USA Alexander Kaplan, Shir Landau Feibish

REFERENCES
[1] Kamal Alieyan, Mohammed M Kadhum, Mohammed Anbar, Shafiq Ul

Rehman, and Naser KA Alajmi. 2016. An overview of DDoS attacks
based on DNS. In 2016 International Conference on Information and
Communication Technology Convergence (ICTC). IEEE, 276–280.

[2] AR Alkhafajee, Abbas M Ali Al-Muqarm, Ali H Alwan, and Zaid Ra-
jih Mohammed. 2021. Security and Performance Analysis of MQTT
Protocol with TLS in IoT Networks. In 2021 4th International Iraqi
Conference on Engineering Technology and Their Applications (IICETA).
IEEE, 206–211.

[3] Ali AlSabeh, Elie Kfoury, Jorge Crichigno, and Elias Bou-Harb. 2022.
P4DDPI Securing P4-Programmable Data Plane Networks via DNS
Deep Packet Inspection. (2022).

[4] Suranjith Ariyapperuma and Chris J Mitchell. 2007. Security vulnera-
bilities in DNS and DNSSEC. In The Second International Conference
on Availability, Reliability and Security (ARES’07). IEEE, 335–342.

[5] Asier Atutxa, David Franco, Jorge Sasiain, Jasone Astorga, and Eduardo
Jacob. 2021. Achieving low latency communications in smart industrial
networks with programmable data planes. Sensors 21, 15 (2021), 5199.

[6] Sherry Bai, Hyojoon Kim, and Jennifer Rexford. 2022. Passive OS
fingerprinting on commodity switches. In 2022 IEEE 8th International
Conference on Network Softwarization (NetSoft). IEEE, 264–268.

[7] Kenton Born and David Gustafson. 2010. Detecting dns tunnels using
character frequency analysis. arXiv preprint arXiv:1004.4358 (2010).

[8] Xiaoqi Chen, Shir Landau-Feibish, Mark Braverman, and Jennifer Rex-
ford. 2020. Beaucoup: Answering many network traffic queries, one
memory update at a time. In Proceedings of the Annual conference of the
ACM Special Interest Group on Data Communication on the applications,
technologies, architectures, and protocols for computer communication.
226–239.

[9] Cloudflare. 2021. Cloudflare blocks an almost 2 Tbps multi-vector
DDoS attack. https://blog.cloudflare.com/cloudflare-blocks-an-
almost-2-tbps-multi-vector-ddos-attack/

[10] The P4 Language Consortium. 2021. P4 16 Language Specification.
https://p4.org/p4-spec/docs/P4-16-v1.2.2.html

[11] Mozilla Foundation. 2020. Public Suffix List. https://publicsuffix.org/
[12] Gartner. 2021. Gartner Says Four Trends Are Shaping the Future

of Public Cloud. https://www.gartner.com/en/newsroom/press-
releases/2021-08-02-gartner-says-four-trends-are-shaping-the-
future-of-public-cloud

[13] Intel. 2021. P4 16 Intel Tofino Native Architecture Public Ver-
sion. https://github.com/barefootnetworks/Open-Tofino/blob/master/
PUBLIC_Tofino-Native-Arch-Document.pdf

[14] Alexander Kaplan and Shir Landau Feibish. 2021. DNS water torture
detection in the data plane. In Proceedings of the SIGCOMM’21 Poster
and Demo Sessions. 24–26.

[15] Alexander Kaplan and Shir Landau-Feibish. 2022. Practical Handling
of DNS in the Data Plane - Code. https://gitlab.com/runs-lab/public/
practical-dns

[16] Jason Kim, Hyojoon Kim, and Jennifer Rexford. 2021. Analyzing
Traffic by Domain Name in the Data Plane. In Proceedings of the ACM
SIGCOMM Symposium on SDN Research. 1–12.

[17] Baojun Liu, Chaoyi Lu, Zhou Li, Ying Liu, Hai-Xin Duan, Shuang
Hao, and Zaifeng Zhang. 2018. A Reexamination of Internationalized
Domain Names: The Good, the Bad and the Ugly.. In DSN. 654–665.

[18] P. Mockapetris. 1987. DOMAIN NAMES - IMPLEMENTATION AND
SPECIFICATION. https://datatracker.ietf.org/doc/html/rfc1035

[19] OASIS. 2019. MQTT Specifications. https://mqtt.org/mqtt-
specification/

[20] Manmeet Singh, Maninder Singh, and Sanmeet Kaur. 10. Days DNS
Network Traffic from April-May, 2016. Accessed: Aug 12 (10), 2021.

[21] Jackson Woodruff, Murali Ramanujam, and Noa Zilberman. 2019.
P4dns: In-network dns. In 2019 ACM/IEEE Symposium on Architec-
tures for Networking and Communications Systems (ANCS). IEEE, 1–6.

https://blog.cloudflare.com/cloudflare-blocks-an-almost-2-tbps-multi-vector-ddos-attack/
https://blog.cloudflare.com/cloudflare-blocks-an-almost-2-tbps-multi-vector-ddos-attack/
https://p4.org/p4-spec/docs/P4-16-v1.2.2.html
https://publicsuffix.org/
https://www.gartner.com/en/newsroom/press-releases/2021-08-02-gartner-says-four-trends-are-shaping-the-future-of-public-cloud
https://www.gartner.com/en/newsroom/press-releases/2021-08-02-gartner-says-four-trends-are-shaping-the-future-of-public-cloud
https://www.gartner.com/en/newsroom/press-releases/2021-08-02-gartner-says-four-trends-are-shaping-the-future-of-public-cloud
https://github.com/barefootnetworks/Open-Tofino/blob/master/PUBLIC_Tofino-Native-Arch-Document.pdf
https://github.com/barefootnetworks/Open-Tofino/blob/master/PUBLIC_Tofino-Native-Arch-Document.pdf
https://gitlab.com/runs-lab/public/practical-dns
https://gitlab.com/runs-lab/public/practical-dns
https://datatracker.ietf.org/doc/html/rfc1035
https://mqtt.org/mqtt-specification/
https://mqtt.org/mqtt-specification/

	Abstract
	1 Introduction
	2 Challenges in DNS Parsing
	2.1 DNS Structure
	2.2 Non-destructive DNS Parsing

	3 DNS Packet Processing
	3.1 Overview
	3.2 Parsing DNS Payloads
	3.3 Extracting the Domain

	4 Applications
	4.1 Metrics
	4.2 Caching
	4.3 Firewall
	4.4 Security
	4.5 Other Protocols

	5 Evaluation
	5.1 Parameterization
	5.2 Resource Utilization

	6 Future Work and Discussion
	References

