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a b s t r a c t 

The Cherenkov Telescope Array (CTA) is the major next-generation observatory for ground-based very- 

high-energy gamma-ray astronomy. It will improve the sensitivity of current ground-based instruments 

by a factor of five to twenty, depending on the energy, greatly improving both their angular and energy 

resolutions over four decades in energy (from 20 GeV to 300 TeV). This achievement will be possible by 

using tens of imaging Cherenkov telescopes of three successive sizes. They will be arranged into two 

arrays, one per hemisphere, located on the La Palma island (Spain) and in Paranal (Chile). We present 

here the optimised and final telescope arrays for both CTA sites, as well as their foreseen performance, 

resulting from the analysis of three different large-scale Monte Carlo productions. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Cosmic rays and very-high-energy (VHE, few tens of GeV and

bove) gamma rays reaching Earth’s atmosphere produce cascades

f subatomic particles called air showers. Ultrarelativistic charged

articles generated within these showers produce photons through

he Cherenkov effect. Most of this light is emitted at altitudes

anging between 5–15 km, and it propagates down to ground level

s a quasi-planar, thin disk of Cherenkov photons orthogonal to the

hower axis. 

Imaging atmospheric Cherenkov telescopes (IACTs) are designed

o capture images of these very brief optical flashes, generally

asting just a few ns. By placing arrays of IACTs within

he projected light pool of these showers and analysing the

imultaneous images taken by these telescopes, it is possible to

dentify the nature of the primary particle and reconstruct its

riginal energy and incoming direction. 

Building on the experience gained through the operation

f the current IACTs (H.E.S.S. 1 , MAGIC, 2 and VERITAS 3 ), the

ext generation of ground-based very-high-energy gamma-ray

elescope is currently under construction. The Cherenkov Telescope

rray (CTA) 4 [1,2] will detect gamma rays in the energy

ange from 20 GeV to 300 TeV with unprecedented angular and

nergy resolutions for ground-based facilities, outperforming the

ensitivity of present-day instruments by more than an order

f magnitude in the multi-TeV range [3] . This improvement will

e possible by using larger arrays of telescopes. As a cost-

ffective solution to improve performance over four decades of

nergy, telescopes will be built in three different sizes: Large-Sized

elescopes (LSTs) [4] , Medium-Sized Telescopes (MSTs) [5,6] and

mall-Sized Telescopes (SSTs) [7] . To provide full-sky coverage,

ACT arrays will be installed in two sites, one in each hemisphere:

t Paranal (Chile) and at La Palma (Canary Islands, Spain). 

Each telescope class will primarily cover a specific energy

ange: LSTs, with a ∼ 370 m 

2 reflecting dish and a camera with

 field of view (FoV) of ∼ 4.3 ◦, will allow the reconstruction

f the faint low-energy showers (below 100 GeV), not detectable

y smaller telescopes. In this energy range the rejection of

he cosmic-ray background is limited by the modest number of

articles created in the air showers. Due to the relatively high flux

f low-energy gamma rays and the large associated construction

osts, few LSTs will be built at each site. They have been designed

or high-speed slewing allowing short repositioning times to catch

ast transient phenomena on time scales of minutes to days, such

s gamma-ray bursts [8] . 
1 https://www.mpi-hd.mpg.de/hfm/HESS/HESS.shtml . 
2 https://magic.mpp.mpg.de/ . 
3 https://veritas.sao.arizona.edu/ . 
4 http://www.cta-observatory.org/ . 

o  

d  

c  

t  

w  

t  
MSTs, with a larger FoV of ∼ 7.6 ◦, will populate the inner part

f the array, increasing the number of telescopes simultaneously

bserving each shower, enhancing the angular and energy

esolutions within the CTA core energy range (between 100 GeV

nd 10 TeV). Two different MST designs have been proposed:

he Davies–Cotton MST (DC-MST) and the Schwarzschild–Couder

ST (SC-MST) [5,6] . The DC-MST is a 12 m-diameter single-

irror IACT built with modified Davies–Cotton optics and a mirror

rea of ∼ 88 m 

2 . Two different cameras have been prototyped

or this telescope: NectarCam and FlashCam [9,10] . The SC-MST

eatures a two-mirror optical design with a 9.7 m diameter

rimary mirror and an area of ∼ 41 m 

2 . The dual-mirror setup

orrects spherical and comatic aberrations, allowing a finer shower

mage pixelisation, enhancing angular resolution and off-axis

erformance. 

Above a few TeV, Cherenkov light from electromagnetic showers

ecomes significantly brighter, not requiring such large reflecting

urfaces for their detection. At the same time, the gamma-ray flux

ecreases with energy, so in order to detect a sufficient number

f these high-energy events, a large ground surface needs to be

overed. SSTs, with a mirror area of ∼ 8 m 

2 and a FoV of > 8 ◦,

ave been designed with this purpose. A large number of SSTs

ill populate the outer part of the array covering a total surface

rea of up to 4.5 km 

2 . Three variants of SSTs have been proposed:

wo designs of SC-SSTs, the ASTRI and the GCT, both with primary

irror diameters of 4 m, and a DC-SST, the SST-1M, with a single

 m diameter mirror [7] . 

The northern and southern observatories will make the full VHE

amma-ray sky accessible to CTA. As a cost-effective solution to

aximise scientific output, each site will have different telescope

ayouts. The CTA southern site will be larger to take advantage

f its privileged location for observation of the Galactic Center

nd most of the inner half of the Galactic Plane, regions with a

igh density of sources with spectra extending beyond 10 TeV. Its

aseline design foresees 4 LSTs, 25 MSTs and 70 SSTs. The northern

ite will be more focused on the study of extragalactic objects and

ill be composed of 4 LSTs and 15 MSTs. No SSTs are planned to

e placed in the northern hemisphere. 

Detailed Monte Carlo (MC) simulations are required to estimate

he performance of an IACT array [11–13] , which is evaluated by

uantities like the minimum detectable flux, sensitive FoV or its

ngular and energy resolutions. All these estimators are strongly

ependent on a set of parameters related to both the telescope

esign and the array layout (i.e. the arrangement of telescope

ositions on ground). Other scenarios (e.g. standalone operations

f sub-arrays composed of only LSTs, MSTs or SSTs, or short

owntime periods of some telescope) need to be also taken into

onsideration during the layout optimisation phase to ensure that

he CTA performance is not critically affected. The objective of this

ork is to optimise the telescope layout of a given number of

elescopes, maximising performance, while complying with all CTA

https://www.mpi-hd.mpg.de/hfm/HESS/HESS.shtml
https://magic.mpp.mpg.de/
https://veritas.sao.arizona.edu/
http://www.cta-observatory.org/
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requirements. These requirements were derived as a cost-effective

solution to obtain excellent performance over a wide range of very

different physics cases [8] , to ensure the scientific impact of the

future observatory. 

1.1. Array layout considerations 

Optimal array layouts are mainly characterised by the

configuration of each telescope type and by the number and

arrangement of these telescopes. Each telescope type configuration

is mainly described by its light collection power, dominated

by mirror area, photo sensor efficiency, and camera FoV

and pixelation, with optics chosen so that the optical point

spread function matches the pixel size. A generic telescope

cost model was used with mirror area, FoV and pixel size as

primary parameters, so that all proposed array layouts that were

compared during these optimisation studies could be considered

of approximately equal cost. 

As a first step, semi-analytical performance estimations were

carried out using parameterisations for the responses of each

telescope type. These studies allowed us to perform quick

estimates of gamma-ray and cosmic-ray detection rates for a wide

variety of telescope configurations and arrangements. Simulations

of regular square grids of telescopes were performed to quantify

the impact of parameters such as mirror area, FoV, pixel size or

telescope spacing. 

To validate and fine tune the optimal telescope configurations

calculated with these simplified approaches, a series of large-scale

MC simulations were performed sequentially, described in more

detail in Section 2 . 

Telescopes are arranged in concentric arrays of different

telescope sizes, ordered in light collection power, from a compact

low-energy array at the centre to an extended high-energy array,

providing an effective area that increases with energy. The light

pool size of air showers increases with energy, from a radius

of about 120 m for ∼ 30 GeV showers to more than 10 0 0 m

for multi-TeV showers. In the sub-TeV to TeV domain, telescope

spacing of about 100 m to 150 m optimises sensitivity, providing

an equilibrium between having more images per air shower and

a reasonable collection area. For TeV energies and above, larger

distances are preferred to improve the collection area, given that,

at these energies, the cosmic-ray background can be rejected

almost completely and the achievable sensitivity is photon-rate

limited. 

The baseline design number of telescopes (4 LSTs, 25 MSTs

and 70 SSTs for CTA-South and 4 LSTs and 15 MSTs for CTA-

North) was fixed after a combined effort involving the production

of large-scale MC simulations, evaluation of the performance of

very different array layouts [12] , and study of the effect of this

diverse set of layouts over a large variety of key scientific cases

[14–19] . 

This study presents the final baseline arrays for both the CTA

northern and southern sites. MC large-scale productions, described

in Section 2 , were used to estimate the performance of a very large

variety of layouts. The main considerations taken into account

in the performance evaluation are outlined in Section 3 , while

the final baseline arrays and their performances are presented in

Sections 4 and 5 for the southern and northern site, respectively. 

2. CTA Monte Carlo production and analysis 

Given the unprecedented scale of the CTA project, a constant

effort has been devoted over the past five years to define and

optimise the telescope layouts. Three large-scale MC productions

were conducted and analysed with this purpose [13,20,21] . In
ddition to the layout optimisation, these productions have been

sed to: 

• Estimate the expected CTA performance [3,12] , 

• Guide the design of the different telescope types and compare

their capabilities [22–24] , 

• Provide input to the site selection process by evaluating

the effect of the characteristics of each site on the array

performance. Among the considered site attributes there were

altitude, geomagnetic field, night-sky background level and

aerosol optical depth [25–27] . 

As described in [12,20,25] , each large-scale MC production

equires the definition of a large telescope layout, called the master

ayout. Each master layout comprises hundreds of telescopes

istributed over an area of about 6 km 

2 and are designed to

ontain numerous possible CTA layouts of equivalent cost. To

dentify the optimal arrangement, these plausible layouts are

xtracted, analysed and their performances are compared with

espect to each other. For each MC production, telescope models

ere sequentially improved, becoming more realistic in each

teration thanks to the increasing input coming from the prototype

elescopes. Air showers initiated by gamma rays, cosmic-ray nuclei

nd electrons are simulated using the CORSIKA package [28] . 

The telescope response is simulated using sim_telarray
11] , used by the HEGRA and H.E.S.S. experiments. 

The simulated products generated by these large-scale

roductions resemble the data that will be supplied by the

uture CTA hardware and software. The performance of each

elescope layout is estimated by analysing these data products

sing reconstruction methods [29,30] , developed for the current

eneration of IACTs, and adapted for analysis of the CTA arrays,

riefly described in Section 2.2 . 

The first large-scale production ( prod1 ) covered a wide range

f different layouts [12] , from very compact ones, focused on low

nergies, to very extended ones, focused on multi-TeV energies.

he evaluation of these layouts, studying their impact on a

ange of science cases [14–19] , resulted in a clear preference for

ntermediate layouts with a balanced performance over a wide

nergy range. 

The second large-scale production ( prod2 ) refined the layout

ptimisation studies [20] while putting an additional emphasis on

ssessing the effect of site-related parameters over performance at

he proposed sites to host the CTA Observatory [26] . Results from

his production concluded that all proposed sites were excellent

andidates to host CTA, but that sites at moderate altitudes

 ∼ 20 0 0 m) give the best overall performances [25] . Given the wide

cope of this production, the layout optimisation performed [20] is

stimated to be ∼ 10% away from the optimum performance,

ainly due to the limited number of simulated telescope positions

or a given site. 

The third large-scale production ( prod3 ) was carried out for

he primary CTA site candidates, Paranal (Chile) and La Palma

Spain). Telescope design configurations were updated and a

ignificantly larger and more realistic set of available telescope

ositions were included (see Fig. 1 ). The aim of this production

as to refine the optimisation, defining the final telescope layout

or both CTA arrays by reducing the optimisation uncertainty to

he few percent level, while preserving the goal of a balanced

ntermediate layout fulfilling all CTA performance requirements. To

alidate the baseline arrays inferred from this work (see Section 4 ),

his production was extended using identical telescope models.

elescope locations were further refined by considering a total of

10 positions for Paranal. All results presented in this paper, unless

therwise stated, refer to this third large-scale production. 
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Fig. 1. Simulated telescope positions within the third large-scale MC production 

(see Section 2 for details). Top : La Palma telescope positions including all radially- 

scaled MST layouts. The available positions are restricted by the site topography, 

buildings and roads. Bottom : Paranal telescope positions before applying any 

radially-symmetric transformation (scaling number 1). LST positions are indicated 

by red circles, MSTs by green triangles, and SSTs by blue squares. 
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The optimisation of the CTA arrays required a significant

omputational effort: The third large-scale production for the

aranal site alone required ≈ 120 million HEP-SPEC06 CPU hours 5 

nd ≈ 1.4 PB of disk storage. Most of these simulations were

arried out on the CTA computing grid, using the European Grid

nfrastructure and utilising the DIRAC framework as interware

31,32] , as well as on the computer clusters of the Max-Planck-

nstitut für Kernphysik. The subsequent analysis was carried out

sing the DIRAC framework, as well as the computing clusters at

he Deutsches Elektronen-Synchrotron and at the Port d’Informació

ientífica. 
5 The HEP-wide benchmark for measuring CPU performance. See specifications in 

ttp://w3.hepix.org/benchmarks . 
w

o

.1. Simulated telescope layouts 

Layouts with a more compact and denser distribution of

elescopes improve the direction and energy reconstruction of

howers (the limiting factor for the low/mid-energy range of

TA, between 20 GeV and 5 TeV), while larger and sparser layouts

mprove the collection area and event statistics (the limiting factor

or the highest energies), see also discussion in [12] . To find

he most efficient inter-telescope distance for CTA, each layout

andidate is modified by applying several radially-symmetric

caling factors (see Fig. 2 ). On top of that, in order to maintain the

adial symmetry of the array in the shower projection for typical

bservation directions near source culmination, the southern array

ayouts were stretched by a factor of 1.06 in the north-south

irection and compressed by a factor 1/1.06 in the east-west

irection. The assumption of an average culmination zenith angle

f z ∼ 27 ◦ ≈ arccos (1 / 1 . 06 2 ) , is based on long-term observation

tatistics from H.E.S.S., MAGIC, and VERITAS. 

The simulated telescope positions are shown in Fig. 1 . In the

ase of La Palma, for which a combination of all scaled layouts

s shown, these positions were constrained by site topography, as

ell as by existing buildings and roads. For Paranal, the layout

as based on a hexagonal grid 

6 with some additional positions.

ive sets of radially-symmetric transformations were applied to

he master telescope layout shown at the bottom of Fig. 1 , as

etailed in [21] . Changing the scaling, each telescope is moved

adially so that its new position ( x , y ) satisfies 
√ 

x 2 + y 2 = r · D (r) ,

here r is the distance to the centre of the array before the

pplied transformation and D ( r ) is the distortion factor, shown in

ig. 2 (top-left). These transformations change the inter-telescope

istance from close to optimal for the low/mid energies to

ncreasingly larger separations for the higher energies. As an

xample, the five resulting scaled arrays for one CTA-South layout

re shown in Fig. 2 . By studying the performance of each simulated

caling, we attempt to find the optimal layout that balances

econstruction quality and event quantity. At the energy range

here the LSTs dominate (below ∼ 100 GeV), the influence of the

ther telescope types is small, therefore LST spacing optimisation

s studied independently and their positions are constant among

he five different scalings for both sites. 

The layout naming convention used throughout the text is the

ollowing: All layout names start with either the letter “S”, for

TA-South candidates, or “N”, for CTA-North candidates, followed

y a number indicating the array variant. When referring to the

ifferent scalings of each candidate, an additional number is added

fter the layout name, e.g. “S2-3” indicates the scaling 3 of the

ayout “S2”. This scheme has two exceptions: the layout “SI-

 scaling ”, with an alternative MST distribution shown in Fig. 9 ,

nd layouts “S7” and “S8”, products of the merging between

ifferent scalings, shown in Fig. 12 and discussed in Section 4 . The

elescope number and positions of the CTA-South array candidates

re shown in Fig. 3 . 

The total number of simulated unique telescope positions adds

p to 892 for the southern site and 99 for the northern site. At

he time the layouts were defined, different alternative designs for

he medium and small size telescopes were under consideration

nd the number of telescopes of each design was not yet fixed.

o ensure that the layout resulting from the optimisation does not

epend on a certain telescope model, all prototype designs and

ameras were simulated, resulting in a total of 3092 simulated

elescopes. This way, the performance of each proposed baseline
6 As discussed in [33] , a square grid is preferred to enhance two telescope events 

hile a hexagonal layout favours the simultaneous detection of showers by three 

r more telescopes, the latter being more suitable for CTA. 

http://w3.hepix.org/benchmarks
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Fig. 2. Top-left : Radially-symmetric distortion factors for the five different scalings applied to the CTA-South layouts, as a function of the radial distance to the centre of the 

array before the applied transformation. Top-right to bottom-right : an example of the five resulting scaled layouts for one of the Paranal site candidates (“S1”). LST positions 

are indicated by red circles, MSTs by green triangles, and SSTs by blue squares. Taken from [21] . 
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Fig. 3. Simulated telescope positions for the different CTA-South array candidates. The positions of each telescope sub-system is shown separately for the arrays “S1” to “S4”. 

The table shows the number of telescopes per type for all layout candidates. 

a  

m

2

 

p  

b  

t  

t  

e  

o  

e  

s  

s  

o  

a  

r  

e  

s  

E  

s

s  

l

 

t  

p  

t  

s  

u

P

 

p  

i  

(  

r  

c  

b  
rray can be studied for all the different combinations of MST/SST

odels. 

.2. Analysis and evaluation criteria 

In order to perform the telescope layout optimisation,

arameters describing the performance of a given layout need to

e defined and maximised. As in [25] , the primary criteria used in

his work to evaluate performance is the differential sensitivity, i.e.

he minimum detectable flux from a steady source over a narrow

nergy range and a fixed observation time. This parameter depends

n the collection area, angular resolution and rate of background

vents, mostly composed by cosmic-ray hadrons and electrons that

urvive the gamma-ray selection criteria (cuts). The differential

ensitivity is calculated by optimising in each energy bin the cuts

n the shower arrival direction, background rejection efficiency

nd minimum telescope event multiplicity 7 It is computed by

equiring a five standard deviation (5 σ ) detection significance in

ach energy bin (Eq. 17 from [34] , with an off-source to on-

ource exposure ratio of five, assuming a power-law spectrum of

 

−2 . 6 ), and the signal excess to be at least five times the expected
7 The event multiplicity is the number of telescopes simultaneously detecting a 

hower. 

t  

f  

s  

t  
ystematic uncertainty in the background estimation (1%), and

arger than ten events. 

The figure of merit used for the evaluation and comparison of

he scientific performance of CTA layouts is called the performance

er unit time (PPUT). PPUT is the unweighted geometrical mean of

he reference point-source flux sensitivity, F sens,ref , to the achieved

ensitivity, F sens , over a given energy range with N logarithmically

niform bins (five per decade) in energy: 

PUT = 

( 

N ∏ 

i =1 

F sens , ref (i ) 

F sens (i ) 

) 1 /N 

(1) 

The reference sensitivity was derived from the analysis of

revious simulations carried out by the CTA Consortium, based on

nitial and conservative assumptions on the telescope parameters

see [12] ). These reference values, together with other performance

equirements (e.g. minimum angular and energy resolutions),

onstitute the prime goals of the CTA design concept. PPUT may

e calculated for the whole CTA-required energy range to estimate

he overall performance, i.e. from 20 GeV up to 300 (50) TeV

or CTA-South (North), or for energy sub-ranges, to evaluate

pecific telescope sub-system capabilities. PPUT is defined such

hat a larger number corresponds to better performance. Statistical
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Fig. 4. Comparison of performance (expressed in terms of PPUT, see text) of a range 

of simulated array layouts for three different analysis chains, relative to the PPUT 

value attained by each of them on the “S1-3” layout. The five layouts are presented 

in Fig. 2 . The symbols shown in the legend indicate the various analysis chains. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Comparison of performance (expressed in terms of PPUT, see text) of a 

range of simulated CTA-South array layouts for different combinations of telescope 

model configurations, each relative to the “S1-3” layout. The different “S1” layout 

scalings are pictured in Fig. 2 , while the “SI” layouts are described in Section 3.2 . 

The symbols shown in the legend indicate the various telescope configurations. 
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uncertainties of all PPUT values, calculated by propagating the

differential sensitivity errors associated with the MC event

statistics, are below the 3% level. When comparing PPUT values,

these uncertainties are unrealistic given that the performance of

all layouts in a given site are calculated from the same set of

simulated showers. Statistical uncertainties of PPUT values are

therefore not shown in this work. 

Except if specified differently, all performance curves and PPUT

values shown in this work correspond to a CTA differential

sensitivity to a point-like source in the centre of the FoV with an

observation time of 50 h. The sensitivity of these layouts to sources

located at larger angular distances from the centre of the FoV was

also evaluated. All telescope layouts presented here were required

to comply with a minimum off-axis performance: the radius of the

FoV region in which the point-source sensitivity is within a factor

two of the one at the centre must be larger than 1 ◦ for the LST

sub-system (array composed by all and only LSTs) and larger than

3 ◦ for the MST and SST sub-systems. 

Two fully independent analysis chains, Eventdisplay [29] and

MARS [30] (thoroughly tested by the VERITAS and MAGIC

collaborations, respectively), have been used to process the full MC

production (at 20 ◦ zenith angle) for a large number of telescope

configurations for both the Paranal and La Palma sites. In addition,

the ImPACT analysis [35] was used to produce a cross-check for

a small subset of these configurations and the baseline analysis

[12] was used to validate some results on same-type telescope

sub-systems. Eventdisplay, MARS and the methods of the baseline

analysis perform classical analyses based on second moment

parameterisation of the Cherenkov images [36] , with different

choice of algorithms for image cleaning, background suppression

(Boosted Decision Trees, Random Forest or Lookup tables) and

energy reconstruction (Lookup tables or Random Forest). ImPACT

is based on a maximum likelihood fit of shower images to pre-

generated MC templates, and has proven effective in the analysis

of H.E.S.S. data. In all four cases, background suppression cuts are

tuned to achieve the best performance (maximising sensitivity) in

each bin of reconstructed energy. See [12,25] for more details on

the analysis. 

Fig. 4 shows the PPUT values (between 20 GeV to 125 TeV) of

the five scalings simulated for a given CTA-South array candidate,

analysed with three of the analysis chains described. The results of

the different analyses are, in general, fairly consistent. As shown

in Fig. 4 , despite their small differences, the conclusion on the

optimal layout is the same regardless of the choice of analysis

package. 
.3. Telescope configurations 

The third large-scale MC production was simulated using the

ost realistic and detailed modelling of all CTA telescopes and

amera types available. Given that the prototype telescopes were

n the development stage at the time of the production (summer

015), some telescope and camera parameters used within these

odels may be different from the final ones. These differences are

xpected to have a small effect on single-telescope performance,

o all conclusions inferred from this study will still be valid, as

ong as the CTA-proposed telescopes do not undergo major design

hanges. 

SC-MSTs were excluded from this study due to technical

imitations. The limited available memory during computation

id not allow the production of sufficient event statistics for

heir performance evaluation. Given the relatively similar mirror

rea and FoV of DC-MSTs and SC-MSTs, it is unlikely that the

eplacement of some DC-MSTs with SC-MSTs in the proposed

ayouts would result in a sub-optimal array layout. 

As the final configuration of CTA telescope types is not

nown at this point (e.g. how many SSTs of each design

ill be constructed), the analysis always considers arrays

f a single MST and SST design. All possible combinations

etween the two DC-MST cameras and the three SST models

ave been studied to ensure that the layout choice does

ot depend on specific telescope configurations. Fig. 5 shows

s an example the PPUT values of some CTA-South arrays

sing different combinations of telescope models: NectarCam/GCT,

ectarCam/SST-1M, FlashCam/GCT, and FlashCam/SST-1M. The

elative differences of the PPUT values between the different

onfigurations for a given array layout are below 5% and clearly

how the same trend upon changes of the array layout and scaling.

. Layout optimisation 

The final numbers of telescopes of each type is now fixed for

oth hemispheres, defined as the most cost-effective solution to

aximise CTA performance over the key scientific cases [8] . The

umber of telescopes that the baseline arrays will be composed

f are 4/25/70 LST/MST/SST for CTA-South and 4/15 LST/MST

or CTA-North. With the number of telescopes fixed, the layout

ptimisation was performed following these considerations (in

pproximate order of priority): 

C1. Full system performance requirements. 
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Fig. 6. Differential sensitivity and differential sensitivity ratio as a function of energy for two configurations of three LSTs with equal area ( bottom ): Arranged as half a square 

of 115 m on a side ( top right ) or an isosceles triangle with two 127 m sides (close to equilateral, top left ). The layouts are slightly stretched in the north-south direction and 

compressed in the east-west direction, as explained in Section 2.1 . The ratio is calculated so that higher values correspond to better sensitivity. 
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C2. Telescope sub-system performance requirements (e.g. MST- 

only array performance). 

C3. Topographical constraints of the selected sites. 

C4. Shadowing between neighbouring telescopes (i.e. telescopes

structure intersecting the FoV of other telescopes during

large zenith angle observations). 

C5. Performance of partially-operating arrays (e.g. resulting from

telescope staging or downtime). 

C6. Impact on the ease of calibration and the likely magnitude
of systematic effects. m  
For C1, the main optimisation parameter is the differential

ensitivity of the full array, while simultaneously ensuring that the

nergy resolution, the angular resolution and the FoV requirements

re still met. C2 ensures that the system works in a close-to-

ptimal fashion also when operated as individual (LST, MST or

ST) sub-systems. C3 is critical for the northern site (La Palma),

ut was not needed for the southern site, where no significant

onstraints are expected. C4 sets a minimum telescope spacing

or pairs of each telescope size combination. If possible, without

oving significantly away from the optimum performance for
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Fig. 7. Performance (expressed in terms of PPUT, see text) of LST squared layouts 

of different sizes located at different CTA-South candidate sites ( left : Observations 

towards north, right : Observations towards south), in the energy range 30–300 GeV, 

using the baseline analysis described in [12] . 

Fig. 8. Performance (expressed in terms of PPUT, see text) and energy threshold of 

pairs of LSTs as a function of their separation. PPUT values are calculated from the 

average of the Aar and the two Leoncito site candidates (with an average altitude 

close to that of the Paranal site) and are also averaged over observations pointing 

towards north and south. The upper panel shows PPUT values in the energy ranges 

of 25 GeV to 125 GeV and 25 GeV to 1.25 TeV; the lower panel shows the calculated 

energy threshold by using the true energy value that leaves 10% of the events below 

the cut value (after either the trigger or the analysis) [37] . The performance is 

derived from the baseline analysis described in [12] . 
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the baseline, point C5 was addressed by ensuring that partially

completed systems are still close to optimal. In the case of the

LSTs, of which only four telescopes will be installed on each site,

the effect of telescope downtime was taken into consideration due

to the expected occasional maintenance of one of these telescopes.

For MSTs and SSTs, a few missing telescopes due to maintenance is

not expected to significantly affect the performance. Finally, point

C6 was addressed by requiring some overlap between different

telescope sub-systems even when the array is partially completed. 

3.1. LST optimal separation 

Below ∼100 GeV the LSTs will dominate CTA performance,

as these will be the only telescopes with enough reflecting

surface to detect the faint low-energy showers. For this reason,

the layout of the MST and SST positions have no strong impact

in this energy range, therefore their spacing optimisation can

be studied independently. These showers are generally triggered

within impact distances 8 below 150 m, i.e. similar to the light

pool radius of about 120 m [25] . As the light-pool size increases

with the energy of the primary particle, the optimal LST spacing is

expected to be smaller than for MSTs or SSTs. 

The optimal shape of the LST sub-system in the shower-

plane projection is expected to be a square for four LSTs and an

equilateral triangle for three LSTs. This is confirmed in Fig. 6 , which

shows the low-energy differential sensitivity of a three LST layout

with an isosceles shape, close to equilateral, compared to a three

LST layout with a half-square shape. 

The optimisation of the LST layout beyond these considerations

is thus a question of separation only. At too-short separations,

the projected lever arm in the stereoscopic shower reconstruction

is too small for most events while at too-large separations too

few showers are detected simultaneously by three or four LSTs

(required for an optimal cosmic-ray background rejection). 

As described in Section 2 , the second large-scale MC production

assessed CTA performance over a wide range of site candidates.

Realistic values of the altitude and geomagnetic field strength

at each site were used in the shower simulation [25] . Nine

different LST positions were included at each site, allowing the

analysis of several equivalent layouts (e.g. pairs of two LSTs)

with different inter-telescope distances. Archival simulation sets

for the following CTA site candidates were available for this

analysis (see [25] for details on each site): Aar (near Aus, Namibia)

at 1640 m altitude, two sites at Leoncito (Argentina) at 1650

and 2660 m, and SAC (San Antonio de los Cobres, Argentina)

at 3600 m altitude. To test the array performance at lower

altitudes, an additional hypothetical Aar site was simulated at

500 m altitude. For the SAC site candidate, at whose altitude the

Cherenkov light pool is significantly smaller, an additional set of

simulations were performed with the telescope spacing reduced by

a factor of 0.84, allowing us to test a larger number of telescope

distances. 

For a layout of four LSTs in a square shape, side distances of

71, 100, and 141 m (plus 59, 84, and 119 m only for SAC) were

available. Fig. 7 shows the dependence of the LST sub-system

performance versus telescope separation for all the studied sites.

For the Paranal site, with an altitude and geomagnetic field falling

between the two simulated Leoncito sites shown in Fig. 7 , a

separation of about 100 m (square side length) is favoured. 

For the case of LST pairs, there were nine different distances

available between 58 to 255 m. As shown in Fig. 8 , a rather flat

optimum is found at 130 m, with close-to-optimum performance
8 The impact distance is the distance projected on ground between the center of 

the Cherenkov light pool and the telescope. 

s  

n  

m  

p

or separations ranging from about 100 m up to 150 m, with

o significant change in energy threshold over this range. The

ptimum separation over the whole LST energy range (more

elevant for observation with the LST sub-system only) is not

ignificantly larger than for just the lowest energies (relevant for

bservations with the full array). 

Taking all these results into account, a squared layout of four

STs with an optimised side distance of 115 m to 120 m would

rovide both full-system and sub-system optimal performance. In

rder to make sure the rest of the listed considerations, such as

eological constrains for the La Palma site or improved staging

cenarios for Paranal, are complied with, minor modifications were

eeded to be applied to these positions. As shown in Fig. 6 , such

inor modifications of the LST layout are expected to affect the

erformance at only the few percent level. 
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Fig. 9. Layouts with different MST patterns: “S1”( top ), with a strictly hexagonal pattern and “SI” ( bottom ), with four islands and a hexagonal core. The LST positioning in the 

two cases is the same, while the SSTs have been rearranged. Both layouts correspond to their scaling 2 variation. The distance of each telescope to its nearest neighbour of 

the same type is shown on the right. 
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.2. MST and SST patterns 

As introduced in Section 2 , the master layout of simulated

elescopes used in this work is based on a hexagonal layout to

nhance the statistics of showers simultaneously detected by at

east three telescopes [33] . From this layout, two different MST

atterns were studied: a hexagonal one (as in “S1”, top of Fig. 9 )

nd one presenting an inner hexagonal core with fewer telescopes

nd four surrounding islands of three MSTs each (as in “SI”, bottom

f Fig. 9 ). Because of the repositioning of MSTs, some SSTs have

een moved in order to provide uniform coverage. The positions of

he LSTs are shared between the two layouts. 
As shown in Fig. 10 , the two layouts provide comparable overall

ensitivity over the whole energy range (20 GeV–125 TeV). Over

he low and medium energy ranges (20 GeV to 1.25 TeV) the

exagonal pattern is preferred, given the higher number of MSTs

imultaneously used to reconstruct these contained showers (i.e.

howers whose light pools are fully contained inside the area

overed by CTA telescopes). Between 1.25 TeV and 12.5 TeV, the

sland pattern provides better performance due to the improved

econstruction of high-energy showers triggering telescopes near

he edge of the array. This improvement fades above 12 TeV, for

nergies dominated by the SST sub-system. The hexagonal MST

attern was chosen as the preferred option given its improved
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Fig. 10. Relative PPUT values for different energy ranges for the layout with a hexagonal MST pattern (“S1”) and a layout with an MST pattern presenting four islands (“SI”), 

both for the southern site, relative to “S1-3”. Open and filled symbols correspond to observation times of 5 h and 50 h, respectively. 

Fig. 11. Relative PPUT values for different energy ranges for several CTA-South layout candidates, relative to “S3-3”. The resulting PPUT values obtained by combining the 

MST layout with moderate radial scaling (2) and the SST layout with strong scaling (5) are shown labelled as “scaling 2 + 5”. 
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9 The east-west telescope pair provides better stereoscopic reconstruction while 

pointing north/south, the preferred sky directions in which sources culminate. 
performance over a wider energy range. Two different observation

times were tested in this comparison, 5 and 50 h, to make sure

that the inferred conclusions are not dependent on the observation

time. 

4. Southern site baseline array 

The PPUT values for six different energy ranges were

calculated for three different CTA-South layout candidates (“S2”

and “S4”, calculated with respect to “S3”) and their five different

radial scalings. As shown in Fig. 11 , more compact arrays

improve performance below ∼ 1 TeV, but have poorer performance

compared to arrays with larger scalings at higher energies. Taking

these results into account, a new layout is defined combining the

MST layout with moderate radial scaling (2) and the SST layout

with strong scaling (5), labelled as “S7”. As shown in Fig. 11 , it

is the layout with best overall performance, outperforming most

alternatives in every energy range. 

However, minor modifications are still necessary to be applied

to “S7” for two important reasons: 1). It includes slightly different

numbers of telescopes with respect to the defined baseline (4 LSTs,

25 MSTs and 70 SSTs) and 2) the distribution of the SSTs is sub-
ptimal for independent sub-system operation and complicates

ross-calibration. The proposed baseline layout for CTA-South is

herefore a slightly modified version of “S7”, named “S8” (both

hown in Fig. 12 ). The performed modifications are discussed

elow: 

• The LST layout is rather independent of the optimisation

of the system as a whole. The proposed four LST layout

is an intermediate step between a square and a double-

equilateral triangle, with the advantage that it performs

significantly better than a square for a three LST stage, without

significant degradation of the full system performance. This

compromise also works better than the double-equilateral

triangle configuration for the situation where one of the east-

west pair of telescopes is unavailable (e.g. due to maintenance

activities). The east-west pair of telescopes represents the

best option for a two LST stage-1, 9 and therefore the chosen

telescope separation is close to optimal for a two-telescope

system (as shown in Section 3.1 ). 
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Fig. 12. The best performing layouts from Fig. 11 : “S7”, on the left, and the proposed baseline layout for the southern site, “S8”, on the right. 

Fig. 13. Relative PPUT values for the different scalings of the proposed layout for the northern site, all shown in Fig. 1 , relative to the scaling 3. 
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• The MST layout for the proposed array is identical to “S7”

except for the addition of a central MST. The central MST

is particularly useful for MST sub-system operation, surveying

performance and LST-MST cross-calibration. 

• The SST positions are modified from “S7” by removing four

telescopes (“S7” has 74 SSTs) and smoothing their distribution.

Four SSTs are moved within the boundary of the dense MST

array to enhance the SST-only sub-system performance, to

provide better MST-SST cross-calibration and to smooth the

performance transition between the MST-dominated to the SST-

dominated energy range. After fixing the four inner telescopes

and the outer boundary edge of the layout (so that the

highest energy performance is not affected), the spacing of

the remaining telescopes is adjusted to minimise the inter-

telescope distance. 

As mentioned in Section 2 , some telescope positions within

S8” were not available and needed to be added to the third large-

cale MC production. This extension was necessary to confirm that

hese modifications were not strongly affecting performance. As

hown in Fig. 11 , the overall PPUT of “S8” matches the one attained

y “S7”. Even if the performance above ∼ 1 TeV is slightly affected
y subtracting four SSTs, “S8” outperforms most layout alternatives,

hile taking into account all considerations listed in Section 3 . For

hese reasons, “S8” is the final telescope layout proposed as the

aseline for the CTA southern site. 

. Northern site baseline array 

As discussed in Section 2 , the available telescope positions of

he CTA-North layout were mainly constrained by site topography,

uildings and roads. As Fig. 13 illustrates, the best overall

erformance from the simulated layouts is achieved by the widest

ST spacing considered. This large spacing does not have an

mpact on the low energy performance while guaranteeing the

est sensitivity at higher energies. An even wider spacing, while

ossible for some of the telescopes, is forbidden by the logistical

onstraints of the site. 

The position of the four LSTs was fixed by orography and

xisting constraints, with LST-1 already under construction. Several

olutions are still possible for alternative MST layouts, some of

hich are shown in Fig. 14 , maintaining the same inter-telescope

istance. All these alternative layouts achieve similar performance,
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Fig. 14. Several layouts proposed as baseline arrays for the northern site, together with the position of buildings, roads, and the two MAGIC telescopes. The orography 

constraints are not shown. The layouts share the LST positions and roughly the same inter-telescope distances between MSTs. 



A. Acharyya, I. Agudo and E.O. Angüner et al. / Astroparticle Physics 111 (2019) 35–53 51 

Fig. 15. Relative PPUT values for several different candidates for the northern layout, relative to “N3”. The differences between the layouts are less than 5%. 
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Fig. 16. CTA differential sensitivity (multiplied by energy squared) compared to 

those of present day instruments (from [38] ): Fermi-LAT [39] , MAGIC [40,41] , H.E.S.S 

[42] ., VERITAS [43] , and HAWC [44] . 

c  

s  

o

 

i  

r  

a  

c  

F  

p  

u

 

t  

l  

b  

I  

M  

p  

t

s shown in Fig. 15 , while complying with the constraints imposed

y the site. 

. Conclusion 

The Cherenkov Telescope Array will be the next generation

amma-ray instrument in the VHE range. It will be composed of

wo separate arrays: the southern observatory will be installed at

aranal (Chile). The northern array, the construction of which has

lready started with LST-1, will be built on the island of La Palma

Spain). 

These baseline arrays are the result of a concerted effort

nvolving three different large-scale MC productions performed

uring the last several years. The main purpose of the last large-

cale production was to define the final layouts to be constructed

n both sites. As a result, a single layout (right of Fig. 12 ) is

roposed for CTA-South. It features a four LST rhombus layout

intermediate step between a square and a double-equilateral

riangle), an hexagonal MST layout, and SSTs homogeneously

istributed on a circle of about 1.1 km radius. Several similarly

erforming layouts are instead proposed for CTA-North ( Fig. 14 ).

iven the nearly identical performance of different layouts for CTA-

orth, the final layout will be fixed based on ease of construction,

nce a better understanding on the site constraints is attained. 

This study shows that the inter-telescope optimum distance

f the LSTs is between 100 and 150 m, with a rather flat low-

nergy performance over these values. The MSTs will provide

etter performance over the core-energy range of CTA when

istributed over a hexagonal grid slightly stretched by applying

n azimuthally-symmetric transformation, with inter-telescope 

istances ranging between 150 and 250 m. The SSTs, present in

he southern hemisphere site only, provide better performance in a

ayout with a strong scaling, with inter-telescope distances ranging

etween 190 and 300 m. 

While the main parameter used in the optimisation is

ifferential sensitivity over the different energy ranges, other

onsiderations were also taken into account. Apart from

onsidering the constraints imposed by the characteristics of

he selected sites, minor modifications were applied to the

aseline arrays to improve the performance of different staging

cenarios (slightly modifying the final LST layout), the cross-
alibration between different telescope types, and the stand-alone

ub-system performance (mainly by adding SSTs in the inner part

f the layout). 

All these layouts comply with the performance requirements

mposed by the CTA Consortium for both sites over the full energy

ange. CTA will outperform present day instruments by more than

n order of magnitude in sensitivity in the multi-TeV range, as

an be seen in Fig. 16 . The differential sensitivities presented in

ig. 16 , together with all the instrument response functions of the

roposed baseline arrays, are publicly available [38] and they were

sed in the study of CTA key science projects [8] . 

As shown in all the performance comparisons performed

hroughout this work, the optimisation reaches the few percent

evel in precision, showing that smaller modifications to these

aseline arrays will not lead to significant performance losses.

n addition, several different im plementations for the SST and

ST telescopes were tested and resulted in equivalent conclusions,

roving that this optimisation is also valid even if different

elescope designs undergo minor modifications. 
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