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ABSTRACT
According to current models, gamma-ray bursts (GRBs) are produced when the energy carried

by a relativistic outflow is dissipated and converted into radiation. The efficiency of this process,

εγ , is one of the critical factors in any GRB model. The X-ray afterglow light curves of Swift
GRBs show an early stage of flattish decay. This has been interpreted as reflecting energy

injection. When combined with previous estimates, which have concluded that the kinetic

energy of the late (�10 h) afterglow is comparable to the energy emitted in γ -rays, this

interpretation implies very high values of εγ , corresponding to �90 per cent of the initial

energy being converted into γ -rays. Such a high efficiency is hard to reconcile with most

models, including in particular the popular internal-shocks model. We re-analyse the derivation

of the kinetic energy from the afterglow X-ray flux and re-examine the resulting estimates of

the efficiency. We confirm that, if the flattish decay arises from energy injection and the

pre-Swift broad-band estimates of the kinetic energy are correct, then εγ � 0.9. We discuss

various issues related to this result, including an alternative interpretation of the light curve in

terms of a two-component outflow model, which we apply to the X-ray observations of GRB

050315. We point out, however, that another interpretation of the flattish decay – a variable

X-ray afterglow efficiency (e.g. due to a time dependence of afterglow shock microphysical

parameters) – is possible. We also show that direct estimates of the kinetic energy from the late

X-ray afterglow flux are sensitive to the assumed values of the shock microphysical parameters

and suggest that broad-band afterglow fits might have underestimated the kinetic energy (e.g. by

overestimating the fraction of electrons that are accelerated to relativistic energies). Either one

of these possibilities implies a lower γ -ray efficiency, and their joint effect could conceivably

reduce the estimate of the typical εγ to a value in the range ∼0.1–0.5.

Key words: radiation mechanisms: non-thermal – ISM: jets and outflows – gamma-rays:

bursts – X-rays: individual: GRB 050315.

1 I N T RO D U C T I O N

Recent observations by the Swift X-ray telescope have provided new information on the early behaviour of the X-ray light curve of long-

duration (�2 s) gamma-ray burst (GRB) sources. Specifically, it was found (Nousek et al. 2006) that the light curves of these sources have a

generic shape consisting of three distinct power-law segments ∝ t−α: an initial (at t < tbreak,1, with 300 s � tbreak,1 � 500 s) very steep decline

with time t (with a power-law index α1 in the range 3 � α1 � 5; see also Bartherlmy et al. 2005; Tagliaferri et al. 2005); a subsequent (at

tbreak,1 < t < tbreak,2, with 103 s � tbreak,2 � 104 s) very shallow decay (0.2 � α2 � 0.8); and a final steepening (at t > tbreak,2) to the canonical

power-law behaviour (1 � α3 � 1.5) that was known from pre-Swift observations.

Nousek et al. (2006) already recognized that these results have direct consequences to the question of the γ -ray emission efficiency in GRB

sources. This question is important to our understanding of the basic prompt-emission mechanism. In the currently accepted interpretation

(e.g. Piran 1999, 2004), the γ -rays originate in a relativistic jet that is launched from the vicinity of a newly born neutron star or stellar mass

black hole. In the simplest picture, a fraction εγ of the energy injected at the source is given to the prompt radiation, with the remaining
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fraction (1 − εγ ) ending up as kinetic energy of ambient gas that is swept up by a forward shock and then mostly radiated as early-afterglow

emission. One attractive mechanism for explaining the prompt-emission characteristics invokes internal shocks that are generated when the

ejecta have a non-uniform distribution of Lorentz factors, which results in outflowing ‘shells’ colliding with each other at large distances from

the source.

Pre-Swift observations, based on the measurements of the γ -ray fluence and of the ‘late’ (�10 h) afterglow emission, have implied (when

interpreted in the context of the basic jet model) comparable (and narrowly clustered) values for the radiated γ -ray energy and the kinetic

energy feeding the afterglow emission, i.e. εγ ∼ 0.5 (e.g. Frail et al. 2001; Panaitescu & Kumar 2001a,b, 2002; Berger, Kulkarni & Frail

2003; Bloom, Frail & Kulkarni 2003; Yost et al. 2003). This result is seemingly problematic for the internal-shocks model, for which an

order-of-magnitude lower value for εγ is a more natural expectation (Kobayashi, Piran & Sari 1997; Daigne & Mochkovitch 1998; Kumar

1999; Guetta, Spada & Waxman 2001). Eichler & Jontof-Hutter (2005) inferred an even higher efficiency in the context of off-beam viewing

angles with respect to the gamma-ray emission region. This apparent difficulty could in principle be overcome if the ejected shells have a

highly non-uniform distribution of Lorentz factors (e.g. Beloborodov 2000; Kobayashi & Sari 2001). However, to fit the data the shells must

also satisfy a number of other restrictive conditions, which reduces the attractiveness of this interpretation (see Section 5). An alternative

proposal was made by Peng, Königl & Granot (2005), who argued that if the jet consists of an ultrarelativistic narrow component (from which

the prompt emission originates) and a moderately relativistic wide component, with the latter having a higher kinetic energy and the former

a higher kinetic energy per unit solid angle, then the wide component would dominate the late-afterglow emission and the γ -ray radiative

efficiency of the narrow component could be significantly lower than the value of εγ inferred under the assumption of a single-component

jet. As explained in Peng et al. (2005), this proposal was motivated by observational indications of the presence of two components in the

late-afterglow light curves of several GRB sources and by the predictions of certain GRB source models.

The earliest (steepest) segment of the afterglow light curve is most naturally explained as radiation at large angles to our line of sight

corresponding either to the prompt emission (Kumar & Panaitescu 2000) or to emission from the reverse shock that is driven into the ejecta

(Kobayashi et al. 2005). This implies that the early-afterglow emission is much weaker than what would be expected on the basis of an

extrapolation from the late-afterglow data. This behaviour was interpreted by Nousek et al. (2006) as an indication of an even higher γ -ray

emission efficiency, typically εγ ∼ 0.9. Such a high efficiency could render the internal-shocks model untenable.

Our primary goal is to evaluate the prompt-emission efficiency as accurately and systematically as possible on the basis of current data.

For this purpose, we re-derive in Section 2.1 expressions that explicitly relate εγ to observable quantities. In particular, we express εγ in terms

of the product κf of two parameters, one (κ) encapsulating information that could be obtained by pre-Swift observations, and the other (f)
representing early-time data obtained in the Swift measurements. In Section 2.2, we re-examine the estimates of the kinetic energy during the

afterglow phase as inferred from the X-ray flux and present a new general formulation, correcting errors that have propagated in the literature

and have generally led to an underestimate of the kinetic energy. We then analyse both pre-Swift (Section 2.3) and Swift (Section 2.4) data in

a uniform manner in the context of this formalism. We argue that the kinetic energy estimates remain subject to considerable uncertainties.

In particular, while the simple analysis of a large number of bursts (using ‘typical’ values for the microphysical parameters) yields rather

high values for the kinetic energy and hence a low inferred γ -ray efficiency, a multiwavelength analysis (which determines the microphysical

parameters from the fit to the data) of a small subset suggests that the kinetic energy is lower and hence the inferred value of εγ is higher.

Some caveats to this analysis are considered in Section 2.5.

The suggestion that the Swift observations imply a higher value of εγ in comparison with the pre-Swift results is based on the interpretation

of the flattish segment of the X-ray light curve as reflecting an increase in the kinetic energy of the forward shock during the early stages of

the afterglow. In this picture, the kinetic energy just after the prompt-emission phase was significantly lower than the kinetic energy estimated

from the later stages of the afterglow (the pre-Swift results). One conceivable way of avoiding the need to increase the estimate of εγ in light

of the new Swift observations is through a time evolution (specifically, an increase with t) of the X-ray afterglow emission efficiency εX. Such

a behaviour could in principle also account for the flattish segment of the light curve and eliminate the need to invoke an increase in the shock

kinetic energy. If, in addition, the value of the afterglow kinetic energy at late times were underestimated by the broad-band fits to pre-Swift
GRB afterglows, which could be the case if only a fraction ξ e < 1 of the electrons in the afterglow shock were accelerated to relativistic

energies with a power-law distribution (see Eichler & Waxman 2005), then the typical afterglow efficiency would be further reduced (to a

value as low as εγ ∼ 0.1 if ξ e ∼ 0.1), which might reconcile the new Swift data with the comparatively low efficiencies expected in the

internal-shocks model. We discuss these issues in Section 3.

A two-component jet model with the characteristics required for reducing the inferred γ -ray emission efficiency is evidently disfavoured

by the Swift data, but a model of this type with different parameters could provide an alternative interpretation of the flattish shape of the light

curve between tbreak,1 and tbreak,2. We elaborate on these matters in Section 4, where we also present a tentative fit to the X-ray light curve of

the Swift source GRB 050315 in the context of this scenario.

Our conclusions on the physical implications of the early X-ray light-curve observations of GRB sources are presented in Section 5.

2 E S T I M AT I N G T H E γ- R AY E F F I C I E N C Y

The observed isotropic-equivalent luminosity can generally be expressed as Liso = εEiso/T , where Eiso is the isotropic-equivalent energy

of the relevant component, T is the duration of the relevant emission and ε is the overall efficiency. This efficiency is a product of several

factors: ε = εdisεeεradεobs, where a fraction εdis of the total energy is dissipated into internal energy, a fraction εe of the internal energy
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goes into electrons (or positrons) and can in principle be radiated away, a fraction εrad of the electron energy is actually radiated, and a

fraction εobs of the radiated energy falls within the observed range of photon energies. A fraction εγ = εdis,GRBεe,GRBεrad,GRB of the total

original (isotropic-equivalent) energy Eiso,0 is radiated away during the prompt emission, Eγ,iso = εγ Eiso,0, while the remaining (kinetic)

energy in the γ -ray emitting component of the outflow, Ek,iso,0 = (1 − εγ )Eiso,0, is transferred to the afterglow shock at tdec. In the prompt

GRB emission εGRB = εγ εobs,GRB. In the afterglow εdis,X ≈ 1, and therefore εX ≈ εe,Xεrad,Xεobs,X, where we concentrate on the X-ray

afterglow.

Using the above expression for εγ , it becomes clearer why it is difficult for it to assume very high (�0.9) values. Whereas εrad,GRB ≈ 1 is

possible, and even expected if the electrons cool significantly over a dynamical time (as is typically expected in the internal-shocks model),

εγ � 0.9 requires in addition that both εdis,GRB > 0.9 and εe,GRB > 0.9. It is difficult to achieve εdis,GRB > 0.9 (i.e. dissipate more than 90 per cent

of the total energy) in most models for the prompt emission, and in particular in the internal-shocks model. Furthermore, it is not trivial to

produce εe,GRB > 0.9 (i.e. more than 90 per cent of the post-shock energy going to electrons) in the internal-shocks model, where the electrons

are believed to be accelerated in a shock propagating into a magnetized proton–electron plasma. In particular, this would require that less than

10 per cent of the post-shock energy goes into the protons and the magnetic field, which is difficult since the protons carry most of the energy

(in kinetic form) and the magnetic field likely carries a comparable energy in the upstream fluid ahead of the shock. It might conceivably be

possible if less than 10 per cent of the energy is in the magnetic field and the protons can somehow transfer their energy to the electrons,

which radiate it away.

2.1 Relationship to observed quantities

The X-ray afterglow isotropic-equivalent luminosity, LX,iso, can be expressed in terms of the X-ray afterglow flux, FX,

LX,iso(t) = 4πd2
L(1 + z)β−α−1 FX(t) (1)

if Fν ∝ ν−β t−α in the relevant ranges in frequency and time.1 The efficiency of the X-ray afterglow emission is defined as

εX(t) ≡ t LX,iso(t)

Ek,iso(t)
, (2)

where Ek,iso is the isotropic-equivalent kinetic energy in the afterglow shock.

Using the relation Eiso,0 = Eγ,iso/εγ = Ek,iso,0/(1 − εγ ), we obtain

εγ εobs,GRB

(1 − εγ )
= Eobs

γ,iso

Ek,iso,0

= κ f , κ ≡ Eobs
γ,iso

Ek,iso(t∗)
, f ≡ Ek,iso(t∗)

Ek,iso,0

, (3)

where t∗ can be chosen as a time at which it is convenient to estimate Ek,iso, and we shall use t∗ = 10 h (since it is widely used in the literature

and is typically greater than tbreak,2, the end of the flattish segment of the X-ray light curve).

An important question is how to estimate f and κ from observations. The most straightforward way of estimating f = Ek,iso(10 h)/Ek,iso,0,

which has been used by Nousek et al. (2006), is by evaluating the value of the X-ray flux decrement at tdec relative to the extrapolation to tdec of

the late-time (t > tbreak,2) flux, and translating this flux ratio into an energy ratio according to the standard afterglow theory. When estimating

f in this way we assume that

εX ∼ (1 + Y )−1εe(νm/νX)(p−2)/2, (4)

where νm and νc are the characteristic synchrotron frequency and cooling break frequency, respectively (Sari, Piran & Narayan 1998;

Granot & Sari 2002) and Y is the Compton y-parameter. This result can also be obtained under the assumptions of standard afterglow

theory, as follows. The overall X-ray afterglow efficiency can be written as εX ≈ εeεradεobs, where εrad ≈ min[1, (νm/νc)
(p−2)/2] and εobs ≈

(1 + Y)−1 max[(νm/νX)(p−2)/2, (νc/νX)(p−2)/2]; the factor of (1 + Y)−1 is the fraction of the radiated energy in the synchrotron component,

and it is present because the synchrotron self-Compton (SSC) component typically does not contribute significantly to FX(10 h) but may still

dominate the total radiated luminosity. The factor (1 + Y)−1 is generally assumed to be small, consistent with the usual inference that the

magnetic-to-internal energy ratio in the emission region, εB , is smaller than εe (see equation 12).2 However, one should keep in mind that a

different time dependence of εX (which might occur under less standard assumptions) would modify the value of f accordingly. The value of

εobs,GRB can be estimated by extrapolating the observed part of the spectrum and modelling additional spectral components that might carry

considerable energy.

1 For the more general case, see equation (1) of Nousek et al. (2006) and the discussion thereafter. Here LX,iso(t) =
∫ ν2

ν1
dν Lν,iso(t), where both ν and t are

measured in the cosmological frame of the GRB; whereas FX(t) =
∫ ν2

ν1
dν Fν (t), where both ν and t are measured in the observer frame.

2 At early times (less than about a day) inverse-Compton radiation is important in cooling the electrons (of Lorentz factor γ e,X) that emit synchrotron photons

of frequency νsyn(γ e,X) = νX = 1018ν18 Hz in the X-ray band. Later the X-ray emitting electrons are within the Klein–Nishina cut-off and are not cooled by

inverse-Compton radiation (see Fan & Piran 2006). This can be understood as follows. Using standard estimates for the relevant quantities, we obtain γ e,X =
4.4 ×105ε

−1/4
B,−2n−1/8

0 E−1/8
k,iso,52ν

1/2
18 t3/8

10 h, where n0 is the external particle density in units of cm−3. The Klein–Nishina cut-off sets in when γ ehν′ ≈ γ ehν/
 >

mec2, so the SSC cooling of electrons with γ e,X will be efficient for as long as the inequality γ e,Xhνp < 
mec2 is satisfied; here νp = max (νm, νc) is the

frequency where νFν peaks (i.e. where most of the synchrotron energy is radiated). We find γ e,Xhνm/
mec2 = 4.7 × 10−4 [3(p − 2)/(p − 1)]2ε2
e,−1ε

1/4
B,−2

E1/4
k,iso,52ν

1/2
18 t−3/4

10 h and γ e,X hνc/
me c2 = 0.6(1 + Y)−2n−1
0 ε

−7/4
B,−2 E−3/4

k,iso,54ν
1/2
18 t1/4

10 h, with the numerical coefficient in the latter expression being 0.04 when Y
is evaluated for εe/εB = 10 using equation (12).
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To estimate κ = Eobs
γ,iso/Ek,iso(10 h) we calculate Eobs

γ,iso = f γ 4πd2
L(1 + z)−1 directly from the observed γ -ray fluence, f γ , and the

measured redshift, z. The denominator, Ek,iso(10 h), has been estimated following Freedman & Waxman (2001) and Kumar (2000) (see also

Lloyd-Ronning & Zhang 2004) from FX(10 h) using standard afterglow theory. We reconsider this calculation in the next section.

2.2 Estimates of the kinetic energy from the X-ray afterglow observations

Using the results of Granot & Sari (2002) we find that, if νX > max (νm, νc), we can estimate the kinetic energy from the observed X-ray

flux. We use

Ek,iso(t) = 9.2 × 1052 g(p)

g(2.2)
(1 + Y )4/(p+2)ε

4(1−p)/(p+2)
e,−1 ε

(2−p)/(p+2)
B,−2 L4/(p+2)

X,46 t (3p−2)/(p+2)
10 h erg, (5)

where LX,iso = LX,46 1046 erg s−1 is the isotropic-equivalent X-ray luminosity in the range 2–10 keV at a time 10 t10 h h, both measured in the

cosmological frame of the GRB [corresponding to an observed time of t = 10(1 + z)t10 h h and spectral range 2/(1 + z) − 10/(1 + z) keV],

εe,−1 = εe/0.1, εB,−2 = εB/0.01, and

g(p) =
[

(p − 1)p−1 exp(5.89p − 12.7)

(5(p−2)/2 − 1)(p − 2)p−2(p − 0.98)

]4/(p+2)

. (6)

In equation (5), LX,iso is evaluated through FX using equation (1), and it is assumed that FX is dominated by the synchrotron component. If there

is a significant contribution to FX(t∗) from the SSC component then equation (5) would overestimate Ek,iso(t∗), but the correct estimate could

still be obtained if only the synchrotron contribution to FX(t∗) is used (although in practice it might be difficult and somewhat model-dependent

to disentangle the synchrotron and SSC components).

The numerical coefficient in equation (5) is higher than the corresponding coefficient in equation (7) of Lloyd-Ronning & Zhang (2004)

by a factor of ∼10 for p = 2.2 (or ∼20 for p = 2.5). We track down the difference to the fact that Lloyd-Ronning & Zhang (2004) overestimated

the value of νm in their equation (2) (by a factor of 38 for p = 2.2 compared to Granot & Sari 2002), given that their expressions for νc and

Fν,max (their equations 3 and 4) are very similar to those in Granot & Sari (2002) and that Fν>max(νm,νc) = Fν,maxν
1/2
c ν(p−1)/2

m ν−p/2 ∝ ν(p−1)/2
m .

The numerical coefficient in equation (5) is lower than that in equation (4) of Freedman & Waxman (2001) by a factor of ∼7 for p = 2.2 (or

∼18 for p = 2.5), although it agrees with the one obtained by Fan & Piran (2006) to within a factor of 2.3

The factor involving (1 + Y) in equation (5) represents inverse-Compton losses by the electrons that emit the observed synchrotron

X-rays. The inverse-Compton losses can tap most of the energy of these fast cooling electrons, leaving only a modest fraction of their energy

in the synchrotron component. The resulting very-high-energy SSC emission reduces the synchrotron flux in the relevant (X-ray) power-law

segment of the spectrum by a factor of (1 + Y) (Sari & Esin 2001; Granot & Sari 2002).4 Using our fiducial parameters we find (1 + Y) ≈
3.7. The factor (1 + Y)4/(p+2) in equation (5) then brings the numerical coefficient in that equation up to 3.2 × 1053 erg for p = 2.2 and 5.8 ×
1053 erg for p = 2.5. Neither Freedman & Waxman (2001) nor Lloyd-Ronning & Zhang (2004) took the effects of inverse-Compton cooling

into account. Our inclusion of these effects reduces the discrepancy between the numerical coefficient in equation (5) and that in equation (4)

of Freedman & Waxman (2001) to a factor of ∼2 (∼5.5) for p = 2.2 (p = 2.5). It, however, increases the discrepancy between our numerical

coefficient and that in equation (7) of Lloyd-Ronning & Zhang (2004) to a factor of ∼35–70. This, in turn, leads to large differences between

the latter authors’ estimates of the γ -ray efficiency and ours.

Using equations (2) and (5), we can express the X-ray efficiency as

εX(t) = 3.5 × 10−3

[
g(p)

g(2.2)

]−(p+2)/4

(1 + Y )−1ε
p−1
e,−1ε

(p−2)/4
B,−2 E (p−2)/4

k,iso,52 t−3(p−2)/4
10 h

= 3.9 × 10−3 g(2.2)

g(p)
(1 + Y )−4/(p+2)ε

4(p−1)/(p+2)
e,−1 ε

(p−2)/(p+2)
B,−2 L (p−2)/(p+2)

X,46 t−2(p−2)/(p+2)
10 h , (7)

where Ek,iso,52 = Ek,iso(t)/(1052 erg). For our fiducial values (and for LX,46 rather than Ek,iso,52), the numerical coefficient in equation (7) is 1.1

× 10−3 for p = 2.2 and 6.3 × 10−4 for p = 2.5.

When comparing the γ -ray efficiencies inferred by using our equation (5) and the results of Lloyd-Ronning & Zhang (2004), one should

note another important difference between our formulation and theirs. Lloyd-Ronning & Zhang (2004) assumed that the initial afterglow

kinetic energy is reduced by a factor R ∼ 8 due to radiative losses at early times (t < 10 h). This is equivalent to choosing the parameter f in

equation (3) to be 	1, whereas the recent Swift observations indicate that it is most likely �1, and quite possibly 
1 (see Section 2.4). As

3 Most previous works (e.g. Freedman & Waxman 2001; Lloyd-Ronning & Zhang 2004) first derived the values of the peak flux and spectral break frequencies,

each of which typically has an uncertainty of at least a factor of a few, and then used those estimates to calculate the flux normalization in the various power-law

segments of the spectrum. In the relevant segment, ν > max (νm, νc), the flux depends on the values of Fν,max, νm and νc, each of which is not accurately

known, so the normalization calculated using the above method is highly uncertain. In contrast, in this work we use the results of Granot & Sari (2002), who

calculated the flux normalization directly (i.e. without first estimating the values of the peak flux and spectral break frequencies) using a detailed scheme that

employs a minimal number of simplifying assumptions. In the relevant power-law segment of the spectrum the flux normalization calculated in this fashion is

rather robust: it relies mainly on the assumption of a power-law electron energy distribution just behind the shock and is rather insensitive to the exact shape of

the low-energy cut-off.
4 This is assuming that the SSC component does not contribute considerably to the observed X-ray flux, which is typically the case at t∗ = 10 h.
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is evident from the expression for the γ -ray efficiency εγ in equation (3), the low value chosen for f partly compensates for the higher value

that Lloyd-Ronning & Zhang (2004) obtain for the parameter κ ∝ 1/Ek,iso(t∗), leading to a lower estimate of εγ . Without this assumption,

the discrepancy between our estimates of εγ and those of Lloyd-Ronning & Zhang (2004) would directly reflect the large differences in our

respective estimates of Ek,iso(t∗).

Equations (5)–(7) are valid for p > 2, but they can be easily generalized to p � 2 by substituting εe → ε̄e(p − 1)/(p − 2), where

ε̄e = εeγmin/〈γe〉, 〈γe〉 = ∫
dγe(dN/dγe)γe

[∫
dγe(dN/dγe)

]−1
is the average electron Lorentz factor, and the electron energy distribution is

a power law of index p at low energies above γ min. If the electron energy distribution is a single power law, dN/dγ e ∝ γ −p
e for γ min < γ e <

γ max, then

εe

ε̄e

= 〈γe〉
γmin

=
(

p − 1

p − 2

)
1 − (γmax/γmin)2−p

1 − (γmax/γmin)1−p
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

≈ (p − 1)/(p − 2) p > 2,

ln(γmax/γmin) p = 2,

≈ (γmax/γmin)2−p(p − 1)/(2 − p) 1 < p < 2,

(γmax/γmin)/ ln(γmax/γmin) p = 2,

≈ (γmax/γmin)(1 − p)/(2 − p) p < 1

. (8)

This results in slightly modified equations:

Ek,iso(t) = 1.19 × 1052 ḡ(p)

ḡ(2.2)
(1 + Y )4/(p+2)ε̄

4(1−p)/(p+2)
e,−1 ε

(2−p)/(p+2)
B,−2 L4/(p+2)

X,46 t (3p−2)/(p+2)
10 h erg, (9)

ḡ(p) =
[

(p − 2) exp(5.89p − 12.7)

(5(p−2)/2 − 1)(p − 0.98)

]4/(p+2)

, (10)

εX(t) = 3.01 × 10−2

[
ḡ(p)

ḡ(2.2)

]−(p+2)/4

(1 + Y )−1ε̄
p−1
e,−1ε̄

(p−2)/4
B,−2 E (p−2)/4

k,iso,52 t−3(p−2)/4
10 h

= 3.03 × 10−3 ḡ(2.2)

ḡ(p)
(1 + Y )−4/(p+2)ε̄

4(p−1)/(p+2)
e,−1 ε

(p−2)/(p+2)
B,−2 L (p−2)/(p+2)

X,46 t−2(p−2)/(p+2)
10 h . (11)

Note that the numerical coefficient was calculated in Granot & Sari (2002) only for p = 2.2, 2.5, 3 and interpolated between these values.

Extrapolating that formula to p � 2 could potentially be very inaccurate.

For simplicity we use the expression for Y that is valid in the fast-cooling regime,

Y = (1 + 4εe/εB)1/2 − 1

2
≈

{
(εe/εB)1/2 εe/εB 
 1

εe/εB εe/εB 	 1
, (12)

which is still reasonable at 10 h, even if it is slightly after the transition to slow cooling. More generally, εe/εB should be multiplied by

εrad ≈ min[1, (νm/νc)
(p−2)/2], where for p < 2 and νc < νmax we have εrad ≈ 1.

Before applying these relations to observed bursts, we remark on a common misconception concerning the dependence of Ek,iso that is

inferred from FX on εB and εe. It has been argued that Ek,iso is very insensitive to the exact value of εB (e.g. Freedman & Waxman 2001; Piran

et al. 2001). This follows from the observation (see equation 5) that for νX > max (νm, νc), Ek,iso ∝ (1 + Y)4/(p+2) ε−4(p−1)/(p+2)
e ε

−(p−2)/(p+2)
B ,

which suggests that Ek,iso depends very weakly on εB . However, this holds only in the limit where (1 + Y) ≈ 1, which corresponds to Y 	
1 and εB 
 εe, whereas observations suggest that the opposite limit typically applies, εB 	 εe, in which case (1 + Y) ≈ Y ≈ (εe/εB)1/2 and

Ek,iso ∝ ε
−p/(p+2)
B . This is a significantly stronger dependence on εB . (Note that the inferred value of εB varies by ∼2 orders of magnitude

among different afterglows, from ∼10−3 to ∼0.1, corresponding to a change of more than an order of magnitude in the estimated value of

Ek,iso.) The dependence of Ek,iso on εe is stronger, ∝ ε−4(p−1)/(p+2)
e (i.e. slightly steeper than an inverse linear relation) in the limit εB 
 εe, but

only ∝ ε−2(2p−3)/(p+2)
e in the more relevant limit of εB 	 εe. In the latter case, the dependence of Ek,iso on εB is rather similar to its dependence

on εe.
5 However, εe appears to vary much less than εB among different afterglows, only covering a range of about one order of magnitude

(between ∼10−1.5 and ∼10−0.5), which corresponds to a variation in Ek,iso by a factor of ∼4. It is also worth noting that the expression for

Ek,iso has some (non-trivial) dependence on the value of p (see equation 6).

2.3 Pre-Swift GRBs

Table 1 shows the estimated values of κ deduced from the observational properties of 17 pre-Swift GRBs with known redshifts, using the

samples of Berger et al. (2003) and Bloom et al. (2003). We provide the values Ek,iso,10 h = Ek,iso(10 h) and κ for our fiducial parameter values

(εe = 0.1, εB = 0.01 and p = 2.2). The value of Ek,iso,10 h and therefore of κ depends on the values of the microphysical parameters (εe, εB

and p) that are not well known. Therefore, we also calculate Ek,iso,10 h and κ (for those GRBs for which this is possible) using the values of the

microphysical parameters inferred from the fits to the broad-band afterglow data that were performed by Panaitescu & Kumar (2002, denoted

5 Quite often Y ∼ 1–2 is inferred, in which case neither of the asymptotic limits Y 	 1 and Y 
 1 is applicable and the dependence of Ek,iso on εB and εe does

not have a power-law form but rather the more complex form given by equations (5) and (12).
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Table 2. Estimates of f and κ for Swift GRBs with known redshifts.

GRB # z LX,iso,10 h
a Eobs

γ,iso
b Ek,iso,10 h

c pd κe f min
f f max

f

(1046 erg s −1) (1052 erg) (1052 erg)

050126 1.29 0.12 2.2 6.86 3 0.055 – –

050315 1.949 16 18 699 2.1 0.034 11 29

050318 1.44 0.60 3.9 �28.4 2.1 �0.18 4.2 170

050319 3.24 5.1 12.1 �118 2.6 �0.039 12 76

050401 2.90 9.8 137 433 2.1 0.41 5.6 14

050408 1.236 1.4 2.9 38.5 2.3 0.058 – –

050416A 0.6535 0.091 0.09 4.51 2.1 0.026 2.2 9.9

050505 4.3 2.3 89 �59.0 2.6 �0.58 19 1800

050525A 0.606 0.12 3.1 �3.96 2.4 �0.47 2.1 5.9

050603 2.821 1.1 126 �29.6 2.4 �2.57 – –

Notes. The estimates for f = Ek,iso,10 h/Eobs
k,iso,0 and κ = Eobs

γ,iso/Ek,iso,10 h for the GRBs with known redshift from the Nousek et al.

(2006) sample.
aLX,iso,10 h = LX,iso(10 h) in the 2–10 keV range at (both the time and the photon energies measured in the cosmological frame of the GRB)

from table 2 of Nousek et al. (2006); bEobs
γ,iso in the 20–2000 keV range (in the GRB’s cosmological frame) form table 2 of Nousek et al.

(2006); ccalculated using equation (5) with εe = 0.1, εB = 0.01, and the values of p from this table; destimated using the measured spectral

slope in the X-rays (Nousek et al. 2006) and attempting to fit it into the range 2 < p < 3 if allowed within the errors on the spectral slope;
eκ = Eobs

γ,iso/Ek,iso,10 h estimated using the values from this table; f f min and fmax are taken from table 3 of Nousek et al. (2006), and are es-

timated using the measured X-ray flux at tbreak,1, and the extrapolated X-ray flux at TGRB, respectively (see Nousek et al. 2006 for details).

by PK02, using table 2 therein) and by Yost et al. (2003, denoted by Y03, using table 1 therein). Finally, we compare the values we obtain for

Ek,iso,10 h using equation (5) to those obtained for Ek,iso(1 d) = Ek,iso,1d by Y03 and those obtained for Ek,iso(10 h) ≈ 0.5Ek,iso,0 by PK02. Also

shown in Table 1 are the corresponding values of κ , including κ1d = Eγ,iso/EY 03
k,iso,1d.

When using the fiducial parameters εe = 0.1, εB = 0.01 and p = 2.2 our estimates for Ek,iso,10 h are significantly larger than the estimates

of Lloyd-Ronning & Zhang (2004), who use the same values. This can be traced to the difference in the numerical factor that appears in

equation (5). These relatively large values of Ek,iso,10 h lead to a typical value of κ around 0.1–0.2, for which the γ -ray efficiency problem

would not be very severe. Similar results were obtained by Fan & Piran (2006), whose estimates for Ek,iso,10 h are within a factor of 2 of those

presented here.

The situation is different when we use the values of the microphysical parameters from the pre-Swift afterglow fits. In these cases the

values of Ek,iso,10 h are typically lower, resulting in higher estimates for κ . The estimates of the kinetic energy from the PK02 fits to the

afterglow data (rather than from using equation 5) are generally the lowest.6 The corresponding values of κ are close to unity. These results

reflect the pre-Swift inference that there exists a rough equality between the isotropic-equivalent γ -ray and late (10 h) kinetic energies. The

comparison between the detailed calculations and those based on equation (5) may suggest that we might be better off adopting different

fiducial parameters (e.g. εe = 0.3, εB = 0.08 and p = 2.2). We also note that the values of Ek,iso,10 h obtained by substituting the values of

the microphysical parameters from the afterglow fits into equation (5) are generally higher (corresponding to lower values of κ) compared

to those derived directly by those fits. The ‘typical’ values of the microphysical parameters inferred from the fits are roughly εe ≈ 0.3, εB ≈
0.03 and p ≈ 2.2.

The values of κ obtained here are crucial to the overall estimate of εγ and to the origin of the ‘high-efficiency problem.’ Considering

Table 1, one should proceed with care in view of the large dispersion in the different estimates of Ek,iso,10 h. An example is a factor of 4.7

between the independent estimates of PK02 and of Y03 for GRB 000926 (and a factor of 2.5 in the opposite direction for GRB 970508). The

dispersion is even greater between the estimates of Ek,iso from the afterglow fits and the values obtained using equation (5) for the same values

of the microphysical parameters – a factor of 18 for Y03 (and 11 for PK02) for GRB 000926.

2.4 Swift GRBs

The new result found by Swift is the appearance of a rapid decay followed by a shallow decline phase in the X-ray afterglow. For seven out of

the 10 Swift GRBs considered here there was a clear observation of the two breaks in the light curve, at tbreak,1 and tbreak,2 (the beginning and

end, respectively, of the flattish segment of the X-ray light curve). If we interpret the shallow decline as arising from an additional injection

of energy into the afterglow shock (see Section 1) then the ratio of the X-ray fluxes at the end and at the beginning of this phase can be used

to estimate f (the corresponding ratio of the kinetic energies) for these bursts (Nousek et al. 2006). A lower limit, fmin, is obtained using the

flux decrement at tbreak,1 relative to the extrapolation back to that time of the late-time (t > tbreak,2) flux. An approximate upper limit, fmax, is

6 In PK02 the values of Ek,iso(10 h) are typically a factor of ∼2 smaller than Ek,iso,0 due to radiative losses at early times (Panaitescu, private communication;

no energy injection is assumed in that work).
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obtained by assuming that the flat part of the emission from the forward shock starts at tdec ∼ TGRB and is simply buried underneath the tail of

the prompt emission at t < tbreak,1. While formally f min < f � f max, it is reasonable, in the context of the basic jet model, that the assumption

made to calculate fmax is basically applicable, so that f ∼ f max. Under this assumption one infers f � 10, and in some cases even a much larger

value of f (∼102–103).

The results for f need to be combined with an estimate of κ . Table 2 shows the values of Ek,iso,10 h and κ for the 10 Swift GRBs with

known redshifts from the Nousek et al. (2006) sample, estimated using equation (5) with εe = 0.1 and εB = 0.01. The value of p was derived

using the measured spectral slope in the X-ray band (attempting to fit it into the range 2 < p < 3 if allowed within the measurement errors).

Lacking any broad-band fits to Swift bursts, this is the best direct evidence that we have so far from these data. The resulting values of κ are

similar to those from the pre-Swift era (see Table 1). With the exception of GRB 050401, for which κ = 0.41, and a few other bursts for which

we only have upper limits, the inferred values of κ are less than 0.1. If this is the correct value of κ then, using

εγ =
(

1 + εobs,GRB

κ f

)−1

(13)

(see equation 3), we find that with f ∼ 10 the overall γ -ray efficiency is not larger than ∼0.5 (assuming εobs,GRB ∼ 1). A similar conclusion

was reached by Fan & Piran (2006).

One may question this conclusion in view of the fact that, in pre-Swift bursts, broad-band analyses of the afterglow data generally resulted

in a significantly lower values of Ek,iso,10 h, and correspondingly higher values of κ , compared to those obtained from equation (5) with the

same fiducial values of the microphysical parameters (εe = 0.1 and εB = 0.01; see Table 1). Furthermore, the choice of the fiducial values of

the microphysical parameters is somewhat arbitrary, and it affects the resulting values of Ek,iso,10 h and κ . It is reasonable to expect that the

values of the microphysical parameters that would have been inferred from a broad-band fit to the afterglow data of the Swift bursts would

have led to higher estimates of Ek,iso,10 h and κ that were similar to those derived for the pre-Swift GRBs. The latter values, however, vary

among the different estimates, from as high as ∼5–8 to as low as ∼0.1–0.3 (see Table 1). In light of this, one may adopt a ‘typical’ value of

κ ∼ 1, keeping in mind that there is an uncertainty of almost an order of magnitude in this value.

The adoption of this higher value of κ (∼1) for the Swift GRBs, similar to the values inferred from broad-band modelling of pre-Swift
sources, together with the interpretation of the shallow decay phase as arising from energy injection (and hence f ∼ 10) leads to the conclusion

that typically εγ ∼ 0.9, and in some cases εγ is even as high as ∼99 per cent (or, equivalently, 1 − εγ ≈ εobs,GRB/κf is as low as ∼10−3 −
10−2). Such a high γ -ray efficiency would be extremely hard to produce in the internal-shocks model (see Section 1).

If, on the other hand, κ ∼ 0.1 and there is energy injection (i.e. f ∼ 10), or if κ ∼ 1 and there is no energy injection (i.e. f = 1; see

Section 3), then this would imply a significantly lower typical γ -ray efficiency, εγ ∼ 0.5, although in some cases εγ would still be as high as

∼90 per cent (or, equivalently, 1 − εγ ≈ εobs,GRB/κf would still be as low as ∼10−2 − 10−1). Even the latter, more moderate, requirements on

the γ -ray efficiency are not easily satisfied in the internal-shocks model, although they might possibly still be accommodated in this scenario

(Kobayashi et al. 1997; Kumar 1999; Guetta et al. 2001). Finally, if κ ∼ 0.1 and the shallow decline does not arise from energy injection (i.e.

f = 1) but, say, from varying afterglow efficiency (as discussed in Section 3), then the γ -ray efficiency would typically be εγ ∼ 0.1. In the

latter case, the results are fully consistent with the predictions of the internal-shocks model.

2.5 Some caveats

The discussion so far was relevant to the power-law segment of the spectrum where νX > max (νm, νc). If, instead, νm < νX < νc, we have

only a lower limit on the value of Ek,iso from this consideration (i.e. from equation 5) that corresponds to an upper limit on the value of κ , the

true value being smaller than this upper bound by a factor of [νc(10 h)/νX]2/(p+2) (which, however, is not typically expected to be very large).

It is possible that there is a contribution to FX(tdec) from a component of the outflow that is not along the line of sight, or for some other

reason did not contribute to the observed γ -ray emission. In this case equations (3) and (5) would provide a lower limit on εγ , rather than

directly determining its value. If both the prompt γ -ray emission and FX(tdec) were dominated by emission from angles θ > 1/
 relative to

the line of sight (where 
 is the Lorentz factor of the outflow), then again equations (3) and (5) would provide a lower limit on εγ , since the

beaming of radiation away from the line of sight is expected to be either comparable or somewhat smaller during the afterglow emission at

tdec compared to the prompt GRB.

It is also possible that some fraction ε∗ of the original energy Eiso,0 ended up in a totally different form, i.e. was not radiated during the

prompt emission and did not end up in the kinetic energy of the afterglow shock. This could occur, for example, if along some directions

a forward shock is not formed (or at least not formed efficiently) for a very pure Poynting-flux outflow. In such a case, some of the energy

(potentially even most of the energy) could be carried out to very large distances (in principle out to infinity) in electromagnetic form (such as

low-frequency electromagnetic waves).7 Alternatively, a good fraction of the energy might be carried away in high-energy cosmic rays and

neutrinos (Waxman 1995; Waxman & Bahcall 1997) and thus would not contribute to the kinetic energy of the afterglow shock. In this case

we have Ek,iso,0 = (1 − εγ − ε∗) Eiso,0 and we need to make the substitution (1 − εγ ) → (1 − εγ − ε∗) everywhere, so the estimate (13) for

7 Both the formation of a forward shock and the ability of energy to escape to infinity in electromagnetic form have not yet been fully worked out (e.g. Melatos

& Melrose 1996; Smolsky & Usov 2000).
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εγ (assuming ε∗ = 0) should be multiplied by (1 − ε∗),

εγ = (1 − ε∗)

(
1 + εobs,GRB

κ f

)−1

. (14)

This means that εγ < 1 − ε∗ (even for κf 
 εobs,GRB), and therefore ε∗ � 0.5 would imply εγ � 0.5 . Thus, even when one infers εγ /(1 − εγ ) 

1 and hence 1 − εγ 	 1 under the usual assumption that ε∗ = 0 (or at least ε∗ 	 1 − εγ ), the intrinsic γ -ray efficiency might still be significantly

smaller, and is εγ � 0.5 for ε∗ � 0.5. Note that, in order for GRBs to produce the highest energy cosmic rays, their energy should be comparable

to that of the prompt γ -rays (Waxman 1995, 2004), i.e. εγ � ε∗ (the inequality arising since there might be other forms of energy that escape

the prompt-emission site without being directly detected), and therefore εγ � 0.5.

One should, however, keep in mind that high-energy cosmic rays and neutrinos must tap the same dissipated energy that also powers the

prompt γ -ray emission. Therefore, for the same observed energy in γ -rays and inferred kinetic energy in the afterglow, in addition to increasing

the required total initial energy Eiso,0 by a factor of (1 − ε∗)−1, these particles would also increase the required dissipated energy εdis,GRBEiso,0

and the fraction εdis,GRB of the dissipated energy that ends up in γ -rays.8 In other words, εdis,GRB � εγ + ε∗ = (Eγ,iso + E∗,iso)/(Ek,iso,0 + Eγ,iso

+ E∗,iso) > Eγ,iso/(Ek,iso,0 + Eγ,iso), where E∗,iso = ε∗Eiso,0 is the (isotropic-equivalent) energy in cosmic rays and neutrinos, and Ek,iso,0 and

Eγ,iso are determined (at least in principle) by observations. Clearly, E∗,iso increases the lower limit on εdis,GRB. Nevertheless, the fact that E∗,iso

may reduce εγ to �0.5 even for κf 
 1 makes it possible to have εe,GRB � 0.5, which should be easier to accommodate for shock acceleration

in a proton–electron plasma. Still, dissipating and getting rid of almost all of the energy (through radiation, cosmic rays, neutrinos, etc.) and

leaving only a small fraction of the original energy in the kinetic energy of the forward shock, as is required for κf 
 1, is not an easy task

for any model of the prompt emission.

3 E F F I C I E N C Y O F T H E X - R AY A F T E R G L OW E M I S S I O N

As noted in Section 1, one of the new features discovered by Swift is the early shallow decline phase: FX ∝ t−α with 0.2 � α � 0.8 for tbreak,1 �
t � tbreak,2. During this phase, tFX(t) increases with time. Using the definition of εX(t) (equation 2) and the relation between LX,iso and FX

(equation 1), we find that

εX(t)Ek,iso(t)

t FX(t)
= 4πd2

L(1 + z)β−α−1 (15)

is constant in time. Note that if ν and t in the expression for FX(t) were referred to the GRB rest frame rather than to the observer frame

then the factor (1 + z)β−α−1 on the right-hand side of equation (15) would be eliminated, and with it any potential (weak) time dependence

resulting from a possible temporal variation of α or β.

Now, if the observed frequencies satisfy νX > max(νm, νc), and p > 2, then equation (4) is applicable. Furthermore, if the afterglow

shock evolves according to the adiabatic self-similar solution of Blandford & McKee (1976) and the fractions of the post-shock internal

energy in electrons (εe) and in magnetic field (εB) are constant in time, then νm ∝ t−3/2. Under these circumstances, εX ∝ t−3(p−2)/4 decreases

(slowly) with time. As can be seen from equation (15), εX(t)Ek,iso(t) ∝ tFX(t). Therefore, the observed rise in tFX(t) implies a similar rise

in εX(t)Ek,iso(t). Given the expected decrease of εX (t) with t for p > 2, the slowly decaying portion of the light curve has been attributed by

several researchers to an increase in Ek,iso(t), i.e. to some sort of energy injection into the forward shock (e.g. Nousek et al. 2006; Panaitescu

et al. 2006; Zhang et al. 2006; Granot & Kumar 2006).

It is, however, conceivable that the rise in tFX(t) corresponds, at least in part, to an increase of εX(t) with time. One way in which this

could be brought about is if p were <2 (assuming εe and εB remain constant).9 In this case N(γ e) ∝ γ −p
e for γ min < γ e < γ max and εX ∼

(1 + Y)−1εe(νmax/νX)(p−2)/2 [the same as equation (4) for p < 2, but with νmax replacing νm], where νmax = νsyn(γ max) ∝ γ Bγ 2
max ∝ γ 4ρ

1/2
ext ∝

t−3/2 [where B is the comoving magnetic field amplitude and ρext is the external density; the same as the scaling of νm = νsyn(γ min) for

p > 2], so εX ∝ t3(2−p)/4. This time dependence is the same as for p > 2, but in this case εX increases with time whereas for p > 2 it decreases.

Similarly, FX ∝ t−(3p−2)/4, just as for p > 2, except that for p < 2 this corresponds to a decay rate flatter than t−1. One possible difference

between the two cases is that for p < 2 and νc < νmax radiative losses are not always negligible since most of the energy in the electrons is at

γ e ∼ γ max and is therefore radiated away. Thus, unless εe 	 1, radiative losses could be significant and would tend to steepen the flux decay

rate and make it harder to achieve a flattish light curve. We also note that the X-ray spectral slope for p < 2 [assuming νX > max (νc, νm)] is

βX = p/2 < 1, which in many cases is inconsistent with the observed value (Nousek et al. 2006), so this explanation of the shallow decay of

FX might only apply to a subset of the sources (see fig. 8 of Nousek et al. 2006).

An alternative possibility for εX(t) to increase with t is for either one (or both) of the microphysical parameters εe and εB to increase

with time. Using the dependence of νm on these parameters (e.g. Sari et al. 1998), we find that, for p > 2, εX ∝ ε(p−1)
e ε

(p−2)/4
B when εe 	

εB and εX ∝ ε(p−3/2)
e ε

p/4
B when εe 
 εB . This applies when parametrizing in terms of Ek,iso (which is not measured directly), whereas a

8 In the case of a very pure Poynting flux, the escaping energy E∗,iso is the fraction that did not dissipate. Therefore, while Eiso,0 increases by a factor of (1 −
ε∗ )−1, the dissipated energy εdis,GRB Eiso,0 remains unchanged (assuming other efficiencies do not change), and thus εdis,GRB decreases by a factor of (1 −
ε∗ )−1.
9 It is in principle possible that εX could increase with time on account of its dependence on Y (see equation 4) even if εe and εB remained constant and p were

>2, given that Y decreases with time in the slow-cooling regime (νm < νc) that is relevant for p > 2. However, one can show that, to be relevant during the

early-afterglow phase, this would require unrealistically high values of p.
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parametrization in terms of LX,iso (which is measured directly) yields εX ∝ ε4(p−1)/(p+2)
e ε

(p−2)/(p+2)
B when εe 	 εB and εX ∝ ε2(2p−3)/(p+2)

e

ε
p/(p+2)
B when εe 
 εB (see equation 2). Table 3 of Nousek et al. (2006) provides the values of �α – the change in the temporal decay index

across the break in the light curve at tbreak,2 – for nine Swift GRBs in which it could be measured reliably, and shows that typically 0.5 �
�α � 1. In our context, if εe ∝ tαe and εB ∝ tαB at t < tbreak,2, then attributing the flattish decay phase to a growth of εe and/or εB with

time requires (in the limit εe 
 εB) that �α = 2(2p − 3)αe/(p + 2) + αBp/(p + 2). For 2 < p < 3, 0.5 < p/(p + 2) < 0.6 and 0.5 <

2(2p − 3)/(p + 2) < 1.2. Therefore, for p ≈ 2, αe + αB ≈ 2�α ∼ 1–2 and for �α ∼ 0.5, a roughly linear growth with time of either εe or

εB (or of their product) is required. For p ∼ 2.6 and �α ∼ 1, a linear growth of εe and a constant εB would work (i.e. αe ≈ 1 and αB = 0).

If Y ∼ 1 (rather than Y 
 1 or Y 	 1), the dependence of εX on εe and εB is no longer a simple power law, requiring a similarly non-trivial

dependence of εe and/or εB on the observed time t (insofar as FX is indeed a pure power law in t during the flattish decay phase). A physical

scenario will need to account both for this behaviour and for why the time-evolution of the microphysical parameters effectively terminates

at tbreak,2.

The magnetic energy parameter εB could reflect either the structure of the ambient magnetic field or post-shock field-amplification

processes. In the former case, an increase of εB with time could be caused by an increase of the magnetization parameter σ = B2
ext/4π ρext c2

of the ambient gas with distance from the source, which might occur in certain GRB progenitor models (e.g. Königl & Granot 2002). In the

latter case one cannot at present identify a natural reason for εB to increase during the early-afterglow phase, but future theoretical advances

(see, e.g. Medvedev et al. 2005) might make it possible to study the evolution of shock-generated magnetic fields over time-scales that are

long enough to address this question. The value of εe might also be linked to the changing shock parameters (in particular, the shock Lorentz

factor). However, in this case, again, our current level of understanding does not allow us to make a specific prediction.

The possible increase of the afterglow radiation efficiency with time during the early phases of the X-ray light curve may also help to

lower the estimate of the γ -ray radiative efficiency and thereby alleviate the constraints on the internal-shocks model. If at early times (t <

t∗) εX increased with t, then (by equation 15) Ek,iso,0 would be underestimated, and therefore the parameter f and the value of εγ would be

overestimated. The prompt emission from internal shocks could in principle be observable even if the very early radiation from the external

(forward) shock is weak because of a low value of εB or of a possible suppression of εe when the shock Lorentz factor is high. This is

because the value of εB in the internal shocks might be determined by a comparatively strong magnetic field advected from the central

source (e.g. Spruit, Daigne & Drenkhahn 2001) and because (in contrast to the forward shock at the deceleration time, whose Lorentz factor is

� 102) the internal shocks are only mildly relativistic. If the afterglow emission efficiency recovers its commonly assumed value (equation 4) at

t � tbreak,2 then one could in principle have f ∼ 1, κ ∼ 1, and εγ ∼ 0.5. In this case, Ek,iso remains constant while the flattish flux decay

is caused by an increase of εX with time. However, if even at late times the afterglow efficiency is only a fraction δ 	 1 of its standard

value [where δ might, for example, correspond to the fraction ξ e of the electrons behind the forward shock that are accelerated to relativistic

energies with a power-law distribution, which could conceivably be 	1 (Eichler & Waxman 2005)] then κ ∼ δκ standard ∼ δ 	 1 and

εγ ∼ δ (for εobs,GRB ∼ 1). In this case Ek,iso is again constant with time and the flattish decay phase is due to εX increasing with time; however,

the value of εX at late times is δ times its standard value (given by equation 4) and the true kinetic energy in the afterglow shock is a factor

δ−1 
 1 larger than the usual estimate of ∼1051 erg.

An alternative to the explanation of the flattish segment of the light curve in terms of a prolonged energy injection into the forward

shock of a basic jet model is the possibility (in a generalized jet model) of distinct spatial components, some of which only contribute to the

afterglow emission at later times. This situation could arise if (1) some of the ejecta have lower initial Lorentz factors that result in longer

deceleration times, so only a small fraction of the injected energy is transferred to the shocked external medium early on, or if (2) radiation

from components that do not move along our line of sight is strongly beamed away from us at early times, becoming visible only later on

when deceleration causes the respective beaming cones to widen. Case (1) is exemplified by the two-component jet model considered in the

next section, whereas case (2) might be realized in the ‘patchy shell’ model of GRB sources (Kumar & Piran 2000) and in the ‘anisotropic

afterglow efficiency’ scenario outlined by Eichler & Granot (2006).10

4 T H E T WO - C O M P O N E N T J E T M O D E L : A C A S E S T U DY

As pointed out in Section 1, the two-component jet model was originally invoked by Peng et al. (2005) as a possible way of alleviating the

pre-Swift constraints on the γ -ray emission efficiency. In this section, we interpret the Swift results in the context of this scenario, using

again the parameters κ and f introduced in Section 2 and affirming some of the conclusions reached in that section. In this discussion, we

assume that the standard afterglow theory applies and that the microphysical parameters do not change with time. This formulation is used

to demonstrate that the recent observations are inconsistent with parameter values of the two-component jet model that could lead to a lower

inferred magnitude for εγ , reinforcing the result that, in the context of the standard afterglow theory, the Swift measurements have tightened

the constraints on the prompt-emission efficiency. We go on to show, however, that the two-component model can nevertheless account for

the X-ray afterglow light curve of GRB sources, including the flattish early-time segment.

The generic two-component jet model consists of a narrow and initially highly relativistic (conical) outflow from which the prompt

emission originates, and a moderately relativistic flow that decelerates at a significantly later time and occupies a wider (coaxial) cone. The

10 Case (2) might also be relevant to the two-component jet model if the line of sight to the observer lies within the solid angle subtended by the narrow

component but outside the inner edge of the wide component.
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narrow component is the source of the prompt emission (which is observed as a GRB if the observer’s line of sight lies within, or very close

to, its opening solid angle), whereas the wide component only makes a contribution to the afterglow emission (which becomes observable

after it decelerates). Letting Ei, Ek,i, θ i and ηi stand for the total initial energy, initial kinetic energy, opening half-angle and Lorentz factor of

the two components (with i = n, w corresponding to narrow and wide, respectively), we have

Eγ,iso = εγ En,iso = εγ En

2

θ2
n

. (16)

The parameter κ defined in equation (3) can be expressed in this context by the relation

Eobs
γ,iso

θ2
w

2
= εobs,GRBεγ En

(
θw

θn

)2

≈ κ(Ek,n + Ek,w), (17)

where Ek,n = (1 − εγ )En and Ek,w ≈Ew. Equation (17) incorporates the fact that the kinetic energy responsible for the late-afterglow emission

is determined empirically by assuming a jet of half-opening angle θw, or equivalently that the isotropic-equivalent kinetic energy inferred

from late-time afterglow corresponds approximately to the total kinetic energy over the fraction of the total solid angle occupied by the wide

component.

The energy that determines the early-afterglow phase is

Eearly,iso = Ek,n

2

θ 2
n

= Ek,n,iso, (18)

whereas the late-afterglow phase is determined by

Elate,iso = (Ek,n + Ek,w)
2

θ 2
w

. (19)

The evidence from the Swift observations that we do not see the early-afterglow emission above the rapidly decaying tail of the prompt

emission, and that even when it shows up it is rather weak, implies that the early-isotropic kinetic energy Eearly,iso is a factor f ∼ 10 smaller

than the late-isotropic kinetic energy Elate,iso, where we reintroduced the parameter f defined in equation (3). This implies that

Ek,n

θ2
n

= Ek,n + Ek,w

f θ 2
w

≈ Ek,w

f θ2
w

, (20)

which in turn implies that

Ek,n < Ek,w. (21)

Hence, we can delete the term involving Ek,n from the right-hand side of equation (17) and obtain

εγ εobs,GRB

(1 − εγ )
= κ

Ek,w

Ek,n

(
θn

θw

)2

= κ
Ek,w,iso

Ek,n,iso

. (22)

Expressing now Ek,w in terms of Ek,n using this last equation and substituting into equation (20) (which becomes simply f ≈ Ek,w,iso/Ek,n,iso

when one neglects Ek,n on the r.h.s.), we rediscover the first relation in equation (3), which can be expressed in the form of equation (13) to

yield εγ ∼ 0.9 for f ∼ 10 and (κ/εobs,GRB) ∼ 1.

Equation (22) with εγ εobs,GRB ≈ 1 implies that κEk,w/θ2
w ≈ En/θ

2
n, and hence, given that Ek,w ≈ Ew and taking κ to be ∼1, that the

narrow and wide jet components initially have comparable isotropic-equivalent energies. The ratio of true energies of the two components

is initially Ew/En ≈ κ−1 (θw/θ n)2 ∼ (4–9)κ−1 for reasonable ratios of the opening half-angles. This ratio further increases by a factor of

(1 − εγ )−1 ≈ κf (see equation 13) during the prompt-emission phase.

As argued by Peng et al. (2005), this model could reduce the inferred value of εγ if Ek,w/Ek,n > 1 and Ek,w,iso/Ek,n,iso < 1. However, the

Swift results, as expressed by equation (20), demonstrate that the latter ratio is equal to f ∼ 10, and hence that this possibility is not realized in

practice. Peng et al. (2005) also discussed the ability of this scenario to account for certain ‘bumps’ in the late-afterglow light curve of several

pre-Swift GRB sources. We now show that this model can similarly account for the early-time flattening of the X-ray light curve. The required

model parameters are, however, distinctly different from those considered by Peng et al. (2005); in fact, the fits that we obtain reinforce the

conclusion that Ek,w,iso/Ek,n,iso (≈f ) must be 
1.

The Lorentz factor of the narrow jet component does not directly enter into our modelling of the light curve, although the usual

‘compactness’ arguments for the prompt emission (e.g. Lithwick & Sari 2001) imply that its value is ηn � 102. Our interpretation of the

flattish segment of the light curve in the context of this scenario is that it largely corresponds to the emergence of the wide component around

its deceleration time tdec,w ∝ (Ek,w,iso/next)
1/3η−8/3

w , where next is the particle density of the ambient medium at the deceleration radius. Owing

to the strong dependence of tdec on η, we can constrain the value of ηw within a factor of 2 or so.

Fig. 1 shows a tentative fit to the X-ray light curve of GRB 050315 with the two-component jet model, whereas Fig. 2 demonstrates the

effect of modifying the model parameters. The extended flat segment of the light curve together with the requirement that the contribution

from the narrow component at t/(1 + z) ∼ 200 s does not overproduce the observed flux imply f ≈ Ek,w,iso/Ek,n,iso � 30. This suggests that

f ∼ f max ∼ 30 (see Table 2) and that both fmin and fmax might have been somewhat underestimated for this event [since the fit to the data

should produce f � f min, suggesting that f min ∼ 30 for GRB 050315, which is higher than the value of f min = 11 derived by Nousek et al.

(2006) and shown in Table 2). For our fiducial parameter values (εe = 0.1, εB = 0.01, and p ≈ 2.0–2.1; see Table 2 and Fig. 1) we find

(using equation 5) κ ≈ 0.034 (see Table 2). For this value of κ the product κf is ∼1, which implies (from equation 13 with εobs,GRB ∼ 1) that
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Figure 1. Tentative fit to the X-ray light curve of GRB 050315 (from Nousek et al. 2006) with the two-component jet model. The numerical code used to

calculate the light curve is essentially model 1 of Granot & Kumar (2003), which neglects the lateral spreading of the jet and includes SSC emission. In addition

to the total light curve (thick solid line), we also show the separate contributions of the different components: the tail of the prompt emission (∝ t−5), the

narrow outflow and the wide outflow. Here Ek = Ek,w + Ek,n is the total kinetic energy of the two components. The narrow and wide components occupy the

non-overlapping ranges θ < θn and θn < θ < θw, respectively, in the polar angle θ (measured from the symmetry axis); θobs is the viewing angle with respect

to this axis.
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 GRB 050315: different fits with a two–component jet

θw = 2θn  θobs/θn  ηw  E51  Ek,w/n  p   εe    εB

(i) 0.056 0.9 45 2.5 90 2 0.1 0.01
(ii) 0.114 0.9 15 2.0 120 2 1/3 1/3
(iii) 0.091 0.9 21 3.0 120 2 0.3 0.03
(iv) 0.05 0.7 21 2.5 210 2 0.3 0.03

(i) next = 8 cm−3

(ii) next = 3,000 cm−3

(iii) next = 600 cm−3

(iv) ρext = Ar−1.5, A = 104 g/cm1.5

Figure 2. The effects of varying the two-component jet model parameters with respect to those of the fit shown in Fig. 1 (reproduced in this figure by the

solid line). Here E51 = Ek/(1051 erg) (with Ek = Ek,w + Ek,n), whereas Ek,w/n denotes the ratio Ek,w/Ek,n of the kinetic energies of the wide and narrow

components.

εγ ∼ 0.5. The fit to the data shown in Fig. 1 incorporates an SSC component11 whose contribution in this case turns out to be comparable to

that of the synchrotron component at t∗ = 10 h, resulting in a decrease by a factor of ∼2 in the estimate of Ek,iso(10 h) (and in a corresponding

increase in the estimate of κ) in comparison with the values inferred by using equation (5) (which only takes account of the synchrotron

contribution). The actual numerical difference between these two estimates is, in fact, slightly larger (a factor of ∼2.5), reflecting the fact that

11 This SSC component arises from inverse-Compton scattering of low-energy photons that places the upscattered photons in the X-ray range. It should not be

confused with the inverse-Compton cooling of electrons that emits synchroton X-rays, which is discussed in Section 2.2.
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the fit employs a numerical scheme that is not identical to equation (5). All in all, the model fit shown in Fig. 1 yields f ≈ Ek,w,iso/Ek,n,iso =
30, κ ≈ Eobs

γ,iso/Ek,w,iso ≈ 0.086 and κf ≈ Eobs
γ,iso/Ek,n,iso ≈ 2.6, which implies εγ ≈ 0.72 for εobs,GRB = 1.

One realization of a two-component relativistic outflow of the type considered here is an initially neutron-rich, hydromagnetically

accelerated jet (Vlahakis, Peng & Königl 2003). In this picture, the narrow component consists of the originally injected protons that are

gradually accelerated to ηn; the injected neutrons decouple from the original proton component when the jet Lorentz factor reaches ηw and

eventually decay to form a distinct (wide) proton component. In the illustrative solution presented in Vlahakis et al. (2003), ηw ≈ 15. The

dashed curve in Fig. 2 demonstrates that, to be consistent with the data, this value of ηw requires a very high external density, next ∼ 103.5 cm−3

(although even for this value the fit is not as good as for the parameters adopted in Fig. 1). This can be understood from the parameter

dependence of tdec,w/(1 + z), for which the model fit implies a value of ∼2 × 103 s. To reproduce the observed flux, the value of Ek,w,iso cannot

be too low. In fact, in the model fit represented by the dashed curve we have adopted the lowest possible value of this quantity, corresponding to

an equipartition between the electron and magnetic field energy densities. With the values of tdec,w and Ek,w,iso thus fixed, the inferred external

density becomes very sensitive to the value of the Lorentz factor (next ∝ η−8
w ). Intermediate options, with a somewhat higher Lorentz factor

(ηw = 21) are also shown in Fig. 2, both for the uniform-density case used in the previous fits (dash–dotted curve) and for an r−1.5 density

profile (where r is the distance to the source; dotted curve). We interpret the break in the light curve of GRB 050315 at t/(1 + z) ∼ 1 d as the

jet break time of the wide component, tjet,w/(1 + z). Since the jet break time is particularly sensitive to the value of the opening half-angle,

tjet,w ∝ (Ek,w,iso/next)
1/3θ8/3

w , this allows us to constrain the value of θw. Given that tjet,w/tdec,w ∝ (ηwθ,w)8/3, it is seen that any reduction in the

fitted value of ηw requires an increase in θw by a similar factor.

As was already noted in Peng et al. (2005), another realization of this type of an outflow is potentially provided by a relativistic, baryon-

poor jet, which is driven electromagnetically along disc-anchored magnetic field lines that thread the horizon of a rotating black hole, and

which is ‘contaminated’ by neutron diffusion from a baryon-rich disc wind. In the original version of this scenario, which was proposed by

Levinson & Eichler (1993, 2003; see also van Putten & Levinson 2003) and recently studied numerically by McKinney (2005a,b), the narrow

and wide components correspond to the baryon-poor and baryon-rich outflows, respectively. However, the predicted Lorentz factor of the

disc wind is too low to be consistent with the rather high value of ηw inferred from our model fits. An alternative possibility is that the wide

component corresponds to a hydromagnetically accelerated baryon-rich disc outflow of the type modelled by Vlahakis & Königl (2003a,b),

whereas the narrow component corresponds (as in the Levinson & Eichler picture) to a baryon-poor Blandford & Znajek (1977)-type outflow.12

It should be noted that in either one of the above two-component jet realizations the γ -ray emitting component is associated with an initially

Poynting-dominated outflow. This could in principle make it possible to account for the relatively high emission efficiency that the Swift
results seem to imply (see Section 5).

5 S U M M A RY A N D C O N C L U S I O N S

We have shown that the γ -ray efficiency implied by the Swift observations is model-dependent and can vary over a wide range (from typical

values of εγ ∼ 0.9 or higher to εγ ∼ 0.1 or lower) depending on the adopted model assumptions. The γ -ray efficiency has been expressed in

terms of observable quantities (see equations 3 and 13), namely κ and f, where κ relates the γ -ray emission to the late-time afterglow emission

(and was therefore available in the pre-Swift era) and f relates the early- and late-time afterglow energies (and therefore became available only

with the launching Swift). We have shown that there is a large uncertainty in the values of both κ and f, which translates into a corresponding

uncertainty in the value of the γ -ray efficiency, εγ . In the following discussion, we make the conservative assumption that we observe most

of the emitted energy in γ -rays (εobs,GRB ≈ 1); if a significant fraction of the total radiated energy is emitted outside of the observed photon

energy range (e.g. at higher energies) then this would increase the required value of εγ (see equation 13).

The kinetic energy of the afterglow shock has been estimated in the pre-Swift era using broad-band afterglow fits for a small number of

GRB sources that had the best available broad-band afterglow data, yielding a typical value of κ ∼ 1 with a large scatter of almost an order

of magnitude (see Section 2.3). Substituting the values of the microphysical parameters (εe, εB and p) that were derived from these fits into

our equations for Ek,iso generally yielded somewhat lower values of κ . Finally, using our equations with fiducial values of the microphysical

parameters (εe = 0.1, εB = 0.01 and p = 2.2) gives a typical value of κ ∼ 0.1–0.2, both for the pre-Swift and the Swift GRB samples that

we use, with a moderate scatter. Specifically, for our pre-Swift (Swift) sample, 〈log 10 κ〉 = −0.75 (−0.82) corresponding to κ = 0.18 (0.15)

and σlog10 κ = 0.60 (0.63). Obviously, the choice of fiducial values for the microphysical parameters is somewhat arbitrary and affects the

resulting value of κ . Higher values of the microphysical parameters εe and εB (e.g. εe ≈ 0.3, εB ≈ 0.08) are required in order to obtain an

average value of log κ , using our equations, similar to that derived from pre-Swift broad-band afterglow fits. Altogether, there is almost an

order-of-magnitude uncertainty in the typical value of κ (which ranges from ∼0.1–0.2 to ∼1).

Even if we adopt the high typical values of κ (∼1) inferred from pre-Swift afterglow fits, it is important to keep in mind that these values have

been estimated on the basis of the standard assumptions of afterglow theory. Changing these assumptions would modify the inferred value of κ

for the same fits. For example, as pointed out by Eichler & Waxman (2005), if only a fraction ξ e < 1 of the electrons are accelerated to relativistic

energies with a power-law distribution, then there is a degeneracy where the same observable quantities are obtained for εe → ξ eεe, εB → ξ eεB ,

12 It is in principle also conceivable that the baryon-poor outflow could develop an internal structure that would correspond to the two outflow components

considered here, but there are at present no quantitative results to support this conjecture.
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next → ξ−1
e next and Ek,iso → ξ−1

e Ek,iso. Since this increases the inferred value of Ek,iso by a factor of ξ−1
e , κ is reduced by the same factor in

comparison with the estimate from the standard theory (which uses ξ e = 1).

An alternative way of reducing the inferred value of εγ was proposed by Peng et al. (2005) in the context of the pre-Swift observations.

Specifically, they considered a two-componet outflow model with parameters that effectively corresponded to the parameter f having a value

<1. This parameter choice appears to be inconsistent with Swift’s detection of an early flattish decay phase in the X-ray light curve, which,

when interpreted in the context of the standard afterglow theory as arising from a gradual increase with time of Ek,iso, typically implies f ∼
10 (and, in some cases, values of f that are as high as ∼102–103). It is worth noting in this connection that the existence of a two-component

GRB jet model can be plausibly expected on various theoretical grounds and has been suggested independently on the basis of fits to several

pre-Swift afterglows (see discussion in Peng et al. 2005). Furthermore, the Swift observations by no means rule out this model, although they

can be used to constrain its parameters. We have illustrated this fact through the fit to the X-ray light curve of GRB 050315 that we performed

in Section 4 within the framework of this model. This fit has yielded plausible ranges for the kinetic energies and opening angles of the two

components as well for as the Lorentz factor of the dominant (wide) component. A key conclusion from this fit is that the kinetic energy of the

wide component is much larger than that of the narrow one (Ek,w/Ek,n ∼ 102). Physically, the narrow and wide components could conceivably

correspond to a baryon-poor, black hole driven outflow (Levinson & Eichler 1993, 2003) and a baryon-rich, disc-driven outflow (Vlahakis

& Königl 2003a,b), respectively, although this remains to be demonstrated. We also note that the two-component jet parameters derived in

Section 4 were based on standard assumptions; they could change if the underlying assumptions (involving, for example, the values and time

constancy of the microphysical parameters) were altered.

In conjunction with the κ ∼ 1 estimates of the standard broad-band afterglow fits, values of f � 10 imply γ -ray radiative efficiencies εγ

� 0.9. Such high efficiencies would be essentially impossible to achieve in any scheme, such as the internal-shocks model, that tapped the

kinetic energy of the outflow for radiation. An alternative possibility that has been discussed in the literature is the direct transfer of Poynting

flux (which evidently is also a major contributor to the flow acceleration – e.g. Drenkhahn & Spruit 2002; Vlahakis & Königl 2003a) into

non-thermal radiation (e.g. Thompson 1994; Usov 1994). It is at present unclear how to assess the efficiency of this process. There are two

generic possibilities: dissipative fronts and magnetic reconnection sites. The first option corresponds to overtaking collisions of magnetically

dominated relativistic streams and is not expected to result in high radiative efficiencies (e.g. Levinson & van Putten 1997; Romanova &

Lovelace 1997). The second case would require magnetic field orientation reversals and would most naturally arise in a pulsar-type outflow

from a rapidly rotating neutron star (e.g. Spruit et al. 2001). In this case it is, however, still unclear whether radiative efficiencies �0.9 could

be attained even under the most favourable assumptions about the field reconnection rate (Drenkhahn & Spruit 2002), and it has in fact been

suggested that the reconnection rate might be self-limiting (Lyubarsky & Kirk 2001).

An ‘intermediate’ situation could prevail if f ∼ 10 but κ ∼ 0.1, reflecting the possibility that κ was overestimated by the pre-Swift
afterglow fits (perhaps because some of the assumptions of the standard theory do not hold – e.g. ξ e ∼ 0.1 rather than ξ e = 1). Alternatively,

κ could be ∼1 but f = 1, corresponding to the early flattish decay phase reflecting an increase with time of the X-ray afterglow efficiency εX

(due, e.g. to p being <2 or to an increase with time of εe or εB ; see Section 3) rather than an early increase in Ek,iso. In either one of these

cases the inferred γ -ray radiative efficiency would be reduced to εγ ∼ 0.5. Although this value is less extreme than the estimate discussed

in the preceding paragraph, it is worth noting that it is still fairly restrictive for the internal-shocks model, in which it could potentially be

attained only if all of the following conditions (already summarized in Peng et al. 2005) are satisfied: (1) the ratio between the maximum

and minimum initial Lorentz factors of the ejected shells is large enough (�10); (2) the distribution of initial Lorentz factors is sufficiently

non-uniform; (3) the shells are approximately of equal mass and their number is large enough (�30) and (4) the fraction of the dissipated

energy that is deposited in electrons and then radiated away is sufficiently high (εe,GRB εrad,GRB � 0.5), with a similar constraint applying to

the fraction εobs,GRB of the radiated energy that is emitted as the observed γ -rays (see Beloborodov 2000; Kobayashi & Sari 2001). Only if

both f ∼ 1 and κ ∼ 0.1 were satisfied (which could occur, for example, if εe or εB initially increased with time and ξ e were ∼0.1) would the

inferred value of εγ drop to ∼0.1 and be compatible with the values that are expected to arise under less-constrained circumstances in the

internal-shocks model.
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