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ABSTRACT
The highly luminous and variable prompt emission in gamma-ray bursts (GRBs) arises in an
ultra-relativistic outflow. The exact underlying radiative mechanism shaping its non-thermal
spectrum is still uncertain, making it hard to determine the outflow’s bulk Lorentz factor �.
GRBs with spectral cut-off due to pair production (γ γ → e+e−) at energies Ec � 10 MeV are
extremely useful for inferring �. We find that when the emission region has a high enough
compactness, then as it becomes optically thick to scattering, Compton downscattering by
non-relativistic e±-pairs can shift the spectral cut-off energy well below the self-annihilation
threshold, Esa = �mec2/(1 + z). We treat this effect numerically and show that � obtained
assuming Ec = Esa can underpredict its true value by as much as an order of magnitude.

Key words: opacity – plasmas – radiative transfer – relativistic processes – gamma-ray burst:
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1 IN T RO D U C T I O N

The GRB prompt emission is typically highly variable, consisting of
multiple spikes spanning a wide range of widths, �T ∼ 10−3 − 1 s
(e.g. Fishman & Meegan 1995). In the GRB central engine frame
(CEF; cosmological rest frame of source) at redshift z, the variability
time is Tv = �T/(1 + z). For a Newtonian source, light travel effects
imply a source size R � cTv. Since GRBs are extremely luminous
sources, with typical energy fluxes F ∼ 10−6 erg cm−2 s−1, and
luminosity distances dL ∼ 1028 cm, a typical photon near the νFν

peak with energy E ∼ Epk ∼ mec2 would see a huge optical depth
τ γ γ (E) ∼ σ Tfγ γ (E)nγ R ∼ 1013 to pair production, γ γ → e+e−

(Piran 1999), where σ T is the Thomson cross-section, nγ is the
photon number density, and fγ γ (E) is the fraction of photons that
can pair produce with the test photon of energy E. This would imply
a huge compactness � ≡ σ TUγ R/mec2 (Thomson optical depth of
pairs if all photons pair produce), where Uγ is the radiation field
energy density, which would result in a nearly blackbody spectrum,
in stark contrast with the observed GRB non-thermal spectrum.

The solution to this so-called ‘compactness-problem’, is that the
emission region must be moving towards us ultrarelativistically
with � � 102 (Ruderman 1975; Goodman 1986; Paczyński 1986;
Rees & Mészáros 1992). This implies: (i) Doppler factor: a blueshift
such that the observed energy of photons E = �E ′/(1 + z) (primed
quantities are measured in the outflow’s comoving rest frame) is
higher by a factor of ∼� than that in the comoving frame and (ii)

	 E-mail: rsgill.rg@gmail.com (RG); granot@openu.ac.il (JG)

the emission radius can be larger by a factor of ∼�2, and assume a
value of up to1 (see Kumar & Zhang 2015, for a review)

R ≈ 2�2cTv = 6 × 1013�2
2Tv,−1cm. (1)

Effect (i) increases the threshold to γ γ -annihilation in terms of
the observed photon energy (i.e. decreases fγ γ (E)) while effect (ii)
reduces the required nγ . For a power-law photon spectrum dN/dE
∝ E−α , τ γγ (E) ∝ L0Eα−1/�2αR → L0Eα − 1/�2α + 2Tv (assuming
equation 1; Granot, Cohen-Tanugi & do Couto E Silva 2008, here-
after G08), where L0 = ELE(E = mec2).

Depending on �, and other intrinsic parameters (e.g. Vianello
et al. 2017) such as the radiated power Lγ , Tv, and R if R �= R(Tv) (see
e.g. Gupta & Zhang 2008), the energy where the outflow becomes
opaque to γ γ absorption can be pushed to E 	 Epk, at which
point the non-thermal spectrum is either exponentially suppressed
or manifests a smoothly broken power law (G08).

The existence of a high-energy spectral cut-off occurring due to
intrinsic γ γ -opacity has important implications. Since the bulk-�
of the outflow is hard to obtain and observations of the highest
energy photons without a cut-off provide only a lower limit, mea-
suring a spectral cut-off instead yields a direct estimate (e.g. Feni-
more, Epstein & Ho 1993; Woods & Loeb 1995; Baring & Hard-
ing 1997; Lithwick & Sari 2001; Razzaque et al. 2004; Baring 2006;
Murase & Ioka 2008; G08; Gupta & Zhang 2008). So far, a high-
energy cut-off has only been observed in a handful of sources,
e.g. GRB 090926A (Ackermann et al. 2011) and GRBs 100724B

1 In this work, we adopt the convention Qx = Q/10x (c.g.s. units).
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& 160409A (Vianello et al. 2017, for a more complete list see
Tang et al. 2015). Most analytic works employ a simple one-zone
model with an isotropic (comoving) radiation field (e.g. Lithwick &
Sari 2001, hereafter LS01) and obtain � from the condition that the
cut-off energy Ec is given by Ec = E1, where τ γγ (�, E1) ≡ 1. How-
ever, detailed analytic and numerical treatments of the γ γ -opacity
near the dissipation region, which account for the space, time and
direction dependence of the radiation field, by G08 and Hascoët
et al. (2012), respectively, have shown that the actual estimate of �

should be lower by a factor of ∼2.
What was neglected so far in all works is the effect of e±-pairs

that are produced, and in particular pair cascades, on the scattering
opacity and further redistribution of the radiation field energy by
Comptonization. Its neglect stems from the inherent non-linearity
associated with developing pair cascades, which is hard to treat
self-consistently using a semi-analytic approach and requires a nu-
merical treatment. Highly luminous compact sources with τ γγ 	 1
naturally develop high Thomson scattering optical depth τ T 	 1
due to resultant e±-pairs that can significantly modify the source
spectrum via Comptonization (Guilbert, Fabian & Rees 1983).

Time-dependent numerical models of GRB prompt emission
phase (e.g. Pe’er & Waxman 2005; Vurm, Beloborodov & Pouta-
nen 2011; Gill & Thompson 2014) self-consistently account for γ γ

annihilation, automatically produce the spectral attenuation at co-
moving energies E ′ > mec2, and account for the enhanced scattering
opacity due to pair production. Here, we use a time-dependent ki-
netic code to study how e±-pairs affect the position of the cut-off that
arises due to γ γ -opacity. The code includes Compton scattering,
cyclo-synchrotron emission and self-absorption, pair-production
and annihilation, Coulomb interaction, adiabatic cooling, and pho-
ton escape. In Section 2, we review a simple one-zone model of
γ γ annihilation opacity and derive estimates for the scattering op-
tical depth of e±-pairs in the optically thick and thin regimes. We
construct a general model of a magnetized dissipative relativistic
outflow in Section 3 in which the prompt emission is attributed
to synchrotron emission by relativistic electrons and e±-pairs. In
Section 4, we discuss the implication of our results.

2 SC A L I N G R E L AT I O N S FRO M A O N E - Z O N E
M O D E L

We consider a simple one-zone model where the emission region is
uniform with an isotropic radiation field (in its comoving frame). We
denote dimensionless photon energies by x ≡ E/mec2. The observed
prompt emission photon-number spectrum at energies above the
νFν-peak, xpk = Epk/mec2, can be described by a power law,

dN

dAdT dx
= N0

(
x

x0

)β

, xpk < x0 < x < xmax, (2)

where dA → 4πd2
L(1 + z)−2 for isotropic emission in the CEF, dT

is the differential of the observed time, and N0 [cm−2 s−1] is the
normalization. It was shown by LS01 that for a given test photon
energy, xt, the optical depth due to γ γ -annihilation is

τγ γ = (1 + z)−2(1+β)τ̂�2β−2x
−(1+β)
t

τ̂ = (11/180)σTd2
LN0x

−β
0

c2�T (−1 − β)
= (11/180)σTL̃0x

−(2+β)
0

4πc2�T (−1 − β)
, (3)

where L̃0 ≡ L0(x0)/mec
2 = 4πd2

Lx2
0N0 and L0(x0) is the radiated

isotropic equivalent luminosity in the CEF at x = x0. This equation
can be used to define the critical photon energy x1 at which τ γγ (x1)

Figure 1. Schematic illustration of the two regimes – Thomson-thick and
Thomson-thin – as defined in the text. The bulk Lorentz factor � of the
emitting region is given by � = min (�max, �min) and shown by solid lines.

≡ 1. If the latter is indeed identified with the observed cut-off energy,
xc ≈ x1, this allows us to determine �,

�min ≡ �(xc) = (1 + z)(−1−β)/(1−β)τ̂ 1/(2−2β)x(−1−β)/(2−2β)
c . (4)

If no spectral cut-off is observed and the power law extends
up to an energy xmax, then equation (4) yields a lower limit
�min = �(xc = xmax).

In the comoving frame, test photons of energy x ′
t have the highest

probability to annihilate with other photons with energies just above
the pair-production threshold, x ′

an ≈ 1/x ′
t , since the cross-section

decreases well above x ′
an and vanishes below x ′

an. Therefore, test
photons of energy x ′

t > x ′
sa = 1 can self-annihilate whereas photons

of energy x ′
t < x ′

sa cannot. This has an important consequence for
spectra with β < −1, which is generally the case for the prompt-
GRB spectrum. In this case, xdN/dx ∝ x1 + β declines with pho-
ton energy x, and lower energy photons outnumber higher energy
photons. This asymmetry in photon number defines two important
regimes (shown in Fig. 1) as follows.

(i) Thomson-Thick: In this regime, x ′
1 < x ′

sa = 1 so that test pho-
tons in the energy range x ′

1 < x ′
t < x ′

sa initially face τγ γ (x ′
t ) > 1, but

they cannot self-annihilate. Instead, they can annihilate only with
higher energy photons, x ′ ≥ x ′

an ≈ 1/x ′
t , but since they outnumber

these higher energy photons they quickly annihilate almost all of
them, which brings down τγγ (x ′

t ) below 1. This results in a spec-
tral cut-off at x ′

c = x ′
sa = 1 ⇔ xc = �/(1 + z), i.e. in this regime

� = �max = (1 + z)xc. The notation �max was chosen since it is
the maximal possible � for a given cut-off energy xc due to γ γ -
annihilation alone.

Each annihilating photon-pair produces an e±-pair, so the Thom-
son optical depth of the pairs (ignoring pair annihilation, PA)
in this regime is τ̃T,± = σT

σγγ
τγ γ (x ′

t = 1), where σT
σγγ

≈ 180
11 . Using

equation (3),

τ̃T,± = 180

11

τ̂ xβ−3
c

(1 + z)4
= 180

11

[
�min(xc)

�max(xc)

]2(1−β)

, (5)

where the last equality follows from equation (4). The ratio
�min(xc)/�max(xc) becomes unity at the transition energy (LS01),

xtr = [
(1 + z)−4τ̂

]1/(3−β) ⇐⇒ �tr = [
(1 + z)−1−β τ̂

]1/(3−β)
, (6)

which corresponds to �tr = (1 + z)xtr. Therefore, for cut-off energies
xc < xtr, �min(xc) >�max(xc) and τ̃T,± 	 1, when β <−1. In order to
arrive at this result, the annihilation of e±-pairs has been completely
ignored, which would certainly modify the scattering opacity.

(ii) Thomson-Thin: In this regime 1 = x ′
sa < x ′

1, so photons of
energies x ′

sa < x ′
t < x ′

1 can self-annihilate but have τγ γ (x ′
t ) < 1 and
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only such a small fraction of them indeed annihilate. However,
photons of energies x ′

t > x ′
1 face τγ γ (x ′

t ) > 1 and almost all of them
do annihilate, leading to a cut-off at x ′

c = x ′
1. Hence, in this regime

� = �min (the minimal possible � for a given xc). Following the
discussion above, here τ̃T,± ≈ 180

11 τγγ (1/x ′
1), or using equations (3)

and (4),

τ̃T,± = (x ′
1)2+2β

11/180
= 180

11

[
(1 + z)4

τ̂ x
β−3
c

] 1+β
1−β

= 180

11

[
�max(xc)

�min(xc)

]2+2β

. (7)

This Thomson-thin regime corresponds to xc > xtr and � >�tr, since
here �min(xc) < �max(xc) which implies τ̃T,± < 1, when β < −1.

3 D ISSIPATION IN A R ELATIVISTIC OUTFLOW

We consider the evolution of a cold, mildly magnetized, expanding
spherical shell coasting at a constant � = (1 − β2)−1/2 with a
constant lab-frame radial width �. At a lab-frame time t the front
edge of the ejecta shell is at a radial distance R = βct from the
central source. Following the relation given in equation (1), the
dissipation episode is assumed to start at R = R0 = 6 × 1013�2

2

cm (for brevity, hereafter estimates are given for fixed intrinsic
parameters: L52 = 100, Tv, −1 = 1, magnetization σ = 0.1, electron
fraction Ye = 0.5, but show the explicit dependence on �) and end
at R = Rf = R0 + �R with �R = R0, i.e. after one dynamical time,
but the shell can still radiate also at R > Rf. The rise and decay times
of the resulting pulse in the GRB light curve are trise � �R/2c�2

and tdecay � Rf/2c�2, so one can in principle use this to determine
both R0 and �R if � can be independently inferred. The outflow
carries a magnetic field of comoving strength B ′ ≈ 4 × 105�−3

2 G
and kinetic energy dominated by baryons.

Depending on the efficiency of the dissipation mechanism, a
fraction εrad = 0.5 of the total power Lj carried by the outflow is
converted into radiation, such that the observed isotropic-equivalent
luminosity is L = εradLj = L521052 erg s−1. This corresponds to a
comoving compactness �′

0 ≈ 2.7 × 104�−5
2 at the dissipation radius

R0. The initial Thomson scattering optical depth of baryonic elec-
trons is τT0 ≈ 18�−5

2 . A fraction εnth ≈ 0.87�−1
2 of which have τT,nth

and are assumed to be accelerated to a power-law energy distribu-
tion, n′

e(γe) ∝ γ −q
e for γ m < γ e < γ M, with 〈γ e〉nth chosen so that

the pitch angle averaged synchrotron peak energy of fast cooling
electrons yields Ep,z = (1 + z)Epk = �E′

pk = 500Ep,2.7 keV. The
relativistically hot electrons are injected with constant power L, and
then loose all their energy to synchrotron radiation and inverse-
Compton scattering (ICS) of soft seed photons to high energies.
The remaining fraction 1 − εnth of baryonic electrons with Thom-
son optical depth τT,th stay cold (kBT ′/mec2 ≡ θ ′ = 10−2) and form
a thermal distribution. The full details of the model will be provided
elsewhere (Gill & Granot 2017, in preparation).

3.1 Effect of thermal Comptonization and pair annihilation on
xc in the Thomson-thick regime

In a single ICS event, the energy of a soft seed photon (x ′
0) is

amplified by a constant factor, such that the scattered photon has
energy x ′ = (1 + A)x ′

0. For ultrarelativistic electrons with γ e 	 1,
the mean fractional change in the seed photon’s energy is A = 4

3 γ 2
e

in the Thomson-limit (x ′
0γe < 1). If the scattering electrons have a

Maxwellian distribution with temperature θ ′, then thermal Comp-
tonization yields (when neglecting downscattering) A = 16θ ′2 + 4θ ′

(e.g. Rybicki & Lightman 1979; Pozdnyakov, Sobol’ & Sun-
yaev 1983), which is valid for both non-relativistic (θ ′ < 1) and

Figure 2. (Top): CEF spectrum from a spherical shell (solid) and corre-
sponding electron energy distribution (dotted) after one dynamical time,
�t ′ = t ′d = R0/�c ⇔ �Tz = Tv , for three cases: (A) all processes turned
on, (B) no PA, and (C) no Compton scattering. (Bottom): Time evolution
of some key parameters: the total Thomson depth τT,tot = τT,th + τT,nth +
τT,±, Compton yC parameter, average Lorentz factor of e±-pairs 〈γ e〉, and
the effective energy of the Wien peak xW,eff .

relativistic (θ ′ > 1) electrons. The importance of multiple ICSs in
modifying the seed spectrum is gauged by the magnitude of the
Compton parameter,2 yC = AτT, where τT is the electron Thomson
optical depth. After multiple scatterings, upon its escape, the seed
photon’s energy is amplified to x ′

f ∼ x ′
0e

yC (for x ′
f � 4θ ′). Thus,

when yC > 1 and τT > 1 Comptonization becomes important, and
for yC 	 1 it ‘saturates’ and forms a Wien peak at x ′

W = 3θ ′.
Fig. 2 shows the CEF spectrum at the end of one dynami-

cal time (top-panel), stressing the spectral changes brought by
Comptonization and PA. The corresponding electron energy dis-
tribution is predominantly thermal in all three cases due to
the high total τT,tot = τT,th + τT,nth + τT,± (lower panel). Initially,
τT,tot = τT,th = (1 − εnth)τT0 ≈ 1 which builds up over the dynami-
cal time, t ′

d = R0/�c, due to injection of relativistic electrons and

2 Usually, max(τT, τ 2
T) is taken for the mean number of scatterings Nsc

instead of τT, but here τT ∝ R−2 due to the shell’s expansion so that
Nsc ∼ τT0 as it is dominated by the first dynamical (or radius-doubling)
time.
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subsequent production of e±-pairs that dominate τT,tot, when �′ 	 1.
It suffers a sharp decline at �t ′ = t ′

d after which injection of elec-
trons ceases and the hot pairs cool and annihilate with the thermal
pairs. This is not so when PA is turned off. In all cases (except with
no ICS), yC 	 1 which results in saturated Comptonization. The
position of the Wien peak in the observer frame is obtained from
xW � 2�x ′

W = 6�θ ′ (the factor of 2 results from higher weight
given to on-axis (θ� = 0) emission upon integration over the equal
arrival time surface (Granot, Piran & Sari 1999) since L/L′ = δ4

D,
where δD ≈ 2�/[1 + (�θ�)2)] is the Doppler factor and θ� is the
angle measured from the line of sight).

The temperature of the thermal pairs is related to their mean en-
ergy, 〈γ e〉 = [3θ ′K2(1/θ ′) + K1(1/θ ′)]/[2θ ′K1(1/θ ′) + K0(1/θ ′)]
(Pozdnyakov, Sobol’ & Sunyaev 1983), where Kn are the modified
Bessel functions of the second kind. Since at early times the parti-
cle distribution is quasi-thermal that transforms into predominantly
thermal over time, the 〈γ e〉 − θ ′ relation only yields the ‘effective’
temperature of the e±-pairs, and consequently an effective energy
for the Wien peak (xW,eff ). At the end of the dynamical time, when
τT 	 1, this approximation becomes more exact as the particles and
photons come into thermal equilibrium. When Compton cooling of
the injected relativistic electrons and mildly relativistic e±-pairs is
switched off, the hot particles share their energy with the much
cooler thermal (baryonic) electron distribution via Coulomb inter-
actions. This has the effect of heating up the thermal distribution
which yields higher particle temperatures by the end of the dynam-
ical time and broadens the PA line. In contrast, ICS of hot electrons
on soft synchrotron photons helps regulate the temperature of the
particle distribution to much lower (θ ′ < 1) values, which also yields
a much sharper annihilation feature.

How far below unity can the temperature of a pair-dominated
plasma drop? Many works have tried to understand thermal pair
equilibria of mildly relativistic (Svensson 1984) and relativistic
plasmas (Lightman 1982; Svensson 1982). By solving the pair
balance equation, where pair production balances PA in steady-
state, it was realized that no equilibrium exists for θ ′ > θ ′

max = 24,
when �′ � 1 and for θ ′ � 0.4, when �′ > �WE(θ ′) 	 1 (Svens-
son 1984). At �′ 	 1, when Comptonization dominates over pho-
ton emission/absorption and escape, the pairs establish a Wien
equilibrium where the compactness of the radiation field depends
uniquely on the pair temperature for θ ′ � 0.4, such that �′

WE(θ ′) =
4
√

2πθ ′5/2 exp(1/θ ′) (Svensson 1984). Hence, the temperature of
the non-relativistic thermal pairs decreases below unity logarith-
mically with �′. This trend continues until a local thermodynamic
equilibrium is established due to true photon emission/absorption
processes (e.g. cyclo-synchrotron emission and self-absorption).

From the condition of pair equilibrium, the relation between �′

and τT, ± can be obtained when �′ 	 1. Under the assumption
that all of the injected energy at this stage goes into producing
hard photons (x ′ > 1) that can annihilate with other soft (x ′ < 1)
photons as well as self-annihilate, the rate of pair production is
ṅ′

+ = L/(4πR3�mec
2) = c�2�′/σTR2. These pairs then annihilate

the cooler thermal pairs at the rate ṅ′
A ∼ σTcn′2

+. In equilibrium ṅ′
+ =

ṅ′
A, which yields up to a factor of order unity τT,±,eq ∼ √

�′
0(R0/R)

(e.g. Pe’er & Waxman 2004), where the density dilution due to
expansion is reflected by the ratio of radii. In the top panel of Fig. 3,
we show τT,±,eq along with the total Thomson depth of particles,
which is dominated by that of pairs, at the end of a dynamical
time from simulations without PA and Compton scattering. We find
that τT,tot ≈ τT,± ∼ τT,±,eq for �′ 	 1, when all radiative processes
are included. The agreement is approximate since the pair-photon
plasma hasn’t established a steady state. When PA is switched off,

Figure 3. (Top) Comparison of the Thomson depth from simulations with
all processes active and with no PA to that obtained from the analytic model
of LS01. See text for definition of all quantities. (Bottom) Comparison of
� from the simulation �sim(xc) to the prediction of the LS01 analytical
model �min(xc) and �max = (1 + z)xc (compare with Fig. 1). � predicted
by equation (126) of G08 (�G08) for C2 = 1 is also shown.

we find τ̃T,tot ≈ 2τT,tot after one dynamical time over a wide range
of compactness.

3.2 Comparison with one-zone analytic model predictions

Earlier we outlined two regimes of the one-zone analytic model
of LS01 which did not account for annihilation of e±-pairs. Here,
we compare the results of our simulations to the predictions of
LS01. First, we need to determine the position of the high-energy
cut-off, which along with other spectral parameters such as the
high-energy spectral slope and normalization, yields an estimate
of �. We obtain the position of the cut-off energy in the CEF
by fitting the spectrum to a Band function (Band et al. 1993)
with a broken power-law high-energy cut-off (see equation E5 of
Vianello et al. 2017).

In Fig. 3, we compare the results obtained from the simulations
to the predictions of the LS01 analytic model and equation (126) of
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G08. We find that the LS01 model grossly overpredicts the Thom-
son scattering depth of pairs in the Thomson-thick regime. In the
Thomson-thin regime, τ̃T,LS01 asymptotically approaches τ̃T,tot in
Fig. 3 since the analytical model does not account for PA. In ad-
dition, the LS01 model also finds �min to be a factor ∼2 larger
than the simulated value �sim. This result is consistent with the
work of Vianello et al. (2017), where they compare � obtained
from the models of G08 and Gill & Thompson (2014) that self-
consistently produce high-energy spectral breaks to that predicted
by the LS01 model for GRBs 100724B and 160509A. The predic-
tions of LS01 can be reconciled with the simulation results by renor-
malizing τ̂ → fτ̂ τ̂ in equation (4), where fτ̂ ≡ τ̂sim/τ̂LS01. This ratio
is shown in Fig. 3, where fτ̂ ∼ 0.05 for � > 100.

The main effect of Compton scattering (see Fig. 3) is that xc

becomes lower due to downscattering of energetic photons with
x ′ > 4θ ′ by cold thermal e± pairs. We find good agreement between
�sim and �G08 in the Thomson-thin regime for C2 = 1, where C2

is an order unity parameter in equation (126) of G08 whose exact
value is determined numerically. When ICS is switched on, we find
C2 ∼ 0.5 − 1 in order for �G08 = �sim, which is consistent with the
results of Vianello et al. (2017); �G08 deviates only slightly (factor
of ∼2) deep in the Thomson-thick regime and remains a reliable
estimator of the true � for �max � 0.1�tr,G08⇔xc � 0.1xtr,G08, where
�tr,G08 = (1 + z)xtr,G08 and xtr,G08 are defined as the point where
�G08 = �max.

Most importantly, the break in �(xc) at xc = xtr predicted by
the LS01 model is shifted to lower energies both when ICS is
on and off, where ICS shifts the break to even lower energies.
Also, the slope in the Thomson-thick regime is different in the
two cases. In that regime, if the photo-pair-plasma has achieved
steady-state and manifests a Wien-peak then the �′

WE − θ ′ relation
can be used to determine �(xc). Since neither of the two conditions
are fulfilled here this relation is invalid. In the absence of ICS,
when no downscattering of photons occurs, we find that �sim(xc)
asymptotically approaches 2�max(xc) in the Thomson-thick regime
when �′ 	 1.

4 IM P L I C AT I O N S A N D D I S C U S S I O N

In many works (e.g. Tang et al. 2015) that find the spectral cut-off
to lie in the Thomson-thick regime, � is estimated using �max. It
is clear from Fig. 3 that this approach can lead to erroneous results
and can underestimate � by as much as an order of magnitude when
�′ 	 1. This result is quite general such that it doesn’t depend on the
details of any particular GRB model, but only on the compactness of
the dissipation region that is set by a combination of three intrinsic
parameters: L, �, R.

In the Thomson-thin regime, the simple analytic model over-
predicts � by a factor of ∼2 (G08; Hascoët et al. 2012). This
work shows that the effect of pair cascades on the high-energy
spectral cut-off cannot be ignored and, more importantly, a model
employing the time-dependent evolution of the spectrum must be
used to obtain an accurate estimate of �. The simple one-zone
analytical models lack the requisite complexity to accurately pre-
dict �.

In this work, the cut-off energy is determined for a single pulse
after integrating the spectrum over the equal arrival time surface.
Generally, due to poor photon statistics, observations use several
overlapping pulses emerging from different parts of the outflow
with an order unity spread in �. This introduces some smearing of
the cut-off energy and sharp annihilation line within a single pulse
as well as over several adjoining pulses.

The simple one-zone analytic models of e.g. LS01, Abdo et al.
(2009b) disagree with the more detailed analytic work of G08 and
the results presented here due to the following main reasons. (i) They
only use the power-law component of the Band function rather than
the smoothly broken power law at x < xpk [however, see for e.g.
Gupta & Zhang 2008; although G08 also uses an infinite power law
but see (ii)]. For typical spectral indices α ∼ −1 and β ∼ −2 below
and above xpk, respectively, the number of photons in an infinite
power law is larger by a factor of xpk/[x log (x/xpk)] for x < xpk as
compared to the Band function. This decrement in photon number
reduces τ γγ seen by hard photons with x > 1/xpk. Consequently, the
estimated � is lower. (ii) The assumption of (comoving) isotropy
of the radiation field in such models yields higher estimates of
�. The effect of an anisotropic radiation field is to increase the
threshold for pair production and decrease the rate of interaction
due to the typical angle of interaction between photons θ12 ∼ 1/�.
This effect is included in G08 which generally finds a lower �.
(iii) All analytic models neglect the effect of pair cascades, which
becomes very important in the Thomson-thick regime.
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