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ABSTRACT

Gamma-ray burst (GRB) afterglow arises from a relativistic shock driven into the ambient
medium, which generates tangled magnetic fields and accelerates relativistic electrons that
radiate the observed synchrotron emission. In relativistic collisionless shocks the post-shock
magnetic field B is produced by the two-stream and/or Weibel instabilities on plasma skin-depth
scales (¢/w,), and is oriented predominantly within the shock plane (B ; transverse to the shock
normal, i2g,), and is often approximated to be completely within it (B = iy, - B = 0). Current
2D/3D particle-in-cell simulations are limited to short time-scales and box sizes <10%(c/w),)
<& RIT ¢, much smaller than the shocked region’s comoving width, and hence cannot probe the
asymptotic downstream B structure. We constrain the latter using the linear polarization upper
limit, |IT| < 12 per cent, on the radio afterglow of GW 170817/GRB 170817A. Afterglow
polarization depends on the jet’s angular structure, our viewing angle, and the B structure.
In GW 170817 /GRB 170817A the latter can be tightly constrained since the former two are
well-constrained by its exquisite observations. We model B as an isotropic field in 3D that is
stretched along 14, by a factor £ = B/B , whose initial value ;= By,/B  rdescribes the field
that survives downstream on plasma scales <R/T"y,. We calculate T1(¢,) by integrating over
the entire shocked volume for a Gaussian or power-law core-dominated structured jet, with a
local Blandford-McKee self-similar radial profile (used for evolving & downstream). We find
that independent of the exact jet structure, B has a finite, but initially sub-dominant, parallel
component: 0.57 < &; < 0.89, making it less anisotropic. While this motivates numerical
studies of the asymptotic B structure in relativistic collisionless shocks, it may be consistent
with turbulence amplified magnetic field.

Key words: magnetic fields —plasmas — polarization —relativistic processes —shock waves —
gamma-ray burst: individual: GRB 170817A/GW 170817.

behind the afterglow shock, e, given to non-thermal relativistic

1 INTRODUCTION . .
electrons, with mean energy per unit rest-mass energy (y.) > 1

There is good evidence that synchrotron radiation is the dominant
emission mechanism in most GRB afterglows (e.g. Mészaros &
Rees 1997; Waxman 1997; Sari, Piran & Narayan 1998, and see
Piran 2004; Kumar & Zhang 2015 for a review). However, it
depends on the rather poorly understood physics of relativistic
collisionless shocks, in particular the microphysical processes that
accelerate particles into a non-thermal energy distribution and
generate near-equipartition tangled magnetic fields just behind the
shock. These uncertainties are generally parametrized using the
microphysical parameters, €, = (y,)p.c*/e and €5 = B*/8me, that
define the fraction of the total comoving internal energy density
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and comoving rest-mass density p,, and to the magnetic field of
strength B, respectively (where all of these quantities are measured
in the downstream comoving rest frame, and c is the speed of
light). Detailed works comparing this synchrotron shock model
with GRB afterglow observations find €, ~ 10~! and a wide range
for eg ~ 107> — 107! (e.g. Wijers & Galama 1999; Panaitescu &
Kumar 2002; however also see Santana et al. 2014 who find €p
values smaller by at least a factor of 1072). These represent the
emissivity-weighted mean values of the microphysical parameters
assuming a uniform emission region, and do not account for their
possible variation within the shocked region.

The leading theoretical explanation for magnetic field generation
at the collisionless relativistic forward shock posits that when the
upstream plasma into which the shock is expanding is weakly
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magnetized or unmagnetized (with a magnetization parameter
o = B4mpc® < 1073), magnetic fields are produced by the
relativistic two-stream and/or Weibel (filamentation) instabilities
(Weibel 1959; Gruzinov & Waxman 1999; Medvedev & Loeb
1999; Bret 2009; Keshet et al. 2009; Nakar, Bret & Milosavljevi¢
2011). The shock-accelerated supra-thermal particles that escape
into the upstream plasma and propagate ahead of the shock
excite micro-instabilities in a spatially extended region called the
precursor. These micro-instabilities (e.g. the Weibel-filamentation)
generate a magnetic barrier at the proton skin-depth scales of
c/w, =23 x 107n51/2 cm, where c is the speed of light, w, is
the proton plasma frequency, and ny = n/(1.cm™3) is the upstream
particle number density, which grows to near-equipartition with
€ ~ 1072 — 107! and isotropizes the incoming plasma (Moiseev &
Sagdeev 1963; see e.g. Sironi, Keshet & Lemoine 2015 for areview).
The generated field is randomly oriented but lies predominantly in
the plane transverse to the direction of shock propagation. Since
the size of the emission region (below the cooling frequency) in
the comoving frame A}, is much larger, with (c/w),) < A}, ~
R/Ty = 1014R15l‘s_h_1] cm where R and Ty, are, respectively, the
radial distance and Lorentz factor (LF) of the shock, the field must be
able to survive much deeper downstream of the shock (Piran 2005)
without completely decaying due to particle phase-space mixing
(Gruzinov 2001).

Numerical simulations and analytic works show that the coher-
ence scale of the magnetic field grows beyond the skin-depth scales
via the formation of current filaments (Silva et al. 2003; Frederiksen
etal. 2004; Medvedev et al. 2005). However, these may be subject to
pressure-driven instabilities, e.g. the kink instability, which would
destroy the filamentary structure, thermalize the particles, and cause
the field to decay in the shocked region (Milosavljevi¢ & Nakar
2006). 2D e*-pair plasma PIC simulations (Chang, Spitkovsky
& Arons 2008; Spitkovsky 2008a) and 2.5D electron-ion PIC
simulations (Spitkovsky 2008b) have also found that the filaments
breakup into clumps surrounded by a highly isotropic plasma
and the magnetic field rapidly decays after ~few x 100 (c/w, ),
with @), . being the electron plasma frequency, and ~20(c/w)),
respectively. Many of these results are derived from the short-term
evolution of the shock structure and the downstream magnetic field.
Long-term PIC simulations (e.g. Keshet et al. 2009) instead find
that at times ¢ > 103“’;,1@ the properties of the shock and current
filaments in the precursor region are gradually modified by shock-
accelerated energetic particles. This causes a gradual increase in
the level of magnetization and the magnetic field coherence scale in
the upstream. Consequently, as the magnetic field advects into the
downstream, the decay rate of the post-shock magnetic field slows
down, its coherence length grows, and e approaches ~1072 on
length scales up to ~10°c/w),, , downstream of the shock transition.

Synchrotron radiation is partially linearly polarized, and there-
fore, measurement of linear polarization of GRB afterglows is an
invaluable tool to study the asymptotic structure of the post-shock
magnetic field. However, the emergent polarization depends not
only on the magnetic field structure but also on the structure of the
jet and the observer’s line-of-sight (LOS), leading to considerable
degeneracy for an off-axis (fos > 0) observer. To break the
degeneracy between the magnetic field structure, the jet structure
and 6y, it is important to first independently model the latter two
using the afterglow light curve and image on the plane of the sky. In
this work, we use the exquisite broad-band afterglow observations of
GW 170817 /GRB 170817A and the semi-analytic model fits (from
afterglow data up to #,ps ~ 600 d) obtained by Gill & Granot (2018);
Gill et al. (2019) for axi-symmetric core-dominated jet angular
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structures. These models for the jet’s angular structure and 6, are
then used to predict the degree of linear polarization for different
tangled post-shock magnetic fields, which are naturally symmetric
with respect to 7iy,. Finally, our model predictions are compared
to the polarization upper limit for GW 170817/ GRB 170817A to
constrain the post-shock magnetic field structure.

The rest of the paper is organized as follows. In Section 2,
we first present a general discussion of how linear polarization
is produced in axisymmetric flows from different magnetic field
configurations and jet structures. Then, we briefly discuss how
afterglow observations of GW 170817/GRB 170817A were used
to constrain the jet structure and 6. In Section 3 we describe
the jet structure and dynamics used in this work, which features
an angular structure given by two semi-analytic models of core-
dominated structured jets with local spherical dynamics (see Gill &
Granot 2018, for more details) superimposed with a Blandford &
McKee (1976) radial profile for the post-shock flow. In Section 4, in
order to calculate the linear polarization, we model the post-shock
magnetic field B and parametrize its degree of anisotropy through
& = By/B,, whose initial value £, = By (/B s describes the field
that survives downstream on plasma scales <<R/T,. Since each fluid
element is stretched more along the shock normal direction 7y, than
in the two perpendicular directions as it flows downstream, &£ grows
with the distance behind the shock. In Section 5 we obtain strong
constraints on the shock-generated field anisotropy just behind the
shock (namely 0.57 < &/ < 0.89) by comparing the predicted degree
of polarization to the radio upper limit. Finally, in Section 6 we
discuss the important implications that this result may have for the
magnetic fields generated in relativistic collisionless shocks. Our
results strongly suggest that the shock-generated field must have a
component parallel to the shock normal and it cannot be only in the
plane transverse to it, as suggested in earlier works (e.g. Medvedev
& Loeb 1999). We find the post-shock field to be less anisotropic,
which may be consistent with a turbulence amplified magnetic field.

Throughout this work, the notation Q. denotes the value of the
quantity Q in units of 10" times its (cgs) units.

2 LINEAR POLARIZATION OF GRB
AFTERGLOWS: MAGNETIC FIELD AND JET
STRUCTURES

Here we summarize the different ways in which net linear polariza-
tion is obtained in GRB afterglows. We point out the degeneracy
between different magnetic field configurations that can potentially
lead to similar levels of polarization. This is further complicated
by the degeneracy between the magnetic field configuration, jet
structure, and viewing angle 6,5, where off-axis viewing (6ps > 0)
breaks the symmetry of the image for an axisymmetric flow, leading
to net polarization.

Since GRBs are cosmological sources and their images on the
plane of the sky are generally unresolved, any measurement of linear
polarization effectively averages the local polarization over the
entire image. As a result, linear polarization from shock-generated
fields, which are on average symmetric around the local shock
normal direction, fig, (as it is the only relevant preferred direction
locally), would average out for a spherical flow and produce no
net polarization (as there would be no global preferred direction).'

Magnetic fields that are randomly oriented in 3D space would yield zero
polarization even locally as there is no preferred direction for the polarization
vector.
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Therefore, in order to detect any residual polarization, the symmetry
of the image must be broken. For a spherical flow this can occur if
different weight is given to different parts of the image, e.g. through
microlensing (Loeb & Perna 1998), radio scintillations (Medvedev
& Loeb 1999), clumps in the external medium (Granot & Konigl
2003), or angular inhomogeneities in the jet (‘patchy shell’, Kumar
& Piran 2000; Ioka & Nakamura 2001; Granot & Konigl 2003;
Nakar & Oren 2004; Yamazaki, loka & Nakamura 2004). However,
these are expected to occur only in some fraction of GRB afterglow,
and would be accompanied by temporal variability in the afterglow
light curve that was not observed in GRB 170817A.

A more robust and therefore also more popular way of breaking
the symmetry of the afterglow image is through an axisymmetric
flow (i.e. a jet) observed off-axis (from O, > 0, where Oqps is
measured from the jet’s symmetry axis). This can occur in two
ways: (i) if the emission arises from a relativistic (with LF " >
1) uniform jet with sharp edges at an initial half-opening angle 6
(i.e. a ‘top-hat’ jet), an off-axis observer within the jet’s aperture (0
< Ogps < Op) sees the edge of the jet near the time of the jet break
in the light curve, when the flow decelerates so that the beaming
cone of the emission widens to 1/T" 2 (0g — Oops) (Ghisellini &
Lazzati 1999; Sari 1999). This results in incomplete cancellation of
polarization which yields finite residual polarization when averaged
over the GRB image; (ii) If the flow is structured and its properties,
e.g. the energy per unit solid angle and/or Lorentz factor, vary with
polar angle 6 from the jet symmetry axis (i.e. a ‘structured’ jet,
e.g. Kumar & Granot 2003), the gradient in the polarized intensity
in the observed region again leads to incomplete cancellation of
polarization (Rossi et al. 2004; Gill & Granot 2018).

Alternatively, net polarization is obtained if the shocked region
is permeated by an ordered magnetic field component in addition
to the shock-generated random field (Granot & Konigl 2003), or if
the emission region consists of coherent magnetic field patches
(Gruzinov & Waxman 1999) of angular scale 65 < 1/T", such
that the image (i.e. the observed region of angle ~1/I" around
our line of sight) contains N ~ (I'63)* patches. In these two
cases, the symmetry is broken by the ordered field component,
for which the local maximum polarization is 0.5 < [[T = (@ +
D/(e + 5/3)] < 0.75 where o = —dlog F,/dlog v is the spectral
index. In the N-patches model, since the emission arises from
N intrinsically coherent but mutually incoherent patches, the net
polarization is reduced to IT ~ TTnac/~/N due to partial cancellation
(the /N suppression factor arising from random walk in the Stokes
parameters (U, Q) plane).

Measurement of IT ~ 1 per cent — 3 per cent in the optical and
NIR afterglow of several GRBs (e.g. Covino et al. 1999; Wijers et al.
1999, also see Covino & Gotz 2016 for a review) confirmed the
synchrotron origin of the emission. Such low levels of polarization
readily ruled out an ordered magnetic field with coherence angular
scale 65 = 1/T. Instead, they suggested either ordered fields with
much smaller coherence length scales, as in the N-patches scenario,
or shock-generated tangled fields. In the latter case, however, the
magnetic field must have some level of anisotropy if the flow is
uniform or the GRB image must be inhomogeneous owing to the
fact that the observer is off-axis and the jet either has a sharp edge
or a core-dominated angular structure. Granot & Konigl (2003)
parametrized the post-shock tangled magnetic field anisotropy
using b = 2 (B}) / (B1 ), the ratio of the radially averaged energy
densities of the two field components. Note that b = 1 for a
field that is isotropic in 3D and gives zero local polarization, so
the closer b is to one the lower the local and global degrees of
polarizations. Using the observed levels of afterglow polarization
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IT ~ 1 per cent — 3 per cent around several hours to a few days,
which were relatively close to the jet break time around which the
polarization is expected to peak, and assuming emission from an
infinitely thin relativistic spherical shell, Granot & Konigl (2003)
constrained b to be approximately within the range 0.5 < b < 2. This
involved a statistical argument about the distribution of 6 5, between
the different GRBs within the modest sized sample with afterglow
polarization measurements that was available in 2003. Nevertheless,
it already suggested that the post-shock magnetic field must be at
least mildly anisotropic.

Still, considerable degeneracy remains between the scenarios
mentioned above and one way to break that is by the observation of
the temporal evolution of the polarization position angle (PA), 8,,. In
the N-patches case, 6, is expected to vary randomly and IT fluctuates
and gradually decreases, both over time-scales At ~ ¢, as the visible
region grows and encompasses more patches. Interestingly, both
of these tell-tale signatures were recently observed by ALMA at
97 GHz in the reverse-shock emission (from the shocked original
GRB e¢jecta) of GRB 190114C between 2.2 and 5.2 h after the GRB,
implying 6 ~ 1073 rad (Laskar et al. 2019). On the other hand, for
a mildly anisotropic shock generated magnetic field, 6, flips by
90° as IT momentarily vanishes, around the time of the jet-break
for a top-hat jet viewed off-axis (Ghisellini & Lazzati 1999; Sari
1999; Granot & Konigl 2003); for a structured jet viewed off-axis
0, remains unchanged (Rossi et al. 2004).

Since 6,ps, the jet angular structure and the degree of anisotropy
of the shock-generated magnetic field, all affect the observed
polarization, it becomes important to model the angular structure
of the flow, and constrain 6.,. Almost all GRBs, whether of the
long-soft or short-hard classes, have been observed at cosmological
distances, which guarantees that the observer’s LOS lies within
the beaming cone of the compact core of half-opening angle 6.,
such that Oy, — 6. < few x I'"! for core-dominated jets where the
emission sharply drops at 6 > 6.. This makes it challenging to
draw any useful inferences on the jet structure and on our viewing
angle 6 yps.

The afterglow of the short-hard GRB 170817A (Abbott et al.
2017b), associated to the first-ever detection of a binary neutron
star merger gravitational wave source GW 170817 (Abbott et al.
2017a), has provided a golden opportunity to study the structure of
outflows that power short-hard GRBs. The broad-band afterglow,
detected after 8.9d in X-rays (Troja et al. 2017) and 16.4d in the
radio (Hallinan et al. 2017), showed an unusually long-lasting flux
rise, as F,(fops) o v™00258, up to the peak at fops px ~ 150d post
merger (e.g. Lyman et al. 2018; Margutti et al. 2018; Mooley et al.
2018a), followed by a sharp decay as F, o< t5 where a >~ —2 (van
Eerten et al. 2019; Mooley et al. 2018b; Hajela et al. 2019; Lamb
et al. 2019). Several numerical and semi-analytic works modelled
the afterglow as arising from a successful (i.e. bore its way through
the merger dynamical ejecta rather than being chocked within it)
off-axis core-dominated structured jet, whose angular profile is
consistent with either a (quasi-) Gaussian or a narrow core with
sharp power-law wings (Troja et al. 2017; Alexander et al. 2018;
D’Avanzo et al. 2018; Gill & Granot 2018; Lamb & Kobayashi
2018; Lazzati et al. 2018; Lyman et al. 2018; Margutti et al. 2018;
Nynka et al. 2018; Resmi et al. 2018; Troja et al. 2018; Hajela et al.
2019; Lamb et al. 2019). Later radio VLBI observations measured
an apparent superluminal motion of the afterglow flux centroid with
Vapp ~ 4c (Mooley et al. 2018b), and constrained the angular size
of the afterglow image on the plane of the sky to < 2 mas (Mooley
et al. 2018b; Ghirlanda et al. 2019). The apparent superluminal
motion firmly established the fact that the outflow had a narrow
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Figure 1. The global (lab-frame) and local (comoving-frame) coordinate
systems, where the former is used to describe the structure of the jet, and
the latter is used to describe the local magnetic field and is used in the
calculation of linear polarization.

relativistic compact core surrounded by low energy wings, which is
consistent with the upper limit on its angular size.

Using VLA radio observations at 2.8 GHz an upper limit of |I1] <
12 per cent (99 per cent confidence) was obtained on the afterglow
linear polarization at o, &~ 244 d (Corsi et al. 2018). Comparison
with detailed predictions for the linear polarization from semi-
analytic models of core-dominated structured jets that explained the
afterglow light curve and image size of GW 170817/GRB 170817A
(Gill & Granot 2018), revealed that 0.7 < b < 1.5, suggesting that the
post-shock magnetic field must be at most mildly anisotropic with a
finite magnetic field component in the direction of the shock normal
that is comparable to the components in the two perpendicular
directions (Corsi et al. 2018; Gill, Granot & Kumar 2018). Having
constrained the jet structure and viewing angle from the afterglow
light curve and image properties of GW 170817/GRB 170817A ,
this new tighter constraint on b was free of any model degeneracy
due to the jet structure and provided a robust estimate of the radially
averaged magnetic field anisotropy. This severely constrained mod-
els of Weibel-instability-generated fields at collisionless shocks,
where the field lies completely in the plane transverse to the shock
normal. However, the calculation in Gill & Granot (2018) did
not account for the radial structure of the flow and its effects
on the magnetic field structure, since they adopted the thin-shell
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approximation. Therefore, the upper limit on linear polarization
could only be used to constrain the radially averaged degree of
anisotropy.

The GW 170817/GRB 170817A broad-band afterglow spec-
trum was explained by a single power-law segment (PLS) of
synchrotron emission — PLS G (Granot & Sari 2002) with spectral
index « = (p — 1)/2 (with F,ocv™ and power-law relativistic
electron distribution N(y)oxy 7). In PLS G the emission is from
slow-cooling electrons and hence it arises from the entire shocked
volume behind the forward shock. Therefore, in this work we
obtain the afterglow linear polarization by integrating over the entire
emitting volume behind the forward shock.

3 CORE-DOMINATED ANGULAR
STRUCTURED FLOW WITH
BLANDFORD-MCKEE RADIAL PROFILE

We consider a core-dominated structured jet (e.g. Mészaros, Rees &
Wijers 1998) with energy per unit solid angle, £(0) = dE(0)/d<2,
and initial bulk I'y(6) of the shocked material just behind the shock
front, both declining with the polar angle 6 from the jet symmetry
axis (see Fig. 1). Here we consider two distinct angular profiles:
(1) A Gaussian jet (GJ) for which both £(#) and the initial kinetic
energy per unit rest mass, I'o(6) — 1, have a Gaussian profile (Zhang
& Mészaros 2002; Kumar & Granot 2003; Rossi et al. 2004) with a
floor at 6 = 6, corresponding to By = Bmin = 0.01,

EO) Ty®)—1 1 (min{0, 6,})°
@ —m—exp[‘z<@>]’ v

where &, and I, represent the core values, and (ii) a Power-law jet
(PLJ) for which both £() and T'¢(f#) — 1 decline as a power law
outside of the core,

EO) ., Lo@-1_ .,
(PLJ) £ =0, T -1 =07,
9 2
0= 1+<9—>, 2

with their respective power-law indices, a and b.

For the dynamics, we neglect sideways expansion (or any
temporal evolution of £(0)), and assume that each point on the
shock front expands locally only radially as part of a spherical flow
with the local value of £(9). The rest mass density of the circumburst
medium (CBM) is assumed to vary as a power law with the radial
distance r from the central source, pi(r) = m,n(r) = Apr*, where k
= 0 for a uniform density interstellar medium (ISM) and k = 2 for a
steady wind medium, n(r) is the CBM particle number density, and
m,, is the proton mass. When the forward shock reaches a radius r,
the corresponding spherical flow would have swept up a mass m(r) =
[4wA/(3 — k)] ~*, and since m(r) increase with r this decelerates
the shock. A wind-like environment (k = 2) is only relevant for
GRBs of the long-soft class, where quasi-steady mass-loss due to
stellar winds from the progenitor star may be expected. In the case
of BNS mergers, which is relevant for this work, a uniform ISM-like
CBM (k = 0) is expected.

Atan early stage, the shell is assumed to coast at a constant proper
velocity uy(6) = I'o(0)Bo(#) until the deceleration radius, which is
expressed as

_ . 1/(3—k)
(3 k)Ek,lSO(e):| (3)

Ra®) = { 4 Acu2(0)
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At the deceleration radius most of the isotropic equivalent energy
of the blast wave, Ey iso(6) = 47 E(H), is used up to accelerate the
swept up mass to u ~ ug(f), and also to heat it up to a similar
thermal proper velocity, so that m[r4(0)]u(9)c* = Ex. is0(6). Beyond
this radius, the shell starts to decelerate as it continues to sweep
up more mass and its dynamical evolution becomes self-similar,
such that u(6)cc—3 =92 which is valid not only in the relativistic
phase but also in the Newtonian Sedov—Taylor phase. During this
deceleration phase, the dynamically averaged bulk LF of the post-
shock material can be expressed as (Panaitescu & Kumar 2000; Gill
& Granot 2018)

Fo(0) +1
273

X \/1—{-

where 7 = R/R;(0). This estimate is particularly useful when the
radiating electrons in the shocked material are fast cooling so that
the lab-frame size of the emission region is much smaller than the
width of the shocked region, A, < Ay ~ R/ th, In this case, the
emission region is generally approximated as being infinitely thin
with bulk LF of the shell given by equation (4). From the Blandford
& McKee (1976, BM76 hereafter) solution, the LF of the material
just behind the shock is given by I'y = [(17 — 4k)/4(3 — 1'/2T.
Here and what follows, the subscript f indicates the magnitude of
any quantity just behind the shock front. So that the expression
for I'y remains valid in the non-relativistic regime as well, we
use more generally u; =T s = (I'; — D2 = [(17 — 4k)/4(3 —
k)1'/%ii, where ii = T B. The LF of the shock front is then given by
(BM76)

2 _ T+ DTy - D+ 11?
@ =Ty~ D+ 2
where the adiabatic index py = 4/3 (5/3) for a relativistic (Newto-

nian) shock.

When the post-shock electrons that dominate the emission in the
observed frequency range are slow cooling (i.e. cool on a time-scale
larger than the dynamical time), then the emission is no longer
limited to a very thin layer behind the forward shock. Instead, it
arises from a larger volume of the shocked region, containing most
of the energy and swept-up mass. In this case, it becomes important
to know the properties of the emitting material downstream of the
shock. It was shown by BM76 that at R > R, the dynamics of a
spherical blast wave become self-similar, such that the radial profile
of the post-shock fluid can be described using a similarity variable

Xx=14+24 -2 0-y), (6)

e, 7 =

Aro®) . . ( 273k )2_
T +1 T\ @ +1 @

~2r7 for Tp>1, (5)

where y = r/R is the fractional radius and r is the radial distance
from the central source. For an adiabatic blast wave with impulsive
energy injection, the proper mass and energy densities, and the
proper velocity of the downstream shocked material evolve with yx,
such that (e.g. BM76; Granot & Sari 2002; De Colle et al. 2012)

p = 23/2pk(r)l—~shx7(1073k)/[2(47k)] (7)
e = 2pk(r)CZFSZhX—(17—4k)/[3(4—k)] (8)
u = l"ﬁ = I,th_I/z. (9)

The downstream electron proper number density is equal to that
of the protons, n, = n = p/my,. The radial dependence of u in
equation (9), which is derived from the radial dependence of I" for
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the BM76 solution, strictly holds only in the ultrarelativistic regime,
with u ~ I' > 1. Here we assume that the same dependence also
holds in the transrelativistic regime as well. As shown below, this
approximation has very little effect on the final result since the flux
at the relevant times is dominated by the relativistic core where the
BM76 solution still holds.

4 POST-SHOCK MAGNETIC FIELD
STRUCTURE

Immediately behind the forward shock, the energy density imparted
to the magnetic field can be parametrized in the standard way,
where a fraction € of the total internal energy density e goes to the
magnetic field. Then, downstream of the shock the strength of the
comoving magnetic field would evolve with the similarity variable,
such that

12 12
B _ (i? i) _ (673) y~(7=40)/4-60) (10)
By €. ey €p.f

at a given lab frame time 7 or shock radius R. For convenience it is
typically assumed that e = €p f, but nothing guarantees that this
holds in the entire downstream region. Furthermore, apart from the
above scaling it is less clear how the structure of the magnetic field
evolves downstream of the shock.

Further insight can be gained by making the assumption, without
loss of generality, that the magnetic field just behind the shock has
a component parallel (B, y) and transverse (B ;) to the unit vector
in the direction of the shock normal 7ig,, which is identified here
with the radial velocity unit vector ¥ = 7 = figy,. Here we follow
the parametrization of the post-shock magnetic field in Granot,
Piran & Sari (1999a) who considered a spherical flow, for which
the parallel direction is the radial direction. Under the ‘frozen
field’ approximation, and for a radially expanding flow, the two
components of the magnetic field would evolve with y, so that

Bi(x)=By ;s x "® ™ and Bi(x)=B.,x " (11)

We provide further details on the evolution of the magnetic field
downstream of the shock in appendix A.

In general, the magnetic field can also have an angular distribu-
tion. Sari (1999) provided a general description of the magnetic field
anisotropy, allowing for a dependence of the (comoving) magnetic
field strength of the (comoving) angle 6 = arccos(l} - figy) from
the shock normal 7y, B = B(0y), as well as a probability per unit
solid angle f(6y) for the magnetic field to be inclined by an angle
05 (see Fig. 1 for the local coordinate system used to describe the
magnetic field geometry and to calculate linear polarization). He
further suggested a useful realization, which we adopt here, that
takes an isotropic field and multiplies the component along iy, by
a factor &, i.e. By = B - iy — & By, which leads to

B(6) o (82 sin 0 +cos?0,)"? and  f(6y) o B*(By). (12)

Here the two magnetic field components are described as B =
EB) & cosfy and B, = B o< sinfy, where the B component
is scaled with respect to the unscaled component (B) by &, the
parameter that controls the degree of anisotropy. The B, component
is left unscaled. This implies that when & > 1 (§ < 1), By > B,
(B < By)and & = 1 produces a completely isotropic field.

Since the magnitude of the two field components evolves down-
stream of the shock, the total field anisotropy must also depend on
the similarity variable x. The scaling of & from an initial value of &,
just behind the shock can be derived by taking the ratio of the two
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field components given in equation (11), which yields

_ B = Bis
. B,

13)

The comoving magnetic field strength depends both on its inclina-
tion angle 0 and on its radial distance behind the shock (through
x) in addition to £x, B = B(&, x, 0p), as does its angular proba-
bility distribution according to equation (12), f = f (&, x, 05)
B(Ef. x. 0p).

In the top panel of Fig. 2, we schematically show the geometry of
the magnetic field and how it varies with the anisotropy parameter
&. In the bottom panel, we show the radial profile of the magnetic
field and its anisotropy in the shocked region, as a function of the
distance (R — r) from the forward shock.

The radial structure of the two magnetic field components from
equation (11) can now be used, along with equations (10) and (13),
to express the radial scaling of the magnetic field microphysical
parameter in the downstream region (Granot et al. 1999a; Granot,
Piran & Sari 1999b; also see appendix A for derivation),

12k
€g 24+ Efx

72k

s (2re) 7

X %D for & =0 (B =B,
- 2120 14
x @0 for & =00 (B = B)).

Fig. 3 shows eg(x)/ep s for several values of & For &, > 1, €p
monotonically increases with x (and hence with the distance behind
the shock), while for £, < 1, €p first decreases with x until reaching
& =1 and then increases with .

5 LINEAR POLARIZATION

To calculate the linear polarization averaged over the entire after-
glow image on the plane of the sky, we start by first expressing the
flux density measured by an oft-axis observer whose LOS points in
the direction of the unit vector 2" that makes an angle 6, with the
jet symmetry axis.

Here we consider synchrotron emission produced by relativis-
tic electrons (or e*-pairs) that are accelerated at the forward
shock into a power-law energy distribution, with dN/dy ocy 7 for
Ym < v < yu. The comoving synchrotron emission coefficient
(emitted energy per unit volume, time, frequency, and solid angle)
from a point-like region is given by

o=l (IBO))sin8'1°) , (15)

where it depends on the spectral index « and the component of the
magnetic field perpendicular to the observer’s LOS, Bsin 8, raised
to some power € = 1 4 « (Laing 1980). Here §' is the angle between
the local comoving magnetic field unit vector B and the direction to
the observer, i’ - B = cos &', and it depends on the angle between
the direction to the observer and the shock normal, given by 6’ =
arccos(it’ - ftg;). The normalization, j), , = Jv 0@, ¥y, R), depends
on the energy density and number density of the radiating electrons
(see e.g. Gill & Granot 2018). Since the magnetic field is tangled up
in 3D with some anisotropy, the emissivity from a point-like region
must be obtained by averaging over the different directions of the
magnetic field, as indicated by the () brackets, such that

JIB©y)sind'1° £(0,)d
[ f65)d ’

([B(Oy)sind']) = (16)

MNRAS 491, 5815-5825 (2020)

§§1.3 §=1

shock normal

100 .

—_——
—_——

| B/B, — B./B.,
- — By/Bjy — /&

[1 , R | \ N |
1072 107! 100
(x—1)=(R-7r)/Aax

Figure 2. Top: Schematic of post-shock magnetic field geometry for dif-
ferent values of the anisotropy parameter § = B|/BL = &¢ § 720/ (8=2k)
Bottom: Magnetic field radial profile shown as a function of the radial
distance behind the shock, (R — r), normalized by the lab-frame width of
the shocked region, Agy = R/[2(4 — k)l"szh]. Here r is the radial coordinate
and R is the radial distance of the shock front. All quantities are normalized
by their value immediately behind the shock.

where the solid angle d2; = sin 6,d6;d¢} and ¢}, is the azimuthal
angle. Since the magnetic field distribution is symmetric around ftgp,,
this average would depend only on the angle #’ in addition to € and
& (and these dependencies carry through to j/,). The flux density
measured by an off-axis observer from a distant source at redshift
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Figure 3. The evolution of the magnetic field equipartition parameter,
ep, with the distance behind the shock, according to equation (14).
The value of €z normalized by that just after the shock is shown as a
function of the Blandford & McKee (1976) self-similar variable y =
1 + [(R — r/Agq] where Ag, = R/[2(4 — k)th], for several different
values of the magnetic field anisotropy parameter just behind the shock,
&r=0,02,04, 057, 0.7, 0.89, 1.2, 2, co (from bottom to top). The
two extreme values of £y = 0, oo are shown as dotted (straight) lines and
correspond to power laws in x, as given in equation (14). The light-grey
shaded region corresponds to the allowed range that we find in this work,
0.57 <& <0.89.

z, corresponding to a luminosity distance dy, is given by integrating
over the volume of the emission region (e.g. Granot et al. 1999a),

(1 + Z) 2 B 1 B 1 dr
Fu(to s» 0o S’U) = d§0/ d/l./ dy —
P d;Jo -1 0 dy
R 2 ~//
(rd—-amw]i

where I' is the LF of the radiating fluid element, i = cosf =
it - B =i -7 and 6 and § are, respectively, the polar angle measured
from and the azimuthal angle measured around the observer’s LOS.
The measured linear polarization (V = 0) is obtained from
the ratio of the polarized intensity to the total intensity, IT =
Q>+ U?/I, where I, Q, U, V are the Stokes parameters. Due
to the assumed axisymmetry of the flow, U vanishes, and the
frequency-independent polarization is therefore given by

= !
(s, ) = 2 = ”Tw (18)
with T being the local polarization. When IT < 0 (IT > 0) the
polarization vector on the plane of the sky is expected to be along
(normal to) the direction of motion of the flux centroid. To obtain
the local polarization IT from a point-like region averaging over the
different magnetic field directions is again performed, which yields

(Sari 1999)
' [ cos2i)[B(6})sin8'] f(05)dS
Max JIB(@p)sin 81 f(05)dS)

where 7' is the angle between the direction of the local polarization
unit vector I’ = (2’ x B)/|A’ x B| and the direction perpendicular
to the plane containing 2" and ﬁ .WhenIT > 0 (IT" < 0) the direction
of the local polarization vector is along (normal to) the direction of
il X ig,. Again, because of the magnetic field’s symmetry around

, 19)
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Figure 4. Mapping between the two parameters, b and &, that characterize
the degree of anisotropy in the post-shock magnetic field, shown at
tobs = 244 d. This mapping is not constant in time. The b = 2 <Bﬁ> / <Bi>
parameter averages over both the radial profile and the local direction and
strength distribution of the field and is used in 2D integrals of the emission
region, which is assumed to be an infinitely thin shell. The &; parameter
characterizes the anisotropy of the magnetic field just behind the shock and
is used in 3D volume integrals of the emission region. The scaling of the
local effective field anisotropy (&fr) with b is also shown (also see the dotted
lines in Fig. 6).

ftgy, this ratio depends only on &', €, and £. For € = 2 (with @ =
1), the expression for the polarization becomes particularly simple,
and equation (19) yields (Gruzinov 1999; Sari 1999)

@)  (b—1sin?¢’
1_[malx B 2 + (b - I)Sil'l2 é,

where cos 6’ = i’ = (i — f)/(1 — Bi). Here b =2 (B}) / (B1)
is another way to parametrize the anisotropy of the magnetic field
(Granot & Konigl 2003), where the average is taken over the radial
profile of the flow downstream of the shock and the local direction
and strength distribution of the magnetic field. This choice of
parametrization is most useful when considering emission from
an infinitely thin region behind the shock (see e.g. Granot & Konigl
2003), for which the degree of polarization is obtained from

0 [8)L, ([B(Bp)sind'*) IT cos(2¢)d<2

Mop = = = .
= [85L, ([B©y)sind'?) d&2

(e =12), (20)

(e =2),

ey

where dQ = djid@ and L/, is the isotropic equivalent (locally
anisotropic) synchrotron spectral power (see Gill & Granot 2018, for
further details). Averaging over different magnetic field directions
follows from equation (16), which yields>

([B®p)sin8'1*) o< 2+ (b — 1)sin* ' (e = 2). (22)

In Fig. 4 we show the mapping between b and &, that was obtained
by comparing the degree of polarization in the two cases for the
two different jet structures at 7,5 = 244 d. Note that applying the
local definition of b to our local magnetic field model that is defined
by & alone yields the simple relation b = 2 (Bj) / (B}) = &7 (see
Appendix A). This local relation largely carries through to the global
mapping between b and & shown in Fig. 4, when accounting for the
fact that since & increases with the distance behind the shock, its

2This factor was neglected in Gill & Granot (2018) and only an isotropic
comoving synchrotron spectral luminosity was assumed there.
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Figure 5. Temporal evolution of the degree of linear polarization (IT),
obtained from a volume integration of the flow, shown for different values
of the magnetic field anisotropy parameter, &, just behind the shock. The two
arrows mark the polarization upper limit, |[I1| < 12 per cent. Comparison is
made between two jet structures — a Gaussian jet (GJ) and a power-law
jet (PLJ). The result from Gill & Granot (2018, GG18), which assumed
an infinitely thin shell geometry as well as locally isotropic synchrotron
spectral emissivity (see footnote 2), is also shown for the magnetic field
anisotropy parameter b = 0. The jet and afterglow model parameters are the
same as assumed in GG18.

effective value that can be defined as . = b"/? is somewhat higher
than that just behind the shock (&y).

We present the temporal evolution of the linear polarization for
different & ; parameter values and the two jet structures in Fig. 5. The
polarization curve obtained from the 2D surface integral for b =0 in
GG18 is also shown for comparison. As shown in GG18, the peak of
the polarization occurs at ~2t,ps, pk, Where Zops pk &~ 150 d is the peak
of the light curve when the compact relativistic core of the outflow
becomes visible to the off-axis observer. This remains true for &,
< 1. As the two parameters are increased above zero the degree
of anisotropy of the magnetic field begins to decline, until the field
becomes completely isotropic, which occurs at b = 1 and §,~ 0.72
(corresponding to £, = 1) in the two cases. This also marks the
point when the polarization vanishes and the polarization position
angle undergoes a 90° flip. Prior to this point, as the magnetic field
anisotropy decreases the level of polarization also declines. The
trend reverses post this point, when the B components starts to
dominate over the B, component and as the field again becomes
increasingly anisotropic.

An upper limit on the degree of linear polarization of [I1| <
12 per cent (99 per cent confidence) was measured by Corsi et al.
(2018) from the radio afterglow of GW 170817/GRB 170817A
using the VLA at fys ~244d and v = 2.8GHz.> Since the
polarization angle could not be constrained, the upper limit, shown
as two black arrows in Fig. 5, constrains the absolute value of the
true degree of polarization. We use this upper limit to constrain the
value of both 0.66 S b < 1.49 and 0.57 < &/ < 0.89 in Fig. 6, where

3Detailed modelling of the GRB 170817A/GW 170817 afterglow shows
that the observed frequency is well within PLS G so it is not affected by
synchrotron self-absorption. This suggests that plasma propagation effects
in the source are also negligible at the time of this observation.
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Figure 6. Linear polarization (IT) as a function of the magnetic field
anisotropy parameter just behind the shock & for a 3D volume integral or the
anisotropy parameter b for a 2D infinitely thin shell (Gill & Granot 2018).
The upper limit on |IT| measured by Corsi et al. (2018) at fohs ~ 244 d post
merger is shown as the grey shaded region. This constrains 0.57 < &7 < 0.89
and 0.66 < b < 1.49 for both the Gaussian jet (GJ; 0.57 < & < 0.89,
0.66 < b < 1.49) and power-law jet (PLT; 0.59 S &7 < 0.89,0.68 S b < 1.46).
The dotted lines show l'l(.i—‘]zc) having the same shape as I1(b) demonstrating
that, since locally b = £, a global 3D integration preserves the same scaling
for an effective anisotropy parameter, £ = b'/2.

we show the degree of polarization at .,y = 244 d as a function of
b and & for the two jet structures. The post-shock field anisotropy
(&) may have some dependence on the shock compression ratio,
prpr(r) = 23Ty, = 4T, (see equation 7; where the last equality
is true when I'g, > 1). The corresponding ranges for the flux-
weighted mean of the two LFs and for the two jet structures are: (GJ)
4.26 <(I'gy) <4.59;3.31 <(T'y) <3.59,(PLJ)3.98 < (I'y) <4.24;
3.10 < (I'y) < 3.30. The dotted lines in Fig. 5 show l'[(éj%) that have
the same trend as I1(b). This similarity results from the local scaling
(averaged over the field’s angular distribution) where b = £2. It is
preserved in the global 3D integration where the effective anisotropy
of the post-shock field scales as &g = b'/2.

6 DISCUSSION

The upper limit of |IT| < 12 per cent measured for the afterglow
linear polarization for GW 170817 /GRB 170817A has important
implications for the post-shock magnetic field structure, in particu-
lar for its degree of anisotropy. In the case of Weibel instability-
generated magnetic fields just behind the forward shock, the
theoretically expected value (e.g. Medvedev & Loeb 1999) of
the anisotropy parameter is £, = 0 (corresponding to b = 0 in
the 2D case). As shown in Fig. 6, this case is ruled out and the
constrained value of 0.57 < &, < 0.89 suggests that the magnetic
field just behind the shock must have a finite but sub-dominant B
component. In terms of the parameter b, which is more suitable
for a 2D thin emitting shell, we obtain 0.66 < b < 1.49. This is a
significant improvement compared to the previous rough estimate
of 0.5 < b < 2 made by Granot & Konigl (2003) based on the low
measured values (IT < few per cent in the optical/NIR) of afterglow
linear polarization in the first several GRB afterglows (which were
available at that time), which involved a statistical argument since
the jet angular structure and 6,5 were not known for those GRBs.
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On the other hand, 3D PIC simulations of two counterstreaming
unmagnetized relativistic electron-ion (or even electron—positron)
plasmas find that the magnetic field just behind the shock is
predominantly transverse, with a finite component parallel to the
shock normal having, on average, | B|/|B| S 1072 (e.g. Frederiksen
et al. 2004; Ardaneh et al. 2015; Ardaneh, Cai & Nishikawa 2016).
Expressing this ratio in terms of the anisotropy parameter, we find
|By.rl/|Bsl = &p(1 + Ejzn)"/z =~ (.50 — 0.66 for 0.57 < &, < 0.89,
which suggests that the field anisotropy just behind the shock
is significantly smaller as compared to that found in those PIC
simulations. Furthermore, due to the larger stretching of the flow in
the radial direction (compared to the two transverse directions)
| By, sI/|By| grows with the distance behind the shock (however
this occurs on the dynamical scales where the planar symmetry
of the PIC simulations breaks down and the shock’s radius of
curvature becomes important). Since PIC simulations are gener-
ally limited to box sizes that span at most < 10%(c/w,, o) (see
e.g. Spitkovsky 2008a; Keshet et al. 2009, for 2D simulations),
which is still much smaller than the width of the post-shock
region, the decline in field anisotropy over larger scales remains
unconstrained.

In modelling the afterglow, we have explicitly made the assump-
tion that €z (with €g s = 5.5 x 10~* in this work, though it is
still subject to degeneracies with other model parameters, e.g. Gill
et al. 2019) depends on the radial profile of the flow in the shocked
region. PIC simulations show that the two-stream/Weibel instability
amplifies the magnitude of small-scale shock-generated magnetic
field to near-equipartition (€5 ~ 0.1) in the shock transition region
that separates the upstream and downstream flows. However, many
2D PIC simulations find that due to particle phase-space mixing
the field decays rapidly downstream within few x 100(c/w,..) (e.g.
Kato 2007; Chang et al. 2008; Spitkovsky 2008a). The long-term
evolution of both electron-ion (Takamoto, Matsumoto & Kato 2018)
and e*-pair plasma (Keshet et al. 2009) PIC simulations does seem
to suggest that the magnetic field decay saturates at ez ~ 1072
for comoving distances =2 102(c/wp,e) from the shock transition
region. However, due to the small dynamical scales probed in these
simulations and the assumption of planar symmetry, the radial
stretching of fluid elements is not observed. Therefore, a self-
consistent treatment assuming flux freezing once plasma effects
saturate and &; with the corresponding € f is established, would
require € to evolve with y according to equation (14).

Early 2D PIC simulations that showed a gradual power-law decay
of € g prompted the consideration of decaying magnetic fields in the
bulk of the shocked region for afterglow modelling (Rossi & Rees
2003; Lemoine, Li & Wang 2013; Lemoine 2015) and also in models
of prompt emission from internal shocks (Pe’er & Zhang 2006;
Derishev 2007). Moreover, afterglow modelling of many GRBs
in the optical band revealed a wide distribution with a rather low
value of the radially averaged magnetic field in the shocked region
with 1078 < (ep) < 1072 under the explicit assumption that the
circumburst density 7 = 1 cm™ (Santana et al. 2014). Therefore,
even though long-term PIC simulations might hint at saturation
of the field, as mentioned above, more realistic simulations for
the GRB afterglow shock should show its evolution with & in the
downstream.

Instead of generating magnetic field in the shock upstream via
microscopic plasma instabilities (e.g. two-stream/Weibel), it has
been argued (Sironi & Goodman 2007; Couch, Milosavljevi¢ &
Nakar 2008; Goodman & MacFadyen 2008) and demonstrated
using MHD simulations (Zhang, MacFadyen & Wang 2009; In-
oue, Asano & Ioka 2011; Mizuno et al. 2011) that macroscopic
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turbulence can amplify the feeble (e ~ 107°) ISM magnetic
field to eg ~ T7' > 1072, with ' < few x 10? for GRB
afterglows, via vorticity generation at the shock transition due
to density inhomogeneities in the shock upstream. As the cold
density clumps pass through the shock transition, vortical eddies
are created in the downstream that twist and stretch the seed
magnetic field. This leads to amplification of the field strength
over the eddy turn-over time due to the dynamo mechanism. The
density clumps in the upstream can arise either from pre-existing
density inhomogeneities in the stellar wind (relevant only to long-
soft GRBs) or can be self-generated due to partial charge separation
between the shock accelerated non-thermal ions and electrons in the
upstream (Couch et al. 2008). The advantage of turbulence amplified
magnetic field is that its coherence length is much larger than
plasma skin-depth scales, making it less susceptible to decay due to
particle phase space mixing. Moreover, the post-shock field tends
to be more isotropic, which is consistent with the findings of this
work.

7 CONCLUSIONS

In this work, we have used the upper limit on the linear polar-
ization, |I1] < 12 per cent at fops ~ 244 d, of the radio afterglow
of GW 170817 /GRB 170817A to constrain the anisotropy of the
shock-generated tangled magnetic field. The structure of the outflow
was modelled using the best-fitting solution (from afterglow data
up to tys ~ 600d) obtained in Gill & Granot (2018); Gill et al.
(2019) for a Gaussian and a power-law jet with locally spherical
dynamics and no sideways spreading. Since the flux at the time of
polarization measurement was dominated by the relativistic core,
with T(fops = 244 d) & 4.1(tns/150d) ™8 = 3.4, the assumption
of no sideways spreading, which is important when the flow
becomes non-relativistic (e.g. van Eerten & MacFadyen 2012),
should still remain reasonably valid. As suggested by the broad-
band (X-ray/Optical/Radio) afterglow synchrotron emission, which
maintained a single power law with v, < v < v,, the shock-
heated relativistic power-law electrons were slow cooling. This
necessitated the need for integrating over the entire shocked volume,
rather than assuming an infinitely thin emission region behind the
shock, to calculate the observed linear polarization. In order to do
that, we have modelled the radial profile of the post-shock magnetic
field using the BM76 relativistic spherical self-similar solution.
Under the frozen-field approximation, this causes the magnetic
field to become increasingly radial since the farther downstream the
flow is the more radially (as compared to the transverse direction)
stretched a given fluid element becomes.

Our main conclusion is that the shock-generated tangled magnetic
field cannot lie only in the plane of the shock (perpendicular to
the shock normal, B, ), as posited by some theoretical works (e.g.
Medvedev & Loeb 1999) and also shown in some PIC simulations
(e.g. Chang et al. 2008). We find that the field just behind the shock
must have a finite, albeit mildly sub-dominant, component parallel
to the shock normal, B, which is radial in our case. Moreover, the
initial field anisotropy parameter must be in the range 0.57 < (§;
= B“’f/BL’f) 5 0.89, and & = B”/BL = éjf)((772k)/(872k) grows
downstream with the distance behind the shock. This presents a
mismatch between our results and that obtained both from analytic
arguments and current PIC simulations of relativistic collisionless
shocks, suggesting that larger scale and long-term simulations are
needed to better constrain the asymptotic structure of the post-shock
magnetic field. At the same time, the lower degree of polarization of
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afterglow emission that reflects the inherent higher level of isotropy
of the post-shock magnetic field may be consistent with turbulence
amplified magnetic field.

ACKNOWLEDGEMENTS

This research was supported by the Israeli Science Foundation (ISF
grant No. 719/14) and by the ISF-NSFC Joint Research Program
(grant No. 3296/19). We thank Ehud Nakar and Uri Keshet for
useful discussions.

REFERENCES

Abbott B. P. et al., 2017a, Phys. Rev. Lett., 119, 161101

Abbott B. P. et al., 2017b, ApJ, 848, L13

Alexander K. D. et al., 2018, ApJ, 863, L18

Ardaneh K., Cai D., Nishikawa K.-I., Lembége B., 2015, ApJ, 811, 57

Ardaneh K., Cai D., Nishikawa K.-I., 2016, ApJ, 827, 124

Blandford R. D., McKee C. F.,, 1976, Phys. Fluids, 19, 1130

Bret A., 2009, ApJ, 699, 990

Chang P, Spitkovsky A., Arons J., 2008, ApJ, 674, 378

Corsi A. et al., 2018, ApJ, 861, L10

Couch S. M., Milosavljevi¢ M., Nakar E., 2008, ApJ, 688, 462

Covino S., Gotz D., 2016, Astron. Astrophys. Trans., 29, 205

Covino S. et al., 1999, A&A, 348, L1

D’Avanzo P. et al., 2018, A&A, 613, L1

De Colle F., Granot J., Lopez-Camara D., Ramirez-Ruiz E., 2012, ApJ, 746,
122

Derishev E. V., 2007, Ap&SS, 309, 157

Frederiksen J. T., Hededal C. B., Haugbglle T., Nordlund A 2004, Apl,
608, L13

Ghirlanda G. et al., 2019, Science, 363, 968

Ghisellini G., Lazzati D., 1999, MNRAS, 309, L7

Gill R., Granot J., 2018, MNRAS, 478, 4128

Gill R., Granot J., Kumar P, 2018, MNRAS, in press, preprint (arXiv:
1811.11555)

Gill R., Granot J., De Colle F., Urrutia G., 2019, ApJ, 883, 15

Goodman J., MacFadyen A., 2008, J. Fluid Mech., 604, 325

Granot J., Konigl A., 2003, ApJ, 594, L83

Granot J., Sari R., 2002, ApJ, 568, 820

Granot J., Piran T., Sari R., 1999a, ApJ, 513, 679

Granot J., Piran T., Sari R., 1999b, ApJ, 527, 236

Gruzinov A., 1999, AplJ, 525, L.29

Gruzinov A., 2001, ApJ, 563, L15

Gruzinov A., Waxman E., 1999, ApJ, 511, 852

Hajela A. et al., 2019, ApJ, 886, L1,

Hallinan G. et al., 2017, Science, 358, 1579

Inoue T., Asano K., Ioka K., 2011, ApJ, 734, 77

Toka K., Nakamura T., 2001, ApJ, 554, L163

Kato T. N., 2007, ApJ, 668, 974

Keshet U., Katz B., Spitkovsky A., Waxman E., 2009, ApJ, 693, L127

Kumar P., Granot J., 2003, ApJ, 591, 1075

Kumar P, Piran T., 2000, ApJ, 535, 152

Kumar P., Zhang B., 2015, Phys. Rep., 561, 1

Laing R. A., 1980, MNRAS, 193, 439

Lamb G. P.,, Kobayashi S., 2018, MNRAS, 478, 733

Lamb G. P. et al., 2019, ApJ, 870, L15

Laskar T. et al., 2019, ApJ, 878, L26

Lazzati D., Perna R., Morsony B. J., Lopez-Camara D., Cantiello M., Ciolfi
R., Giacomazzo B., Workman J. C., 2018, Phys. Rev. Lett., 120, 241103

Lemoine M., 2015, J. Plasma Phys., 81, 455810101

Lemoine M., Li Z., Wang X.-Y., 2013, MNRAS, 435, 3009

Loeb A., Perna R., 1998, ApJ, 495, 597

Lyman J. D. et al., 2018, Nat. Astron., 2, 751

Margutti R. et al., 2018, ApJ, 856, L18

Medvedev M. V., Loeb A., 1999, Apl, 526, 697

MNRAS 491, 5815-5825 (2020)

Medvedev M. V., Fiore M., Fonseca R. A., Silva L. O., Mori W. B., 2005,
ApJ, 618, L75

Mészaros P., Rees M. J., 1997, Apl, 476, 232

Mészéros P., Rees M. J., Wijers R. A. M. J., 1998, ApJ, 499, 301

Milosavljevi¢ M., Nakar E., 2006, ApJ, 641, 978

Mizuno Y., Pohl M., Niemiec J., Zhang B., Nishikawa K.-I., Hardee P. E.,
2011, Apl, 726, 62

Moiseev S. S., Sagdeev R. Z., 1963, J. Nucl. Energy, 5, 43

Mooley K. P. et al., 2018a, Nature, 554, 207

Mooley K. P. et al., 2018b, Nature, 561, 355

Nakar E., Oren Y., 2004, ApJ, 602, L97

Nakar E., Bret A., Milosavljevi¢ M., 2011, ApJ, 738, 93

Nynka M., Ruan J. J., Haggard D., Evans P. A., 2018, ApJ, 862, L19

Panaitescu A., Kumar P., 2000, ApJ, 543, 66

Panaitescu A., Kumar P., 2002, ApJ, 571, 779

Pe’er A., Zhang B., 2006, ApJ, 653, 454

Piran T., 2004, Rev. Mod. Phys., 76, 1143

Piran T., 2005, in de Gouveia dal Pino E. M., Lugones G., Lazarian A., eds,
AIP Conf. Proc. Vol. Vol. 784, Magnetic Fields in the Universe: From
Laboratory and Stars to Primordial Structures. Am. Inst. Phys., New
York, p. 164 (arXiv:astro-ph/0503060)

Resmi L. et al., 2018, ApJ, 867, 57

Rossi E., Rees M. J., 2003, MNRAS, 339, 881

Rossi E. M., Lazzati D., Salmonson J. D., Ghisellini G., 2004, MNRAS,
354, 86

Santana R., Barniol Duran R., Kumar P., 2014, AplJ, 785, 29

Sari R., 1999, ApJ, 524, 1.43

Sari R., Piran T., Narayan R., 1998, ApJ, 497, L17

SilvaL.O.,FonsecaR. A., Tonge J. W., Dawson J. M., Mori W. B., Medvedev
M. V., 2003, ApJ, 596, L121

Sironi L., Goodman J., 2007, ApJ, 671, 1858

Sironi L., Keshet U., Lemoine M., 2015, Space Sci. Rev., 191, 519

Spitkovsky A., 2008a, ApJ, 673, L39

Spitkovsky A., 2008b, ApJ, 673, L39

Takamoto M., Matsumoto Y., Kato T. N., 2018, ApJ, 860, L1

Troja E. et al., 2017, Nature, 551, 71

Troja E. et al., 2018, MNRAS, 478, L18

van Eerten H. J., MacFadyen A. 1., 2012, ApJ, 751, 155

van Eerten E. T. H., Ryan G., Ricci R., Burgess J. M., Wieringa M., Piro L.,
Cenko S. B., Sakamoto T., 2019, MNRAS, 489, 1919

Waxman E., 1997, ApJ, 485, L5

Weibel E. S., 1959, Phys. Rev. Lett., 2, 83

Wijers R. A. M. J., Galama T. J., 1999, ApJ, 523, 177

Wijers R. A. M. J. et al., 1999, ApJ, 523, L33

Yamazaki R., Ioka K., Nakamura T., 2004, ApJ, 607, L103

Zhang B., Mészéros P., 2002, ApJ, 571, 876

Zhang W., MacFadyen A., Wang P., 2009, ApJ, 692, L40

APPENDIX A: MAGNETIC FIELD EVOLUTION
AS IT IS ADVECTED DOWNSTREAM OF THE
SHOCK

Here we derive the evolution of the magnetic field as it is advected
downstream of the shock, assuming a local (i.e. at each given angle
0 from the jet symmetry axis) Blandford & McKee (1976) radial
dynamics. Let a subscript ‘0’ denote the value of a quantity when
the fluid element that is currently (at a local shock radius R) at
x=14+24- k)l"szh(R)[(R —r)/R], just crossed the shock (and
was at x = 1 when the shock radius was Ry), while a subscript ‘f’
denotes the current (at a shock radius R) value of a quantity just
behind the shock (at x = 1). We have (Granot et al. 1999a; Granot &
Sari 2002) x = (R/Ry)* ~* while the proper internal energy density
scales as

e _2(13-2k) er
— =y 3K [
€o (]

X (AD)
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The comoving length of a fluid element in the direction parallel to
the shock normal 7z, and the two directions perpendicular to it scale
as (Granot et al. 1999a; Granot & Konigl 2003)

L 9-2k L, R 1
— = 00, — = — = %k, (AZ)
Lo Lio Ro

Assuming flux freezing as the fluid element is advected downstream,
the two corresponding components of the comoving magnetic field
scale as

2
B _ Lé’o =3 B _ Liokyo _ X T (A3)

Now, in order to calculate the evolution of €5 = (B*)/8me we
need to calculate the mean of the square of the magnetic field.
In our formalism the magnetic field is derived from an isotropic
distribution that we will denote by a bar, with constant magnetic
field strength B and angular probability density f = 1/47 so that
f fdQ¥y = 1 where dQ; = d@gdji and i = cos f}. Since the field
is symmetric with respect to fig, i.e. f = f (0/ ), then we can
integrate over @ and switch from fdQ/ to f,djt where f, = 1 is

normalized such that fll fudit = 1. The magnetic field is derived
from this distribution by stretching the component parallel to 72y, by
a factor & while the perpendicular component remains unchanged,

B B B B [1—pu?
e 7] (A4)
B" B[L BL B ]—/L

This implies the relation

_ , -1/2

p=[l1+&w?>-1] 7, (A5)
and therefore the post-stretching magnetic field strength as a
function of u = cos 0y = iy, - B is

B B} + B} £
— = —— = . (A6)
B B £2(1 — u?) + p?

The implied post-stretching angular probability distribution is

~dp £\ 1 (BY’
rw=ng=5(5) -5 (5)

ng
= 2 ) (A7)
(201 — u2) + 2] "*

Now it is straightforward to calculate the mean of any quantity Q
over the magnetic field as (Q) = f_ll du f.(n) Q. Note that more
generally, when Q also depends on ¢ = ¢}, one needs to evaluate

(Q) = [ d¢ [! duf(i) Q(u. ¢) where fiu) = fu(w)/27. In
particular, the mean of the square of the parallel and perpendicular
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field components, normalized by their post-stretching values, are
B) g (8 _2
(B?y ~ 3" (B 3

() _ (B1)+(B) _2+¢
(B?) (B?) 3
This result can be understood in a simple way. Before the stretching
the field is isotropic so each of the three directions holds 1 3 of
(B?%) = B?, and since there are two perpend1cular d1rect10ns and one
parallel direction then (B} ) = 3(B?) and (B}) = ;(B?). Since the
perpendicular component remalns unchanged (B L = B)) so does
the mean of its square, and since the parallel component changes by
a factor of & then its square changes by a factor of &2 everywhere,

and so does its mean value. This result immediately gives us the
local value of the parameter b,

2
2 (B
(B1)
In our formalism, the local pre-stretching magnetic field strength
corresponds to B— B 1 .max = B(iw = 0). According to equa-

(A8)

b=

=8, b =F(x) =& T, (A9)

tion (A3), B /BT naxo = x~172/E470 “and therefore
7-2k
(BZ)_2+$2 Blz_max _2+$fx4k Xf%. (A10)

(B(%) B 2+$O Bimax,O 2+‘§f

We assume here for simplicity that both & and €5 have a universal
value just behind the shock (at x = 1), so that &y = &(Ry, x =
D=8R x =1 =&rand €50 = €5(Ro, x = 1) = €5(R, X
= 1) = €. This in not obvious since €z y may vary with I'y,
in the mildly relativistic regime, while £, may even vary in the
ultrarelativistic regime, if e.g. it depends on the shock compression
ratio. Anyway, under our assumptions, using equations (Al) and
(A10) the evolution of €p is given by
7-2k
es  ep (B e  2+EFxTE

=2 = 2= . (A11)

s om0 (Bi)e  (248) g

Similarly, the magnetic field just behind the shock is given by

_3
Bi,max,f/Bi,max,O = 63Yf€f/63,0€0 = ef/eo =X 4*,s0 that

BJ_,mzlx BJ_,max BJ_,mzlx.O —1
- =5l Al2
BL,max,f BL,max,O BL,max,f X ( )
B x5 (B2t
B2 2 = 2 X ’ 2\ 5 (Al3)
(B}) 2+& 2+4&; (B}) 2+&;
2482 248 x 7
(BY) 248 2rE T (Al4)
(B}) 2+¢& 2+&7) x°
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