
The Astrophysical Journal, 746:122 (18pp), 2012 February 20 doi:10.1088/0004-637X/746/2/122
C© 2012. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

GAMMA-RAY BURST DYNAMICS AND AFTERGLOW RADIATION FROM ADAPTIVE MESH
REFINEMENT, SPECIAL RELATIVISTIC HYDRODYNAMIC SIMULATIONS

Fabio De Colle1, Jonathan Granot2,3,4, Diego López-Cámara5, and Enrico Ramirez-Ruiz1
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ABSTRACT

We report on the development of Mezcal-SRHD, a new adaptive mesh refinement, special relativistic hydrodynamics
(SRHD) code, developed with the aim of studying the highly relativistic flows in gamma-ray burst sources. The
SRHD equations are solved using finite-volume conservative solvers, with second-order interpolation in space and
time. The correct implementation of the algorithms is verified by one-dimensional (1D) and multi-dimensional
tests. The code is then applied to study the propagation of 1D spherical impulsive blast waves expanding in a
stratified medium with ρ ∝ r−k , bridging between the relativistic and Newtonian phases (which are described by
the Blandford–McKee and Sedov–Taylor self-similar solutions, respectively), as well as to a two-dimensional (2D)
cylindrically symmetric impulsive jet propagating in a constant density medium. It is shown that the deceleration to
nonrelativistic speeds in one dimension occurs on scales significantly larger than the Sedov length. This transition is
further delayed with respect to the Sedov length as the degree of stratification of the ambient medium is increased.
This result, together with the scaling of position, Lorentz factor, and the shock velocity as a function of time
and shock radius, is explained here using a simple analytical model based on energy conservation. The method
used for calculating the afterglow radiation by post-processing the results of the simulations is described in detail.
The light curves computed using the results of 1D numerical simulations during the relativistic stage correctly
reproduce those calculated assuming the self-similar Blandford–McKee solution for the evolution of the flow. The
jet dynamics from our 2D simulations and the resulting afterglow light curves, including the jet break, are in good
agreement with those presented in previous works. Finally, we show how the details of the dynamics critically
depend on properly resolving the structure of the relativistic flow.
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1. INTRODUCTION

Gamma-ray bursts (GRBs) are the most electromagnetically
luminous explosions in the universe. Their nonthermal and
highly variable gamma-ray emission implies that the emitting
region must be ultrarelativistic—moving with a very large
Lorentz factor, typically �100 and sometimes as high as �103,
in order to avoid excessive pair production at the source (e.g.,
Lithwick & Sari 2001; Granot et al. 2008; Abdo et al. 2009a,
2009b; Ackermann et al. 2010). At sufficiently large distances
from the source the GRB outflow decelerates as it drives a strong
relativistic shock into the surrounding medium (for reviews see,
e.g., Piran 2005a; Granot 2007). Synchrotron emission from this
long-lived external shock powers the GRB afterglow, which is
observed in the X-rays, optical or radio, typically over days
to months after the prompt gamma-ray emission. The peak
frequency of the afterglow emission shifts to lower energies
as the afterglow shock decelerates by sweeping up the external
medium (Rees & Meszaros 1992). This picture of a decelerating
relativistic expansion of the emitting region during the afterglow
phase is supported by direct measurements of the afterglow
image size at late times in the radio, using very long baseline
interferometric techniques, for GRB 030329 at z = 0.1685
(Taylor et al. 2004, 2005; Pihlström et al. 2007).

GRB activity manifests itself over a dynamical range of ∼13
decades in radius (Gehrels et al. 2009). The phenomena involve

different stages, which are usually modeled separately because
of their complexity. Let us consider these stages in turn, working
from the small scales to the large scales.

1.1. Jet Production and the Central Engine

GRBs are divided into two classes according to their duration
and spectral hardness (Kouveliotou et al. 1993). Long-duration
GRBs (lasting �2 s) are associated with Type Ic core-collapse
supernovae and thus with the death of massive stars (Stanek
et al. 2003; Hjorth et al. 2003; Woosley & Bloom 2006), while
the nature of short-duration GRB (lasting �2 s) progenitors is
still debated (Lee & Ramirez-Ruiz 2007; Nakar 2007), the most
popular model involving the binary merger of two compact stars
(Paczynski 1986; Eichler et al. 1989; Narayan et al. 1992).

In the collapsar model for long GRBs (Woosley 1993),
during the collapse of a massive Wolf-Rayet progenitor star a
black hole is formed, which rapidly accretes stellar envelope
material, launching a relativistic jet that penetrates the star
and eventually powers the GRB (Ramirez-Ruiz et al. 2002).
It has been modeled using numerical simulations, where a
jet is usually injected as an inner boundary condition at the
center of a collapsing massive star and bores its way out of the
progenitor star’s envelope (MacFadyen & Woosley 1999; Zhang
et al. 2003). Some simulations include a magnetic field (in an
ideal magnetohydrodynamical framework) and recently added
a general relativistic framework (Mizuno et al. 2004a, 2004b;
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Hawley & Krolik 2006; McKinney 2006; Nagataki et al. 2007;
Tchekhovskoy et al. 2008; Nagataki 2009; Barkov & Baushev
2011). The alternative model for the central engine of long GRBs
featuring the formation of a millisecond magnetar (i.e., a very
rapidly rotating highly magnetized neutron star; Usov 1992)
has also been studied numerically (Komissarov & Barkov 2007;
Bucciantini et al. 2007, 2008, 2009). Binary merger simulations
of two neutron stars or a neutron star and a black hole were
performed in the context of short GRBs (Lee & Ramirez-Ruiz
2002; Rosswog & Ramirez-Ruiz 2002; Rosswog 2005; Faber
et al. 2006; Oechslin & Janka 2006; Rezzolla et al. 2010). Recent
general relativistic magnetohydrodynamic (MHD) simulations
show that a relativistic jet can naturally form in such a scenario,
which may indeed power short GRBs (Rezzolla et al. 2011).
Similar simulations of relativistic jet formation from accretion
onto a black hole are routinely performed also in the context of
active galactic nuclei or microquasars (e.g., Meier 2003; Krolik
& Hawley 2010). Different processes have been suggested to
accelerate and collimate the jet: (1) thermal energy injected into
the jet by annihilation of neutrinos and anti-neutrinos from an
accretion disk (e.g., Fryer & Woosley 1998; Popham et al. 1999;
Rosswog et al. 2003; Lee et al. 2004; Lee & Ramirez-Ruiz 2006;
Chen & Beloborodov 2007); (2) rotational energy extracted
from the central black hole through the Blandford–Znajek effect
(Blandford & Znajek 1977; Meszaros & Rees 1997; Barkov &
Komissarov 2008); and (3) rotational energy extracted from the
accretion disk, coupled with a dynamically important magnetic
field (Blandford & Payne 1982; Proga et al. 2003; Lynden-Bell
2003; Uzdensky & MacFadyen 2006).

1.2. Jet Expansion and Deceleration

Once the GRB outflow transfers most of its energy to the
shocked external medium, it becomes dynamically subdominant
and the flow becomes insensitive to the exact composition or
initial radial structure of the original outflow. At this stage
a spherical flow approaches the Blandford & McKee (1976,
hereafter BMK) self-similar solution, losing memory of the
initial conditions and retaining memory only of the total energy.
The complete evolution of a spherical relativistic fireball,
including the acceleration, coasting, and deceleration phases,
has been studied numerically by Kobayashi et al. (1999) by
using one-dimensional (1D) spherical simulations.

When a nonspherical relativistic outflow (or jet) decelerates,
to zeroth order it locally resembles a section of the spherical
BMK solution characterized by the local value of the energy
per solid angle or isotropic equivalent kinetic energy, Ek,iso.
Once the Lorentz factor Γ drops to θ−1

0 , where θ0 is the initial
half-opening angle of an initially uniform jet with sharp edges,
the jet becomes causally connected in the lateral direction
and can in principal start spreading sideways significantly.
Simple analytic models argue that it should indeed quickly
spread sideways (Rhoads 1997, 1999; Sari et al. 1999), while
numerical simulations show that the lateral spreading is much
more modest, and the flow retains memory of θ0 for a long
time, which for typical values of θ0 in GRBs lasts up to
the nonrelativistic transition time (Granot et al. 2001; Granot
& Königl 2003; Cannizzo et al. 2004; Zhang & MacFadyen
2009).

The numerical simulations of jet dynamics during the after-
glow stage are usually done separately from the earlier stages
(of the jet formation, acceleration, and collimation), in order to
simplify these challenging numerical computations, which in-
volve a very large dynamical range. The most common initial

conditions for simulations of the GRB jet during the afterglow
stage are a conical wedge of half-opening angle θ0 taken out of
the spherical BMK solution (though in some cases a relativis-
tic cold shell or blob is used instead). Since the angular size
of regions that are casually connected in the lateral direction
is ∼1/Γ, such a BMK wedge should not evolve significantly
while its Lorentz factor is Γ � θ−1

0 , suggesting that the sub-
sequent evolution should be insensitive to the exact choice of
initial Lorentz factor Γ0 in the limit where Γ0 � θ−1

0 .
For an ultrarelativistic blast wave most of the energy in the

shocked (downstream) region is within a thin layer behind the
shock transition, whose width is Δ ∼ 0.1R/Γ2 in the lab frame
(i.e., the rest frame of the external or upstream medium, which
in our case is also that of the central source), which is hard
to resolve properly for large initial Lorentz factors (see, e.g.,
Granot 2007). Therefore, most simulations use Γ0θ0 ∼ 3–4
rather than the ideal choice of Γ0θ0 � 1, along with values
of θ0 that are not very small (usually θ0 = 0.2 and Γ0 ∼ 20),
despite the fact that the actual initial Lorentz factors at the onset
of the afterglow are estimated to be at least a few hundred (e.g.,
Lithwick & Sari 2001), while the values of θ0 inferred from
afterglow observations (e.g., Frail et al. 2001) can be as low as
∼0.03–0.05 (or as high as �0.5).

1.3. Afterglow Jet Simulations: Previous Work and Goals

Since afterglow emission is thought to be predominantly syn-
chrotron radiation from the shocked external medium, then
accurately inferring the properties of the original relativistic
outflow and the external medium from afterglow observations
requires an accurate modeling of the dynamics. The jet numer-
ical simulations and calculations of the corresponding after-
glow emission (Granot et al. 2001) have recently been extended
to well within the nonrelativistic stage (e.g., Zhang &
MacFadyen 2009; van Eerten et al. 2010; Wygoda et al. 2011;
van Eerten & MacFadyen 2011). Following the dynamics from a
highly ultrarelativistic initial Lorentz factor (Γ0 > 20, for which
Δ0/R0 ∼ 10−4(Γ0/30)−2) down to highly Newtonian velocities
(v < 0.01c) requires a very large range of spatial scales, for
which an adaptive mesh refinement (AMR) code is necessary
in order to properly calculate the multi-dimensional flow dy-
namics. Granot et al. (2001) were the first to study this problem
numerically by using multi-dimension numerical simulations
and found that the GRB jet sideways expansion is slower than
expected from analytical models. These results were later con-
firmed by Zhang & MacFadyen (2009), who followed the evo-
lution of the GRB jet up to the nonrelativistic phase by running
high-resolution two-dimensional (2D) simulations. Simulations
using similar initial conditions were also run by Meliani &
Keppens (2010), who found that the shock front becomes un-
stable at high values of the Lorentz factor, Γ � 15, but the
instabilities quickly decay when the jet decelerates to Γ � 10.

All the multi-dimensional numerical simulations of afterglow
jets have so far assumed a uniform external medium, even
though a stratified external medium is expected for the stel-
lar wind of a massive star long GRB progenitor (Chevalier &
Li 2000; Panaitescu & Kumar 2000; Ramirez-Ruiz et al. 2001,
2005). This was partly motivated by the faster deceleration of
the afterglow shock with radius in a uniform external medium
compared with a stratified one, which reduces the required dy-
namical range of the simulations. Moreover, magnetic fields
may also affect the jet dynamics (in addition to their effect
on the afterglow synchrotron radiation). Mimica et al. (2009,
2010) have used 1D simulations to study the deceleration of
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magnetized GRB ejecta propagating into a uniform ambient
medium and showed that while the late evolution of strongly
magnetized shells resembles that of hydrodynamic shells, the
magnetization plays an important role in the onset of the for-
ward shock emission. Mimica & Giannios (2011) computed the
afterglow emission produced by a GRB ejecta decelerating into
a realistic external medium by running 1D spherical simula-
tions. However, multi-dimensional simulations are necessary in
order to fully capture the magnetic field dynamics, such as the
generation of turbulence by the MHD Kelvin-Helmholtz (Zhang
et al. 2009) or Richtmyer–Meshkov (Goodman & MacFadyen
2008) instabilities and the consequent magnetic field amplifica-
tion (Inoue et al. 2011; Mizuno et al. 2011). Actually, Granot
et al. (2011) have recently shown that even in 1D one can-
not realistically model the deceleration stage separately from
the acceleration stage if the outflow is initially highly magne-
tized and accelerates under its own magnetic pressure. Instead,
a full simulation of the acceleration and deceleration is needed,
requiring a very large dynamical range that is numerically
challenging.

With the aim of addressing these questions and perhaps also
possible applicability to earlier stages of the jet dynamics (such
as its acceleration or propagation within the progenitor star),
we have developed a new AMR, relativistic hydrodynamic
code. While the code developed is similar in several aspects
to previous SRHD-AMR codes (e.g., Hughes et al. 2002;
Anninos et al. 2005; Zhang & MacFadyen 2009; Meliani et al.
2007; Morsony et al. 2007; Wang et al. 2008), we consider it
important to present a detailed, self-contained description of
the hydrodynamic code and the matching radiation code, along
with detailed tests. The paper is organized as follows. Sections 2
and 3 describe in detail, respectively, the special relativistic
hydrodynamics (SRHD) code and the radiation code used to
calculate the observed afterglow emission (by post-processing
the outcome of the SRHD simulation). Standard tests used to
verify the SRHD code are presented in Appendix B, while the
correct implementation of the radiation code is discussed in
Section 4. Section 4 presents a detailed study of the propagation
of a relativistic, purely hydrodynamic ejecta into a 1D stratified
medium and in a multi-dimensional homogeneous medium
together with the resulting light curves. Finally, Section 5
presents our conclusions. Simulations of the propagation of jets
into a stratified medium and the inclusion of magnetized flows
will be addressed in future work.

2. NUMERICAL CODE

2.1. Relativistic Hydrodynamic Equations

The SRHD equations in conservative form (e.g., Anile 1989)
can be written as follows:

∂D

∂t
+ ∇ · ( D�v ) = 0 (1)

∂ �S
∂t

+ ∇ · (�S�v + pI) = 0 (2)

∂τ

∂t
+ ∇ · (τ �v + p�v) = 0, (3)

where p is the thermal pressure, �v = �βc is the flow veloc-
ity (c being the speed of light), and I is the identity matrix.
These equations represent the conservation of rest mass (1),

momentum (2), and energy (3). The conserved variables
(D, �S, τ ) correspond to the lab frame rest mass, momentum,
and energy (excluding rest mass) densities, respectively. They
are related to the primitive variables (ρ, �v, p) by the following
relations:

D = ρΓ, (4)

�S = DhΓ�v, (5)

τ = DhΓc2 − p − Dc2, (6)

where Γ = (1 − β2)−1/2 is the Lorentz factor, ρ is the proper
rest-mass density, and h is the specific enthalpy. The SRHD
system of equations is closed by the equation of state (EOS),
relating h to p and ρ. Note that by explicitly subtracting the
rest mass in the definition of the lab frame energy density τ
in Equation (6), the nonrelativistic hydrodynamic equations are
properly recovered when β � 1.

2.2. Integration Methods

The SRHD Equations (1)–(3) form a hyperbolic system
of equations and can be solved by using methods similar to
those developed for classical nonrelativistic gas dynamics (for
a review see, e.g., Toro 2008). Without loss of generality, the
solution of the hyperbolic system of equations

∂u

∂t
+ ∇ · �f = 0 (7)

is given in 1D (the generalization to multi-dimensions is
straightforward) by

Un+1
i = Un

i − Δt

Δxi

(
F

n+1/2
i+1/2 − F

n+1/2
i−1/2

)
, (8)

where xi represents the position of the center of the cell i with
volume Δxi = xi+1/2 − xi−1/2, xi±1/2 are the positions of the
interfaces between the cells xi and xi±1, and

Un
i = 1

Δxi

∫ xi+1/2

xi−1/2

ui(t
n, x)dx (9)

F
n+1/2
i±1/2 = 1

Δt

∫ tn+1

tn

f (t, xi±1/2)dt (10)

are the volume average of the conservative variables and their
time-averaged fluxes.

While Equation (8) represents an exact solution of the
corresponding partial differential equation, an approximation
is introduced when the fluxes (Equation (10)) are computed.
Because an exact solver is in general very expensive, in the
current version of the code we have implemented the simple
and computationally efficient relativistic extension (Schneider
et al. 1993) of the Harten, Lax, and van Leer (HLL) method
(Harten et al. 1983).

It is well known that the HLL method does not resolve
properly the contact discontinuity, and it has an intrinsic
high level of numerical diffusivity, while other methods (e.g.,
the HLL-Contact-Discontinuity or HLLC method; Mignone
& Bodo 2005) properly reconstruct the contact discontinuity,
producing results with significantly lower dissipation. On the
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other hand, being more diffusive, the HLL method is also
more “robust,” very rarely producing unphysical results such
as negative pressures or imaginary Lorentz factors. In addition,
a low dissipation method may produce undesirable effects, such
as a “carbuncle” artifact along the axis of propagation of strong
shocks (see the discussion by Wang et al. 2008).

Second-order accuracy in time and space is obtained by em-
ploying a Runge–Kutta integrator and by a spatial reconstruc-
tion of the primitive variables (van Leer 1979), except in shocks
where the methods drop to first order (in space) by a limiter.
Different limiters are implemented, including the “minmod”
(being the most diffusive), UMIST, Superbee, and the less dif-
fusive “monotonized central difference” limiter.

2.3. Extension to Cylindrical and Spherical Coordinates

The extension to cylindrical and spherical coordinates is
treated very carefully in the code. For instance, in 2D (r, θ )
spherical coordinates, the equations read

∂U

∂t
+

1

r2

∂(r2F )

∂r
+

1

r sin θ

∂(G sin θ )

∂θ
= S

r
, (11)

where U, F, G, and S can be easily derived from
Equations (1)–(3). We note that a simple cell-center discretiza-
tion of this system of equations introduces large numerical errors
when differencing. In particular, it does not preserve stationary
initial conditions to machine accuracy. As an example, if one as-
sumes static initial conditions, such as ∂p/∂r = 0, ρ constant,
and �v = 0, these are preserved in the code if, e.g., the rela-
tion (easily derived from the θ -component of the momentum
equation)

1

r sin θ

∂(p sin θ )

∂θ
= p

r

cos θ

sin θ
(12)

is held to machine accuracy. A simple centered discretization
gives

1

sin θj

sin θj+1/2 − sin θj−1/2

θj+1/2 − θj−1/2
	= cos θj

sin θj

, (13)

where θj is evaluated at the center of the cell, while θj±1/2 is
evaluated at the interface between different cells, and it does not
preserve the initial conditions.

A way to minimize numerical errors when differencing
Equation (11), especially near coordinate singularities, is by
a finite-volume discretization (e.g., Falle 1991; Li & Li 2003),
that is, by averaging the variables over the cell volume. Given,
for instance, the cell centered in (i, j ) and with nodes located at
(i ± 1/2, j ± 1/2), the value of the quantity A averaged over the
cell volume is given by

〈A〉 =
∫

sin θdθ
∫

Ar2dr∫
sin θdθ

∫
r2dr

. (14)

With this definition, radial and polar derivatives are ap-
proximated by (taking A = (1/r2)((∂(r2F ))/∂r) and A =
(1/(r sin θ ))((∂(G sin θ ))/∂θ), respectively)

1

r2

∂(r2F )

∂r
≈ δi(r2F )

δi(r3/3)
,

1

r sin θ

∂(G sin θ )

∂θ
≈ δ(G sin θ )

−δ(cos θ )

δ(r2/2)

δ(r3/3)
, (15)

where δi(f ) = fi+1/2 − fi−1/2, while the source terms are
discretized by assuming (taking A = 1/r and A = cos θ/sin θ ,

respectively)

1

r
≈ δi(r2/2)

δi(r3/3)
,

cos θ

sin θ
≈ δ(sin θ )

−δ(cos θ )
. (16)

It is easy to verify that, written in this form, Equation (12)
preserves static initial conditions to machine accuracy.

2.4. Equation of State

The EOS relates the enthalpy to the pressure and density. In
the case of a relativistic perfect gas it takes the form (Synge
1971)

h = K3(1/Θ)

K2(1/Θ)
, (17)

where Θ = p/(ρc2) and Ki is the ith order of the modified
Bessel functions of the second kind.

As the evaluation of the enthalpy from Equation (17) is
computationally expensive (see, e.g., Falle & Komissarov 1996),
simplified relations have been used, the simplest being the γ̄ -law
EOS:

h = 1 +
γ̄

γ̄ − 1
Θ, (18)

with a constant value of the adiabatic index γ̄ fixed and equal
to 4/3 or 5/3, valid only in the limit of ultrarelativistic or
subrelativistic fluids, respectively.

Mignone & Bodo (2005) proposed the EOS (see also
Mathews 1971):

h = 5

2
Θ +

3

2

√
Θ2 +

4

9
, (19)

which, in addition to approximating Equation (17) within 2%,
also satisfies the Taub (1948) inequality

(h − Θ)(h − 4Θ) � 1 (20)

in accordance with relativistic kinetic theory.
More recently, Ryu et al. (2006) proposed a simpler and better

approximation to the Synge EOS (accurate to within 0.5%),
which also satisfies the Taub inequality (Equation (20)), given
by

h = 2
6Θ2 + 4Θ + 1

3Θ + 2
. (21)

The implementation of these EOS is straightforward, and unless
stated otherwise, in this paper we use the one derived by Ryu
et al. (2006).

2.5. Converting Conserved to Primitive Variables

The increased level of complexity in solving the SRHD equa-
tions when compared with the corresponding nonrelativistic hy-
drodynamic equations arises mainly from the lack of simple
closed expressions relating conserved (τ , �S, D) and primitive
(p, �v, ρ) variables. This requires the primitive variables to be
computed from the conserved variables by a nonlinear iteration.

Among others, Noble et al. (2006) studied several algorithms
to convert conserved to primitive variables for the case of
a γ̄ -law EOS. Ryu et al. (2006), for the EOS defined in
Equation (21), applied a Newton–Raphson method (NRM) to
an 8th-order equation dependent on Γ. Mignone & McKinney
(2007), for the case of relativistic MHD with a general EOS,
derived an equation for W = Dρh and evaluated W by a
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Newton–Raphson iterative scheme, with the derivative dW/dp
given by using thermodynamic relations. Here, we present a
different implementation. Taking advantage of the existence of
a relation between the specific enthalpy h and Θ = p/(ρc2), we
solve the system of Equations (4)–(6) as a function of Θ by using
a standard NRM, and we then determine the other variables.

First, squaring the momentum equation (Sk = DhΓvk) we
get

Γ2 = 1 +
S2

D2h2
, (22)

with h = h(Θ). From the definition of specific enthalpy it
follows that h � 1. Therefore, Equation (22) leads to the
following inequality (e.g., Schneider et al. 1993):

1 � Γ2 � 1 +
S2

D2
. (23)

By using the relation p = DΘc2/Γ, we can then derive from
the definition of energy density (excluding rest mass, i.e.,
τ = DhΓc2 − p − Dc2) the following identity:

f (Θ) = h(Θ)Γ(Θ) − Θ
Γ(Θ)

− 1 − τ

Dc2
= 0. (24)

Equations (22) and (24) are then used, together with a standard
NRM, to determine Θ, with df/dΘ given by

df (Θ)

dΘ
= h′

Γ

(
1 − Θ

h

Γ2 − 1

Γ2

)
− 1

Γ
, (25)

where the relation Γ′ = −h′(Γ2−1)/(hΓ) has been used (derived
from Equation (22)), and h′ = dh/dΘ. The derivative dh/dΘ
depends on the particular EOS used and can be determined both
analytically and numerically. In the case of the Ryu et al. (2006)
EOS (Equation (21)), h′ = 4 − 6/(3Θ + 2)2.

We also note that df (Θ)/dΘ > 0 for every value of Θ (for
the EOS considered here). Therefore, as f (Θ → ∞) > 0, a
solution for the equation f (Θ) = 0 exists if f (Θ = 0) < 0,
which implies that the relation

D2 + S2 < (D + τ/c2)2 (26)

must hold in order to allow a solution with physically acceptable
values of Γ and p (that is, real values of Γ � 1 and p � 0).

As we have shown, this method can be easily applied to any
EOS of the form h = h(Θ). Furthermore, the guess used by
the NRM is provided by simply assuming Θ = 0. In this case,
setting a tolerance of 10−10 into the Newton–Raphson solver,
the method converges typically within ∼5 iterations. In very
rare cases when the NRM fails to converge, a bisection method
is used instead.

2.6. Adaptive Mesh Refinement

We have implemented the SRHD equations in the framework
of the AMR code Mezcal. In the code, a basic Cartesian grid is
built at the beginning of the simulation, and it is refined based
on the initial conditions and the subsequent evolution of the
flow. The uniform version of the code has been used in the past
to simulate MHD jets (e.g., De Colle & Raga 2005, 2006; De
Colle et al. 2008).

In the Mezcal code, the computational grid is divided in
“octs” (or blocks) of 2ndim cells, where ndim is the number of

dimensions of the problem. Each block has a series of pointers
to its vertexes, and each vertex has pointers to the octs sharing
that particular vertex. In this way, neighbor octs (along both the
axes and the diagonal direction) can be easily located in the
grid, facilitating the computation of the MHD solver (which,
in staggered mesh methods, is based on determining electric
fields at the cell vertexes). At a given time, each position on
the grid is covered by only one cell, i.e., there are no pointers
between “parent” and “sibling” usually present in other tree-
AMR codes (e.g., Berger & Oliger 1984; Khokhlov 1998).
Furthermore, there are no ghost cells in any of the blocks.
Although the use of pointers causes a small memory overload
(corresponding to four integers per cell in three dimensions),
that is largely compensated by the fact that, because of the small
block size, the grid covers only regions that effectively need to be
refined.

At every time step, all blocks are swept, and they are
refined/coarsened if a user-defined criterion is fulfilled. Typ-
ically, this criterion is based on the first or second derivative of
some variable, but more complex criteria can be easily imple-
mented. Once a list of blocks flagged for refinement has been
formed, the grid is checked for consistency. As the code main-
tains a maximum ratio of 2 in the size of neighbor cells, all
coarser neighbors of blocks are flagged for refinement. When
a block is refined, 2ndim new blocks are created, and the parent
block is eliminated. To avoid excessive memory fragmentation,
the block lists are periodically reordered.

Coarsening is allowed only when the 2ndim neighbor blocks
(previously produced by refining the same parent block) are
marked for derefinement during the same time step. We use
zeroth-order interpolation when refining and integrate the con-
served variables over the volume when coarsening, following
the strategy presented by Li & Li (2003).

To evolve the hyperbolic equations, the code employs a time
step common to all grid levels. While the use of a global time step
may potentially produce an important computational overload
(as large as 50%, depending on the problem; see, e.g., Dursi &
Zingale 2003) with respect to using a local time step, the local
time step method can represent an important bottleneck for
parallelization, as blocks on different levels must to be evolved
sequentially (and not in parallel). The fluxes are computed by
locating the neighbor blocks and considering the cells sharing
the same faces. When two blocks with different levels of
refinement share the same face, 2ndim−1 fluxes are computed
between the 2ndim−1 cells located on the higher level block and
the cell part of the block at the lower level of refinement. The
fluxes are then added to the conserved variables of the cells
sharing the common boundary.

The Mezcal code is parallelized by using the Message Passing
Interphase library. The communication time is minimized by
scheduling it in parallel with the calculation of the fluxes. This
is done by first computing the fluxes between blocks located
in each process and then, once the communication phase is
completed, computing the rest of the fluxes (between blocks
“inside” each process and ghost blocks). The load balancing is
achieved by ordering the blocks by a space-filling curve (Sagan
1994), dividing the total number of blocks between the different
processes, and moving blocks between unbalanced processes. In
the code, the Morton and the Hilbert space-filling curves (Sagan
1994) are implemented. The load balancing is typically applied
every ∼10 time steps and represents an overload of ∼1% of the
total computational time. The parallel scaling of the AMR code
is under evaluation and will be presented elsewhere.
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Figure 1. Contribution of a volume element dV to the flux observed by a
distant observer is dFν (n̂d) = Iν (n̂) cos θsd dΩsd ≈ Iν (n̂) dΩsd, where θsd is the
angle between the direction opposite to that at which the detector is pointing
(n̂d = Ẑ in the figure) and the local direction from a small emitting region
within the source (of volume dV ) to the detector. Since the observer is far
away, the direction of emission in the observer frame is almost parallel to the
z-axis.

3. CALCULATION OF THE EMITTED RADIATION FROM
A HYDRODYNAMIC SIMULATION

3.1. Calculation of the Observed Flux Density

Here we provide a detailed derivation of the procedure
required to calculate the radiation emitted from a relativistic
source, following Granot & Ramirez-Ruiz (2010), which is
based on previous work (Granot et al. 1999a, 1999b; Granot
& Königl 2003; Kumar & Granot 2003).

The geometry of the problem is shown in Figure 1. We denote
with θsd the angle subtended by the direction n̂d of the observer
(perpendicular to the differential area dA at the detector and
opposite to the direction at which the detector is pointing) and
the local direction n̂ from the relevant (contributing) part of the
source to the observer. In practice almost always θsd � 1,
as the source size is much smaller than the distance from
the source to the observer, so that cos θsd ≈ 1. We also
define dΩsd = dφsdd cos θsd as the differential solid angle
subtended by the contributing portion of the source as viewed
by the observer. Our aim is to calculate the observed flux
density, Fν = dE/dAdνdt , which is the energy per unit area,
frequency, and time in the direction n̂d normal to dA. From the
definition of the angular distance to the source, dA(z), where z
is the cosmological redshift, we have dΩsd = dS⊥/d2

A, where
dS⊥ is the differential area in the plane of the sky (normal
to n̂) sustained by the source. The angular distance to the
source is related to the luminosity distance, dL(z), by dA =
(1 + z)−2dL.

The differential contribution to the flux can be written as
dFν(n̂d) = Iν(n̂) cos θsd dΩsd ≈ Iν(n̂) dΩsd = IνdS⊥/d2

A.
Here, Iν(n̂) = dE/dAdΩdνdt is the specific intensity (the
energy per unit area, time, and frequency of radiation directed
within a small solid angle dΩ, which is centered on the
direction n̂) and should be evaluated at the location of the
observer.

For an optically thin source Iνz
= ∫

jνz
dsz, where jνz

=
dEz/dVzdΩzdνzdtz is the emitted energy per unit volume, solid
angle, frequency, and time, while dsz is the differential path
length along the trajectory of a photon that reaches the observer
at the time tobs when Fν is measured (the subscript z here denotes
quantities measured in the cosmological frame of the source).
Since Iν/ν

3, jν/ν
2, and ds/ν are Lorentz invariant (Rybicki &

Lightman 1979), we have Iν = (ν/νz)3Iνz
= (1 + z)−3

∫
jνz

dsz.
Therefore, dFν(n̂d) = IνdS⊥/d2

A = jνz
dVz (1 + z)/d2

L, where
dVz = dS⊥dsz is the volume element in the source cosmological
frame. Here, jνz

= [Γ(1− n̂ · �β)]−2 j ′
ν ′ is measured in the source

(cosmological) frame, while j ′
ν ′ is measured in the (comoving)

rest frame of the emitting material, which expands at a velocity

�βc in the source frame. Altogether, this gives6

Fν(tobs, n̂) = (1 + z)

d2
L(z)

∫
d4x δ

(
tz − n̂ · �r

c
− tobs

1 + z

)

× j ′
ν ′

Γ2(1 − n̂ · �β)2
, (27)

where tz is the coordinate time at the source’s cosmological
frame,

ν ′ = (1+z)Γ(1−n̂· �β)ν, tobs = (1+z)

(
tz − n̂ · �r

c

)
, (28)

and tobs = 0 corresponds to a photon emitted at the origin
(�r = 0) at tz = 0. Since d4x = dtzdVz = dtzdS⊥dsz =
dtzdS⊥ds ′(νz/ν

′) = dtzdV ′/Γ(1 − n̂ · �β) and 4πj ′
ν ′dV ′ =

dL′
ν ′ = 4π (dE′/dΩ′dν ′dt ′) is the differential of the

isotropic equivalent spectral luminosity in the comoving frame,
Equation (27) can be rewritten as

Fν(tobs, n̂) = (1 + z)

4πd2
L(z)

∫
dtz δ

(
tz − n̂ · �r

c
− tobs

1 + z

)

×
∫

dL′
ν ′

Γ3(1 − n̂ · �β)3
. (29)

There are two main approaches to calculate Fν from the
results of a numerical simulation. The first one relies on
numerically calculating Iν along different lines of sight (i.e.,
trajectories or world lines of photons that reach the observer)
and then computing dFν = IνdS⊥/d2

A. This was applied in both
analytical (Granot et al. 1999b; Granot & Sari 2002, hereafter
GS02) and numerical (Salmonson et al. 2006; van Eerten et al.
2010, 2011) calculations. Its main advantages are that it can
properly handle the optically thick regime, where the radiative
transfer equation is solved (analytically or numerically) along
each line of sight, and that it provides the observed image of
the source (i.e., Iν on the plane of the sky) as a by-product,
since it is used when calculating Fν . Its main disadvantage
for numerical simulations is that it requires accessing many
different “snapshots” of the simulation results, corresponding
to different lab frame times tz, for calculating each value of Iν ,
as it requires integration along the trajectories (or world lines) of
photons that reach the observer. The second approach, which we
adopt here, avoids this difficulty and was already used in several
previous studies (Granot et al. 2001, 2002; Granot & Königl
2003; Kumar & Granot 2003; Nakar & Granot 2007; Zhang &
MacFadyen 2009). In this approach the range of observed times,
tobs, is divided into a finite number (Nt) of time bins of width
Δtobs,i centered on tobs,i (for i = 1, . . . , Nt ). That is, the ith
bin corresponds to tobs,i − Δtobs,i/2 < tobs < tobs,i + Δtobs,i/2,
and there are no overlaps or gaps, so that tobs,i + Δtobs,i/2 =
tobs,i+1 − Δtobs,i+1/2 for 1 � i � Nt − 1. For many physical
systems (such as the ones we simulate), it is convenient to choose
logarithmically spaced bins, with a constant Δtobs,i/tobs,i . If the
time bins are sufficiently densely spaced, such that the second
time derivative (with respect to tobs) of Fν is correspondingly

6 Since θsd � 1, we make the approximation that n̂d ≈ n̂ and replace
Fν (tobs, n̂d ) with Fν (tobs, n̂), for simplicity. As long as θsd � Γ−1 (which is
also typically the case, in particular for cosmological GRBs), one can also
neglect the change in n̂ between the different parts of the source and replace n̂
with the constant n̂d .
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small, then Fν(tobs,i , n̂) can be approximated by its average value
within the ith time bin,

Fν(tobs,i , n̂) = 1

Δtobs,i

∫ Δtobs,i+Δtobs,i /2

Δtobs,i−Δtobs,i /2
dtobsFν(tobs, n̂). (30)

Now given that δ[f (x − x0)] = δ(x − x0)/|f ′(x0)| when f (x)
has a single root at x0, we obtain

Fν(tobs,i , n̂) = (1 + z)

d2
L(z)Δtobs,i

∫
d4x

∫ Δtobs,i+Δtobs,i /2

Δtobs,i−Δtobs,i /2
dtobs δ

×
(

tobs

1 + z
− tz +

n̂ · �r
c

)
j ′
ν ′

Γ2(1 − n̂ · �β)2

= (1 + z)2

d2
L(z)Δtobs,i

∫
d4x H

(
Δtobs,i

2(1 + z)
−

∣∣∣∣ tobs,i

1 + z
− tz +

n̂ · �r
c

∣∣∣∣
)

× j ′
ν ′

Γ2(1 − n̂ · �β)2

= (1 + z)

d2
L(z)Δtobs,z,i

∫
d4x H

(
Δtobs,z,i

2
−

∣∣∣∣tobs,z,i − tz +
n̂ · �r
c

∣∣∣∣
)

× j ′
ν ′

Γ2(1 − n̂ · �β)2
, (31)

where H (x) is the Heaviside step function and tobs,z ≡
tobs/(1 + z).

The results of a simulation that models the dynamics of a
physical system are naturally given at a finite number (nt) of
time steps (tz,j , where j = 1, . . . , nt ), i.e., “snapshots” of the
dynamics. At each snapshot the values of the hydrodynamic
variables are provided at a finite number of points, each
at the center of a computational cell, which represents a
finite three-dimensional (3D) volume ΔV (3) (generally different
from that of other cells for an AMR code). For this reason,
we assign to each snapshot time tz,j a finite time interval:
(3tz,1 − tz,2)/2 < tz < (tz,1 + tz,2)/2 and Δtz,1 = tz,2 − tz,1
for j = 1, (tz,j−1 + tz,j )/2 < tz < (tz,j + tz,j+1)/2 and
Δtz,j = (tz,j+1 − tz,j−1)/2 for 2 � j � nt − 1, and (tz,nt−1 +
tz,nt

)/2 < tz < (3tz,nt
− tz,nt−1)/2 and Δtz,nt

= tz,nt
− tz,nt−1 for

j = nt . Sufficiently dense and well-distributed snapshot times
are key to the flux calculations. Thus, the simulation provides a
finite number of four-dimensional (4D) space-time cells, which
together cover the finite simulated 4-volume (the time and 3D
volume covered by the simulation7). The 4-volume of the kth 3D
cell of the j th snapshot time is ΔV

(4)
jk = Δtz,j ΔV

(3)
jk . Given the

physical conditions in each such 4D space-time cell, we can then
calculate its local (comoving) emissivity, j ′

ν ′ (under appropriate
assumptions), and use Equation (31) in order to calculate its
contribution to the observed flux density, Fν . The proper way
of doing this is to calculate the fraction fijk of its 4-volume
ΔV

(4)
jk that falls within each observer time bin centered on tobs,i ,

resulting in the following discretized version of Equation (31):

Fν(tobs,i , n̂) = (1 + z)2

d2
L(z)Δtobs,i

∑
j,k

fijk ΔV
(4)
jk

j ′
ν ′,jk

Γ2
jk(1 − n̂ · �βjk)2

,

(32)
where the subscript “jk” indicates that the relevant quantities are
evaluated at the appropriate cell, centered on (tz, �r) = (tz,j , �rjk).

7 Note that usually even in a 1D or 2D simulation represents a 3D volume
given the relevant assumed symmetry of the problem.

Since the order of the summation is not important, it is much
more convenient to evaluate the contributions of each 4D cell
according to the order at which it is stored. Since it is not
always convenient and may cost additional computational time
to calculate all of the coefficients fijk, one might further simplify
Equation (32) by attributing all of the contribution from any
given 4D cell to a single observer time interval, corresponding
to that of the cell’s center:

ΔFν,i,jk(n̂) = (1 + z)2

d2
L(z)

ΔV
(4)
jk

Δtobs,i

j ′
ν ′,jk

Γ2
jk(1 − n̂ · �βjk)2

for

∣∣∣∣ tobs,i

1 + z
− tz,j +

n̂ · �rjk

c

∣∣∣∣ <
Δtobs,i

2(1 + z)

= (1 + z)

d2
L(z)

ΔV
(4)
jk

Δtobs,z,i

j ′
ν ′,jk

Γ2
jk(1 − n̂ · �βjk)2

for

∣∣∣∣tobs,z,i − tz,j +
n̂ · �rjk

c

∣∣∣∣ <
Δtobs,z,i

2
. (33)

Finally, one could simplify things even further by assuming an
isotropic emission in the fluid (comoving) rest frame, and then
j ′
ν ′(n̂′) = dE′/dV ′dΩ′dν ′dt ′ can be replaced by P ′

ν ′/4π , where
P ′

ν ′ = dE′/dV ′dν ′dt ′. We currently make this simplifying
assumption.

For 2D jet simulations, which assume an axisymmetric flow,
the jet symmetry axis is the z-axis and it is convenient to choose
the x-axis along the n̂–ẑ plane, so that n̂ may be easily expressed
in terms of the viewing angle θobs (where cos θobs = n̂ · ẑ),

n̂ = x̂ sin θobs + ẑ cos θobs. (34)

Thus, in spherical (r, θ, φ) or cylindrical (z, ρ, φ) coordinates
(with βφ = 0), we have

n̂ · �r = r(sin θ cos φ sin θobs + cos θ cos θobs)

= ρ cos φ sin θobs + z cos θobs,

n̂ · �β = (βr sin θ + βθ cos θ ) cos φ sin θobs

+ (βr cos θ − βθ sin θ ) cos θobs

= βρ cos φ sin θobs + βz cos θobs. (35)

3.2. Calculation of the Observed Image

The observed image can be calculated by dividing the plane
of the sky (i.e., the plane normal to n̂) into bins or 2D “pixels”
and assigning the contribution ΔFν,jk from each computational
4D cell to the appropriate pixels (or pixel), where the conversion
from flux to specific intensity (which is relevant for the image
calculation) is done by using the relation dFν = IνdS⊥/d2

A, so
that the intensity contribution to the lth pixel whose area is ΔS⊥,l

would be

ΔIν,il,jk(n̂) = d2
A

ΔFν,i,jk(n̂)

ΔS⊥,l

= (1 + z)−2ΔV
(4)
jk

ΔS⊥,lΔtobs,i

j ′
ν ′,jk

Γ2
jk(1 − n̂ · �βjk)2

= (1 + z)−3ΔV
(4)
jk

ΔS⊥,lΔtobs,z,i

j ′
ν ′,jk

Γ2
jk(1 − n̂ · �βjk)2

. (36)

The assignment of the contribution to the appropriate pixel
requires a parameterization of the plane of the sky. For this
purpose we use a rotated reference frame denoted by a twiddle,
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where ỹ = y and the z̃-axis points to the observer (in the
direction of n̂),

x̃ = x cos θobs − z sin θobs

= r(sin θ cos φ cos θobs − cos θ sin θobs)

= ρ cos φ cos θobs − z sin θobs,

ỹ = y = r sin θ sin φ = ρ sin φ, ρ̃ =
√

x̃2 + ỹ2, (37)

tan φ̃ = ỹ

x̃
= sin θ sin φ

sin θ cos φ cos θobs − cos θ sin θobs

= ρ sin φ

ρ cos φ cos θobs − z sin θobs
.

For an axisymmetric flow the image is invariant to ỹ →
−ỹ or equivalently to φ̃ → −φ̃, i.e., Iν(tobs, n̂, x̃, ỹ) =
Iν(tobs, n̂, x̃,−ỹ) and Iν(tobs, n̂, ρ̃, φ̃) = Iν(tobs, n̂, ρ̃,−φ̃).8 A
2D simulation (whether in spherical or cylindrical coordinates)
provides 2D snapshots of the dynamics, and each 2D com-
putational cell (not counting the time dimension) needs to be
transformed into one or more 3D cells. For the special case of
an observer along the jet (or flow) symmetry axis, correspond-
ing to θobs = 0, the contribution to the observed emission (i.e.,
to Iν or Fν) becomes independent of φ̃, which in this case is
equal to φ, so that the image has circular symmetry (Iν becomes
independent of φ̃) and a single bin in φ becomes sufficient for
the calculation. For θobs > 0, however, one needs to artificially
produce a large number of bins in φ, each corresponding to a
3D cell, which together represent a single 2D computational re-
gion. The choice of binning should be done wisely, such that the
Doppler factor does not vary by a large factor between neighbor-
ing bins (in order to calculate the observed radiation accurately
enough), and the bin size should not be too coarse (as to cause
excessive graininess in the calculated images or light curves),
while having a reasonable number of bins (in order for the com-
putational time not to be too large, especially for high-resolution
simulations). Please note that since the contribution to the flux
is invariant to φ → −φ, it is enough to choose values in the
range 0 < φ < π and give each resulting 3D or 4D cell a double
weight when calculating Fν (since φ1 < φ < φ2 also represents
−φ2 < φ < −φ1).

3.3. Synchrotron Radiation

The main purpose of the current radiation calculations is to
check the effect of the dynamics on the afterglow light curves.
Because of this, we intentionally use a very simple model for
the radiation mechanism (following Granot et al. 1999a), which
features synchrotron emission and ignores inverse Compton
scattering or its effects on the synchrotron emission through the
additional electron cooling that it causes. It also ignores self-
absorption, and the local emission spectrum is approximated
by a broken power law. The magnetic field is assumed to hold
everywhere a fraction εB of the proper internal energy density,
e′, i.e., B ′2/8π = εBe′. Just behind the shock all electrons are
assumed to be accelerated into a power-law energy distribution,

N (γe) ∝ γ −p
e for γe > γm =

(
p − 2

p − 1

)
εee

′

n′
emec2

. (38)

8 This can also be seen from Equation (35), where the dependence on φ is
only through cos φ, which is invariant to φ → −φ, which, according to
Equation (37), corresponds to ỹ → −ỹ or φ̃ → −φ̃.

The local emissivity P ′
ν ′ is taken to be a broken power law,

P ′
ν ′

P ′
ν ′,max

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(ν ′/ν ′
m)1/3 ν ′ < ν ′

m < ν ′
c,

(ν ′/ν ′
c)1/3 ν ′ < ν ′

c < ν ′
m,

(ν ′/ν ′
m)(1−p)/2 ν ′

m < ν ′ < ν ′
c,

(ν ′/ν ′
c)−1/2 ν ′

c < ν ′ < ν ′
m,

(ν ′/ν ′
m)(1−p)/2(ν ′/ν ′

c)−1/2 ν ′ > max(ν ′
m, ν ′

c),
(39)

with the following flux normalization and break frequencies:

P ′
ν ′,max = 0.88

512
√

2π

27

(
p − 1

3p − 1

)
q3

e

mec2
(εBe′)1/2n′

e, (40)

ν ′
m = 3

√
2π

8

(
p − 2

p − 1

)2
qe

m2
ec

5
ε

1/2
B ε2

e (e′)5/2(n′
e)−2, (41)

ν ′
c = 27

√
2π

128

qemec

σ 2
T

(εBe′)−3/2

(
Γ
tz

)2

. (42)

Electron cooling is treated in an approximate manner, by
assuming that everywhere the electrons have cooled at their
current local cooling rate over the dynamical time, which is
in turn approximated as t ′dyn ≈ tz/Γ, so that the expression in
Equation (42) is simply derived from

γc = 3mec

4σT εBe′t ′dyn

≈ 3mecΓ
4σT εBe′tz

, ν ′
c = 3qeB

′γ 2
c

16mec
. (43)

A more proper treatment of the electron cooling would require
following each fluid element from the point where it crosses
the shock and the electrons are accelerated and solving the
equation for the subsequent evolution of their energy distribu-
tion, accounting for their radiative losses and adiabatic gains
or losses. This has been done analytically for the BMK self-
similar solution (Granot & Sari 2002) and numerically using a
1D Lagrangian code (Nakar & Granot 2007). It has also been
implemented in a Eulerian code (van Eerten et al. 2010, 2011),
in a somewhat approximate fashion as a result of the difficulty in
accurately tracking the electron energy distribution in each fluid
element. The differences between our treatment of the electron
cooling and the results presented by Granot & Sari (2002) are
shown in detail in Appendix A.

It is also possible to use an even simpler emission model that
ignores electron cooling altogether by assuming ν ′, ν ′

m < ν ′
c

in the broken power laws of Equations (39). In this paper
electron cooling is always implemented in our calculations. In
an accompanying paper (De Colle et al. 2011), however, in some
cases we also use an even simpler emission model that ignores
electron cooling altogether,

P ′
ν ′

P ′
ν ′,max

=
{

(ν ′/ν ′
m)1/3 ν ′ < ν ′

m,

(ν ′/ν ′
m)(1−p)/2 ν ′ > ν ′

m.
(44)

4. APPLICATION: EVOLUTION OF A RELATIVISTIC
IMPULSIVE BLAST WAVE

In this section, we use our AMR+radiation code to study
the evolution of impulsive relativistic blast waves both in 1D
(a spherical blast wave propagating into either a uniform or
a stratified medium, bridging from the Blandford–McKee to
the Sedov–Taylor (ST) self-similar solutions) and in 2D (an
axisymmetric jet propagating into a uniform medium).
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4.1. Self-similar Solution

Blandford & McKee (1976) studied the self-similar propaga-
tion of an ultrarelativistic spherical impulsive blast wave in a
medium with a density

ρk(r) = Akr
−k. (45)

They showed that an appropriate choice of the similarity
variable is

χ = 1 + 2(4 − k)Γ2
sh

(
1 − r

R

)
, (46)

where r and R are the radial positions (in polar coordinates) of
the fluid element and of the shock front, respectively; Γsh is the
Lorentz factor of the shock front, which, as that of the fluid (and
all of the velocities), here is measured in the rest frame of the
upstream medium ahead of the shock, and it is related to the
Lorentz factor of the shocked fluid just behind the shock front
by Γ(χ = 1) = Γsh/

√
2. Blandford & McKee (1976) showed

that the position of the shock front is given by

R = ct

[
1 − 1

2(4 − k)Γ2
sh

]
, (47)

and its Lorentz factor can be written as

Γ2
sh = (17 − 4k)E

8πρk(R)c5t3
, (48)

where ρk(R) = AkR
−k is the density of the ambient (unshocked)

medium at the position of the shock front and E is the energy in
the blast wave.

The lab frame time corresponding to a given Lorentz factor of
the shock front is therefore (see Equations (45), (47), and (48))
given by

t ∼= R

c
∼= 1

c

[
(17 − 4k)E

8πAkc2Γ2
sh

]1/(3−k)

. (49)

The post-shock Lorentz factor Γ, proper rest-mass density ρ,
and pressure p are given by

Γ = 1√
2

Γshχ
−1/2, (50)

ρ = 23/2ρk(R)Γshχ
−(10−3k)/[2(4−k)], (51)

p = 2

3
ρk(R)c2Γ2

shχ
−(17−4k)/[3(4−k)]. (52)

The relativistic blast wave typically begins to slow down when
it sweeps up an amount of mass with a rest-mass energy of order
of the kinetic energy of the blast wave. That corresponds to a
distance (Sedov length) of

LS =
[

(3 − k)E

4πAkc2

]1/(3−k)

, (53)

where the jet energy E is the energy (excluding rest energy) in
the flow. For a nonspherical flow, or a jet, to zeroth order E in
Equations (48) and (49) can be replaced by the local value of
the isotropic equivalent energy in the flow, Eiso = 4π (dE/dΩ),
as long as it does not vary significantly over an angular scale of
the order of the inverse of the local value of the Lorentz factor

of the fluid just behind the shock. In particular, for a double-
sided conical wedge of half-opening angle θ0 taken out of the
BMK solution (or a uniform sharp-edged jet), which we later
use as the initial conditions of our 2D simulations, we have E =
(1 − cos θ0)Eiso ≈ (θ2

0 /2)Eiso ≈ 2 × 1051(θ0/0.2)2Eiso,53 erg,
where we have used a fiducial value of Eiso = 1053Eiso,53 erg,
typical for long-duration GRBs. Whether it is more appropriate
to use E or Eiso in Equation (53) for such a jet, i.e., at which
distance from the origin it becomes Newtonian, is a nontrivial
question, which is addressed in an accompanying paper (De
Colle et al. 2011).

In the nonrelativistic limit, the self-similar behavior of the
blast wave is described by the ST (Sedov 1959; Taylor 1950)
self-similar solution, with the position of the shock wave given
by

R ≈
[
αkEisot

2

Ak

]1/(5−k)

(54)

and the shock velocity given by vsh = dR/dt ∝ t−(3−k)/(5−k).
Approximated expressions for the post-shock density, pressure,
and velocity profiles in the ST regime are given, e.g., by Petruk
(2000). As there are not analytical solutions for the scaling
of density, pressure, and velocity in the post-shock region, it
is not possible to find a simple analytical expression for αk .
Based on the simulations presented in Section 4.2, we find
α

1/(5−k)
k = 1.15, 1.04, 0.78 for k = 0, 1, 2, respectively.

4.2. Initial Conditions

In this paper, we perform a series of 1D (with k = 0, 1, 2) and
2D (with k = 0) simulations of the propagation of impulsive
blast waves, including the transition from the relativistic to the
nonrelativistic phase. All simulations employ spherical (polar)
coordinates, using the HLL method (see Section 2.2) for the flux
calculation. The multi-dimensional simulations for the cases
k = 1, 2 are presented in an upcoming paper (De Colle et al.
2011).

The initial conditions of the problem depend on the values
of the following parameters: the isotropic energy of the blast
wave, Eiso, the initial Lorentz factor of the jet shock front, Γsh,0,
the density profile of the external medium (that is, the values
of k and of the normalization factor Ak), and the jet initial half-
opening angle, θ0 (in the 2D case). In all the simulations, the
initial profiles of density, pressure, and Lorentz factor (radial
velocity) in the post-shock region are set from the BMK self-
similar solutions, given by Equations (50)–(52). We initialize
the density of the ambient medium (in the case k = 0) as
A0 = ρ0 = n0mp = 1.67 × 10−24 g cm−3, and the pressure
as p = ηρ0c

2, with η = 10−10. The value of η does not
affect the outcome of the simulation as long as the Mach
number remains large, i.e., M ∼ η−1/2vsh/c � 1. As the
simulation continues to evolve well into the Newtonian regime,
this condition corresponds to vsh � 3 (η/10−10)1/2 km s−1.

In a first set of simulations, we study the deceleration of mildly
relativistic impulsive blast waves bridging from the BMK to the
ST self-similar solution. In the case k = 0, the initial conditions
are similar to those used by van Eerten et al. (2010). To determine
the density profile in the cases k = 1, 2, we fix the Sedov length
(Equation (53)) as LS(k) = LS(k = 0),

LS =
[

(3 − k)E

4πAkc2

]1/(3−k)

=
(

3E

4πA0c2

)1/3

(55)
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Figure 2. Adaptive grid structure for the initial condition of the two-dimensional
simulation of a relativistic blast wave. The blue color indicates the post-shock
region, while the green area represents the ambient (unshocked) medium.

(A color version of this figure is available in the online journal.)

and derive an expression for Ak as Ak = A0L
k
S(3 − k)/3.

Therefore,

ρ = A0
3 − k

3

(
r

LS

)−k

. (56)

We further assume Eiso = 1052 erg, corresponding to a Sedov
length of LS = 1.17 × 1018 cm and a Lorentz factor of the
shock of Γsh,0 = 10. To properly cover the deceleration to
nonrelativistic speeds (especially for the case k = 2), we
use a large spherical box of radial size Lr = 3 × 1020 cm
(corresponding to a size of ≈256LS). The simulation is stopped
at tfin = 500 yr.

In the case k = 0, the simulations begin at t0 = 1.19 × 107 s,
with a jet shock located at R0 = 3.56 × 1017 cm. The case
k = 1 corresponds to an initial time and jet shock radius given
by t1/t0 = R1/R0 = 0.53. The case k = 2, corresponding to
a steady spherically symmetric wind, has t2/t0 = R2/R0 =
0.074. The values assumed for the spherical wind can be
compared with those observed for Wolf-Rayet stars, whose
winds have large mass-loss rates of Ṁ ≈ 10−5 to 10−4 M� yr−1

and velocities vw ≈ 1000–2500 km s−1 (e.g., Chiosi &
Maeder 1986), giving nw(r) ≈ 0.45(r/1018 cm)−2(Ṁwr/3 ×
10−5 M� yr−1)(vwr/2×103 km s−1) cm−3, which is very similar
to the one used in the simulations.

The AMR code uses a basic grid of 1000 cells with a
maximum of 18 levels of refinement, corresponding to a
maximum resolution of Δrmin = 2.3 × 1012 cm. In a uniform
grid code, the same resolution would be achieved by using
1.3 × 108 cells.

In a second set of simulations, we test the radiation code
by running simulations of highly relativistic decelerating blast
waves (limited to the case k = 0) in both 1D and 2D. In these
simulations, we assume an isotropic energy of Eiso = 1053 erg,
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Figure 3. Density profiles normalized to the Lorentz factor and the local value
of the ambient medium density. The curves shown in the upper panel (k = 0)
correspond to t = t0 = 137 days and t = 1, 3, 20, 100, 500 yr. The central
panel (k = 1) includes also the profile at t0 = 81 days. The lower panel (k = 2)
includes also the profile at t0 = 20.3 days. The horizontal red line indicates
ρ/ρk(r)Γ = 4.

(A color version of this figure is available in the online journal.)

corresponding to a Sedov length of LS = 2.51 × 1018 cm
and a Lorentz factor of Γsh,0 = √

2 × 20. The simulations
begin at t0 = 1.277 × 107 s, with the shock initially located at
R0 = 3.83 × 1017 cm, and end at tfin = 150 yr. To properly
study its lateral expansion, an initial opening angle of θ0 = 0.2
rad (in the 2D case) is assumed for the jet.

The spherical box has a radial size of Lr = 1.1 × 1019 cm
and angular size (in the 2D simulation) Lθ = π/2. The AMR
code uses a basic grid of 100 cells along the radial direction
in both 1D and 2D and 4 cells along the θ direction in the
2D simulations. We run a series of simulations varying the
maximum number of refinement levels. The lowest resolution
simulation uses 10 maximum levels, while the highest employs
18 levels of refinement in 1D and 15 in 2D, corresponding to
a maximum resolution of Δrmin = 2.1 × 1011 cm in 1D and
Δrmin = 6.7 × 1012 cm, Δθmin = 2.4 × 10−5 rad (along r and θ )
in 2D. The structure of the grid at the beginning of the simulation
is shown in Figure 2 for the 2D run. In a uniform grid code, the
same resolution would be achieved by employing 5.2×107 cells
in 1D and ∼1011 cells in 2D.

To keep approximately constant the resolution of the rela-
tivistic thin shell Δ ∝ t4−k , the maximum number of levels
of refinement Nlevels is decreasing with time (Granot 2007) as
Nlevels = max[7, Nlevels,0 − (4 − k) log(t/t0)/ log(2)]. We refine
our adaptive mesh based on rest-mass density and energy gradi-
ents. The 1D simulations run in at most a few hours on a normal
workstation, while the 2D simulations need a few days on ∼100
processors.

4.3. One-dimensional Simulations of Trans-relativistic Blast
Waves Propagating in a Stratified Medium (k = 0, 1, 2)

During its deceleration, the shock front is typically resolved
with 3–4 cells (Figure 3), as is the case for most modern Eulerian
shock capturing schemes. The normalized lab frame density
behind the shock, given from the relativistic Rankine–Hugoniot
conditions for strong shocks (ρ/ρk(R)Γ = (γ̄ + 1/Γ)/(γ̄ − 1)),
remains approximately constant during the transition from
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Figure 4. Position of the shock front for the three cases k = 0, 1, 2
(top to bottom) along with the ultrarelativistic (Rsh = ct) and the ST

(Rsh = (
αkEisot

2/Ak

)1/(5−k)
) regimes. The ST curves assume α

1/(5−k)
k =

1.15, 1.04, 0.78 for k = 0, 1, 2, respectively. The gray curves are computed
from a semianalytical approximation based on energy conservation (see the text
for a detailed description).

(A color version of this figure is available in the online journal.)

relativistic to nonrelativistic regimes (see, e.g., Beloborodov
& Uhm 2006; van Eerten et al. 2010). Figure 3 shows that in
fact ρ/ρk(R)Γ ≈ 4 at different times and for different values
of k. The drop of the density profile in the post-shock region
approximately follows the BMK self-similar solution and is
therefore less steep with larger k (see Equation (51)). This figure
also shows that the deceleration process is slower for a more
stratified medium.

Figure 4 shows the evolution of the shock front radius for
different density stratifications. Both the ultrarelativistic (with
Rsh ≈ ct) and the nonrelativistic (R ∝ t2/(5−k)) analytical self-
similar solutions are properly recovered by the simulations. As
shown, e.g., by van Eerten et al. (2010) for the case k = 0,
the transition from relativistic to nonrelativistic phase happens
on scales much larger than Ls. If, for instance, we estimate
from Figure 4 the time it takes for the relativistic blast wave to
slow down to nonrelativistic speeds based on the intersection
between the relativistic and nonrelativistic self-similar curves,
we obtain values of ∼0.9 × 103, 1.2 × 103, and 2.7 × 103 days
for k = 0, 1, and 2, respectively. These values are much larger
than those computed by using the Sedov length (Piran 2005b),
tNR ∼ LNR/c = 450 days.

This result, together with the scaling of position, Lorentz
factor, and the shock velocity as a function of time and shock
radius, can be easily understood by a simple analytical argument
involving the conservation of energy. In fact, the energy is given
in the ultrarelativistic regime by

E = 8π

17 − 4k
Akc

2R3−kΓ2β2 (57)

and in the nonrelativistic limit by

E = (5 − k)2

4αk

Akv
2R3−k. (58)

As the energy has a common scaling in relation with the other
physical parameters (v, R), differing only in the constant of
proportionality, a simple interpolation between the two limits is

given by

E = R3−kβ2Γ2Akc
2

[
8π

17 − 4k
β2 +

(5 − k)2

4αk

(1 − β2)

]
. (59)

This equation can be easily written as a function of velocity
as

β2 = 2

1 + cNR(R/LS)3−k +
√

[1 − cNR(R/LS)3−k]2 + 4cR(R/LS)3−k
,

(60)
where cR = (2(3 − k))/(17 − 4k) and cNR =
((5 − k)2(3 − k))/16παk . This expression approximately gives
the dependence of v (or Γ) on the shock position, for every
choice of the blast wave energy and density stratification. For in-
stance, at R ∼ LS, Equation (60) gives vsh ∼ 0.83, 0.85, 0.89c
(or u = Γβ ∼ 1.46, 1.64, 1.99) for k = 0, 1, 2, respectively.
At this radius (and time) the shock is therefore still relativis-
tic, and the ST solution is not valid. The exact determination
of tNR depends, however, on the definition of the transition be-
tween the relativistic and the nonrelativistic flow (e.g., Ramirez-
Ruiz & MacFadyen 2010). If, for instance, we define tNR as the
time in which the asymptotic BMK solution and the ST power
laws are equal (i.e., ct/LS = [4παk/(3 − k)]1/(3−k)), we get
t ∼ 2.1tNR ∼ 9 × 102 days (k = 0), t ∼ 3tNR ∼ 3.4 yr (k = 1),
and t ∼ 6tNR ∼ 7.5 yr (k = 2). At this time the blast wave is
nonetheless still mildly relativistic (β = 0.51, 0.56, 0.63) and
the ST solution is not valid. If, on the other hand, we assume
that the ST solution becomes valid at a fixed (somehow arbi-
trary) speed of v/c � 1/3, we get t ∼ 3.6tNR ∼ 1.6 × 103 days
(k = 0), t ∼ 7tNR ∼ 8.6 yr (k = 1), and t ∼ 48tNR ∼ 59 yr
(k = 2) (Figure 4).

Equation (60), when rewritten in the form dR/dt = β(R),
admits a complex solution t = f (R) in terms of Appell
hypergeometric functions. The time dependence of the shock
position R = R(t) has been therefore more easily derived by
numerically integrating Equation (60), and it approximates the
position of the shock computed from the numerical simulation
within a maximum difference of 1%, 2%, 5% (for k = 0, 1, 2,
respectively).

While Figures 3 and 4 clearly show the validity of our im-
plementation for mildly relativistic and nonrelativistic speeds,
reproducing the correct BMK self-similar scaling during the
early stages of the simulation, when Γ � 10, is much more
challenging.

Figure 5 shows the initial density profile (for the case k = 0) in
the region around the position of the shock. A very large number
of levels of refinement must be used to properly initialize the
density, pressure, and Lorentz factor in the post-shock region.
For instance (Figure 5, upper panel), the initial steep density
profile is recovered with errors less than 10% only by using
resolutions corresponding to �18 levels of refinement.

While the BMK self-similar solution represents an exact so-
lution of the SRHD equations in the ultrarelativistic limit, the
particular discretization employed may not be the exact (numer-
ical) solution of the discretized equations. As a consequence, the
relaxation toward the numerical solution passes through the de-
velopment (see Figure 5, lower panel) of a spurious numerical
“precursor” propagating in front of the BMK shock if insuffi-
cient resolution is used. While the size of the precursor shock
drops effectively with resolution, it also produces a quick drop
in the maximum Lorentz factor behind the shock (owing to the
spreading of the initial Γ peak; see Figure 6). The Lorentz factor
eventually converges to the correct BMK solution at Γ ∼ 10 at
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Figure 5. Number density profile (in the lab frame) for different resolutions for
the case k = 0 at the beginning of the simulation (t = 148 days, upper panel)
and t = 156 days (lower panel).

(A color version of this figure is available in the online journal.)

the largest resolution used (18 levels of refinement). Figure 6
also shows the effect of decreasing the maximum level of res-
olution during the evolution of the simulation (Granot et al.
2001; Zhang & MacFadyen 2009; De Colle et al. 2011). As
can be appreciated from Figure 6, the decrease in the resolution
produces a slower convergence to the BMK solution. The time
evolution of Γ from Zhang & MacFadyen (2009) included in
Figure 6 is similar to our low-resolution (14 levels) 1D simula-
tion, corresponding approximately to the resolution achievable
in multi-dimensional simulations. The noise in the Zhang &
MacFadyen (2009) curve is due to a larger temporal sampling.
A proper treatment of the tiny ultrarelativistic post-shock region
would require a larger resolution or alternatively a much less dif-
fusive method, such as high-order (coupled to high resolution)
or Lagrangian–Eulerian methods (e.g., Kobayashi et al. 1999).

The specific numerical resolution required is determined by
the relevant structure one needs to resolve. The hardest to
resolve, in our case, is the initial BMK shell (Δ) at the initial time
(t0) or radius (R0). Its effective width does not have a unique
definition, but it can be parameterized as

Δ0 = a
R0

Γ2
sh(R0)

, (61)

where the numerical factor a can be evaluated using the BMK
self-similar solution.9 Defining Δ0 as the width of the region
behind the shock that contains a fraction f of the total energy
(E) or rest mass (M), respectively, results in

a = (1 − f )−α − 1

2(4 − k)
, αE = 3(4 − k)

17 − 4k
, αM = 4 − k

3 − k
. (62)

For f = 1/2, this gives aE = 0.0789, 0.103, 0.147 and
aM = 0.190, 0.305, 0.750 for k = 0, 1, 2, respectively.

One can then similarly express the numerical resolution in
terms of a parameter ares,

Δrmin = ares
R0

Γ2
sh(R0)

, (63)

9 Note that if one uses Γ(R0, χ = 1) instead of Γsh(R0) in Equation (61), then
the value of the numerical coefficient a would be smaller by a factor of two.
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Figure 6. Maximum Lorentz factor in the post-shock region (measured in the lab
frame) as a function of time. The simulations (with k = 0) start at t ∼ 147 days
with a Lorentz factor of 20. The curves shown correspond to the expected
BMK self-similar solution; 14, 16, and 18 levels of refinement with a fixed
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(A color version of this figure is available in the online journal.)
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a Lorentz factor between 1 and 20 (or between 1 and 200) is also shown in the
left (right) panels of the figure.

(A color version of this figure is available in the online journal.)

where Δrmin is the smallest resolution element in the radial
direction. Previous 2D jet numerical simulations with similar
initial conditions used k = 0. In Granot et al. (2001) the initial
resolution was rather poor, ares = 0.69, while in Zhang &
MacFadyen (2009) it was significantly improved, ares = 0.12.
Here, we use ares = 0.014 for k = 0, which represents an
order-of-magnitude improvement. For k = 1 and 2 we have
ares = 0.022 and 0.087, respectively.

Figure 7 shows that the light curve, computed by post-
processing the results of the simulations with our radiation code,
converges quickly except for tobs � 0.5 days, where part of the
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Figure 8. Lab-frame density stratification snapshots of the 2D simulation at 147 days (left), 256 days (center), and 372 days (right panel).

(A color version of this figure is available in the online journal.)

flux, which should be generated from regions with Γ ∼ 20,
is shifted to a lower tobs. That can be in part compensated by
adding the contribution coming from the jet decelerating with
20 � Γ � 200, computed by mapping in the radiation code a
BMK self-similar solution. As shown in Figure 7 (right), the
sum of the synthetic flux with 20 � Γ � 200 and the flux
computed from the results of the simulation with 1 � Γ � 20
produces a valley (shallower for increasing resolutions) for
tobs ∼ 1 day. This artificial feature is due to relaxation from
the initial conditions to the numerical solution and gradually
disappears as the resolution is increased. A comparison between
the light curve computed from the 1D simulation (with k = 0)
and the semianalytical calculations from Granot & Sari (2002)
is shown in Appendix A.

4.4. Two-dimensional Simulations for k = 0

Figure 8 shows snapshots representing the early evolutionary
stages of the jet density. During the relativistic phase, there is
only modest lateral expansion. As portions of the jet expand
laterally, a rarefaction front moves toward the jet axis. The
strong shear present at the contact discontinuity drives shearing
instabilities that have, however, a negligible effect on the shock
dynamics and afterglow radiation coming from the jet. At the
jet break time t = tJB ∼ 8.7 yr, the lateral expansion becomes
more vigorous, and at later stages (on times �tNR) the jet slowly
converges to a spherical shape. Although it is not possible
to make a quantitative comparison, our results qualitatively
resemble those of Zhang & MacFadyen (2009, see their Figure 2
for a direct comparison) as well as those of Granot et al. (2001).

While theoretical arguments (Gruzinov 2000; Wang et al.
2002) seem to indicate that the shock front should be stable
to linear perturbations for either a uniform or a wind density
profile of the ambient medium, recent simulations by Meliani

& Keppens (2010) observe the development of instabilities in
the shock front. The development of similar instabilities is also
observed by De Colle et al. (2011) relative to the case of a
stratified medium with k = 2, while it is not observed in
the simulations presented in this paper (despite using the same
HLL Riemann solver as Meliani & Keppens 2010 and similar
initial conditions), consistently with the results by Zhang &
MacFadyen (2009). The different results in the simulation seem
to imply a numerical origin for the instabilities observed by
Meliani & Keppens (2010), although further investigation is
needed to better understand the problem.

The afterglow light curves computed from our 2D jet simula-
tion assume that the observer is located along the jet symmetry
axis (θobs = 0). To facilitate comparison with the results of
Zhang & MacFadyen (2009), we choose the same parameters
for the afterglow calculation: εB = εe = 0.1, z = 1, and
p = 2.5, in addition to the same values for the parameters to
determine the hydrodynamics (Eiso = 1053 erg, next = 1 cm−3,
and θ0 = 0.2 rad).

As in the 1D case, the afterglow emission (Figure 9) shows
a shallow valley at t � 1 day, owing to a lack of resolution
into the region immediately behind the high-relativistic shock.
Figure 9 (lower panel) shows a comparison with a 2D “wedge”
(computed by using a 1D simulation mapped on a wedge
with θ � 0.2; the finite resolution of this 1D simulation is
affecting the light curves at the earliest times as shown in
Figure 9). Before the jet break time, the 2D light curve from
the simulation is very similar to that from a 2D wedge with the
same (initial) isotropic energy, indicating that little sideways
expansion takes place before the jet break, in agreement with
previous analytical (e.g., Rhoads 1999) and numerical (Granot
et al. 2001) results. After the jet break time, however, the
flux from the 2D simulation becomes lower than that for
the corresponding wedge, and the difference between the two
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Figure 9. Afterglow emission at 109, 1011, 1013, and 1015 Hz from the 2D
simulation compared with a 2D wedge (lower panel) and the results from Zhang
& MacFadyen (2009) (upper panel).

(A color version of this figure is available in the online journal.)
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Figure 10. Spectra at tobs = 0.1, 1, 10, 100, 1000 days (black, red, green, blue,
purple).

(A color version of this figure is available in the online journal.)

gradually increases with time, as the lateral spreading of the jet
gradually increases during the relativistic phase and then more
rapidly during the Newtonian phase (until at very late times
spherical symmetry is approached). Our calculated afterglow
emission and spectra agree very well with Zhang & MacFadyen

(2009) (Figure 9, upper panel and Figure 10) in the flux both
before and after the jet break.

5. CONCLUSIONS

In this paper, we have presented a detailed description of
the new state-of-the-art AMR, relativistic hydrodynamics code
Mezcal-SRHD, and of the radiation code used to compute the
synchrotron emission from the output of the hydrodynamics
simulation. The proper implementation of the SRHD algo-
rithm has been verified by running standard one- and multi-
dimensional tests, which are presented in Appendix B. The
code has been applied to the study of the propagation of ultra-
relativistic impulsive blast waves in both 1D and 2D spherical
coordinates.

We have studied for the first time the deceleration of rel-
ativistic impulsive blast waves in one dimension propagating
in a stratified medium and find that the deceleration to non-
relativistic speeds happens on scales RNR from a few (for
k = 0) to several times larger than the Sedov length LS. Tak-
ing RNR as the radius where RST(t) = ct gives the expression
RNR/LS = [4παk/(3−k)]1/(3−k), which illustrates how RNR/LS
increases with the degree of stratification of the ambient medium
where the shock is propagating. These results have been de-
scribed in detail using a simple semianalytical formula, derived
from energy conservation, which gives the correct scaling of the
position and velocity of the shock as a function of time.

The results obtained by the radiation code were validated by a
comparison with semianalytical results and with those obtained
in previous numerical works. We have also shown that while
the resolution is a key factor to properly recover the correct
dynamical evolution of the system (with some of the parameters
not yet converging, e.g., the shock Lorentz factor), when the
contribution from the radiation produced by the jet before the
onset of the simulation (in our case 20 � Γsh/

√
2 � 200) is

included in the calculation, the resulting light curve becomes
much less sensitive to the exact resolution.

In an upcoming paper, we will extend the results of the simu-
lations presented here to include multi-dimensional simulations
in a stratified medium. The study of the contribution of the mag-
netic field on the jet dynamics and afterglow radiation is left for
future works.

This research was supported by the David and Lucille Packard
Foundation (E.R.R. and F.D.C.), the NSF (E.R.R.) (AST-
0847563), the ERC advanced research grant “GRBs,” and a
DGAPA postdoctoral grant from UNAM (D.L.C.). We thank
Weiqun Zhang for sharing data from his 2D simulations with us
(used in Figure 6).

APPENDIX A

EVALUATING THE APPROXIMATIONS USED IN THE
ELECTRON COOLING FREQUENCY ESTIMATION

A comparison between the light curve computed by mapping
in the radiation code a blast wave described by a BMK self-
similar solution and the semianalytical calculations from Granot
& Sari (2002) is shown in Figure 11. While Granot & Sari (2002)
obtained smooth spectral breaks, for simplicity we use here
their broken power-law prescription (without synchrotron self-
absorption). In that work the afterglow emission from the BMK
solution is calculated for an exact local synchrotron spectral
emissivity while analytically calculating the electron energy
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Figure 11. Comparison between light curves (at 109, 1011, 1013, 1015, and 1017 Hz) computed from a Blandford–McKee self-similar blast wave with Lorentz factor
between 600 and 1 and the semianalytical results from Granot & Sari (2002). Left panel: simple emission model excluding electron cooling (Equation (44)). Center
panel: light curve computed by using an approximated emission model for the electron cooling (Equations (39)). Right panel: Same as the center panel, but with a
cooling frequency four times larger.

(A color version of this figure is available in the online journal.)

distribution everywhere by following its evolution from the
shock front (where it is assumed to be a pure power law) due
to radiative and adiabatic cooling. The light curve computed by
using a simplified emission model (Equation (44)) that neglects
electron cooling altogether is in very good agreement with the
GS02 semianalytical results (see Figure 11). The light curve
computed by using an approximated electron cooling presents
three breaks at low frequencies (corresponding to the transitions
ν < νc < νm with the scaling Fν ∝ t1/6 →ν < νm < νc with
Fν ∝ t1/2 →νm < ν < νc with Fν ∝ t3(1−p)/4 →νm < νc < ν
with Fν ∝ t (2−3p)/4) and two breaks at high frequencies
(corresponding to ν < νc < νm with Fν ∝ t1/6 →νc < ν < νm

with Fν ∝ t−1/4 →νc < νm < ν with Fν ∝ t (2−3p)/4).
As noticed in Figure 11, our estimation of the cooling break
frequency νc assuming that the electrons cool at their current
local cooling rate over the dynamical time (see Equations (39))
underestimates the cooling frequency determined by GS02. For
instance, an increase in νc of a factor of four produces a better
agreement with the GS02 results (Figure 11, right panel). It
is worthwhile to stress that, while the mapped BMK light
curve and the GS02 results are applicable only for (highly)
relativistic flows, the light curve computed from the numerical
simulations is valid during the entire deceleration of the flow
to nonrelativistic speeds. Finally, we note that at ν � 109 Hz,
self-absorption dominates and the light curves computed with
our simple prescription are inaccurate.

APPENDIX B

NUMERICAL TESTS

We present in this section a series of 1D shock tubes and
multi-dimensional tests.

B.1. One-dimensional Shock Tubes

Shock tube tests are used as standard tests as they are simple
to implement and the exact analytical solution is known. The
tests were performed using a grid with size 0 � x � 1, with
an initial discontinuity at x = 0.5. Here and in the following,
we refer to the left/right-hand side of the discontinuity with the
suffixes L/R . In all the tests, we use a grid with 50 cells at the
lowest level, with four levels of refinement, corresponding to an
effective resolution of 400 cells. We also make high-resolution
runs of the same tests, employing 400 cells at the lowest level,
with four levels of refinement, corresponding to an effective

resolution of 3200 cells. The Courant number is fixed equal to
0.8 in all tests, with a final integration time of t = 0.4. The
polytropic index is fixed equal to 4/3 in the first shock tube test
and 5/3 in all other tests. As described in the following, in all
the tests the exact solution is properly recovered.

The first test consists of a low-relativistic flow with a left
state given by pL = 1, ρL = 1, and vL = 0.9, corresponding
to a Lorentz factor of Γ ≈ 2.3, and a right state given by
pR = 10, ρR = 1, and vR = 0. The evolution of this shock tube
consists of two shocks and a stationary contact discontinuity.
Small oscillations, similar to those observed by previous authors
(e.g., Lucas-Serrano et al. 2004; Wang et al. 2008), are present
in the post-shock region.

The second shock tube consists of a low-relativistic flow with
a left state given by pL = 10, ρL = 1, and vL = −0.6 and
a right state given by pR = 20, ρR = 10, and vR = 0.5. In
this test, two rarefaction waves are produced, together with a
left moving contact discontinuity. Both rarefaction waves are
properly recovered, while the contact discontinuity is smeared
over ∼10 cells.

The last two tests are taken from Donat (1998) and refer to
blast wave explosions. The third shock tube consists of a left
state given by pL = 40/3, ρL = 10, and a right state given
by pR = 10−6, ρR = 1, while in the last test the left state is
given by pL = 1000, ρL = 1, and the right state is given by
pR = 0.01, ρR = 1. The large pressure gradient produces a
mildly relativistic shock (test 3) and a highly relativistic shock
(test 4) with Γ ≈ 6. As can be seen in Figure 12, in both cases
the solution consists of a strong shock moving to the right and a
rarefaction wave moving to the left. No oscillations are present
in the solution. The shock is resolved within ∼4 cells, while
the contact discontinuity is smeared over several cells. That is
expected, owing to the intrinsic diffusive properties of the HLL
schemes. In the second blast wave problem, the size of the thin
dense shell in the post-shock region consists of only ≈4 cells
with the resolution employed. As a consequence, the exact value
of the density is not recovered at low resolution. However, this
region is properly resolved in the high-resolution run.

B.2. Multi-dimensional Tests

B.2.1. Relativistic 2D Riemann Problem

This test has been studied in the nonrelativistic case by Lax
& Liu (1998) and extended to the SRHD case by Del Zanna &
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Figure 12. One-dimensional shock tube problems at t = 0.4. The variables shown are density, velocity, and pressure. The initial discontinuity was set at x = 0.5;
the Courant number is equal to 0.8, with a maximum resolution of 400 cells (points) and 3200 cells (lines). The panels correspond to first (upper left), second (upper
right), third (lower left), and fourth (lower right) shock tube tests (see the text for a detailed description of the initial conditions).

Bucciantini (2002). It has been widely used recently as a test
for multi-dimensional SRHD codes (e.g., Lucas-Serrano et al.
2004; Wang et al. 2008). The computational domain (at t = 0)
is divided into four regions:

(ρ, vx, vy, p)NE = (0.1, 0, 0, 0.01) if x � 0.5, y � 0.5

(ρ, vx, vy, p)NW = (0.1, 0.99, 0, 1) if x � 0.5, y � 0.5

(ρ, vx, vy, p)SW = (0.5, 0, 0, 1) if x � 0.5, y � 0.5

(ρ, vx, vy, p)SE = (0.1, 0, 0.99, 1) if x � 0.5, y � 0.5.

We use a uniform grid with 400 × 400 cells, an adiabatic EOS
with constant γ = 5/3, and outflow boundary conditions. The
simulations end at t = 4. To better resolve the contact dis-
continuity, a more compressive monotonized central difference
limiter is used here. The results are shown in Figure 13. The
initial discontinuities across the four regions of the grid produce
a stationary contact discontinuity (with jumps in transverse ve-
locities) between SW–NW and SE–SW and shocks between
NE–NW and SE–SW. These shocks produce an elongated jet-
like structure on the diagonal. These features, together with the
curved shock in the SW region, are qualitatively similar to those
obtained by previous authors.

B.2.2. Emery Step

The “Emery step” test has become a standard test for
both nonrelativistic and relativistic hydrodynamic codes, and
it consists of a wind moving through a tunnel. Our initial
conditions closely follow those by Lucas-Serrano et al. (2004).

Figure 13. Logarithm of the density for the relativistic 2D Riemann problem at
t = 0.4. Thirty equally spaced contours are plotted in the figure.

A relativistic flow moves initially horizontally with velocity
vx = 0.999c, corresponding to a Lorentz factor of Γ ≈ 7. The
density is initially fixed at ρ = 1.4 everywhere, with a pressure
of p = 1/9 and an adiabatic index of γ = 7/4, corresponding
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Figure 14. Logarithm of the density for the Emery step problem at t = 4.26. Thirty equally spaced contours are plotted in the figure.

to a Newtonian Mach number of M = 3. The size of the tunnel
is 0 � x � 3 and 0 � y � 1. A step is located in the region
defined by x � 0.6, y � 0.2. Inflow boundary conditions (with
the same values used to fill the tunnel initially) are fixed at the
left boundary. Outflow boundary conditions are fixed at the right
boundary, while reflecting boundary conditions are fixed at the
upper, lower, and step boundaries. We use a uniform grid with
240×80 cells, with the HLL method coupled to the MC limiter.

Figure 14 shows the density stratification at t = 4.26. As the
relativistic flow collides with the step, a reverse shock is formed.
This shock front is reflected from the upper boundary forming
a stationary Mach stem. The results of this test are similar to
those of Lucas-Serrano et al. (2004).
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