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ABSTRACT

Context. Among the models used to explain the prompt emission of gamma-ray bursts (GRBs), internal shocks is a leading one. Its
most basic ingredient is a collision between two cold shells of different Lorentz factors in an ultrarelativistic outflow, which forms a
pair of shock fronts that accelerate electrons in their wake. In this model, key features of GRB prompt emission such as the doubly
broken power-law spectral shape arise naturally from the optically thin synchrotron emission at both shock fronts.

Aims. We investigate the internal shocks model as a mechanism for prompt emission based on a full hydrodynamical analytic deriva-
tion in planar geometry, extending this approach to spherical geometry using hydrodynamic simulations.

Methods. We used the moving mesh relativistic hydrodynamics code GAMMA to study the collision of two ultrarelativistic cold shells
of equal kinetic energy (and power). Using the built-in shock detection, we calculated the corresponding synchrotron emission by the
relativistic electrons accelerated into a power-law energy distribution behind the shock in the fast-cooling regime.

Results. During the first dynamical time after the collision, the spherical effects cause the shock strength to decrease with radius. The
observed peak frequency decreases faster than expected by other models in the rising part of the pulse and the peak flux is saturated
even for moderately short pulses. This is likely caused by the very sharp edges of the shells in our model, while smoother edges would

probably mitigate this effect. Our model traces the evolution of the peak frequency back to the source activity time scales.

Key words. hydrodynamics — radiation mechanisms: non-thermal — relativistic processes — methods: numerical —

gamma-ray burst: general

1. Introduction

Relativistic outflows are common among astrophysical phenom-
ena featuring accretion and/or explosions. Such outflows are
observed as sources of bright non-thermal emission, indicat-
ing conversion of their kinetic energy into radiation. Internal
shocks, collisions between parts of the outflow with differ-
ent velocities, are one of the proposed dissipation mechanism
in many astrophysical contexts. They were first introduced by
Rees (1978) to explain “knots,” which are resolved inhomo-
geneities in the jet of galaxy M87 and were subsequently invoked
to explain emission of radio-loud quasars (Spada et al. 2001),
microquasars (Kaiser et al. 2000; Malzac 2014), and GRBs
(Rees & Mészdros 1994; Sari & Piran 1997; Kobayashi et al.
1997; Daigne & Mochkovitch 1998). Internal shocks arise nat-
urally when assuming inhomogeneities in the (proper) velocity
of the outflow. In this scenario, a faster shell catches up with
a slower one ejected at an earlier time by the central engine.
The shells collide, and under the right conditions (see e.g., Pe’er
2014, for a review) two shock fronts will form: a forward shock
(FS) propagating into the slow shell and a reverse shock (RS)
propagating into the faster one. Particle acceleration is expected
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at these shock fronts, which consequently powers the emission
from the outflow.

A common approach used to calculate the dissipation
efficiency and calculate the emissions from internal shocks
assumes plastic collisions: shells merge inelastically and con-
tinue propagating as a single shell (Daigne & Mochkovitch
1998; Beloborodov 2000; Spada et al. 2000; Guetta et al. 2001;
Bosnjak et al. 2009; Malzac 2014; Bustamante et al. 2017,
Rudolph et al. 2022, 2023). The energy dissipation is associated
to a FS if the Lorentz factor (LF) of the fused shell is closer to the
fast shell, or to a RS otherwise. While providing a useful approx-
imation that allowed us to reproduce a number of features asso-
ciated with internal shocks, this approach crudely approximates
the location of the shock front. Seveveral studies have focused
on the shock physics (e.g., Kino et al. 2004; Pe’er et al. 2017),
but without considering the temporal evolution for a generic
parameter space. This type of work was done by Rahaman et al.
(2024a) (hereafter R24a), who provided an analytical framework
for internal shocks between two cold, homogeneous, unmagne-
tized shells of arbitrary proper velocities in planar geometry.

This hydrodynamical framework is then completed with the
parametrization from Genet & Granot (2009) for the optically
thin synchrotron emission of a single shock front propagating
over a range of radii. They found an analytical solution for
the observed flux using integration over the equal arrival time
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surface (EATS) for a Band function spectral shape. Rahaman et al.
(2024b) (hereafter, R24b) built their model on this basis, adding
refinements such as the ratio between shock front LF and down-
stream fluid LF, while also considering the contribution from both
shock fronts using the estimates obtained in R24a. This allowed
them to self-consistently calculate the flux of a single collision
at any observed frequency, which can then be used as a build-
ing block for full light curves and/or spectra of relativistic out-
flows. In this framework, the relative positions of the shock
fronts and its dependency on the initial conditions are an impor-
tant factor for the shape of the observed light curve, a fea-
ture that tends to get washed away by the ballistic approach.
While the choice of initial conditions in most papers explor-
ing the internal shock model for the GRB prompt emission
have led to a very short-lived FS of negligible contribution
to the total emission, the choice made in R24b led to the
contributions from the two fronts covering similar timescales.
This allowed the FS to convert enough energy to have a siz-
able contribution to the emission, producing a two-component
time-resolved spectrum. This physical scenario for prompt GRB
emission may provide an explanation for the significant devia-
tions from the pure Band function fit (Band et al. 1993) in the
time-resolved analysis of the brightest bins of observed bursts
(Preece et al. 2014; Vianello et al. 2018).

The hydrodynamical solution is significantly simplified in
the planar case, which is a decent approximation as long as the
dissipation radius varies by a factor <2 during the shock propa-
gation. In particular, the shock strengths remain fixed with time
or radius in that case. Because of this R24a determined all quan-
tities in planar geometry, and R24b introduced spherical effects
on the peak frequencies and luminosities in an approximated
manner by neglecting variation of the shock fronts LF and shock
strength with time. Considering that such effects may modify
the emission signature significantly, a fully consistent spherical
approach is necessary to properly quantify the applicability of
R24b results.

The present study focuses on the construction of the thin-
shell synchrotron emission corresponding to the thin cooling
layer behind the shock in the fast-cooling regime of spherical
colliding shells through numerical simulations. In Sect. 2, we
introduce the physical framework of this study, beginning with a
summary of the main results from R24a (Sect. 2.1), followed by
a presentation of the numerical code (Sect. 2.2), the model used
to derive observed flux from our simulation results (Sect. 2.3),
and finishing with the numerical setups for this study (Sect. 2.4).
We present the results in Sect. 3, starting with the comparison
of our fiducial spherical run with the planar case (Sect. 3.1)
before exploring the fully spherical regime over the doubling
radius (Sect. 3.2). Our calculated observed flux is presented in
Sect. 3.3, then we present a study of the behavior of its peaks
(Sect. 3.4) and try to derive information on the source activity
from a few selected GRBs using those results (Sect. 3.5). Finally,
we offer our first insights into the cooling effects on the observed
spectra through an approximated marginally fast-cooling regime
(Sect. 3.6). We present our conclusions and discuss our results
in Sect. 4.

2. Physical scenario and numerical methods
2.1. Hydrodynamical framework

In R24a, the authors showed that the collision of two homoge-
neous cold relativistic shells is determined by seven basic param-
eters, which are presented Table 1: the time, o, between the
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Table 1. Physical parameters of the setup.

Symbol Definition

Evo; Available kinetic energy in shell 7 just before collision
Ao Radial width of shell i just before collision

U; Proper speed of shell i

toft Time between ejection of the shells

L; Source power during the ejection of shell i

fonii Activity time of the source during ejection of shell i

ejection of the two shells, their proper speeds (i, us), where
u = I'B, along with initial radial widths (Ag 1, Ao4) and initial
kinetic energies (Exo 1, Exo4)- Here and elsewhere, the subscript
0 denotes the initial values of properties, namely, at ejection or
at the collision radius. Alternatively, the activity time (fon,1, fon4)
and the power (L, Ly) of the source during the emission of the
shells may be used in place of the shells width and kinetic energy
for a set of parameters focused on the source activity. The two are
easily related through Ag; = Bicton; and Exg; = Litoni, assum-
ing constant jet power and outflow velocity within each ejec-
tion interval. In particular, the assumption of no velocity spread
within a shell means that all fluid elements move at the same
velocity and its width does not change during propagation. As
shown in Table 2, those seven parameters can be combined into
four derived parameters required to describe the post-collision
shock hydrodynamics: the collision radius, Ry, the shells’ radial
widths ratio, y, the proper velocities ratio, a,, and the proper den-
sity ratio, f. We also introduced the collision time #y = Ry/B4c
in the source frame, where we implicitly chose ¢ = O at the ejec-
tion of the front of shell 4. The shells were assumed to be cold,
p1 = ps = 0, and the proper density of shell i was obtained from

B 1 Exo.i
TG -1 47rR(2)A0,icz’

/

Pi

ey

where primes denote quantities measured in the rest frames of
the corresponding fluids. The collision of the two shells pro-
duces a pair of shocks: a reverse shock (RS) propagating into
shell 4 and a forward shock (FS) propagating into shell 1. The
two shocked regions, region 3 (shocked shell 4) and region 2
(shocked shell 1), are separated by a contact discontinuity (CD).
At the collision radius, the use of the shock jump conditions
together with pressure equality across the CD and the equation of
state (EoS) in the shocked regions allow for an analytical deriva-
tion of all relevant hydrodynamical quantities. Values at the col-
lision radius are noted with the subscript 0.

In planar geometry, quantities are constant across a shocked
shell and with propagation. From the constant shock front veloc-
ities one easily derives shock crossing times and radii, determin-
ing the emission timing properties. In Appendix A, we present
the main results from R24a. Those do not hold anymore in spher-
ical geometry, prompting the present numerical study.

2.2. Numerical method

This study was performed with the code GAMMA (Ayache et al.
2022) with the aim to solve the equations of special relativistic
hydrodynamics (SRHD) in one dimension, using a finite-volume
Godunov scheme, the HLLC (Mignone & Bodo 2005) solver for
relativistic hydrodynamics, piecewise linear spatial reconstruc-
tion, and following an arbitrary Lagrangian-Eulerian approach.
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Table 2. List of derived parameters.

Symbol Definition Expression
1,
Ry Collision radius m
ﬁ4A—,3 1
X Radial width ratio —ob
uA0’4
ay Proper speed ratio 2>
ui
n, Exos (T -1
f Proper density ratio i L @ = D

7, B L= D)

This means GAMMA can compute fluxes for any interface velocity.
The HLLC solver adds a calculation of the contact discontinu-
ity (CD) wave speed to the two-wave HLL solver (Harten et al.
1983), the default behavior of GAMMA sets the interface velocity
to that of the CD. We used this default setting throughout the
entirety of this work, as a mesh moving with the flow’s velocity
evolves propagating shells over a wide range of scales using big-
ger time steps: in such a mesh, the limiting velocity becomes the
sound speed; whereas in fixed-mesh approaches, it would be the
flow speed instead. Such a moving mesh also offers the added
benefit of Lagrangian behavior of the cells like natural refine-
ment of zones with high gradients, as the cell size will follow
the compression of the fluid.

GAMMA offers the choice between several time integration
methods, among which we chose the third-order Runge-Kunta.
The time step is adaptive, based on a Courant-Friedrich-Lewy
(CFL) condition (Courant et al. 1928). To be consistent with the
derivation of R24a, we implemented the Taub-Mathews equa-
tion of state (Mathews 1971) following Mignone & McKinney
(2007). We used none of the adaptive mesh refinement meth-
ods present in GAMMA because we wanted to be able to properly
identify cells from one time step to the next and compare their
properties. Finally, we use the shock detection algorithm intro-
duced in Zanotti et al. (2010) already implemented in GAMMA.
We found setting the shock detecting threshold to 0.15 produces
satisfactory detections of the two fronts across the simulation.
GAMMA also contains a method to inject an electron distribution
in shocked cells and let them evolve using a reformulation of the
cooling equation into an advection equation, which we did not
use in this work given our choice of assumptions for the radia-
tive efficiency (see discussion in Rahaman et al. 2024b, and ref-
erences therein). We leave the exploration of different cooling
regimes to a future work.

2.3. Flux calculation from cells

In this study, we derived the observed flux from our simulations
by applying the method for an infinitely thin shell, as described
in Genet & Granot (2009), to cells right downstream of each
shock front. Here, the infinitely thin shell approximation is vali-
dated as Ar/R ~ 107 for shocked cells in the simulations run
for this work. The contributing cells are chosen right down-
stream of the shocks, counting only one contribution of each
cell crossed by the shock, waiting the few time steps necessary
for the shock to cross to another cell to add a new contribution.
We also assumed the accelerated electrons follow a power-law
energy distribution of index p (dN./dy. « v,"” for y, > yn) and
all the energy given to the electrons of a cell by the shock pas-
sage is radiated in less than a numerical time step. This requires

the emission to be deep in the “fast-cooling” regime. After iden-
tifying the contributing cell right downstream of the shock, we
derived the minimum Lorentz factor of the post-shock electron
distribution by normalizing the total available energy over the
electron population:

—-m e’
= P_Z_pg/]_mz , )
p—1meép'c
for p > 2, where ¢/  is the comoving (or proper) internal energy
density; € is the fraction of internal energy transferred to the
fraction & of total electrons. For this study, we assumed an
equipartition of energy ¢ = eg = 1/3 and chose values of
p = 25, & = 1072 for the accelerated electron distribution
power-law index and fraction of accelerated electrons respec-
tively. To this Lorentz factor corresponds the comoving peak fre-
quency

Ym

qu, 2 . (3)

;o / —
Ym = Vsyn('}/m) - 2MaC m
e

The contribution of a cell at radius r and time ¢ traveling with
dimensionless velocity S (corresponding to the Lorentz factor I')
to the flux at an observed frequency, v, and observed time, T, is:

1+z.
Fr>1)= ——L, 725 [t—], (4)
47Td]% Vm

where § is a normalized function verifying S(x) = xS(x) = 1
for x = 1. The normalized time, T, is defined as

T T, r (1+2)r
= , Te=0+2)|t——|, To= , 5
T, o= Z)( ,BC) o= e ©
and the peak luminosity is
TAV®) e
= ©®)

" Ty Wi

Here, AV®) is the (three-)volume of the cell in the rest frame of
the central source and W(p) = 2(p — 1)/(p — 2). We obtained
Eq. (6) by comparing the isotropic energy from a single pulse in
the formulation of GG09 and the formulation of De Colle et al.
(2012). The derivation is detailed in Appendix B.2. The quan-
tity L,,, is a numerical equivalent luminosity derived from syn-
chrotron power and is not to be confused with the usual lumi-
nosity that appears in similar equations for the flux in GG09 or
R24b. From their Appendix D, we can express the comoving
luminosity behind a shock front:!

L 4 €€
’ bol 2 €~int
= = AR B @)
m Wpvn 3 W(p)vm
using e; = (T'yg — 1)pgc? to obtain Byq. Finally we identified:
. 3TA
L " ®)

vV, = ———
" BucTe ™

In this work, the spectral shape, S, will either be the synchrotron
broken power law with low- and high-frequency spectral slopes,
by and b,, respectively (syn-BPL), or the Band function:

1 = (14+b)x

sl X < Xp,
S(x) =e't _
P x{”' by e (b1-b2)

©))

X 2 Xp,

! Since the electrons are assumed by construction to be deep in the

fast-cooling regime, it follows that the bolometric luminosity is directly
related to v, and the spectral luminosity at v,,, and is independent of the
cooling frequency.
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where x, = (b; — by)/(1 + b;). Following R24b, the choice of
setting both fronts deep in the fast-cooling regimes sets values
of by = —1/2 and b, = —p/2 = —1.25 for spectral slopes. This
choice is further discussed in the conclusion. The effect of setting
the weaker FS in the marginally fast-cooling regime is discussed
in Sect. 3.6. Summing all contributions from the run gives the
total observed flux as a function of observed time and frequency.
In the following, quantities are plotted in units of the normal-
ization frequency, vy, and flux, F, defined as the peak observed
frequency and flux radiated at the RS at collision in R24b:

vo = 2I gV}, rs(Ro), (10)
(1+2)

Fo= —=2I(L, Ry). 11

0 2nd oLy, rs(Ro) (11)

Here, I'y is the Lorentz factor of the shocked material at Ry,
which is at this radius equal downstream of both shock fronts.
We refer to their Appendix G for the full derivation. Here, we
write ¥ = v/vy as the normalized frequency and 7 = 1 + T =
(T — Tej0)/Too as the normalized time — as defined in Eq. (5)
with the relevant values at 7y and Ry.

2.4. Numerical setup

To expand on the theoretical framework of R24b, we explored
the collision of two ultrarelativistic shells of equal energy and
width with a moderate proper velocity ratio of @, = 2. The
kinetic energy available in the shells is taken to be 10°? erg, a typ-
ical order of magnitude value for the isotropic equivalent value
corresponding to a single GRB pulse. The choice of equal activ-
ity time and equal shell width is doubly motivated by the GRB
spectrum observations and to ensure a high radiative efficiency.
From R24b, the peaks’ relative prominence is tied to the shells’
sizes: if ton1 = 21tona, the FS peak is too prominent relative to
the RS and vice versa (see e.g., their Fig. 4). They also showed
that the rarefaction wave traveling back towards the center after
shock crossing may catch up with and suppress the second shock
before it finishes crossing its shell. This is valid for values of y
that are not close to 1, limiting the radiative efficiency of the pro-
cess in such a case. The off time between pulses, 7,4, is set to the
same value as the pulses themselves, as observations suggests
a correlation between pulse width and interval between pulses,
outside of quiescent periods (see e.g., Nakar & Piran 2002). We
set both activity times, f,,, and the off time to a typical order
of magnitude for the activity timescale of 0.1s. The shells are
ultrarelativistic with Lorentz factors of u; = 100 and uy = 200,
which are minimum values to ensure the assumption of optically
thin emission.

To complete this setup, we defined the external medium den-
sity behind shell 4, péx[,b and in front of shell 1, o] «f from a
density contrast parameter of pi, = p3/p},, = P1/P}y s Both
regions of the external medium were set with the same velocity
as the shell they are in contact with. Such an “external” medium
is required for the rarefaction wave to set after shock crossing
and hardly affects the results. The external pressure is defined
by introducing the relativistic temperature, ®¢, as a parame-
ter, we set the pressure to be constant everywhere, namely, as
po = min(p], pQ)@ocz. Setting the pressure equally over the
whole simulation box avoids any unwanted effects from pdV
working between the external medium and the shells. All these
parameters are summarized in Table 3. The simulation was run
in 1D over 6100 cells, of which there are Ny, = 3000 for each
shell and 50 on each side for the external medium. This choice
of the resolution was meant to ensure that the shock fronts have
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Table 3. Run parameters in CGS units.

Parameter Value

o 10°% erg

u 100

Uy 200

Tonii 0.1 (0.5)s

toff 0.1s

N 3000 (15 000)
0 47x10 2 gem™
oA 1.2x 1072 gem™
®) 5% 1072

Pl 5x 1072

Ao, 3x 10°(1.5% 10'% cm
to 27x10%s

Ry 8 x 103 cm

ay 2

X 1

f 0.25

not propagated more than 2 x 10~*R before the downstream val-
ues are properly established. This can be estimated by applying
the formula for the crossing time (Eq. (A.3)) to the width of
five numerical cells, greater than the typical numerical size of
the detected shock front with our choice of threshold parameter.
Finally, we set an additional passive tracer with different values
in each shell to help separate them easily during post-processing.

To fully explore the effects of spherical geometry on shock
hydrodynamics by going well above the doubling radius for the
crossing radius of each front, we ran another simulation in spher-
ical geometry with larger activity times (and initial shells width)
by a factor of 5. Meanwhile, we kept the off time constant. We
increased the number of numerical cells per shell by the same
factor. The values corresponding to this run are given in brackets
in Table 3.

3. Effects of spherical geometry

Having calibrated our simulation against the analytical results
in planar geometry in Appendix A, we explored the spherical
effects through two simulations. In the first, all parameters are
equal for the sake of comparison and in the second, the activity
times %oy (and, thus, the shell width Ap;) have been multiplied
by 5 to explore hydrodynamics over a larger range of radii.

3.1. Spherical effects on shells structure and shock dynamics

A first result of performing the same run in spherical geome-
try is the variation in crossing times (radii): for the same val-
ues of parameters, ARgs/Ry increases from 1.29 to 1.52 when
switching from planar to spherical geometry, while ARps/Ry
only grows from 1.62 to 1.67. Figure 1 displays snapshots of
the comoving density, proper velocity, and pressure (similarly to
Fig. A.1) at times #, 2 ty, and 2.6 fy. In the analytical expecta-
tions from planar geometry, the density and pressure are rescaled
by (R/Ry)~? to account for propagation, then plotted to better
highlight the differences with R24a. Spherical effects modify the
structure of the shocked regions: the density profile shows com-
pression from the shocks to the contact discontinuity, a proper
velocity decrease with radius, and a slightly increasing pressure
profile from the RS to the FS. As the shells and shocks propagate,
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Fig. 1. Snapshots of the run in spherical geometry, with all parameters similar to the fiducial run, at ¢ = f, (left), before first (reverse) shock crossing
(center), and after shock crossing (right). Dashed black lines show the analytical expectations from the results in planar geometry. The legend is

the same for all panels.

the density in regions 1 and 4 (i.e., the unshocked portions of
both shells) will decrease with 2. This is due to mass conser-
vation of a fluid element in spherical geometry, with our assump-
tion of little to no velocity spread between the two interfaces. At
the zeroth order, where we consider constant shock strength, the
downstream density, pq, and pressure will also evolve following
a r~2 law. From pressure continuity (i.e., the pressure gradient
is rather small in the shocked regions as they are in causal con-
tact), the pressure at the CD will follow the same law instead
of the ¥~ from adiabatic expansion, with ¥ being the adiabatic
index. Specifically, p; ~ po(R/Ro)™ ~ pcp ~ (pcp/po)? and
pa = po(R/Ro)~2, implying pcp/pa = (R/R0)*' 7. This results
in a compression of the fluid towards the center with the ratio
between densities behind the shock and at the CD following a
—2(1 = %7") law. This implies a density scaling pcp o r2/¥
between -5 and 12 (pcp/pa o« 2177 between %3 and r08)
for an adiabatic index varying between 4/3 and 5/3.

Both of these effects are seen Fig. 2 (top panel) which dis-
plays densities rescaled with (r/Ry)? to take out spherical effects:
the values taken right downstream of the shocks show very little
to no variation in radius, while those on both sides of the CD
increase with the same %7 (or p’ o 13 without rescaling) fit-
ting with our observed regime of intermediate shock strengths.
This results in intermediate adiabatic index values according to
the Kumar & Granot (2003) formulation used in R24a:

N A + 1

Y A
which those authors demonstrated is equivalent to the Taub-
Mathews EoS for a cold upstream medium. To a highest order
of precision, the variation of the shock strength I'yq — 1 with
propagation changes this behavior; as seen in the bottom panel
of Fig. 2, the shock strengths decrease with propagation at a
stronger rate for the RS than the FS. This translates to a slight
decrease in the post-RS rescaled density and stronger decrease
in the post-RS pressure than that seen downstream of the FS
(as shown in the 3rd panel of Fig. 2). This explains the increas-
ing pressure profile from RS to FS seen in the snapshots. Simi-
larly, we observed a higher post-RS flow velocity than that seen
downstream of the FS, where the first increases with propa-
gation, while the second decreases with it, creating the profile
observed Fig. 1. In terms of power-law scalings, this approach
has proven useful to explain behavior below the doubling radius

12)

(i.e., R < 2Ry); however, when exploring a broader range of
radii, a different behavior is observed above it.

3.2. Asymptotical hydrodynamics in the spherical regime

We present the results of the simulation run with both activity
times multiplied by a factor of 5, while keeping #,¢ and all other
quantities constant. This means the shells are now wider than
their separation by this same factor, allowing us to explore the
evolution of the various relevant quantities for the flux calcu-
lation over a range of radii ~10 Ry, almost an order of magni-
tude greater than the situation presented in Sect. 3.1. In Fig. 3,
we show the fluid and shock fronts Lorentz factors in the top
panel and the shock strengths in the bottom panel. The data were
smoothed by a rolling average window to eliminate the strong
noise caused by the propagation of numerical errors in the inter-
face velocity over the large number of code iterations for this
simulation. Such oscillations could be reduced by the use of an
higher spatial order reconstruction algorithm instead of the first-
order piecewise linear algorithm currently present in GAMMA. The
downstream and shock Lorentz factors evolve at the same rate,
keeping the ratio g = I'/Ty, introduced in R24a close to con-
stant. At the collision radius, the values are in accordance to
the analytical expectations in planar geometry derived in R24a,
before decreasing in a power-law up to the doubling radius and
smoothly connecting to a constant value after a few Ry. Values
relative to the RS change by a greater amount in this asymptoti-
cal regime compared to the planar case than values relating to the
FS: the shock and downstream Lorentz factor grow by ~ 10 % at
the RS and go down by ~3% at the FS, while the shock strength
diminishes by ~3% and ~0.7%, respectively. Thus, we modeled
any hydrodynamical or derived quantity X with the law:

~ NS ~\s11/s
XR) = [(X0. )"+ (XonB) " = Xofu(R), (13)
with R = R/Ry and fx a function verifying fx(Ro) = 1. The
index h corresponds to the expected scaling from propagation
effects at constant shock strength, which can be 0. Then, Xsthh
is the asymptotical value at large radii and X, is defined by the
value at collision radius Xy = X(Ry) = [X], + X‘S‘ph]l/ *. We note
that s values need to be of the opposite sign of n (and of 7 when
nonzero). The values obtained for the shock strength and down-
stream Lorentz factors by the fitting procedure are given Table 4.
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Fig. 2. Top to bottom: comoving densities, Lorentz factors of the fluid
and shock fronts, pressure, and shock strengths. The hydrodynamical
quantities are measured downstream of shocks (‘d,3” downstream of the
RS, ‘d,2’ for the FS), at the CD by averaging over a few cells crossing
the interface, or on each side of it (CD3, CD,) for the density. Legend is
the same for all panels. The derived Lorentz factor of the shock fronts is
displayed with the measured ones. Densities and pressures are in units
of the values behind the RS in the planar case and rescaled to (r/Ry)>.
We smoothed the numerical oscillations in data by a rolling average.
Horizontal dashed lines show the corresponding analytical values from
R24a.

While the change in those quantities and thus the related quanti-
ties such as luminosity and peak frequency are not very signifi-
cant in absolute values, it is their rate of change that has the most
impact on the observable data at very early times.

3.3. Emission from two spherical colliding shells

In Figs. 4 and 5, we present the resulting light curves and
time-integrated spectra from our simulations, comparing the two
geometries in the same panel for both the Band and the broken
power-law spectral shapes. To highlight the difference between
the assumptions for propagation chosen in R24b and the fully
spherical results, we compare our results to the hybrid approach
instead of the fully planar case detailed in Appendix B.3. The
total light curve is weakly affected by the geometry, with slightly
increased peak times corresponding to our estimation in Sect. 3.1
and a smoothed shape compared to the planar case. In compar-
ison, the individual contributions of each shock front vary sig-
nificantly, with the RS peak luminosity increasing by a factor of
1.25 and that of the FS decreasing by a factor of 0.7.
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Fig. 3. Top: Lorentz factors of the shock fronts, the fluid downstream
of the shocks and at the CD with radius. Bottom: evolution of shock
strengths with radius. Data were smoothed by rolling average. The
quantities converge smoothly to a constant value after r ~ 4R, shown
by the dotted horizontal line for the quantities relative to the RS and the
FS. Legend is the same as in Fig. 2.

The time-integrated spectra in Fig. 5 show the peak fre-
quencies of both shock fronts decrease by different amounts:
the quantities relative to the RS decrease faster with radius than
those relative to the FS. Thus, the observed range of the frequen-
cies ratio between the two spectral components can be attained
with a wider range of ay in this fully spherical approach. From
the hybrid approach, we retained the doubly broken power-law
spectrum with indices 1 + by = 0.5 and 1 + b, = —0.25 at low
and high energies, directly related to our choice of synchrotron
spectral slopes, and an intermediate part 1 + bpig = 0.1. The
effective middle slope by,iq depends on the flux normalization
for each front and is thus very variable with the choice of hydro-
dynamical conditions: an analytical estimate using R24b show
1 + bmig € [-0.05,0.45] when exploring the parameter space
(x> ay) € [-0.5,1.5]%[1.01, 5], under the assumptions of ultrarel-
ativistic shells and constant central engine power. These slopes
are the same for both the Band and syn-BPL spectral shapes. The
differences between the results of this present study and those
from R24b are highlighted by redrawing in dotted line the Band
+ hybrid light curve (respectively, the time-integrated spectrum)
in the syn-BPL panel. The main change lies in the total received
flux (respectively, the fluence), especially at lower frequencies,
but the essential characteristics of the light curve (respectively,
the time-integrated spectrum) are similar.

3.4. Peak frequency and flux

The individual variations of peak frequency and flux associated
to each shock front are displayed in Fig. 6 against normalized
time, where the spherical effects systematically lowers both the
peak frequency and flux for both shocks. The spherical geometry
also introduces a difference in the time evolution of the peak fre-
quency between the rising and the high-latitude emission (HLE)
part. While the flux rises, the peak frequency decreases faster
than vy o 77! expected from purely geometric considerations.
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Fig. 4. Light curves in the spherical (full lines) and hybrid (planar geom-
etry and spherical assumptions for peak frequency and luminosity, dash-
dotted lines) cases at fixed frequency # = 0.1. Top panel: light curves
with the Band’s spectral shape. Bottom panel: broken power-law spec-
tral shape. The total light curve in the hybrid + Band case is redrawn in
the bottom panel (dotted line) for the sake of comparison. The individ-
ual contributions from each shock change but the resulting light curve
do not, apart from the slightly increased breaks from the increase in
crossing times. The choice of spectral shape decreases total emission at
this frequency, while keeping the same time evolution.

This is especially the case for the RS, with vy rs o 771, In the
following, we present a way to estimate those quantities from
the hydrodynamics with fewer calculations than the full flux cal-
culation (detailed in Sect. 2.3). We built this approach on the
asymptotical regimes identified for the hydrodynamical quanti-
ties in Sect. 3.2.

Assuming the hydrodynamical variables can be modeled
according to the law given by Eq. (13), after extracting the rel-
evant variables for flux calculation from the simulation results,
we fit them with the same type of law:

Fo(®) = [(Co.B™2) + Ton’] " = Tro i ®) (14)
Vi(R) = [(v0.RY) + (v;phk-l)f]” TV fr (R, (15)
L, R) = (Lo, R) + (L;th)s]l/ T= L fuR) . (16)

We performed the fit with the curve_£it function from SciPy,
which is based on a non-linear least square method. We give in
Table 4 the obtained values for the fits. The numerical values
at Ry differ slightly (<2%) from the analytical expectations, we
note them with the subscript “f, 0” to avoid confusion.

Then, to obtain an estimate for the peak frequency and flux in
the rising part of the prompt emission, we assume we can define
an effective radius on the EATS at which the peak contribution
can be calculated Reg(T) = y.gRL(T), with Ry (T) as the maximal
radius of the EATS (found along the line of sight). At a given
observer time, T, this radius can also be identified by its angle
with the line of sight — or, more conveniently, by the quantity
bef = (ra)gﬁ. A schematic of this method is given Fig. C.1.

time-integrated spectras
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Fig. 5. Time-integrated spectra following the same structure as in Fig. 4.
The spherical effects decrease the peak frequencies for both shocks,
with a stronger effect on the RS. The peaks from both contributions are
closer than in the planar case, resulting in a three-part spectrum. This
effect is more visible with the broken power-law spectral shape where
the two peaks are distinct from each other in the hybrid approach. The
choice for the spectral shape also diminishes the flux at low frequencies.

Table 4. Fitting parameters for emission-related quantities.

Xo- quh Index ||
(Tw-Drs 0103 00735 n=-064 50
(Te/To)rs 101 1.08  m=-029 240
(Vin/V{)Rs 0.72 040 d=-346 1.0
(L, [Lyes 103 143 a=184 3.
(Twt — Dps 0.0278  0.0236 n=—021 185
Ta)rs 0.999  0.982 m=0.06 102.2
(Vin/V()Fs 0.40 0.65 d=-2.67 1.0
(L, /Les 105 116 a=139 57

-1
Both quantities are joined by y = [l + g‘zf] and we take

Ry = RyT, where we implicitly choose a constant I'y, to approxi-
mate the EATS at the zeroth order. Then, the peak frequency and
flux are given by:

Re 4 Re
(o= k””"%’ (17)
3
Fy (T) = kpFro3¢> max(fr(Reff)) fuRer) s
(1) = kpFro3g°& 1t én) SR (18)

Here, vig = 2Ltovj, and Frg = ((1+2)/(4nd?)) 2050l . ky
and kg are two free parameters of order unity introduced to com-
pensate for the difference between analytical and numerical val-
ues at Ry such that k,vro = vp and kpFro = Fy. The observed
peak frequency is obtained by calculating the Doppler factor and
comoving peak frequency at R.g, and the flux is obtained by
assuming the flux integral (Eq. (B.7)) can be approximated by
the value of the integrand at &.¢ times the extension of the EATS
in this variable, &na = g*(T —1). We then looked for the function
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Table 5. Fitting parameters for the peak frequency and flux.

Front ke Esat S k, kg d, dp
RS 029 698 1.0 098 054 -1.31 =276
FS 051 289 1.0 097 128 -1.02 -247

—— sph
—-— hybrid

<)
©
-

o
=)

<
'S
|

(VFy)pk/voFo

o
)

0.0 1

Fig. 6. Normalized time evolution of peak frequency and flux for both
shock fronts in the spherical (full line) and hybrid (dash-dotted) cases,
calculated from the flux obtained with the Band spectral shape. In spher-
ical geometry, the peak frequency decrease at a faster rate during the
rising phase and the flux reaches saturation before the break to the high-
latitude emission.

&.(T) fitting the data. We note that contributions from regions
of the EATS beyond the relativistic beaming angle 1/I" become
increasingly suppressed, thus, we defined a saturation angle &gy
on the order of unity and we chose the following fitting function
for &g

€ur(T) = ke G + €7 = ke ([T - D] "+ 'fs?‘f)_m’
(19)

where k¢, &, and s are free parameters. The high-latitude emis-
sion part is modeled as the emission from the final effective
radius Reg s = ye(Tt)Rg, with Ty the observed time correspond-
ing to the shock crossing:

(20)
ey

Vpk HLE(T) = vpi(T)T }1 ,
FVpk'HLE(T) = FVpk(Tf)T?F ’
and 7¢ is the normalized time defined at R.s s following Eq. (5).

We give in Table 5 the values found to fit the peak frequency and
flux (from Fig. 6) with an accuracy within a few percent.

3.5. Maximal frequency and crossing radius

Among the spectral signatures, the behavior of the peak flux ver-
sus peak frequency shown in the left panel of Fig. 7 presents the
most striking change between planar and spherical dynamics. In
this figure, we compare the purely spherical case to the hybrid

A139, page 8 of 13

100_

1.00
0.9
0.8
0.7
0.6

Iy

o o~

2 =

3 3

= 05 =

W B

=

~ 107!
0.4
0.3

—— spherical
i —-— hybrid
1071 10 1072 101 10°
Vpk/Vo AR/Ro

Fig. 7. Left: vF, at peak frequency vs peak frequency for the reverse
shock in the spherical and hybrid case. The fully spherical case show
peak flux over a larger range of frequencies. Right: ratio between break
frequency vy and frequency at half flux v;,,. Legend is the same for
both panels.

approach of R24b, which features planar dynamics along with
spherical geometry for calculating the radiation. The spherical
case transitions to the anticipated correlation of high-latitude
emission (VF,)p o vgk at a lower frequency but presents a
high flux over a wider range. We define v, as the peak fre-
quency at this break. Comparing to Fig. I1 in R24a, the combined
effects from spherical geometry on the peak flux and frequency
is greater than a pure increase of AR/Ry in the hybrid approach;
simply increasing the crossing radius in the R24 formalism is not
enough to obtain the curves in the spherical case.

In the right panel of Fig. 7, we display the evolution with
a normalized crossed radius, AR/Ry. of the ratio between vy
and the frequency v, ,,, defined as the point where the peak flux
in the rising part is half that at vy,. This allows us to add our
modifications to the results presented in Table I1 from R24b:
from the ratio in frequencies for peak flux obtained from the
data presented in Yan et al. (2024) and assuming the RS is the
main contribution to the observed flux, they inferred the radius
crossed by the RS during the burst AR/Ry and, thus, the ratio
of activity time to off time #,n4/t. We present in Table 6 our
updated values for the crossed radius in light of spherical effects
and compare them to the values inferred in R24b. On average,
the obtained crossed radius for our fiducial spherical case is half
of the value obtained by R24b and about a third for the obtained
activity over the off time ratio.

3.6. Dissipation efficiency and marginally fast-cooling regime

The total efficiency, €0 = €ni€e€rad, Of the internal shock pro-
cess is easily derived in this framework. When it is deep in the
fast-cooling regime, it implies a radiative efficiency of €,q = 1
behind both shock fronts. Here, €, is the conversion rate of
kinetic energy into internal energy, commonly called the dissi-
pation efficiency (or “thermal efficiency,” noted €y, in R24a,b).
We calculate it by summing the internal energy from each con-
tributing cell and comparing this quantity to the initial available
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Table 6. Estimation of AR/R and corresponding f.,/t,x for a choice of
GRBs.

GRB vk/Viz  (AR/Ro)roa (AR/Ro)spn  (fon/Toff)sph
140606B 0.45 1.66 0.81 0.57
131011A 0.59 1.04 0.51 0.37
170607A 0.36 2.36 1.09 0.74
151027A 0.65 0.84 0.43 0.31
150514A 0.60 0.99 0.50 0.36
120326A 0.70 0.71 0.35 0.26
190829A 0.50 1.40 0.69 0.49

kinetic energy. We obtained a dissipation efficiency of 8.5% in
the planar case (equal to the analytical value using Eq. (B5) in
R24b) and of 7.3% in the spherical case. The total efficiency is
thus €4 = 2.4% in the spherical case. In R24a,b, the dissipation
efficiency is obtained by comparing the total final internal energy
present in the shells after shock crossing to the initial available
kinetic energy. Both our “local” and their “global” approaches
give the same result in the planar case, but the quantities are dif-
ferent in the spherical case due to the shock strengths evolving
as they cross their respective shells. Using the definition R24a,b
would give a dissipation efficiency of 3.5% in the spherical case.

The spectrum we obtained using this thin-shell assumption
displays a low-energy vF, slope of 1 + b; = 0.5, indicative
from fast-cooling, which does not seem to fit observed bursts.
In Ravasio et al. (2019), for instance, their fits using a doubly
broken power-law model give values of the low-energy slopes
from several bursts that are more consistent with a slow-cooling
regime. While a model where cooling is derived consistently is
beyond the scope of the current paper, we began to look into
this issue by recalculating the contributions from the FS in an
approximated marginally fast-cooling regime. For this, we took
b rs = 1/3 instead of —1/2 and we applied an efficiency factor
of €,4ps = 1/2 to the computed FS flux as in R24b. This value of
1/2 is an arbitrary middle ground between €,grc ~ 1 in the fast-
cooling case and €,4s5c < 1 in the slow-cooling case. With this
choice, we obtained an overall efficiency of the prompt emission
€0t = 2% for the spherical simulation. We compare in Fig. 8
the instantaneous spectra at T = Ty (T = 1) obtained in this
marginally fast-cooling FS case with the fast-cooling regime.
Both were calculated from the simulation in spherical geometry.
For this marginally fast-cooling FS, we did not obtain the slow-
cooling low-energy slope of 1+b; s = 4/3, but rather ~0.8 from
the cumulative contribution of the two shock fronts.

Setting the FS in the marginally fast-cooling regime is not
enough to obtain low energy slopes more in line with observa-
tions from our set of simulations. However, we need to mention
that marginally fast-cooling regime has three issues here. First, it
requires a very specific set of physical conditions that is contrary to
our general approach. Second, if the FS is marginally fast-cooling,
the RS is not very deep in the fast-cooling regime, and should
show a cooling break near the FS peak photon energy, below which
1 + b; = 4/3 is expected in the total spectrum. Third, we used an
approximated way of calculating the radiation in this regime, we
expected the thin shell assumption to break and, thus, the effects of
a finite size emission region to appear, which are bound to modify
emission signatures. Such effects will be the focus of a follow-up
paper dedicated to the exploration of the cooling regimes.

4. Conclusions

We present a fully spherical, self-consistent numerical approach
to the internal shocks model for the prompt GRB emission,

100.

—— fast cooling FS
—-— marg. fast cooling FS

VFV/VOF()

1071 10!

v

Fig. 8. Comparison of instantaneous spectra between two fast-cooling
shock fronts (full lines) versus a fast-cooling RS and a marginally fast-
cooling FS (dash-dotted lines) at T = 1. The low energy slopes are
steeper and the overall flux is lower with a marginally fast-cooling FS.

showing the impact of the spherical hydrodynamics effects on
emission, even for crossing radii lower than twice the initial
collision radius. Our basic two-shell collision model describes
a single spike in the prompt GRB light curve, which usually
consists of multiple pulses that in this picture correspond to
multiple collisions. After calibrating our methods against the
analytical results obtained in Rahaman et al. (2024a,b) using a
planar approach for hydrodynamics and approximate spherical
effects for the emission, we numerically extend their conclu-
sions to the fully spherical case, while keeping the assump-
tion of an infinitely thin emitting shell. We present the struc-
tural and dynamical differences of shocked shells in spherical
geometry and highlight the non-negligible effects of the evolu-
tion in Lorentz factors and shock strengths on the emission over
the shock crossing time. In particular, the quantities associated
with each shock front evolve at a different rate due to the dif-
ferences in shock strengths. We then expect that following the
spectral properties of a burst over time will allow us to distin-
guish this two-zones emission model from a one-zone model.
While we assumed equal values of the microphysical parame-
ters (€, €g, &6, p) between the two shock fronts, any diversity in
those parameters will most likely add diversity to the obtained
emission between the two shock fronts.

We produced light curves and (time-integrated) spectra with
two different spectral shapes, the smooth Band function and the
synchrotron broken power law. While the Band function is a phe-
nomenological model of the emission spectrum, the synchrotron
broken power law is physically motivated. Calculating flux with
the latter results in less flux at lower frequencies, but conserves
the general time evolution of the light curve. In both choices of
spectral shape, our framework naturally obtains a doubly broken
power-law shape for the spectrum, shape that has been success-
fully used to fit prompt GRB data (see e.g., Burgess et al. 2014;
Oganesyan et al. 2017; Ravasio et al. 2019). The validity of the

A139, page 9 of 13



Charlet, A., et al.: A&A, 699, A139 (2025)

results obtained with the rough spectral shape compared to using
the empiric smooth Band function motivates the use of this sim-
pler emission function to explore more complicated flows as well
as other cooling regimes with different spectral shapes in fur-
ther works while retaining physical accuracy. The value of the
spectral slope between the two breaks varies significantly with
the choice of initial conditions. While it is not totally consis-
tent with the range of values obtained in Ravasio et al. (2019),
this is not a contradictory result. Those slopes are more depen-
dent on the choices made for the fitting functions than the low-
and high-energy part and a better test of our model would be
to perform fits of observed data from calculated flux across an
expected parameter space.

While the effects of spherical geometry on the shock hydro-
dynamics are not striking when comparing light curves and time-
integrated spectra, they cannot be ignored when studying the
evolution of spectral shape within a single spike in the prompt
GRB light curve. In particular we obtain shapes that are more
similar to the observed ones for a choice of GRBs presented
in Yan et al. (2024) and our inferred crossing radii and source
activity time over off time a peak flux and frequency evolution
are smaller by a factor of 2 and 3, respectively, when compared
to the estimations done by Rahaman et al. (2024b).

This work relies on many highly idealized assumptions,
especially the choice of homogeneous shells in both density
and Lorentz factor. This assumption may be lifted to obtain
more realistic emission signatures of internal shocks by simu-
lating more physically motivated flows. A striking example is
the sharp edge in the peak flux versus peak frequency plot that
originates from the sharp edge of the shells, emission stopping
at once when the shock crosses. Such a sharp edge is not seen
in observed GRBs (Yan et al. 2024). The exploration of internal
shocks in higher dimensions is also expected to introduce addi-
tional effects. Studies on the external shock of GRB outflows
(i.e., the one that form due to the interaction with the external
medium) in 2D have shown the growth of Rayleigh-Taylor insta-
bilities (RTI) significantly modifies the dynamics of the external
reverse shock and causes its emission to peak at a later time (e.g.,
Duffell & MacFadyen 2013; Ayache et al. 2022). The shear flow
and/or turbulence near RTI fingers at the contact discontinuity
may also be source of particle acceleration.

Additionally, the synchrotron spectra used in this work is
obtained in the limiting case where all the non-thermal electron
energy is radiated away in less than a numerical time step. This
limits the emission region to a single numerical cell represent-
ing an infinitely thin shell, behind each shock front. This case
assumes being very deep in the fast-cooling regime behind both
shock fronts, producing spectral slopes that do not agree to the
low energy part of observed spectra fitted with a doubly broken
power law, such as in Ravasio et al. (2019). Their method obtains
low-energy slopes indicative of a slow-cooling regime, which is
naturally not reached in our assumption. A simple calculation
by changing the FS emission to an approximate marginally fast-
cooling regime was not enough to obtain slopes in this range.
However, exploring the impact of other cooling regimes and
extended emission zones in a consistent way using the capacity
of GAMMA to evolve a non-thermal electron distribution could be
a step towards solving this issue and will be the focus of a future
work. Changing the microphysical parameters is one of the ways
to explore other cooling regimes and try to obtain the observed
photon indices. In BoSnjak & Daigne (2014), they find the best
agreement to observations using varying microphysical parame-
ters with shock conditions. Numerically, this could be achieved
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by locally computing the value of these parameters following
recipes. GAMMA already proposes one such recipe to compute p,
exploring its effects and implementing local evolution of other
parameters may be pursued in a future work.

The implementation for the local electron distribution in
GAMMA only features synchrotron and adiabatic cooling, but
inverse Compton scatterings with the photons produced at both
fronts are expected to modify the distribution in the context of
GRB emission (see, e.g., Nakar et al. 2009 for a comprehen-
sive reference, Jacovich et al. 2021; McCarthy & Laskar 2024;
Pellouin & Daigne 2024 for recent numerical implementations
in the context of GRB afterglows). Implementing proper inverse
Compton and synchrotron self-Compton is a challenging task
that may be tackled in future works.
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Appendix A: Hydrodynamics in planar geometry

In planar geometry, the quantities are constant across the two
shocked regions. In particular, the shocked material’s proper
speed, u3 = up, = upy, can be conveniently determined in the
rest frame of shell 1 (see Appendix B of R24a):

2f32Tyy — f(1 + f) ]”2
1K

2f(uy 2 +F2])—(1 + f2
where u4; and I'y; are the proper velocity and Lorentz factor of
shell 4 in the rest frame of shell 1. Eq. (A.1) is transformed to the
source frame by velocity transformation via uy = 5111 (821 +51).
The density and pressure in the shocked shells are determined
from the relative Lorentz factor between up- and downstream,
I'34 for the RS and I';; for the FS, using shock jump conditions.
I, is derived from Eq. (A.1), and I'34 is easily obtained by either
velocity transformation or using the result (I3, - 1) = f(I'}, — 1)
that applies to the collision of cold shells (see R24a). The shock
front velocities Brs and Brs can be derived from these relative
Lorentz factors (see Appendix C of R24a for the full derivation)
and, in turn, we would obtain the crossing times of both shocks:

Up| = Ua [ (A1)

u, 1 u
Pa— 4T () (1) -8
,BRS = —FO ) BFS = # ) (AZ)
1-4ru (1) () -1
ﬁ4ton4 ﬁ]tonl
fRs = : tgs = : (A.3)
857 By — Brs ™7 B~ Prs

To make sure our numerical methods fit the analytical frame-
work of Rahaman et al. (2024a), we ran the simulation described
in Sect. 2.4 up to the point where each of the shocks have crossed
their respective shells. Fig. A.1 shows three snapshots of our
fiducial simulation: (a) the initial conditions, (b) #y after the col-
lision, and (c) 1.5 ¢y after the collision. The dashed black lines
show the expected values using the analytical results from R24a
for the same set of parameters. The zones are determined with
a combination of the passive tracers, the position of the shocks
identified by GAMMA, and an interface detection algorithm based
on peak detections in the gradient of the hydrodynamical vari-
ables to identify the rarefaction wave front when no shock is
present in a given shell. We see a very good agreement for both
the hydrodynamical variables and the position of the interfaces
of both shocks and the rarefaction wave after the first shock
crossing. This interface analysis is completed with a method to
recover the shock front velocities by detecting when the front
enters a cell for the first time and assuming the front is at the
interface between this cell and its already shocked neighbor at
the half time step.

The values across the shocked region remain constant in time
with very good accuracy compared to the analytical results: the
proper speed, u, matches its expected value with a precision of
the order 1073, and derived quantities such as the shock strength
Twa— 1 offers a match to within a few times 10™*. We also recover
the analytical values for the shock crossing times fgs and g with
an accuracy of 1073, consistent with a systematic error of a few
time steps due to the finite width of the numerical shock.

Appendix B: Flux calculation in the power-law
approximation

B.1. Analytical flux

We present here the formalism for the analytical calculation of
the flux received at observer time T and frequency v from a range

of emitting radii. From Eq. (4) we see that a single pulse emit-
ted at a single time and radius in the source frame can be seen
over a range of observed times. This means that several source
times and radii contribute to a single observer time, defining a
surface called equal arrival time surface (EATS) as the locus of
all emission points from which photons will arrive at the same
time to the observer. In R24b, itself expanding on previous works
(e.g., Granot 2005; Granot et al. 2008; Genet & Granot 2009),
the authors derive the observed flux coming from a shock front
propagating with Lorentz factor 'y, = T'g,o(R/Ro)™"/?, emitting
between radii Ry and Ry = (1 + AR/Rg)R, at a peak frequency
v, = v{)(R/Ro)d and with peak luminosity L"/;] = Ly(R/Ro)*. As
quantities introduced in this subsection are relative to a single
shock front, we have dropped the subscript RS (respectively F'S)
for the sake of readability. Additionally in R24, compared to
GGO9, it is the shocked material traveling with a Lorentz fac-
tor of I' = gI'y, that is considered to be the source of emission.
This means that while the shock front itself serves to determine
the location of the emitting surface, it is the emitting material
that will be considered for the Doppler factor.

The flux is calculated against normalized time 7 defined as:

T - Tep
Ty

T = , (B.1)
where T¢jo and Ty are the effective (observed) ejection time and
angular time as defined Eq. (5) for the shock front at R the initial
collision radius:

1-Bao)\ R R
TO=(1+z)( ﬁ‘h"’)_"z(u D (B.2)
Bsno ) ¢ 2l
R
Tej,oz(1+z)(to— 0 ) (B.3)
Bshoc

We do not provide here the details of the EATS and intermedi-
ate variables definitions, and instead refer again to appendix F of
R24b for full details of the calculation. We introduce the normal-
ized radius y (T) = R/R(T) and obtain the flux by integrating
from ymin tO Ymax, defined as:

~ =
IV IA

1 1,
Ymin(T) = { ~1/(m+1) i 1, B.4)

1]

e N = =N

b (B.5)
1, '

IV IA

L f
Ymax(T) =3 cctjome) oo 5
Ty iy

where Tf = (1+AR/Ry)"™'. The Doppler factor is also expressed
as a function of y:

2(m + gy oy T
gyt +(m+1-ghy”
(B.6)

% 1+z2
6_(1+Z)7_—1"(1—ﬂ,u) ~(1+2)

The received flux at normalized observer time 7 for any given
comoving luminosity L/,(y) can be expressed as:

~ 1 +z fjmax dlJ 3
F.(T)=—— 5°L, (y)dy. B.7
(1) 8o ), dy ) B.7)

With the change of variable:
d_;u 2(1 + my"H ) ’“m/(m+l) (B 8)

dy =~ 2(m+ nre,
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Fig. A.1. Snapshots of the fiducial planar run (a, = 2, Exo4 = Exo.1» fon.1
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ttog = 1:1: 1)) att =t (left), before first shock crossing (center),

and after shock crossing (right). Shells are color-coded according to the identified zones, the dashed lines show theoretical values. £, = 2.7 X 10° s

and Ry = 8 x 10" cm for this set of parameters.

and using Eq. (B.6) in B.7:

(1 +2)g°TgpoT 7D
27rdi

FuT) = f dy L, (y)y™' 2
Ymin

y—(m+l) -1 1+ mym-H
m+1 g*+ (m+ 1 —gHym!

x |1+ ¢

(B.9)

In the general case, we chose power-law scalings for the lumi-
nosity and peak frequency with radius:

L,_L(R)S(V—,)— LTy S(V—) (B.10)
Ro Yp Yp
’ 5 —(m+1) 1)
= Jdym/> 1+g ] (B.11)
v;, m+ 1

B.2. Numerical flux normalization

To obtain the appropriate flux from a numerical cell corre-
sponding to the infinitely thin shell approximation used in
R24b, we compare the isotropic energy obtained by integrating
Eq. (4) with the equivalent integration of the flux formula from
De Colle et al. (2012) for the contribution from a single compu-
tational cell, which for an isotropic comoving emissivity per unit
volume and frequency, P:, ke reads:

(1+2)° AV P,

ijk v jk
2 . 2
47TdL AT s i jk(l - ,Bjk cos ij)z

rjk COS ij ATobs,z,i
obs,zi — fik < .
c 2

AF i =

for |T. (B.12)

Here Tobs, = Tobs/(1 + 2) and v, = (1 + z)v are measured in
the source’s cosmological frame, as is the (Lorentz invariant) 4-
volume AV® . In this section, subscript i refer to observer time
bins over which flux is calculated, subscript j to the simulation
time step, and subscript k to the numerical cell within data file
j- This approach attributes all of the contribution from any given
numerical 4D cell jk to a single observer time interval i. This
approximation relies on sufficiently fine spatial (and temporal)
resolution and on the Doppler factor not significantly varying
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within the cell, due to the variation of its velocity direction with
respect to the direction to the observer. However, our simula-
tion is spatially 1D: the Doppler factor significantly varies within

each numerical cell of lab-frame volume AV&? = 4ar2Ar and

contributes to different observed time bins. We thus divide 1D
cells further into subcells along the 6 coordinate in which the
Doppler factor can be considered constant.

The observed flux depends only on y = cos @ through the
Doppler factor and the photon arrival time but not on the ¢ coor-
dinate as we calculate flux along the outflow axis. Thus each

subdivision of volume AV( ) = 27rr AricAuiAt; contributes to the
time bin centered on Tgps; = (1 +z)(tJ rigii/c) of width AT g5 =
(1 + 2)(rj/c)Aw;. Recalling Eige = [ dv. [dTops;Ly, 50 =
(47rdf/(1 + z)) f dT ops f dvF,(Tops), the isotropic energy for a
spherical cell reads:

47Td
(n m) _
IS(;]Jk = fdv Z ATobmAFvgk
@ Pri
f it ZAV‘J“ I2.(1 By

= ZﬂriArjkAfj ﬂf dvzf dlu(l _ﬁ/’l)_zs 'V
j 2
s Jo -1 Ymk
K !
4) 4
ij Vm’Z’jkPV;n.jkﬂ ’
(B.13)

1
— Ay 5 o
= Avjk a _'Bjk)rjkvm’z’jkp"ﬁn,jkﬂ ~ EA

having changed variables to x = v/ /v},, = v(1-Bu)/ [vm(1 = B)] =
v.(1 = B/ [vm.(1 —B)] and denoting A = fS(x)dx. In
De Colle et al. (2012) the flux at a fixed observed time bin was
calculated by summing over j and k. To obtain the isotropic
energy we performed the opposite, namely, fixing j and k and
summing over i (and integrated over frequency). Performing the
equivalent integration on a single shell in the infinitely thin shell
approximation (Genet & Granot 2009) is expressed as:

E™ = f dT o f dvF,
e [ f s 7)1

~VmsLy To-A, (B.14)

Vin,z
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using change of variable x = (v/ V)T . Finally, we obtain the
equivalent numerical luminosity for simulation cell k of data file
j in the infinitely thin shell approximation:

4) pr ’
I .- AVicPri _ BB (B.15)
Vm,zs, - - .
! Ty jx Ty

Here AE;:mjk is the energy emitted per unit frequency in the
comoving frame by the four-dimensional cell jk. Going further
with the infinitely thin shell approximation, we can assume all
the energy given to the accelerated electrons is radiated over a
time smaller than the numerical time step, and we write:

3
ijAVj(k )Eee;k

— kK (B.16)
W(P)Vm,jk Tﬁ,z,jk

Viz:jK =

B.3. Flux calibration

While the general analytical formula for any scaling indices
a,d,m was not obtained and the integral in Eq. (B.9) must be
calculated numerically, two special cases with a simpler integral
form are of interest to us. We use the first case a,d,m = 0,0,0
to calibrate the post-processing methods in a consistent way
from our fully planar simulation before extending them to the
physically-relevant spherical geometry. With these simplifying
assumptions, the observed flux is:

5 1+2)g’ Tl (Yo dyy~2

F(T>1)= WI L(x)s . (B.17)

27TdL Ymin [1 + gz(y_l - 1)]

With

y=2 =1+ @ - )7, (B.18)
Yo

v=v/vy, (B.19)

. T —Te(Ry,Bs _

T:M)51+T, (B.20)

To(Ro, T'sn)

and the integration limitS yuyin, Ymax are defined in Egs. (B.4)-
(B.5). Choosing x as the new integration variable, we obtain:

1 +2)2T L 2
FV:()—OO(V) f d.xx_SS()C).
X

47Tdf Vo
The upper and lower integration limits are, respectively, x, =
X(Ymin) and x; = x(ymax) and the integral is performed numeri-
cally using the quad method from scipy.odeint?. We present
in Fig. B.1 light curves at # = 10! and instantaneous spectra at
T = 1 obtained from our fiducial run in planar geometry, com-
pared to the analytical flux obtained analytically with Eq. (B.21).
The figure presents the observed flux using either the smooth
Band function (top row) or a broken power-law (bottom row).
Depending on the local spectral shape, the relative contributions
of both shock to the light curve between their respective peak
frequencies may vary, also causing a change in the peak flux at
this intermediary frequency range, but the overall shape of the
light curve obtained by the sum of both contributions do not.
This difference between peak frequencies is better shown in the
instantaneous spectrum where the shape of the curve between the
peaks shows more variation with spectral shape. Our numerical
fluxes agree with their analytical counterparts to a good degree
of precision.

(B.21)

2 An analytic solution of the integral exist for both spectral shapes,
but in the case of the Band function this form features the incomplete
Gamma function, which is not implemented in Python for negative val-
ues of the first parameter. See Appendix F in R24b.
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Fig. B.1. Light curves (left column) and instantaneous spectra (right
column) obtained from the fiducial run in planar geometry (full lines)
compared to the analytical expectations (dash-dotted lines). Normaliza-
tions of T and 7 are defined at the RS. The top row display the result for
a Band spectral shape, and in the bottom the synchrotron broken power-
law. The respective contributions of each shock to the total observed
flux (in black) are given in red for the RS and blue for the FS.

Appendix C: The effective radius approximation

AR AR
T €1 i >

\ -
v Rem

Rea® Ry

Re # RL

Fig. C.1. Schematic representation of the effective radius approximation
used to derive peak frequency and flux from the hydrodynamical data
depending on the asymptotical regime. The EATS is shown in red.
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