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ABSTRACT

Opacity effects in relativistic sources of high-energy gamma-rays, such as gamma-ray bursts (GRBs) or blazars,
can probe the Lorentz factor of the outflow as well as the distance of the emission site from the source and, thus, help
constrain the composition of the outflow (protons, pairs, magnetic field) and the emission mechanism. Most previous
works consider the opacity in steady state. Here we study time-dependent effects of the opacity to pair production
(�� ! eþe�) in impulsive relativistic sources. We present a simple, yet rich, semianalytic model for the time and
energy dependence of the optical depth, ��� , in which a thin spherical shell expands ultrarelativistically and emits
isotropically in its own rest frame over a finite range of radii, R0 � R � R0 þ�R. This is particularly relevant for
GRB internal shocks. We find that for impulsive sources (�RPR0), while the instantaneous spectrum has an exponential
cutoff above the photon energy "1(T ) where ���("1) ¼ 1, the time-integrated spectrum has a power-law high-energy tail
above the photon energy "1� � "1(�T ) where �T is the duration of the emission episode. Furthermore, photons with
" > "1� should arrive mainly near the onset of the spike or flare corresponding to the short emission episode, since in
impulsive sources it takes time to build up the (target) photon field, and thus, ���(") initially increases with time and "1(T )
correspondingly decreases with time, so that photons of energy " > "1� are able to escape the source mainly very early on
while "1(T ) > ". As the source approaches a quasiYsteady state (�R3R0), the time-integrated spectrum develops
an exponential cutoff, while the power-law tail becomes increasingly suppressed.

Subject headinggs: galaxies: jets — gamma rays: bursts — gamma rays: theory — methods: analytical —
relativity
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1. INTRODUCTION AND MOTIVATION

Astrophysical sources of gamma rays that are both compact and very luminous may be optically thick to pair production (�� ! eþe�)
within the source. The corresponding optical depth, ��� , is usually an increasing function of the photon energy, and therefore, a large op-
tical depth would prevent the escape of high-energy photons from the source, causing a high-energy cutoff in the observed spectrum. For
sufficiently high optical depths, enough eþe� pairs may be produced, so that the optical depth of all photons (even low-energy photons that
are optically thin to pair production) to scattering on these electrons/positrons would be much larger than unity, in which case the photon
energy spectrumwould be thermalized. The size of the gamma-ray-emitting region is usually hard to constrain directly from observations,
since the angular resolution of gamma-ray telescopes is much poorer than their counterparts in lower energy photons (e.g., X-rays, optical,
or radio). Nevertheless, the physical properties of the emitting region can be constrained using compactness arguments and the observed
properties of the source. In particular, rapid flux variability of the source is often used in order to set upper limits on the size of the emitting
region, making highly variable sources with significant nonthermal high-energy emission a prime target for such analysis. One of the best
examples for such sources are gamma-ray bursts (GRBs), and we shall focus on them below, although most of our analysis has a much
broader range of applicability (similar opacity considerations have also been used to constrain the properties of other sources, such as
blazars, e.g., Sikora et al. 1994).

It has been realized early on that, in GRBs, pair production within the source is expected to cause a high-energy cutoff in the observed
photon energy spectrum (see Piran 2005 and references therein). Naively, if the source shows significant flux variability on an observed
timescale of �T , its size is inferred to be RP c�T /(1þ z), where z is its cosmological redshift, and the optical depth to pair production at a
dimensionless photon energy " � Eph/me c

2 is ���(") � �TL1/"(1þz) /4�me c
3Rk�TL1/"(1þz)(1þ z)/4�me c

4�T � 1014(1þ z)½L1/"(1þz)/
(1051 erg s�1)�½�T /(1 ms)��1

, where L" ¼ F"/(1þz)4�d
2
L (1þ z)�1 and F" are the source isotropic equivalent luminosity and observed

flux per unit dimensionless photon energy, respectively, and dL is the luminosity distance to the source. For GRBs the (observed part of
the) "F" spectrum typically peaks around " � 1, and being at cosmological distances, their isotropic equivalent luminosity is typically in
the range of 1050Y1053 erg s�1. Furthermore, they often show significant variability down to millisecond timescales. This implies huge
values of ��� , as high as �1015, under the above naive assumptions. Such huge optical depths are clearly inconsistent with the non-
thermal GRB spectrum, which has a significant power-law high-energy tail. This is known as the compactness problem (Ruderman1975).

If the source is moving relativistically toward us with a Lorentz factor �31, then in its own rest frame the photons have smaller
energies, "0 � "(1þ z)/�, while in the lab frame (i.e., the rest frame of the central source) most of the photons propagate at anglesP1/�
relative to its direction of motion. The latter implies that in the lab frame the typical angle between the directions of the interacting
photons is �12 � 1/�, which has two effects. First, it increases the threshold for pair production, (1þ z)2"1"2 > 2/(1� cos �12), to
(1þ z)2"1"2k�2 (compared to "01"

0
2k1 for the roughly isotropic distribution of angles between the directions of the interacting
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photons in the rest frame of the source, where �012 � 1). This reduces ���(") by a factor of �2(1��) where L" � L0"
1�� at high photon

energies (corresponding to dNph/d" / "��, i.e., � is the high-energy photon index), since L1/"(1þz) needs to be replaced by L� 2/"(1þz) ¼
�2(1��)L1/"(1þz). Second, the expression for the optical depth includes a factor of 1� cos �12 (that represents the rate at which photons
pass each other and have an opportunity to interact) which for a stationary source is�1, but for a relativistic source moving toward us is
���2. Finally, the size of the emitting region can be as large as R � �2c�T /(1þ z), which reduces ��� by an additional factor of �

�2.
Altogether, ���(") is reduced by a factor of ��2(�þ1), and since typically � � 2Y3, this usually implies �k 102 in order to have ��� < 1
and overcome the compactness problem. Using similar arguments, the lack of such a high-energy cutoff due to pair production in the
observed spectrum of the prompt gamma-ray emission in GRBs has been used to place lower limits on the Lorentz factor of the outflow
(Krolik & Pier 1991; Fenimore et al. 1993; Woods & Loeb 1995; Baring & Harding 1997; Lithwick & Sari 2001).

We note, however, that ��� generally depends both on the radius of emission, R, and on the bulk Lorentz factor, �, ���(") /
��2�R�1L0"

��1. Therefore, one needs to assume a relation between R and � in order to obtain a lower limit on the latter. Most works
assume R � �2c�T /(1þ z) (e.g., Lithwick & Sari 2001), which gives ���(") / ��2(�þ1)(�T )�1L0"

��1, while the lack of a high-
energy cutoff up to some photon energy " implies ���(") < 1. This, in turn, provides a lower limit on �, since one can directly measure
the variability time�T , the photon index�, and L0 � 4�d 2

L (1þ z)��2"��1F". However, the relation R � �2c�T /(1þ z) does not hold
for all models of the prompt GRB emission. For example, this relation does not hold if the prompt GRB emission is generated by relativistic
magnetic reconnection events, with angular scalesT1/�, that create local relativistic motion with Lorentz factor �rel � 5Y10 relative to the
average bulk value � of the emitting shell (Lyutikov & Blandford 2002, 2003). In this case�T /(1þ z)TR/c�2 and the inferred value of
the Lorentz factor from standard opacity arguments would be ��rel� rather than the bulk Lorentz factor of the shell, �. This allows
the radius of the prompt emission to be as large as R � 1016Y1017 cm, close to the deceleration radius where most of the energy of the
outflow is transferred to the swept-up external medium, and is much larger than the prompt emission radius that is expected in the
internal shocksmodel,R � 1013Y1014 cm. Therefore, we adopt a moremodel-independent approach and do not automaticallymake this
assumption. Instead, we derive most of our formulae without this assumption, as well as derive expressions for � under this assumption,
which could serve in order to test its validity.

The Gamma-Ray Large Area Space Telescope (GLAST ) mission (Ritz 2007), to be launched in early 2008, is expected to shed light
on the high-energy emission from GRBs and other impulsive relativistic sources. In particular, opacity effects due to the local photon
field within the source4 are expected to be most relevant in theGLAST Large Area Telescope (LAT) energy range (20MeV tomore than
300 GeV; see Reimer 2007). Thus, it represents a powerful tool for probing the physics of these sources. GLAST is likely to detect the
high-energy cutoff due to pair production opacity which would actually determine �2�R, rather than just provide a lower limit for it.
Furthermore, in GRBs the outflow Lorentz factor �may be constrained by the time of the afterglow onset (Panaitescu & Kumar 2002;
Lee et al. 2005; Molinari et al. 2007), provided that the reverse shock is not highly relativistic, so that ifGLAST detects the high-energy
pair production opacity cutoff, the radius of emission R could be directly constrained, thus helping to test the different GRB models. In
particular, this could directly test whether the relation R � �2c�T /(1þ z) that is expected in many models indeed holds, since both R
and � could be determined separately. This, however, requires a reliable way of identifying the observed signatures of opacity to pair
production. This is one of the main motivations for this work.

The leading model for the prompt emission in GRBs features internal shocks (Rees & Mészáros 1994) due to collisions between
shells that are ejected from the source at ultrarelativistic speeds (�k 100). The shells are typically quasi-spherical, i.e., their properties
do not vary a lot over anglesPa few ��1 around our line of sight. Under the typical physical conditions that are expected in the shocked
shells, all electrons cool on a timescale much shorter than the dynamical time (i.e., the time it takes the shock to cross the shell), andmost
of the radiation is emitted within a very thin cooling layer just behind the shock front. Thus, our model which features an emitting
spherical thin shell that expands outward ultrarelativistically is appropriate for the internal shocks model.

As this emitting ‘‘shell’’ expands outward to larger radii, it builds up a photon field that can pair produce with high-energy photons
from the same emission component. This effect has been studied in the past (see especially Baring 2006 and references therein), but the
temporal and spatial dependences of the photon field have been averaged out, corresponding either explicitly or implicitly to a quasiY
steady state. However, in impulsive relativistic sources the timescale for significant variations in the properties of the radiation field within
the source is comparable to the total duration of the emission episode, and therefore, the dependence of the opacity to pair production on
space and time cannot be ignored and may produce important effects that are suppressed in the steady state limit. Therefore, in the present
work we consider the full temporal and spatial dependence of the opacity, in order to capture all the resulting effects.

We develop a simple, yet rich, model to investigate quantitatively the intuitive consideration that in impulsive sources it takes time to
build up the (target) photon field, and thus, the optical depth initially increases with time, so that high-energy photons might be able to
escape the source mainly at the very early part of the spike in the light curve. This results in a power-law tail for the time-integrated
spectrum at high energies, while the instantaneous spectrum (which is hard to measure due to poor photon statistics) has an exponential
cutoff. This arises since the photon energy of the exponential cutoff in the instantaneous spectrum decreases with time, as the opacity
increases with time at all energies. Therefore, at sufficiently high photon energies, most of the photons escape during the short initial
time before the optical depth increases above unity, i.e., before the cutoff energy sweeps past their energy.

We perform detailed semianalytic calculations of the optical depth to pair production, which improve on previous works by first
calculating the photon field at each point in space and time and then integrating along the trajectory of each photon. The structure of the
paper is as follows. In x 2 we introduce our model and derive a general expression for the flux that reaches an observer at infinity. This
expression includes the optical depth along the trajectory of each photon that may reach the observer, which is derived in x 3. The

4 In the present work, we do not consider opacity effects due to the interaction of high-energy photons with the extragalactic background light. Such an attenuation,
interesting in its own right, can be added to the ‘‘in source’’ opacity in a straightforward way. Furthermore, it is expected to become significant (i.e., produce ��� > 1) only
at cosmological redshifts (zk1) and for very high photon energies (k56Y100 GeV at z ¼ 1 and k18Y63 GeV at z ¼ 3; Kneiske et al. 2004) and is therefore likely to
significantly affect only the high end of theGLASTenergy range, where the photon statistic might be too poor to reliably measure this effect. This source of opacity will be
independent of time (and depends only on the redshift of the source and on the photon energy), which would help in disentangling it from the time-dependent opacity
intrinsic to the source that we calculate in this work.
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calculation of the optical depth requires the knowledge of the photon field at each point along the trajectory of each (test) photon. This
local photon field is first expressed in terms of the source emissivity (x 3.1). Next (x 3.2) it is conveniently rewritten as the product of the
typical optical depth (that is approached on a dynamical time and is similar to that derived in previous works) and dimensionless order
unity expression (containing a few integrals) which captures the new time-dependent effects that are the focus of this work. In x 4
explicit expressions are derived for the integrands of these dimensionless order unity integrals. In x 5 we derive the relevant analytic
scalings for the resulting optical depths and observed flux, and in x 6 we present numerical results (i.e., numerically evaluate the
semianalytic expressions) for the opacity, light curves, and spectra (both the instantaneous and time-integrated spectra are addressed in
xx 5 and 6). Our conclusions are discussed in x 7. Readers that are interested mainly in the final results and not in the technical details of
the calculations can skip xx 2.2Y4.While x 5 is still a little technical, it is easier to follow and helps one to understand the results shown in
x 6, so it should not be skipped, if possible.

2. CALCULATING THE OBSERVED FLUX

2.1. Model Assumptions

We consider an ultrarelativistic (with Lorentz factor �31), thin (of widthTR /�2 in the lab frame) spherical expanding shell that emits
over a finite range of radii, R0 � R � R0 þ�R (i.e., the emission turns on at R0 and turns off at R0 þ�R). This model can be associated
with a single pulse or flare in the light curve. In the context of internal shocks within the outflow,�R � R0 is typically expected (Rees &
Mészáros 1994; Piran 2005 and references therein).

The emission is assumed to be isotropic in the comoving frame of the emitting shell (i.e., the shell rest frame) and uniform over the
spherical shell. In this work primed quantities are always measured in the comoving frame, while unprimed quantities are evaluated
either in the lab frame, that is, the rest frame of the central source, in which the shell is spherical (e.g., the Lorentz factor �), or in the
observer frame (e.g., the observed time and photon energy which suffer cosmological time dilation and redshift, respectively, relative to
the lab framewhich is at the cosmological redshift of the source). The observer is assumed to be located at a distance from the source that
is much larger than the source size (so that the angle subtended by the source, as seen by the observer, is very small, and the observer can
be considered as being at ‘‘infinity’’).

For convenience, we use dimensionless photon energies, ", in which the observed photon energy, Eph, is normalized by the electron
rest energy, " � Eph/me c

2. While general expressions are provided when possible, we also provide detailed semianalytical solutions to
the model by assuming that the luminosity in the shell rest frame has a power-law dependence on rest-frame photon energy "0 and radius
R, L0

" 0 / ("0)1��Rb, and that the Lorentz factor scales as a power law with radius, �2 / R�m. The approximation that � and L0
" 0 scale as

power laws with radius is usually expected to hold reasonably well. For internal shocks, the colliding shells are expected to be in the
coasting stage near the collision radius (R0), which corresponds tom ¼ 0 (see Piran 2005;Mészáros 2006 and references therein). In the
GRB afterglow, both before and after the deceleration radius, where most of the energy is transferred from the ejecta to the shocked
external medium, � (Blandford &McKee1976) and L0

" 0 (e.g., Sari1998; Granot 2005) are expected to scale as power laws with radius.
For GRB internal shocks, the scaling of L0

" 0 with radius R generally depends on the details of the colliding shells.
For uniform colliding shells, where the strength of the shocks going into the shells is constant with radius, above the peak of the �F�

spectrum, "0peak, one expects�0:5P bP 0. This may be understood as follows. In this case, the Lorentz factor in the shocked regions of
the colliding shells is constant with radius, while the magnetic field scales as B0 / R�1. Therefore, since the number of emitting elec-
trons scales linearly with radius,Ne / R, then L0

";max / B0Ne / R0. The typical synchrotron photon energy scales as "0m / B0� 2
m / R�1,

since the typical Lorentz factor of the electrons, �m, is constant for a constant shock strength. The energy of a photon that cools on the
dynamical time (the time since the start of the collision) scales as "0c / R. Therefore, above the peak of the �F� spectrum, at "0 >
"0peak ¼ max ("0c; "

0
m), we have L

0
" 0 ¼ L0

";max("
0
m/"

0
c)
�1/2("0/"0m)

�p/2 / R(2�p)/2, where p is the power-law index of the electron distribution,
dNe/d�e / ��p

e for �e > �m. Since p � 2Y3 is typically inferred for the GRB prompt emission, this corresponds to �0:5PbP 0. For
fast cooling ("0c < "0m) below "0peak ¼ "0m, L

0
" 0 ¼ L0

";max("
0/"0c)

�1/2 / R1/2. For slow cooling ("0c > "0m), however, below "0peak ¼ "0c ,
L0
";max("

0/"0m)
(1�p)/2 / R(1�p)/2.

The simplifying assumption of a power-law emission spectrum [L0
" 0 / ("0)1��], however, is not always valid (see, e.g., Baring 2006).

For example, in GRB internal shocks it breaks down for photons of energy "k�2/(1þ z)2"peak, i.e., "me c
2k 25(1þ z)�2(�/

100)2("peakme c
2/100 keV)�1 GeV. Indeed, photons of such energy interact with photons below the spectral break energy "break , which

is the peak of the �F� spectrum. A detailed treatment of the case of a more realistic spectrum for GRB internal shocks will be provided
elsewhere. The exact shape of the spectrum at high energies is not well constrained. Thus, we use a fiducial value of � ¼ 2, which
corresponds to a flat �F� (i.e., equal energy per decade in photon energy), in our detailed illustrative solutions and also explore the effects
of varying the value of �.

2.2. The Equal Arrival Time Surface of Photons to the Observer (EATS-I )

The observed normalized flux density, F" ¼ (me c
2/h)F� , is calculated as a function of time and photon energy, closely following the

derivation of Granot (2005). For this purpose, the contributions to the observed flux at any given observed time Tare integrated over the
‘‘equal arrival time surface’’ (EATS-I )—the locus of points from which photons that are emitted at the shell reach the observer
simultaneously, at the observed time T. In the present work, the effects of opacity to pair production are added at the end of this
calculation, as detailed below.

We consider a photon initially emitted by the shell at a lab frame time t0, when the radius of the shell is Rt;0 � Rsh(t0) and its Lorentz
factor is�t;0, at an angle of �t;0 fromour line of sight to the originR ¼ 0 (see Fig. 1). Because of the spherical symmetry of ourmodel, there
is no dependence on the azimuthal angle. The arrival time Tof the photon to a distant observer is given by the ‘‘equal arrival time’’ formula

T

(1þ z)
¼ t0 �

Rt;0

c
cos �t;0; ð1Þ
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where the lab frame time t is related to the shell radius at that time, Rsh(t), by

t ¼
Z Rsh(t)

0

dR

�c
¼ Rsh(t)

c
þ 1

2c

Z Rsh(t)

0

dR

�2(R)
þ O ��4

� �
: ð2Þ

In equation (1), T ¼ 0 is chosen to correspond to a photon that is emitted at the origin at t0 ¼ 0. Equation (2) relates t and Rsh(t), so that
the locus of points (Rt;0; �t;0) that keep Tconstant defines the EATS-I at time T. For a coasting shell (m ¼ 0), it is a well-known result that
the EATS-I is an ellipse5 of semimajor to semiminor axis ratio � (Rees 1966). The flux density at the rescaled energy " is obtained by
integrating over the luminosity in the shell rest frame, L0

" 0 , along the EATS-I (Granot 2005),

F"(T ) ¼ (1þ z)

4�d 2
L

Z
	 3 dL0

" 0 ¼
(1þ z)

8�d 2
L

Z ymax

ymin

dy
d
t;0

dy
	 3( y)L0

" 0 ( y); ð3Þ

where 	 � (1þ z)"/"0 is the Doppler factor of the emitted photon (between the comoving and lab frames), 
t;0 � cos �t;0 is the cosine of
its angle of emission, and we defined the normalized radius y � Rt;0/RL, where RL ¼ RL(T ) is the largest radius on the EATS-I at time T.
The integration is performed along the EATS-I, and the boundaries for y are

ymin(T ) ¼ min 1;
R0

RL(T )

� �
; ymax ¼ min 1;

R0 þ�R

RL(T )

� �
; ð4Þ

since the emission turns on at R0 and turns off at R0 þ�R. For the times T relevant to the problem, corresponding to the arrival of
photons to the observer, R0/RL(T ) is always smaller than 1.

Fig. 1.—Illustration of the two different equal arrival time surfaces (EATS) of photons: (1) to the observer at infinity (EATS-I, blue) and (2) to the instantaneous
location of a test photon (EATS-II, different colors). The overall geometry as well as relevant radii and angles are shown in the top panel, along with an illustration of the
three different cases that are discussed in the text, in which the test photon either lags behind the shell (case 1), coincides with the shell (case 2), or is in front of the shell
(case 3). The bottom panel shows the sequence of EATS-II, whose size increases with time, nested within the EATS-II which correspond to a larger time, and in particular
within EATS-I which corresponds to an infinite time (i.e., an infinite radius for the test photon, when it reaches the observer at infinity).

5 It actually represents an ellipsoid, keeping inmind the symmetry around the line of sight to the center of the emitting spherical shell and the lack of dependence on the
azimuthal angle.
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In order to evaluate the integral above, we now derive expressions for the integrand. Defining �L � �(RL), �
2 / R�m can be

rewritten as �2(R)Rm ¼ �2
LR

m
L ¼ const, and thus, �2 ¼ �2

L y
�m. Equation (2) now becomes

t0 ¼
Rt;0

c
þ RL y

mþ1

2(mþ 1)�2
Lc

þ O ��4
� �

: ð5Þ

In the limit of small angles (�t;0T1, which is relevant for �3 1), equation (1) implies t0 � Rt;0/c ¼ T /(1þ z)� Rt;0�
2
t;0/2c, which

together with equation (5) yields

T

(1þ z)
¼ RL y

mþ1

2(mþ 1)�2
Lc

þ
Rt;0�

2
t;0

2c
: ð6Þ

As can be seen in Figure 1, a photon that is emitted at Rt;0 ¼ RL [corresponding to y ¼ Rt;0/RL(T ) ¼ 1] remains along the line of sight
(�t ¼ �t;0 ¼ 0), so that equation (6) yields

RL(T ) ¼ 2(mþ 1)�2
L (T )

cT

(1þ z)
¼ R0

T

T0

� �1=(mþ1)

; T0 ¼
(1þ z)R0

2(mþ 1)c�2
0

; ð7Þ

where �0 � �(R0), and can be rewritten as

�2
t;0 ¼

y�1 � ym

(mþ 1)�2
L

: ð8Þ

We have introduced the time T0 at which the first photons reach the observer (corresponding to a photon emitted at R0 along the line of
sight, � ¼ 0), RL(T0) � R0. Since 
t;0 � 1� �2

t;0/2, equation (8) implies

d
t;0

dy
¼ y�2 þ mym�1

2(mþ 1)�2
L

: ð9Þ

Finally, the Doppler factor of the emitted electron is given by

	 � 1

�(1� � cos �t;0)
� 2�

1þ (��t;0)
2
¼ 2(mþ 1)�L y

�m=2

mþ y�m�1
; ð10Þ

and its value at RL (which corresponds to y ¼ 1) is 	(RL) ¼ 2�L. Since

L0
" 0 ¼ L0

(1þz)"=	(RL)
(RL)

"0

"0(RL)

� �1��
Rt;0

RL

� �b

; ð11Þ

where "0 ¼ (1þ z)"/	, we obtain

L0
" 0 ¼ L0

(1þz)"=2�L
(RL)

	

2�L

� ���1

yb ¼ L0
(1þz)"=2�0

(R0)
	

2�L

� ���1

yb
RL

R0

� �b�m(��1)=2

: ð12Þ

The effect of pair production opacity is treated in this work in a somewhat simplified manner, by assuming that photons which pair
produce do not reach the observer and ignoring the additional opacity that is produced by the secondary pairs and the photons emitted by
these pairs. Under these simplifications, the effects of opacity to pair production can be included by adding a term exp (����) into the
integrand in equation (3). Thus, by combining equations (9)Y(12) with equation (3), we obtain

F"(T ) ¼ 2�LL
0
(1þz)"=2�L

(RL)
(1þ z)

4�d 2
L

Z ymax

ymin

dy
mþ 1

mþ y�m�1

� �1þ�

yb�1�m�=2e����

¼ 2�0L
0
(1þz)"=2�0

(R0)
(1þ z)

4�d 2
L

T

T0

� �(2b�m�)=½2(mþ1)�Z ymax

ymin

dy
mþ 1

mþ y�m�1

� �1þ�

yb�1�m�=2e���� ; ð13Þ

where equation (7) is used to derive the scaling RL(T )/R0 ¼ (T /T0)
1/(mþ1),

��� ¼ ��� y; ";
�R

R0

;
T

T0
;

L0

�2�
0 R0

 !
; ð14Þ
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as is shown below, and L" � L0"
1�� is the observed isotropic equivalent luminosity. Unless specified otherwise, the derivations

throughout this work are valid for a general value of m. For a coasting shell (m ¼ 0), which is a case of special interest (as it is expected,
e.g., for internal shocks), equation (13) simplifies to

F"(T ) ¼ 2�0L
0
(1þz)"=2�0

(R0)
(1þ z)

4�d 2
L

T

T0

� �bZ ymax

ymin

dy y�þbe���� : ð15Þ

We have expressed the observed flux density for our model as a function of the observed time T, and we now need to derive the
expression of the optical depth ��� . We gather here the dependence on y of two quantities that will be needed below,

R̂0 �
R0

Rt;0
¼ ymin

y
¼ R0

�R

�R

Rt;0
¼ 1

y

T

T0

� ��1=(mþ1)

; x � (�t;0 �t;0)
2 ¼ y�(mþ1) � 1

(mþ 1)
: ð16Þ

In order to facilitate reading, we include in Table 1 the most common quantities used throughout this work.

3. COMPUTATION OF THE OPTICAL DEPTH

As in x 2 we consider a ‘‘test’’ photon emitted by the shell at radius Rt;0 and angle �t;0 with respect to the line of sight (see Fig. 1). All
the quantities with a subscript t will always refer to such a test photon. We wish to calculate its optical depth to pair production with
all the other photons which are emitted by the same source and denoted by a subscript i (for potentially ‘‘interacting’’). The differential
of the optical depth to pair production is given by (Weaver 1976)

d��� ¼ �? �("t; "i; 
ti)ð Þ(1� 
ti)
dni

d�i d"i
d�i d"i ds: ð17Þ

TABLE 1

Notation and Definition of Some Quantities Used Throughout This Work

Notation Definition Eq./Sect.

" � Eph/mec
2 ........................................................ Observed photon energy normalized by the electron rest energy x 2.1

t;R; � .................................................................... Spherical coordinates (time, radius from the source, polar angle) . . .

R0;�R.................................................................. Onset radius and range of the emission episode x 2.1

Rsh(t);�;�0 � �(R0) ............................................ Radius and bulk Lorentz factor of the emitting shell eq. (2)

m � 2 d log �/d log R ........................................... Power-law index of �2 with radius R x 2.1

L0 � ��
0L

0
0 ............................................................ Roughly: observed isotropic equivalent luminosity at R0 and " ¼ 1 eq. (14)

� � �d log Nph/d log Eph..................................... Photon index at large photon energies x 2.1

b � d log L0
" 0 /d log R ............................................ Power-law index of comoving spectral luminosity with radius x 2.1

tt ;Rt ; �t ;�t � �(Rt) .............................................. Test photon spherical coordinates and shell Lorentz factor at Rt x 3

t0;Rt;0; �t;0;�t;0 ..................................................... Initial test photon spherical coordinates and Lorentz factor eqs. (1) and (8)

Re; �e..................................................................... Emission radius and polar angle of interacting photon x 3

T0; T ..................................................................... Arrival times of first and subsequent photons at the observer eqs. (7) and (1)

RL(T );Re;max ........................................................ Maximal radius of emission along the EATS-I and EATS-II eq. (7)

"1 .......................................................................... Dimensionless photon energy at which ���("1) ¼ 1 x 5

s ............................................................................ Path length along the test photon trajectory eq. (17)

R? ......................................................................... Distance of test photon from the line of sight to the origin eq. (A1)

�ti .......................................................................... Angle between directions of test photon and interacting photon eq. (19)

"t , "i ..................................................................... Dimentionless test /interacting photon energies in the lab frame eq. (17)


 � cos � ............................................................. Cosine of angle � . . .
� � "t"i(1� 
ti)=2½ �1/2 ........................................ Dimentionless photon energy in the center of momentum frame eq. (18)

� � (1� 
ti)/2...................................................... Convenient integration variable Appendix A.2

r ............................................................................ Interacting photon emission to test photon intersection distance x 3

�r .......................................................................... Angle of an interacting photon relative to the radial direction x 3

	 � (1þ z)"/"0 ..................................................... Doppler factor between the comoving and lab frames eq. (10)

fm ......................................................................... Useful quantity eq. (64)

�� .......................................................................... Typical optical depth at " ¼ 1 on a dynamical time (T̄f > T̄ � 1) eq. (37)

�0;F (X ) ............................................................... Explicit analytic and integral parts of the optical depth eq. (40)

x � (�t;0�t;0)
2 ....................................................... Rescaled emission angle squared eq. (16)

y � Rt;0 /RL(T ) ..................................................... Emission radius rescaled to the maximum radius on an EATS-I eq. (3)

R̂ � R /Rt;0 ............................................................ Radius rescaled to a given test photon emission radius x 3.2

R̃ � R /Rt .............................................................. Radius rescaled to the instantaneous test photon radius x 3.2

T̄ � T /T0 � 1 ....................................................... Arrival time of photons rescaled to the earliest arrival time x 5

	̄ � 	/�t ; 
̄e � �2
t 
e............................................. Rescaled Lorentz factor and cosine of the emission angle eq. (35)

�̄� � �2
t �� ............................................................ Rescaled integration variable eq. (38)

Y � ( y� ymin)/( ymax � ymin); Y� ......................... Rescaled variable y and value at which F changes its behavior eq. (114)
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In this equation, ds is the differential of the path length along the trajectory of the test photon; ni,�i, and Ei � "ime c
2 are, respectively,

the number density, solid angle, and photon energy of the photon field along the path of the test photon with which it might interact.6 For
convenience, "t and "i denote the values of the corresponding dimensionless photon energies in the lab frame, rather than in the observer
frame (as is the case for "), i.e., without the cosmological redshift, so that "t ¼ (1þ z)" should eventually be used in order to evaluate the
optical depth at an observed value of ". The Lorentz invariant cross section for pair production �?(�) is

�?(�) ¼ �r 2e
�6

2�4 þ 2�� 1
� �

ln �þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

p� 	
� � 1þ �2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

ph i
; ð18Þ

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"t"i(1� 
ti)

2

r
; ð19Þ

where � is the center of momentum energy (in units of me c
2, of each particle—each of the two interacting photons and the produced

electron and positron), and 
ti ¼ n̂t = n̂i is the cosine of the angle between the directions of motion of the test photon (n̂t) and a
potentially interacting photon (n̂i). In order to evaluate 
ti, we need to specify the geometry for our model: a spherical emitting shell,
whose emission depends only on its radius Rsh (i.e., at any given radius its local emission does not depend on the location within the
shell) and is isotropic in its own rest frame. Under these assumptions, the radiation field will depend only on the radius R and the ( lab
frame) time t, and at any given place and time, it will be symmetric around the radial direction (see Fig. 2). Therefore, at any point along
the trajectory of the test photon, we can use a local coordinate system, Sr, whose z-axis is aligned with the radial direction (from the
center of the shell to that point), ẑr, and such that the direction of motion of the test photon is in the x-z plane. In this frame the polar
angles are denoted by (�r; 
r), and

n̂t ¼ x̂r sin �t þ ẑr cos �t; ð20Þ

n̂i ¼ x̂r sin �r cos 
r þ ŷr sin �r sin 
r þ ẑr cos �r; ð21Þ


ti ¼ n̂i = n̂t ¼ sin �t sin �r cos 
r þ cos �t cos �r: ð22Þ

Note that �t varies only with s. The integration over the solid angle in the lab frame in equation (17) can conveniently use the frame Sr
which is at rest in the lab frame, i.e., d�i ¼ d�r ¼ d
r d
r. The optical depth of the test photon is then given by

���("t; �t;0;Rt;0) ¼
Z

ds

Z
d"i

Z
d�r �

? �("t; "i; 
ti)ð Þ(1� 
ti)
dni

d�r d"i
: ð23Þ

Next, we express the derivative in the integrand of equation (23), which represents the photon field along the trajectory of the test
photon, in terms of the source emissivity. In addition, we make a series of changes of variable in order to simplify the expression for the
optical depth.

Fig. 2.—Geometry of the interaction between two photons, for a spherically symmetric shell. A test photon emitted at Rt;0 reaches Rt > Rt;0 at tt > t0 and can interact
with a photon emitted at Re that reaches the location Rt at the exact same time tt as the test photon. Note that O, Rt;0, and Rt are coplanar (and in the plane of the figure),
whereas Re is not in the same plane nor is the interacting photon trajectory that goes from Re to Rt . The observer is to the right, at infinity. The other symbols are defined in
the text. [See the electronic edition of the Journal for a color version of this figure.]

6 We do not add a factor of 1/2 due to double counting (as was done by, e.g., Baring & Harding 1997; Dermer & Schlickeiser 1994), as it should not appear in the
expression for the optical depth. We discuss this point in more details in Appendix E.
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3.1. Expressing the Photon Field in Terms of the Source Emissivity

In x 2.2we expressed the observed flux as an integral over the EATS-I of photons to the observer at an observed time T. These photons
travel along straight line trajectories that pass through the photon field. As a result, we integrate the contribution to the optical depth at
each point along the path of each photon, treating it as a test photon. This is the integration over ds in equation (23) which, as we show
below, can be replaced by an integration over dRt. In the other two inner integrations, Rt is kept fixed, and the photon field, dni /d�r d"i,
needs to be evaluated as a function of "i, 
r, and Rt. For a given test photon that is emitted at (Rt;0, 
t;0), the value of Rt also determines
the value of the lab frame time tt. We remind the reader that Rt and tt are always computed in the lab frame and that Rt is in general
different than Rsh(tt), i.e., at a general time the position of the test photon does not coincide with that of the shell. We proceed first to
relate the photon field at (tt;Rt) to the emissivity in the local frame of the emitting shell, which is easier to specify, and simpler. The
Doppler factor of the emitted photon is given by

	 � "i
"0i

¼ 1

�(1� �
i)
¼ �(1þ �
0

i); ð24Þ

where 
i � cos �i ¼ b = n̂i and 
0
i � cos �0i ¼ b = n̂0

i are the cosines of the angle between the bulk velocity of the emitting fluid (b )
and the direction of the interacting photon in the lab frame (n̂i) and in the comoving frame of the emitting fluid (n̂0

i ), respectively.
Furthermore,


0
i ¼


i � �

1� �
i

¼) d�0
i

d�r

¼ d�0
i

d�i

¼ d
0

d

¼ 	 2; ð25Þ

since d�i ¼ d
i d
i and

0
i ¼ 
i.We are interested in the differential density of photons of energy "i and direction of motion in the solid

angle d�r around the direction n̂i, which is at an angle �r from the radial direction, at a radius Rt and time tt. This density is related to the
specific intensity of the photon field by

I"i (n̂i) �
dE

dS dt d"i d�i

¼ "ime c
3 dni

d"i d�r

(n̂i); ð26Þ

where the (normalized ) specific intensity I"i is the energy (dE ) per unit normal area (dS where dS/dS ¼ n̂), per unit time (dt), per unit
(normalized ) photon energy (d"i), per solid angle (d�i ¼ d�r) around some direction n̂i of the (potentially interacting) photons.

The differential (normalized ) specific luminosity (in our case, from a small part of the emitting shell) is defined as dL"i ¼ dE/d"i dt,
while the isotropic equivalent (normalized ) specific luminosity is defined by

dL"i; iso � 4�
dL"i
d�r

: ð27Þ

The contribution of an emitting element with dL"i; iso to the (normalized ) flux density dF"i � dE/dS dt d"i and to the (normalized ) spe-
cific intensity I"i at a point located at a distance r from it is

dF"i ¼
dL"i; iso

4�r 2
¼ I"i (n̂)d�r ð28Þ

and is along the direction n̂ from the emitting element to that point (i.e., here dS is the differential of the area normal to n̂, dS ¼ n̂ = dS).
Finally, we can conveniently express dL"i; iso in the comoving frame (i.e., the local rest frame of the emitting shell),

dL"i; iso ¼ 4�
dL"i
d�r

¼ 4�
dE

d"i dt d�i

¼ 	 34�
dE 0

d"0 dt 0 d�0
i

¼ 	 3 dL0
" 0 ; ð29Þ

where the last equality follows from the assumption that the emission is isotropic in the comoving frame. Because the emission is
assumed to be uniform throughout the shell, dL0

" 0 depends only on the radius of emission of the potentially interacting photon, Re, and
not on the location within the shell. Apart from the emission radius, Re, the position of an emitting point on the shell is also specified by
the polar angle, �e, which for convenience is measured with respect to the direction from the center of the sphere to the location of the
test photon (at a radius Rt) where the flux (or some other property of the photon field) is calculated (see Fig. 2). As a result, we can write
dL0

" 0 ¼ L0
" 0 (Re)d
e/2, where 
e ¼ cos �e and L

0
" 0 (Re) has been defined and discussed in x 2.We finally combine equations (26), (28), and

(29) to obtain the expressions for the normalized specific intensity,

I"i ¼
L0
" 0 (Re)

4�

	 3

4�r 2
d
e

d
r










; ð30Þ

and the expression for the photon field which appears in the integrand in equation (23),

dni

d"i d�r

¼ L0
" 0 (Re)

(4�)2"ime c3

	 3

r 2
d
e

d
r










: ð31Þ
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The derivative in the last term to the right of these equations must be computed along the equal arrival time surface (EATS-II ) of
photons to Rt at tt, where I"i or dni/d"i d�r are to be calculated. We can now rewrite equation (23) as

���("t; �t;0;Rt;0) ¼
�T

(4�)2me c3

Z
ds

Z
d"i

Z
d�r

�? �("t; "i; 
ti)ð Þ
�T

(1� 
ti)
L0
" 0
i
(Re)

"i

	 3

r 2
d
e

d
r










: ð32Þ

We have thus replaced the photon field by the specific emissivity in the expression for the optical depth. The boundaries of integration
will be specified explicitly later on. We now want to simplify this triple integration in order to make it easier to evaluate.

3.2. Analytical Reduction

In the remainder of this work, we will make use of various dimensionless radii, which are gathered in Table 1 and greatly simplify the
analysis. Furthermore, it is much more convenient to work with such quantities of order unity inside the integrand. We thus rescale Re

and Rt by introducing R̃e � Re/Rt and R̂t � Rt/Rt;0. Furthermore, the notations R̃ � R /Rt and R̂ � R /Rt;0 will be used for other rescaled
dimensionless radii as well. While clearly 1 � R̂t < 1, the range of R̃e is much more complex and will be extensively discussed in x 4.
For now, we want to simplify equation (32) by changing integration variables. We give here the main results and leave the details of the
derivations for Appendix A.

As has been mentioned above, the integration over ds can be replaced by an integration over R̂t. Under the approximation of large
Lorentz factors (�31), and thus small emission angles (�t;0T1), one obtains ds ¼ Rt;0 dR̂t (see the discussion following eq. [A2] for
more details). Besides, since we integrate over d�r ¼ d
r d
r and the integrand contains jd
e/d
rj we can conveniently change the
integration over 
r to an integration over R̃e. We show in the Appendix A that

d
e

d
r










d
r ¼

d
e

dR̃e

dR̃e; ð33Þ

since d
e/dR̃e > 0, where the limit of integration over R̃e should be in increasing order (i.e., the integration should be from small to large
values of R̃e). The optical depth now reads

���("t; �t;0;Rt;0) �
�T

(4�)2me c3Rt;0

Z 1

1

dR̂t

R̂2
t

Z 1

2="t

d"i

Z 2�

0

d
r

Z
R0=Rt

dR̃e

�?½�("t; "i; 
ti)�
�T

(1� 
ti)
L0
" 0
i
(Re)

"i

	 3

r̃ 2
d
e

dR̃e

: ð34Þ

Next, we can follow the hindsights of Stepney & Guilbert (1983) and Baring (1994) in order to cast the integrations over (d
r; d"i)
into a much more practical form. In order to perform this change of variables, it is necessary to specialize the specific luminosity to the
dependence discussed in x 2, L0

" 0
i
(Re) ¼ L0

0h(Re/R0)("
0
i )
1�� � ���

0 L0("
0
i )
1��h(R̃eR̂t/R̂0), where h is a general function of Re/R0 that

satisfies h(1) ¼ 1 (for details see Appendix A.3) and L0
0 � L0

" 0¼1(R0). Note that L0 � ��
0L

0
0 is approximately the observed isotropic

equivalent luminosity at a photon energy of me c
2 � 511 keV, near the peak of the spike in the light curve which corresponds to the

emission episode that we model for �R � R0.
For convenience, we rescale all the quantities in the integrand of equation (34) which are not of order unity by the relevant power of

the Lorentz factor at radius Rt, �t ¼ �(Rt), so that the rescaled quantities (which are denoted by a bar) will be of order unity. We rescale
	̄ � 	/�t and d
̄e � �2

t d
e, but do not rescale r̃ which is already of order unity. Thus,

	 2þ�

r̃ 2
d
e

dR̃e

¼ ��
0

R̂t

R̂0

� ��m�=2
	̄ 2þ�

r̃ 2
d
̄e

dR̃e

; ð35Þ

and the expression for the optical depth becomes

���("t; �t;0;Rt;0) ¼ �?"
��1
t R̂

1�m�=2
0

Z 1

1

dR̂t

R̂
2�m�=2
t

Z
dR̃e

	̄ 2þ�

r̃ 2
d
̄e

dR̃e

h R̃e

R̂t

R̂0

� �
�̄ �
�H�(� ); ð36Þ

where

�? �2�
0 R0; �; L0

� �
¼ 7�T

48�3me c3
��2�
0 L0

�5=3R0

¼ 0:402
�

2

� 	�5=3
104(2��) L0;52

(�0;2)
2�R0;13

; ð37Þ

L0;52 ¼ L0/(10
52 erg s�1), R0;13 ¼ R0/(10

13 cm), �0;2 ¼ �0/100, � ¼ (�þ � ��)/��, �þ ¼ 1� cos (�r þ �t)½ �/2, �� ¼ 1� cos (�r �½
�t)�/2, and H�(�) is a function discussed in Appendix A.3. In equation (37), �?, the only quantity requiring astrophysical input, is a
constant of the order of the optical depth to pair production at a photon energy of me c

2 at R0 in quasiYsteady state (near the peak of the
spike in the light curve for�R � R0). Note that since both the photon index � and L0 (roughly the isotropic equivalent luminosity) are
observable quantities (the latter requiring knowledge of the source redshift), the observation of a high-energy spectral cutoff due to pair
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production opacity can enable the determination of �2�
0 R0. In the limit of small angles that is appropriate for large Lorentz factors, �� is

of order ��2, so we define �̄� � �2
t ��, where �t ¼ �(Rt) ¼ �0R̂

�m/2
t . Thus,

��� ¼ ��2�
0

R̂t

R̂0

� �m�

�̄�
� ��

: ð38Þ

Under the assumption that h is also a power law of index b, h(Re) ¼ (Re/R0)
b ¼ (R̃eR̂t/R̂0)

b, the expression for the optical depth in our
model simplifies to

���("t; �t;0;Rt;0) ¼ �0("t;Rt;0)F (x); ð39Þ

�0("t;Rt;0) ¼ �?"
��1
t R̂

1�b�m�=2
0 ; ð40Þ

F (x) ¼
Z 1

1

dR̂t R̂
b�2þm�=2
t

Z
dR̃e

	̄ 2þ�

r̃ 2
d
̄e

dR̃e

R̃ b
e �̄

�
�H�(� ): ð41Þ

In order to proceed further, we need to obtain an explicit expression for the innermost integrand of F by a detailed examination of
the geometry of the photon field. Section 4 is devoted to this analysis, which constitutes the main novelty of this work. We evaluate the
optical depth (eq. [39]), taking into account that the photon field is not homogeneous along the test photon trajectory, but the con-
tribution to the photon field is actually built up in time.

4. CALCULATING THE PHOTON FIELD

4.1. Equal Arrival Time Surface of Photons to the Test Photon (EATS-II )

In this section we calculate the photon field at a general radius Rt and time tt, along the trajectory of a test photon. For this purpose we
need to consider the contribution from all photons that arrive at the instantaneous location of the test photon, (Rt; tt), simultaneously.
The locus of points where all such photons are emitted, taking into account that the emission occurs only in the shell, forms a two-
dimensional surface referred to as the equal arrival time surface (EATS-II ) of photons to the instantaneous location of the test photon.
The local photon field at (Rt; tt) is calculated by integrating the contributions over this surface. We stress that this surface (EATS-II ) is
different from the equal arrival time surface of photons to the observer at infinity (EATS-I).

Figure 1 shows the basic configuration for our calculations and illustrates the relation between the two different equal arrival time
surfaces (EATS) of photons: (1) to the observer at infinity (EATS-I) and (2) to the instantaneous location of a test photon (EATS-II ). It
can be seen that the EATS-II grows with the lab frame time t and, therefore, also with the radius of the test photon Rt. Furthermore, each
EATS-II encompasses all other EATS-II corresponding to smaller times and is encompassed within all the EATS-II which correspond to
larger times. In particular, all EATS-II are within the EATS-I, which corresponds to the limit of the EATS-II for an infinite time (when the
test photon reaches the observer at infinity).All of the EATS-II andEATS-I pass through the emission point of the test photon and, for cases
2 and 3, also through the place where the photon crosses the shell (i.e., its location in case 2). These are general properties of the EATS-II.

We now proceed to calculate the EATS-II and the expressions for relevant quantities along this surface, which are needed in order to
calculate the local radiation field. From the geometry of our problem (see Fig. 2), we can immediately derive the two following equations,

r̃ 2 ¼ 1þ R̃2
e � 2R̃e
e ¼ 1� R̃e

� �2þ 2R̃e(1� 
e); ð42Þ

R̃2
e ¼ 1þ r̃ 2 � 2r̃
r; ð43Þ

where R̃e � Re/Rt and r̃ � r/Rt. The EATS-II of photons to (Rt; tt) is determined by the condition that r ¼ c(tt � te) ¼ c½tt � tsh(Re)�,
where the photons are emitted at a previous time te when the shell is at a radius Re ¼ Rsh(te). The EATS-II equation is thus given by

r̃ ¼ c

Rt

tt � tsh(Re)½ � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R̃e

� �2þ 2R̃e(1� 
e)

q
; ð44Þ

which relates the radius (Re) and angle (�e ¼ arccos 
e) of emission along this surface.
The expression for tsh(Re) depends on our assumption about the expansion of the shell. If the latter occurs at constant speed, then

tsh(Re) ¼ Re/�c and in the limit of Rt ! 1 equation (44) reduces to�(ctt � Rt) ¼ Re(1� �
e), which is the usual polar equation of an el-
lipse (setting cT ¼ ctt � Rt). In this simple case, using the short notation R̃sh ¼ R̃sh(tt) we have r̃ ¼ (R̃sh � R̃e)/�, and the EATS-II is given by


e ¼ 1� 1

2� 2R̃e

R̃sh � R̃e

� �2� � 2 1� R̃e

� �2h i
; ð45Þ

while the lower and upper limits for the range of R̃e values along the EATS-II, which correspond to 
e ¼ �1 and 
e ¼ 1, respectively,
are given by

R̃e;min ¼
R̃sh � �

1þ �
; R̃e;max ¼

R̃sh þ �
� �

=(1þ �); R̃sh � 1;

R̃sh � �
� �

=(1� �); R̃sh � 1:

(
ð46Þ

Note that we have not assumed� ¼ (1� � 2)�1/2 31, so these results are valid for an arbitrary velocity, as long as it is constant with radius.
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Combining equations (42) and (43) we also obtain


r ¼
1� R̃e
effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� R̃e

� �2þ 2R̃e(1� 
e)

q ¼ Rt

c

1� R̃e
e

tt � tsh(Re)

� �
; ð47Þ

where in the last equality we have also used equation (44), so that it is valid only along the EATS-II (while the first equality is valid more
generally, as it is derived directly from the geometrical setup).

4.2. Radial Dependence of Relevant Angles, 
e(R̃e) and 
r(R̃e), along EATS-II

Specifying for 1T�2 ¼ �2
t R̃

�m, we can rewrite equation (5) as

tsh(R) ¼
Rt

c
R̃þ R̃mþ1

2(mþ 1)�2
t

" #
þ O ��4

t

� �
: ð48Þ

Thus, equation (44) implies

r̃ ¼ R̃sh � R̃e þ
R̃mþ1
sh � R̃mþ1

e

� �
2(mþ 1)�2

t

þ O ��4
t

� �
; ð49Þ

r̃ 2 ¼ R̃sh � R̃e

� �2 þ R̃sh � R̃e

� �
R̃mþ1
sh � R̃mþ1

e

� �
(mþ 1)�2

t

þ O ��4
t

� �
: ð50Þ

Note that R̃e � R̃sh, because te � tt (due to causality) and Rsh(t) is an increasing function of t. The equality only holds when Rt ¼ Rsh(tt),
i.e., when R̃sh ¼ 1 (case 2 below). Thus, equations (42) and (50) give (to the order of ��2

t )

2�2
t (1� 
e) ¼ (�t�e)

2 ¼ 1

R̃e

�2
t R̃sh � R̃e

� �2� 1� R̃e

� �2h i
þ

R̃sh � R̃e

� �
R̃mþ1
sh � R̃mþ1

e

� �
(mþ 1)

( )
: ð51Þ

The two terms on the right-hand side of the equation are typically of the same order, since jR̃sh � 1jP a few ��2
t , i.e., R̃sh ffi 1 ,

Rsh(tt) ffi Rt. This immediately implies

d
e

dR̃e

¼ 1

2�2
t R̃

2
e

�2
t R̃2

sh � 1
� �

þ R̃sh

mþ 1
R̃mþ1
sh þ mR̃mþ1

e

� �
� R̃mþ2

e

� �
: ð52Þ

Now we turn to 
r. From equations (43) and (50) we obtain


r ¼
R̃sh � R̃e

� �2þ 1� R̃2
e

� �
2 R̃sh � R̃e

� � þ
R̃mþ1
sh � R̃mþ1

e

� �
4(mþ 1)�2

t

1� 1� R̃2
e

R̃sh � R̃e

� �2
" #

þ O ��4
t

� �
; ð53Þ

d
r

dR̃e

¼ � dr̃

dR̃e

1� R̃2
e � r̃ 2

2r̃ 2

� �
� R̃e

r̃
¼ 1� R̃2

sh

2 R̃sh � R̃e

� �2 þ R̃m
e

4�2
t

1� R̃2
e

R̃sh � R̃e

� �2 � 1

" #
þ

R̃mþ1
sh � R̃mþ1

e

� �
R̃shR̃e � 1
� �

2(mþ 1)�2
t R̃sh � R̃e

� �3 þ O ��4
t

� �
; ð54Þ

where

� dr̃

dR̃e

¼ 1þ R̃m
e

2�2
t

¼ 1þ 1

2�2(R̃e)
¼ 1

�(R̃e)
: ð55Þ

This can easily be understood since r ¼ c(tt � te) along the EATS, so that dr ¼ �c dte and dr̃/dR̃e ¼ dr/dRe ¼ �c dte /dRe ¼
�c/(dRe /dte) ¼ �1/�(R̃e).

The maximal radius of emission, Re;max, from which a photon reaches a point at radius Rt at the time tt is determined by the photon
that is emitted at �e ¼ 0 (i.e., 
e ¼ 1), along the line connecting that point to the center of the sphere. Thus,

r̃min ¼ 1� R̃e;max



 

 ¼ c

Rt

tt � tsh R̃e;max

� �� �
ð56Þ

¼ R̃sh � R̃e;max þ
R̃mþ1
sh � R̃mþ1

e;max

� 	
2(mþ 1)�2

t

þ O ��4
t

� �
; ð57Þ

and the problem naturally divides into three cases.
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4.3. Properties of EATS-II According to Relative Location of Test Photon and Shell

The properties of the EATS-II qualitatively change according to the location of the test photon relative to the shell at the same lab
frame time, tt. Thus, the problem naturally divides into three cases, as illustrated in Figures 1 and 3. If the photon is emitted at an angle7

�t;0 > 1/�t;0, i.e., x � (�t;0�t;0)
2 > 1, it initially lags behind the shell (case 1), since due to the aberration of light (also referred to as

relativistic beaming) this corresponds to an angle greater than 90
 from the radial direction in the comoving frame of the shell. The
photon eventually catches up with the shell and crosses it (case 2), since the latter is moving at a velocity slightly smaller than the speed
of light. After it crosses the shell, it remains ahead of the shell (case 3). A photon that is emitted at �t;0 � 1/�t;0, corresponding to x � 1,
immediately gets ahead of the shell (case 3). All photons are always emitted at the shell, so the point of emission is considered case 2.
Like the later shell crossing for photons with x > 1, case 2 corresponds to a single point along that trajectory of the test photon, unlike
case 1 which corresponds to a finite path along the trajectory, and case 3 corresponds to a (practically) semi-infinite interval (as far as the
observer is considered to be at ‘‘infinity’’; the contribution to the opacity at large distances from the source, however, becomes

Fig. 3.—Equal arrival time surface (EATS-II ) of photons to (Rt ; tt), which represents a general point along the trajectory of a test photon, is shown by the thick blue
line. It naturally divides into three cases (1) the test photon is behind the shell [Rt < Rsh(tt), top], (2) the test photon coincides with the shell [Rt ¼ Rsh(tt), middle], and
(3) the test photon is ahead of the shell [Rt > Rsh(tt), bottom]. There are qualitative difference in the properties of the EATS-II between these different cases that are discussed in
the text. [See the electronic edition of the Journal for a color version of this figure.]

7 More generally, the condition is cos �t;0 < �, but for �t;0 3 1 and �t;0T1 this reduces to �t;0 > 1/�t;0.
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negligible). The three different cases are discussed in detail below, and the relevant expressions for each case are derived. We start by
defining some useful quantities for this purpose, which will be very helpful later on.

In the limit of small angles, equation (A1) yields

(�t�t)
2 � xR̂�m�2

t ; ð58Þ

where x � (�t;0�t;0)
2 is the square of the normalized emission angle of the test photon. Evaluating equation (48) at R̃sh ¼ R̃sh(tt) gives

ctt

Rt

¼ R̃sh þ
R̃mþ1
sh

2(mþ 1)�2
t

þ O ��4
t

� �
; ð59Þ

which can be rewritten in terms of the quantity

fm � 2(mþ 1)�2
t

ctt

Rt

� 1

� �
¼ 2(mþ 1)�2

t R̃sh � 1
� �

þ R̃mþ1
sh þ O ��2

t

� �
; ð60Þ

which plays a major role in the following derivations.
For an emission episode starting at R0 ¼ 0, the inequality ctt > Rt is required in order to have a nonvanishing radiation field at the

point (Rt; tt). If the emission turns on at a nonzero radius R0, this condition generalizes to

ctt

Rt

� 1 � R̃0

2(mþ 1)�2(R0)
¼ R̃mþ1

0

2(mþ 1)�2
t

: ð61Þ

This implies that fm > 0 (form > �1, which is assumed in this work, and is typically the case for the astrophysical sources of interest).
We note that fm < 1 for R̃sh < 1 (when the test photon is traveling in front of the shell), fm > 1 for R̃sh > 1 (when the test photon is

traveling behind the shell), and fm ¼ 1 for R̃sh ¼ 1 (when the test photon is at the shell). It is convenient to express fm as a function of
our primary variables. Using

R2
t ¼ R2

? þ z2 ¼ R2
t;0 sin

2�t;0 þ Rt;0 cos �t;0 þ c(tt � t0)
� �2

; ð62Þ

where R? is the distance between the line of sight to the origin and the trajectory of the test photon (see Fig. 1 and eq. [A1]), and solving
this second-order equation, one obtains

c tt � t0ð Þ
Rt;0

¼ R̂t � 1
� �

1þ
�2
t;0

2R̂t

 !
þ O �4

t;0

� 	
: ð63Þ

Recalling that ct0/Rt;0 ¼ 1þ 1/2(mþ 1)�2
t;0 þ O(��4

t;0 ), we finally obtain

fm R̂t

� �
� 2(mþ 1)�2

t

ctt

Rt

� 1

� �
¼

1þ x(mþ 1) 1� R̂�1
t

� �
R̂mþ1
t

þ O ��4
� �

: ð64Þ

Figure 4 shows the dependence of fm(R̂t) on the parameter x � (�t;0�t;0)
2. For R̂t ¼ 1 we always have fm ¼ 1, since the test photon is

emitted at the shell. For x > 1 the photon initially lags behind the shell (case 1), and the equation fm ¼ 1 that can be expressed
as R̂mþ2

t � 1þ (mþ 1)x½ �R̂t þ (mþ 1)x ¼ 0 has an additional nontrivial solution, R̂2, which corresponds to the point where the
photon crosses the shell. For m ¼ 0 and 1, it is given by R̂2 ¼ x and ½(1þ 8x)1/2 � 1�/2, respectively.

Fig. 4.—Plots of fm(R̂t), defined in eq. (64), as a function of R̂t , for m ¼ 0 and 1. The test photon is necessarily on the shell at the time of its emission, so that all the
curves meet at fm(1) ¼ 1. [See the electronic edition of the Journal for a color version of this figure.]
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4.3.1. Case 1: Test Photon behind the Shell, Rt < Rsh(tt)

In this case,

Rt < Re;max < Rsh(tt)PRt 1þ a few

�2
t

 !
, 1 < R̃e;max < R̃sh(tt)P 1þ a few

�2
t

; ð65Þ

where the last approximate inequality holds for emission angles (�t�e)
2P a few, from which most of the contribution to the observed

flux arises, and are therefore the ones of relevance. An expression for R̃sh(tt) may readily be obtained through (see eq. [48])

R̃sh(tt) ¼
ctt

Rt

1�
R̃sh(tt)
� �m
2(mþ 1)�2

t

( )
þ O ��4

t

� �
¼ ctt

Rt

� 1

2(mþ 1)�2
t

þ O ��4
t

� �
; ð66Þ

while R̃e;max is obtained by equating the two expressions for r̃, from equations (49) and (42) for 
e ¼ 1,

r̃min ¼ R̃e;max � 1 ¼ R̃sh � R̃e;max þ
R̃mþ1
sh � R̃mþ1

e;max

� 	
2(mþ 1)�2

t

þ O ��4
t

� �
¼ R̃sh � R̃e;max þ O ��4

t

� �
; ð67Þ

which implies

2 R̃e;max � 1
� �

� R̃sh � 1
� �

� ctt

Rt

� 1

� �
� 1

2(mþ 1)�2
t

ð68Þ

j R̃e;max ¼
1

2

ctt

Rt

þ 1

� �
� 1

4(mþ 1)�2
t

þ O ��4
t

� �
� R̃sh þ 1

2
: ð69Þ

While �e is always small, �t�eð Þ2P a few, in the case studied in this subsection �r can range from zero to � and it is not obvious a
priori whether it can be taken to be either large, �t�rð Þ2 31, or small, �t�rð Þ2P a few.We argue that when �r is large, the photons must
be emitted at a large angle relative to the direction of motion of the emitting shell (�i ¼ �r þ �e) and are therefore significantly
suppressed by relativistic beaming. This effect wins over the increase in the reaction rate due to the larger angle between the test photon
and the interacting photons, which is manifested by the factor of (1� 
ti) in the integrand for the optical depth. Therefore, the dominant
contributions to the optical depth occur from small �r values, and we can therefore make the approximations that are appropriate for
�t�rð Þ2P a few. We express these considerations more quantitatively in Appendix B. Thus, we obtain

�t�eð Þ2 ¼ 2�2
t (1� 
e) ¼

R̃e;max � R̃e

� �
(mþ 1)R̃e

R̃mþ1
e;max � R̃mþ1

e þ 4(mþ 1)�2
t R̃e;max � 1
� �h i

þ O ��2
t

� �

¼
1� R̃e

� �
(mþ 1)R̃e

fm R̂t

� �
� R̃mþ1

e

� �
þ O ��2

t

� �
; ð70Þ

�t�rð Þ2 ¼ 2�2
t (1� 
r) ¼

R̃e R̃mþ1
sh � R̃mþ1

e þ 2(mþ 1)�2
t R̃sh � 1
� �� �

(mþ 1) R̃sh � R̃e

� � þ O ��2
t

� �
¼

R̃e fm R̂t

� �
� R̃mþ1

e

� �
(mþ 1) 1� R̃e

� � þ O ��2
t

� �
; ð71Þ

d
e

dR̃e

¼ 1

2(mþ 1)�2
t

R̃e;max

R̃2
e

R̃mþ1
e;max � R̃mþ1

e þ 4(mþ 1)�2
t R̃e;max � 1
� �h i

þ (mþ 1)R̃m�1
e R̃e;max � R̃e

� �( )

¼
fm R̂t

� �
� R̃mþ1

e þ (mþ 1)R̃mþ1
e 1� R̃e

� �� �
2(mþ 1)�2

t R̃
2
e

; ð72Þ

d
r

dR̃e

¼
(mþ 1)R̃mþ1

e R̃sh � R̃e

� �
� R̃sh R̃mþ1

sh � R̃mþ1
e þ 2(mþ 1)�2

t R̃sh � 1
� �� �

2(mþ 1)�2
t R̃sh � R̃e

� �2 �
(mþ 1)R̃mþ1

e 1� R̃e

� �
� fm R̂t

� �
þ R̃mþ1

e

� �
2(mþ 1)�2

t 1� R̃e

� �2 :

ð73Þ

We note that, as expected, 
e(R̃e;max) ¼ 1, since (1� R̃e) ¼ (R̃e;max � R̃e)þ O(��2
t ) while d
e /dR̃e > 0. The Doppler factor is given by

	 � 2�

1þ �2(�e þ �r)
2
¼

2(mþ 1)�t R̃
(mþ2)=2
e 1� R̃e

� �
(mþ 1)R̃mþ1

e 1� R̃e

� �
þ fm(R̂t)� R̃mþ1

e

; ð74Þ

where we have used equations (70) and (71) as well as �2 ¼ �2
t R̃

�m
e 3 1 and �e þ �rT1. Finally, r̃ � 1� R̃e, and thus,

	�þ2

r̃ 2e

d
e

dR̃e

¼ ��
t

	̄ �þ2

r̃ 2e

d
̄e

dR̃e

�
2(2�t)

�(mþ 1)1þ�R̃�þm �þ2ð Þ=2
e 1� R̃e

� ��
(mþ 1)R̃mþ1

e 1� R̃e

� �
þ fm R̂t

� �
� R̃mþ1

e

� �1þ�
: ð75Þ
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4.3.2. Case 2: Test Photon at the Shell, Rt ¼ Rsh(tt)

This is a limiting case between case 1 and case 3, when the test photon is located on the shell, tt ¼ tsh(R̃e;max), r̃min ¼ 0, and R̃e;max ¼ 1,
i.e.,

Re;max ¼ Rsh(tt) ¼ Rt; R̃e;max ¼ R̃sh(tt) ¼ 1: ð76Þ

This means that the last emitted photons that still reach the point (Rt; tt) are emitted at that same point in space and time, i.e., the EATS
ends at that point. Therefore,

(�t�e)
2 ¼ 2�2

t (1� 
e) ¼
1� R̃e

� �
1� R̃mþ1

e

� �
(mþ 1)R̃e

; ð77Þ

(�t�r)
2 ¼ 2�2

t (1� 
r) ¼
R̃e 1� R̃mþ1

e

� �
(mþ 1) 1� R̃e

� � ; ð78Þ

d
e

dR̃e

¼
mR̃mþ1

e 1� R̃e

� �
þ 1� R̃mþ2

e

� �
2(mþ 1)�2

t R̃
2
e

; ð79Þ

d
r

dR̃e

¼ �
1� R̃mþ2

e

� �
� (mþ 2)R̃mþ1

e 1� R̃e

� �
2(mþ 1)�2

t 1� R̃e

� �2 : ð80Þ

In the limit where R̃e � 1 (i.e., 1� R̃eT1) we have

�t�eð Þ2� 1� R̃e

� �2
; �t�rð Þ2� 1� mþ 2

2
1� R̃e

� �
; ð81Þ

d
e

dR̃
� 1� R̃e

�2
t

� �e
�t

;
d
r

dR̃
� � (mþ 2)

4�2
t

;
d
e

d
r

� � 4

(mþ 2)
1� R̃e

� �
: ð82Þ

In this limit r̃ � 1� R̃e, which implies (see eq. [31]) that I"/ jd
e /d
rj/r̃ 2 / (1� R̃e)
�1, i.e., the specific intensity diverges at the angle

�r ¼ �r;max ¼ 1/�t and vanishes above this angle. This can be understood as follows. In this limit r̃T1, i.e., rTRt ¼ Rsh(tt) and the
curvature of the shock front becomes unimportant, so that in order for a photon to reach the point (Rt; tt) together with the shock front it
must propagate along the shock front, which corresponds locally to an angle of 1/� (or more generally cos � ¼ �) from the normal to the
shock front, i.e., the radial direction in our case.

4.3.3. Case 3: Test Photon Ahead of the Shell, Rt > Rsh(tt)

With the causality condition Re;max < Rsh(tt) and equation (61), we now have

R0 � Re;max < Rsh(tt) < Rt < ctt �
RtR̃

mþ1
0

2(mþ 1)�2
t

; ð83Þ

() R̃0 � R̃e;max < R̃sh < 1 � ctt

Rt

� R̃mþ1
0

2(mþ 1)�2
t

: ð84Þ

As a result, equation (57) yields

1� R̃e;max ¼ R̃sh � R̃e;max þ
R̃mþ1
sh � R̃mþ1

e;max

� 	
2(mþ 1)�2

t

þ O ��4
� �

; ð85Þ

()1� R̃sh ¼
R̃mþ1
sh � R̃mþ1

e;max

2(mþ 1)�2
t

� R̃mþ1
sh � R̃mþ1

0

2(mþ 1)�2
t

<
R̃mþ1
sh

2(mþ 1)�2
t

<
1

2(mþ 1)�2
t

; ð86Þ

R̃e;max ¼ R̃sh 1� 2(mþ 1)�2
t

R̃mþ1
sh

1� R̃sh

� �" #1=(mþ1)

¼ 2(mþ 1)�2
t

ctt

Rt

� 1

� �� �1=(mþ1)

¼ fm R̂t

� �� �1=(mþ1)
: ð87Þ

Taking these results into account, we now derive the relevant expressions from equations (51)Y(54). The leading terms for 1� 
e,
1� 
r, and their derivatives with respect to R̃e are all of the order of O ��2

t

� �
. Thus, we obtain

(�t�e)
2 ¼ 2�2

t (1� 
e) ¼
1� R̃e

� �
R̃mþ1
e;max � R̃mþ1

e

� 	
(mþ 1)R̃e

þ O ��2
t

� �
¼

1� R̃e

� �
fm R̂t

� �
� R̃mþ1

e

� �
(mþ 1)R̃e

þ O ��2
t

� �
; ð88Þ

(�t�r)
2 ¼ 2�2

t (1� 
r) ¼
R̃e R̃mþ1

e;max � R̃mþ1
e

� 	
(mþ 1) 1� R̃e

� � þ O ��2
t

� �
¼

R̃e fm R̂t

� �
� R̃mþ1

e

� �
(mþ 1) 1� R̃e

� � þ O ��2
t

� �
; ð89Þ
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and for the derivatives

d
e

dR̃e

¼
(mþ 1)R̃mþ1

e 1� R̃e

� �
þ fm R̂t

� �
� R̃mþ1

e

� �
2(mþ 1)�2

t R̃
2
e

þ O ��4
t

� �
; ð90Þ

d
r

dR̃e

¼
(mþ 1)R̃mþ1

e 1� R̃e

� �
� fm R̂t

� �
� R̃mþ1

e

� �
2(mþ 1)�2

t 1� R̃e

� �2 þ O ��4
t

� �
: ð91Þ

The Doppler factor is given by

	 � 2�

1þ �2(�e þ �r)
2
¼

2(mþ 1)�tR̃
(mþ2)=2
e 1� R̃e

� �
(mþ 1)R̃mþ1

e 1� R̃e

� �
þ fm R̂t

� �
� R̃mþ1

e

� � ; ð92Þ

where we have used equations (88) and (89) as well as �2 ¼ �2
t R̃

�m
e 3 1 and �e þ �rT1. Finally, r̃ � 1� R̃e, and thus,

	�þ2

r̃ 2e

d
e

dR̃e

¼ ��
t

	̄ �þ2

r̃ 2e
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̄e

dR̃e

� 2(2�t)
�

(1� R̃e)R̃
1þm�=2
e

1þ
fm R̂t

� �
� R̃mþ1

e

(mþ 1)R̃mþ1
e 1� R̃e

� �
" #�(1þ�)

�
2(2�t)

�(mþ 1)1þ�R̃�þm(2þ�)=2
e 1� R̃e

� ��
(mþ 1)R̃mþ1

e 1� R̃e

� �
þ fm R̂t

� �
� R̃mþ1

e

� �1þ�
: ð93Þ

We note that the expressions above for case 3 are identical to those for case 1 (eq. [74]). While dni/d"i d�r diverges as jR̃e �
R̃e(�r;max)j�1 / j�r � �r;maxj�1/2

at �r;max, dni/d"i ¼
R
d�r(dni/d"i d�r) � 2�

R
�r d�r(dni/d"i d�r) remains finite (i.e., both the energy

density and the energy flux of the radiation field remain finite). This has been noticed in the context of the diverging surface brightness
of the afterglow image at its outer edge, when the emission comes from an infinitely thin shell (Sari1998; Granot & Loeb 2001). In that
context, it has also been shown (Waxman1997; Granot et al.1999a,1999b; Granot & Loeb 2001) that when the emission comes from a
shell of finite width, the surface brightness (i.e., the specific intensity I") does not diverge.

4.4. Putting It All Together

Analytical expressions for our model have now been fully derived, and are reported for convenience here. The scaled spectral flux
density, equation (13) is rewritten as

F"(T )

F";0
¼ T

T0

� �2b�m�ð Þ= 2(mþ1)½ �Z ymax

ymin

dy
mþ 1

mþ y�m�1

� �1þ�

yb�1�m�=2 exp ���� y; "t;
�R

R0

;
T

T0
;

L0

�2�
0 R0

 !" #
; ð94Þ

where "t ¼ (1þ z)", ymin ¼ min½1;R0/RL(T )�, and ymax ¼ min½1; (R0 þ�R)/RL(T )�, while the flux normalization is given by

F";0 ¼ 2�0L
0
(1þz)"=2�0

(R0)
(1þ z)

4�d 2
L

¼ 2�L0"
1��(1þ z)2��

4�d 2
L

; ð95Þ

F0 � "��1F";0 ¼ ("F";0)j"¼1 ¼
L0

�d 2
L

1þ z

2

� �2��

¼ 7:6 ; 10�6 1þ z

2

� �2��

L0;52d
�2
L;28 erg cm�2 s�1; ð96Þ

where dL ¼ 1028dL;28 cm, and may be used in order to infer the value of L0 from the observed flux level. The optical depth in the
integrand above is

���("t; �t;0;Rt;0) ¼ �?"
��1
t R̂

1�b�m�=2
0 F (x); ð97Þ

where R̂0 ¼ y�1(T /T0)
�1/(mþ1) and x ¼ ( y�(mþ1) � 1)/(mþ 1). The function F is the following double integral,

F (x) ¼
Z R̂2

1

dR̂t

Z R̃e;2

R̂0=R̂t

dR̃e I R̂t; R̃e

� �
þ
Z 1

R̂2

dR̂t

Z R̃e;3

R̂0=R̂t

dR̃e I R̂t; R̃e

� �
: ð98Þ

The two integrals above correspond to cases 1 and 3, respectively, as discussed in x 4.3. When x > 1, the test photon lags behind
the shell and fm(R̂t) > 1, with fm(R̂t) � ½1þ x(mþ 1)(1� R̂�1

t )�/R̂mþ1
t ; R̂2 is then defined by the implicit equation fm(R̂2) � 1, and

R̃e;2 � min½(R̂0 þ�R̂)/R̂t; 1�. For m ¼ 0, R̂2 ¼ max(1; x), while for m ¼ 1, R̂2 ¼ max(1; ½ 1þ 8xð Þ1/2�1�/2). The test photon even-
tually overtakes the shell at radius R2 and will travel ahead of the shell ever after, which corresponds to the second integral, where
R̃e;3 � min½(R̂0 þ�R̂)/R̂t; fm(R̂t)

1/(mþ1)�. When x � 1, only the second integral contributes, as the photon is emitted on the shell and
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immediately travels ahead of it. Thus, R̂2 ¼ 1 so that the first integral vanishes. Note that, for all practical purposes, equation (98) can
be cast into a single integral,

F (x) ¼
Z 1

1

dR̂t

Z R̃e;M

R̂0=R̂t

dR̃e I R̂t; R̃e

� �
; ð99Þ

where R̃e;M ¼ R̃e;2 when x > 1 and fm(R̂t) > 1, and R̃e;M ¼ R̃e;3 in all other cases, i.e., R̃e;M ¼ min½(R̂0 þ�R̂)/R̂t; fm(R̂t)
1/(mþ1); 1�.

Finally, the integrand is equal to

I R̂t; R̃e

� �
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� 2="t�	

R̃e

� �
: ð100Þ

Specializing to L0
" 0
i
(R) ¼ L0"01��

i (R̃eR̂t/R̂0)
b, equation (99) becomes

F (x) ¼
Z 1

1

dR̂t R̂
b�2þm�=2
t

Z R̃e;M

R̂0=R̂t

dR̃e

	̄ 2þ�
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R̃ b
e �̄

�
�H�(� ); ð101Þ

where the integrands are further expressed as

	̄ 2þ�

r̃ 2
d
̄e

dR̃e
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e (1� R̃e)
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e 1� R̃e
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þ fm(R̂t)� R̃mþ1

e

� �1þ�
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�̄� ¼ (�t�r � �t�t)
2

4
; � ¼ 4(�t�r)(�t�t)

(�t�r � �t�t)
2
; H�(� ) ¼ 2F1(��; 0:5; 1;�� ); ð102Þ

(�t�r)
2 ¼

R̃e fm R̂t

� �
� R̃mþ1

e

� �
(mþ 1)(1� R̃e)

; (�t�t)
2 ¼ x

R̂mþ2
t

: ð103Þ

This concludes the set of general equations that have been obtained. For reference, the hypergeometric expressions for � ¼ 1, 2, and 3,
respectively, read

�̄ 1
�H1(� ) ¼ �̄� 1þ �

2

� �
¼ 1

4
(�t�r)

2 þ (�t�t)
2

� �
; ð104Þ

�̄ 2
�H2(� ) ¼ �̄ 2

� 1þ � þ 3

8
� 2

� �
¼ (�t�t)

4 þ (�t�r)
4

16
þ (�t�t)

2(�t�r)
2

4
; ð105Þ

�̄ 3
�H3(� ) ¼ �̄ 3

� 1þ 3

2
� þ 9

8
� 2 þ 5

16
� 3

� �
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64
(�t�r)

6 þ 9(�t�r)
4(�t�t)

2 þ 9(�t�r)
2(�t�t)

4 þ (�t�t)
6

� �
: ð106Þ

For our fiducial case, � ¼ 2, we also explicitly write the relevant expressions,

�0("t;Rt;0) ¼ �?"tR̂
�m�bþ1
0 ; �? ¼ 0:402

�0

100

� ��4
L0;52

R0;13
; ð107Þ

F (x) ¼
Z 1

1

R̂ bþm�2
t dR̂t

Z
dR̃e
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r̃ 2
d
̄e

dR̃e

R̃ b
e �̄

2
�H2(� ); ð108Þ

	̄4
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½2(mþ 1)�3R̃2þ2m

e 1� R̃e
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� �
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e
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�̄ 2
�H2(� ) ¼

x2

16R̂
2(mþ2)
t

þ x

4R̂mþ2
t

R̃e fm R̂t

� �
� R̃mþ1
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� �
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R̃2
e fm R̂t

� �
� R̃mþ1

e

� �2
(mþ 1)2 1� R̃e

� �2 : ð110Þ

5. ANALYTIC SCALINGS OF THE FLUX AND OPTICAL DEPTH

Before showing our results for the light curves and spectra, it is useful to first analytically derive some of the relevant scaling laws
(from the equations obtained in the preceding sections) and discuss the qualitative behavior of the system in different regimes. It is
convenient to define a normalized time T̄ � (T /T0)� 1, which is zero when the first photon from Rt;0 ¼ R0 and �t;0 ¼ 0 reaches the
observer and is�1 about a dynamical time later, when the system starts to approach a quasiYsteady state. It is also useful to define the
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time Tf ¼ T0(1þ�R /R0)
mþ1, whereRL(Tf ) � R0 þ�R, when the lack of emission from outside the outer edge of the emitting region

(R > R0 þ�R) starts being noticed by the observer, and the corresponding normalized time

T̄f ¼
Tf

T0
� 1 ¼ 1þ �R

R0

� �mþ1

�1 �
(mþ 1)�R=R0T1; �RTR0;

(�R=R0)
mþ1 3 1; �R3R0:



ð111Þ

Note that at T � Tf the outer boundary of the emission region does not affect either the emission, since the outer edge of the EATS-I is
still fully within the emission region, or the opacity of the emitted photons, since the maximal radius of the EATS-II (Re;max) at all points
along the trajectory of any photon is always smaller than that of the EATS-I [RL(T )], Re;max(T ; y;Rt) < RL(T ). As shown in Figure 1, the
two radii become nearly equal for Rt 3RL(T ). In fact, for Rt 3RL(T ), not only does Re;max(T ; y;Rt) approach RL(T ), but the EATS-II
approaches the EATS-I (the two must become identical when the test photon reaches the observer, which corresponds to Rt ! 1 for a
distant observer, at ‘‘infinity’’). This immediately implies that for T � Tf the observed flux and the opacity along the trajectory of all
photons (which reach the observer at time T ) are independent of �R. Thus, in order to calculate the light curves for a family of model
parameters that differ only in their�R values, it is sufficient to calculate the observed flux and opacity for�R ! 1 and use them for
T � Tf , and one needs to do the full calculation for each specific value of �R only for T > Tf .

The temporal scaling of the unattenuated flux, at sufficiently low photon energies ", can be understood as follows. For 13 T̄ < T̄f ,
ymin ¼ R0/RL(T ) ¼ (T /T0)

�1/(mþ1) ¼ (1þ T̄ )�1/(mþ1) and ymax ¼ 1, so that �y ¼ ymax � ymin � T̄ /(mþ 1) while y � 1 and the inte-
grand in equation (13) is also �1, implying that F" / T̄ . For T̄f < T̄T1 the emission is from R � R0 from angles � which satisfy
(�0� )

2 � T̄ /(mþ 1)T1, while the Doppler factor at this stage is almost constant, 	 � 2�0/½1þ (�0� )
2� � 2�0/½1þ T̄ /(mþ 1)� �

2�0, and therefore, the flux is approximately constant in time, F" / 	�1�� / T̄ 0. For T̄f T1TT, 	 � 2�0/(�0� )
2 / T̄�1 and

F" / T̄�1��. For 1TT̄ < T̄f , ymin ¼ R0/RL(T ) ¼ (1þ T̄ )�1/(mþ1) � T̄�1/(mþ1)T1 and ymax ¼ 1, so that the integral over y in equa-
tion (13) approaches a constant (corresponding to its value for

R 1
0
dy) and F" / T̄ (2b�m�)/½2(mþ1)�. Finally, for T̄ 3 T̄f the emission is

dominated by R � R0 þ�R and angles �t;0 31/�t;0 (i.e., x3 1), and we obtain the familiar result for ‘‘high-latitude’’ emission (Kumar
& Panaitescu 2000), F" / T̄�1��. Altogether,

F"<"1(T̄)
/

T̄ ; 13 T̄ < T̄f ;

T̄ 0; T̄f < T̄T1;

T̄ (2b�m�)=½2(mþ1)�; 1TT̄ < T̄f ;

T̄�1��; T̄ 3max 1; T̄f
� �

:

8>>><
>>>:
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Nowwemove on to discuss the opacity effects in some detail. As can be seen in Figure 5, at a given emission radius the optical depth
is smallest for small emission angles (i.e., small values of x). There is a local maximum near x ¼ �t;0�t;0 � 1, since for such emission
angles the photon is emitted almost parallel to the shell in the comoving frame, and a relatively large part of its trajectory (also in the lab
frame) is close to the emitting shell, which enhances the optical depth. For a given normalized emission angle, x1/2 ¼ �t;0�t;0, the
normalized optical depth increases with emission radius, as can be seen in Figure 6, where the increase is largest for small emission
angles. The optical depth generally increases with �R /R0 when all other model parameters are held fixed, due to the larger range of
emission radii which enhances the photon field that can potentially interact with test photons. However, as pointed out above, for T � Tf
the optical depth in this case is independent of �R /R0. This is demonstrated in the right panel of Figure 6, where it can be seen that in
practice a noticeable increase in the optical depth due to the increase in�R /R0 does not occur immediately after Tf but takes some time
to come into effect. This is because for 0 < T � Tf TTf the added contribution to the opacity fromR > R0 þ�R for the smaller�R is
very small, since the additional photons can interact with the test photon only at very large radii [Rt 3RL(Tf ) ¼ R0 þ�R] where the
density of the photon field is very small, and at very small angles between the directions of the photons which are very unfavorable for
interaction.

One would also like to define "1 as the photon energy at which the optical depth becomes unity, ���("1) � 1. However, this definition
gives a different value along the trajectories of different (test) photons, making it hard to define a unique value for "1(T̄ ), since its value
varies along the EATS-I (see Figs. 7 and 8). For 1TT̄ < T̄f ,F (x) becomes independent of T̄ and depends only on x (see the left panel
of Fig. 7 and Fig. 8). Most of the contributions to the observed flux come from xP 1, since for x31 the radiation is strongly beamed
away from the observer. The left panel of Figure 7 shows thatF (xP 1) varies over a factor of �50 for 1TT̄ < T̄f , and therefore, in this
regime it still makes some sense to define a single typical value of "1(T̄ ) and derive its scaling. It is good to keep in mind, however, both
the spectral transitions around "1(T̄ ) in the instantaneous spectrum and around "1(T̄f ) in the time-integrated spectrum, as well as the tran-
sition in the light curve when "1(T̄ ) sweeps past the observed photon energy ", are all expected to be somewhat smoothed due to this
relatively large range of opacity values across the (unresolved) observed image of the GRB projected in the sky. According to equa-
tion (40), ��� / �0 / "��1

t R̂1�b�m�/2
0 / "��1

t T̄�(1�b�m�/2)/(mþ1), and therefore, "1(1TT̄ < T̄f ) / T̄ (1�b�m�/2)/½(mþ1)(��1)�.
The right panel of Figure 7 shows F (x) as a function of Y � ( y� ymin)/( ymax � ymin) � (xmax � x)/xmax for several values of

13 T̄ < T̄f , along the equal arrival time surface of photons to the observer (EATS-I; see also Fig. 8). In this limit, Rt;0 � R0, y � 1� x,
and xmax � T̄ /(mþ 1) � ½�0R?;max(T̄ )/R0�2, where R?;max(T̄ ) is the radius of the GRB observed image, projected in the sky, at a
normalized observed time T̄ . As is shown analytically in Appendix D and is apparent in the right panel of Figure 7, in this limit

F (x ¼ 0; 13 T̄ < T̄f ) / T̄ : ð113Þ
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The right panel of Figure 7 also shows that

F (x; 13 T̄ < T̄f ) � F x ¼ 0; 13 T̄ < T̄f
� � Y ; Y > Y�(T̄ );

Y�(T̄ ); Y < Y�(T̄ );

(
ð114Þ

Fig. 6.—Normalized optical depthF (x) ¼ ��� /�0 as a function of the renormalized emission radius, (Rt;0/R0)� 1, for different values of the normalized emission angle
x1/2 ¼ �t;0�t;0. The left panel is for�R /R0 ¼ 1000. The right panel is for�R /R0 ¼ 1, but also shows the corresponding result for�R /R0 ¼ 1000 in dashed lines, where
the crosses show the value of the emission radius corresponding to an observed time of T ¼ Tf [for �t;0�t;0 ¼ 1 this corresponds to (Rt;0/R0)� 1 ¼ 0 which is outside the
range shown in the figure]. Note the deviation near (Rt;0/R0)� 1 � 1 and see the text for discussion of its origin. [See the electronic edition of the Journal for a color
version of this figure.]

Fig. 5.—Normalized optical depthF (x) ¼ ��� /�0 as a function of the renormalized emission angle, x1/2 ¼ �t;0�t;0, for several different emission radiiRt;0. The top panel
is for �R /R0 ¼ 1000, while the bottom panel shows the results for �R /R0 ¼ 1 (solid lines) and for �R /R0 ¼ 1000 (dashed lines) overlaid on each other. The small
vertical lines in the bottom panel indicate the angle that corresponds to T̄ ¼ T̄f , outside of which the contributions to the opacity from R > R0 þ�R for�R /R0 ¼ 1 start
being missed (this effect becomes significant only at somewhat larger angles; see discussion in the text). For Rt;0 ¼ 2R0 ¼ R0 þ�R, this corresponds to
x1/2 ¼ �t;0�t;0 ¼ 0, which is outside the range shown in the figure. In both panels the photon index is � ¼ 2, while the Lorentz factor and the total luminosity in the
comoving frame are independent of radius (m ¼ b ¼ 0).
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where Y� � (xmax � x�)/xmax / T̄ � is the value of Ywhere the scaling of F (x) changes from/Y 0 to/Y 1. The corresponding value of
x is x�, and F (x�) � F (xmax) / T̄ �þ1 / Y (�þ1)/�

� .
The scaling of F (x) with Y for 13 T̄ < T̄f can be understood as follows. For a given emission radius Rt;0, the dependence of the

optical depth andF (x) on the emission angle �t;0 is very weak for x ¼ (�t;0�t;0)
2T1 and becomes significant only for xk 1 (see Fig. 5).

Therefore, as x starts increasing from x ¼ 0 at the line of sight, along the EATS-I, F (x) initially varies following its dominant radial
dependence. The latter may be derived from that along the line of sight where F (x) / T̄ / (Rt;0/R0)� 1, where for a general value of
x < xmaxT1 we have (Rt;0/R0)� 1 � xmax � x / Y and therefore F (x) / Y . As x approaches xmax, Y approaches zero, until even-
tually the optical depth becomes dominated by the small angular dependence on �t;0 at a fixed emission radius Rt;0, and F (x) approaches a
constant value of F (xmax) which corresponds to Rt;0 ¼ R0 and x ¼ (�0�t;0)

2 ¼ xmax ¼ T̄ /(mþ 1). We find that F (xmax) / T̄ �þ1 /
x�þ1
max ¼ (�0�t;0)2(�þ1). This may be understood as follows, starting from the expression for the optical depth in equation (32).
In this regime R̃e;max ¼ f 1/(mþ1)

m , and for Rt;0 ¼ R0 we have

R̃e;max

R0

� 1 ¼ 1þ x(mþ 1) 1� R̂�1
t

� �� �1=(m�1)�1 � x 1� R̂�1
t

� �
T1: ð115Þ

This means that the contribution to the local photon field at each point along the trajectory of the test photon is always from a very
narrow range of radii near R0. This implies that r�2jd
r /d
rj, which appears in equation (32), remains approximately constant, since the
geometry of the problem implies R0�e � r�r so that r�2jd
r /d
rj � R�2

0 ¼ const. At any given point along the test photon trajectory
�r � �t � �t;0, simply because in this regime �r;max is obtained where EATS-II is truncated at R0, which must correspond to �r ¼ �t for a
test photons that is emitted at Rt;0 ¼ R0 (the test photon is always on its own EATS-I and EATS-II, by definition). This implies that

Fig. 7.—Normalized optical depth F (x) ¼ ��� /�0, along the equal arrival time surface of photons to the observer (EATS-I ), for several different values of the
normalized time T̄ ¼ (T /T0)� 1. The left panel shows F (x) as a function of the normalized emission radius y ¼ Rt;0/RL(T ) for several values of 1 � T̄ < T̄f , while the
right panel shows F (x) as a function of Y � ( y� ymin)/( ymax � ymin) � (xmax � x)/xmax for several values of 13 T̄ < T̄f .

Fig. 8.—Contour plot of log10(��� /�0) as a function of the normalized emission radius, log10(Rt;0/R0 � 1), and emission angle, log10(�t;0�t;0), form ¼ b ¼ 0, � ¼ 2,
and a large (effectively infinite)�R /R0. Overlaid are plotted (in thick lines) the equal arrival time surfaces of photons to the distant observer (EATS-I ) for log10(T̄ ) ¼ �3,
�2, �1, 0, and 1.
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	 � 2�0 ¼ const, since �(�e þ �r) � 2�0�t � 2�0�t;0 ¼ 2x1/2T1. Furthermore, L0
" 0
i
(R̃e) is approximately constant, since R̃e � R0 ¼

const. Since �t/�t;0 � Rt;0/Rt ¼ R̂t, the effective solid angle that contributes to interaction atRt is��2
t / R�2

t , and there is also a factor of
1� 
ti � �2

t / R�2
t in the integrand of equation (32),most of the contribution to the total optical depth is fromRt � Rt;0 (i.e., R̂t P 2). There-

fore, the integration over the solid angle effectively introduces a factor of��2
t;0, while the factor of 1� 
ti in the integrand introduces a similar

factor, together giving a factor of ��4
t;0. The integration over energy "i together with the threshold "t"i > 2/(1� 
ti) for pair production give

L
0
" 0
i
/ "1��

i / "��1
t (1� 
ti)

��1 / �2(��1)
t;0

. Altogether, with the previous factor of �4
t;0, the optical depth in this regime scales as �2(�þ1)

t;0 .
Thus, for fixed values of �? and ", ��� first becomes larger than unity at the center of the image (xT1 and Y � 1) at T̄1i �

�22��1/�?"
��1. From this time on, the central part of the image is opaque, at x < x1 which corresponds to Y1 � T̄1i/T̄ , so that photons of

energy " can escape mainly from a thin ring in the outer part of the image that corresponds to x1 < x < xmax and occupies a fraction
Y1 � T̄1i/T̄ / T̄�1 of the image area (since that area is linear in x). Thus, the observed flux is suppressed by a similar factor and turns
from /T̄ at T̄ < T̄1i to /T̄ 0 at T̄ > T̄1i. Eventually, at a later time T̄1f � T̄ 1/(�þ1)

1i
/ "�(��1)/(�þ1) when x1 ¼ x�, the whole image be-

comes opaque, i.e., ��� > 1 for all 0 � x � xmax, and the observed flux starts to drop exponentially with time. This behavior can be seen,
e.g., in Figure 9. In summary,

F" 3 "1� (T̄T1) � F"<"1� (T̄ ¼ 1)

T̄ ; T̄ < T̄1i(");

T̄1i; T̄1i(") < T̄ < T̄1f (");

T̄ �þ1 exp �(T̄=T̄1f )
�þ1

� �
; T̄ > T̄1f ("):

8><
>: ð116Þ

Fig. 9.—Light curves (left) and instantaneous (thin lines) and time-integrated (thick lines) spectra (right), calculated using our semianalytic model, for a constant
Lorentz factor (m ¼ 0) and a comoving emissivity independent of radius (b ¼ 0) with equal energy per decade of photon energy (corresponding to a photon index of
� ¼ 2). The vertical dashed lines in the left panels indicate the times for which the instantaneous spectra are shown in the corresponding right panel, usingmatching colors.
We show results for three different radial extents of the emission region, �R /R0 ¼ 0:01, 1, and 100, from top to bottom. We also use �? ¼ 1 (see eq. [37]). [See the
electronic edition of the Journal for a color version of this figure.]
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Similarly, for 13 T̄ < T̄f it is natural to define "1i(T̄ ) and "1f (T̄ ) as the two photon energies above which the center and outer edge
of the observed image, respectively, become optically thick to pair production; by definition, T̄1i; f ½"1i; f (T̄ )� � T̄ . This implies that
"1i � (�22��1/�?T̄ )1/(��1) / T̄�1/(��1), and since T̄1f � T̄

1/(�þ1)
1i , we have "1i/"1f � T̄ �/(��1) and "1f / T̄�(�þ1)/(��1). Equation (116)

determines the instantaneous spectrum in this regime,

F" 3 "1� (T̄T1) � T̄F"¼1<"1� (T̄ ¼ 1)

"�(��1); " < "1i(T̄ );

"��1
1i "�2(��1); "1i(T̄ ) < " < "1f (T̄ );

"��1
1i "�2(��1)

1f exp �("="1f )
��1

� �
; " > "1f (T̄ ):

8><
>: ð117Þ

At T̄ �1 the opacity becomes more uniform across the image, T̄1i � T̄1f � 1, and "1i � "1f � "1(T̄ ¼ 1) � "1�.
For "3 "1(T̄ ¼ 1), the time-integrated flux f" ¼

R
dT F"(T ) is approximately given by �T0F"<"1 (T̄ ¼ 1)T̄1iT̄1f , where T̄1iT̄1f /

T̄
(�þ2)/(�þ1)
1i / "�(��1)(�þ2)/(�þ1), since T̄1i / "1��. Therefore, the spectral slope of the time-integrated spectrum, f", for impulsive sources

(�RPR0 and T̄f P 1) where the total time-integrated flux is comparable to that from the rising phase, steepens by�� ¼ (�� 1)(�þ 2)/
(�þ 1) above "1(T̄f ),

f"(�R � R0) /
"�(��1); "T"1(T̄f );

"�(��1)(2�þ3)=(�þ1); "3 "1(T̄f ):

(
ð118Þ

Fig. 10.—Same as Fig. 9, with b ¼ 0,� ¼ 2, and �? ¼ 1, but for a fixed�R /R0 ¼ 100 and varyingmwhere �2 / R�m. [See the electronic edition of the Journal for a
color version of this figure.]
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This can be seen in Figure 13. For a quasiYsteady source (�R3R0 and T̄f 31), a similar time-integrated spectrum is obtained only if
the flux at 1 < T̄ < T̄f decays faster than T̄

�1, i.e., ifm(�� 2) > 2(bþ 1) (see eq. [112]), so that f" is dominated by contributions near
T̄ � 1. For a slower decay or a rising flux at 1 < T̄ < T̄f , f" is dominated by contributions from T̄ � T̄f and there is an exponential
cutoff above "1(T̄f ), while the power-law high-energy tail from the rising phase is encountered only after a significant (exponential in ")
flux drop. For extremely impulsive sources, where T̄f T1 (i.e., �RTR0), there is also an intermediate power-law segment in the
time-integrated spectrum,

f"(�RTR0) /
"�(��1); " < "1i(T̄f );

"�2(��1); "1i(T̄f ) < " < "1f (T̄f );

"�(��1)(2�þ3)=(�þ1); " > "1f (T̄f ):

8><
>: ð119Þ

6. RESULTS: SEMIANALYTIC LIGHT CURVES AND SPECTRA

Figures 9Y12 show light curves and spectra for the semianalytic model developed in the preceding sections. We use fiducial
parameter values of m ¼ b ¼ 0, �R /R0 ¼ �? ¼ 1, and � ¼ 2, which are relevant for the prompt gamma-ray emission in GRBs, and
vary one parameter at a time in order to see the effect of each model parameter more clearly. When varying m and b (Figs. 10 and 11,
respectively) we use�R /R0 ¼ 100 in order to have a large enough range of emission radii so that the radial dependence of the Lorentz
factor and of the comoving spectral emissivity would have a significant effect on the light curves (for�R /R0T1 the values of m and b
hardly affect the light curves). Figure 13 shows the time-integrated spectra for several values of �R /R0, where each panel is for a

Fig. 11.—Same as Fig. 9, withm ¼ 0, � ¼ 2, and �? ¼ 1, but for a fixed�R /R0 ¼ 100 and varying bwhere the the spectral luminosity in the comoving frame of the
shell scales as L0

" 0 / Rb("0)1��. [See the electronic edition of the Journal for a color version of this figure.]
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different set of values for the three parameters (�;m; b). In order to ease the reading, Table 2 summarizes the various sets of parameters
and the corresponding figures.

Figure 9 shows the light curves for fixed values m ¼ b ¼ 0, �? ¼ 1, and � ¼ 2, while the various panels correspond to different
values of �R /R0 (of 0.01, 1, and 100, from top to bottom). At the lowest photon energies, well below "1� (which for the parameter val-
ues used here is�102), opacity to pair production never becomes very significant, and the light curves follow the behavior described in
equation (112) which is discussed in x 5. In this regime the light curves are self-similar in the sense that "��1F" is independent of " below
"1(T ). The different behavior for T̄f T1 and T̄f 31 (where T̄f ¼�R /R0 form¼ 0) that appears in equation (112) can clearly be seen by
comparing the top and bottom panels of Figure 9. For "3 "1�, on the other hand, opacity to pair production has a major effect on the light
curves. In this regime, the light curves at T̄T1 follow equation (116), showing a pronounced constant-flux plateau between T̄1i / "1��,
when the center of the image becomes optically thick to pair production, and T̄1f � T̄

1/(�þ1)
1i , when the entire image becomes opaque,

followed by an exponential flux decay. At 1P T̄ < T̄f the opacity does not vary drastically across the image andmay be described by a sin-
gle value of "1(1TT̄ < T̄f ) / T̄ (1�b�m�/2)/½(mþ1)(��1)�. For the parameter values used in Figure 9, "1 increases (linearly) with T̄ in this
range, and therefore, the opacity at a given " decreases with time, causing the observed flux to increase with time until "1 sweeps across "
or until T̄f is reached (whichever comes first). At T̄ > T̄f the situation is reversed, as the observed emission comes from large angles
relative to the line of sight (‘‘high-latitude’’ emission) and "1 decreases with time.

We now turn to the photon energy spectrum. The instantaneous spectra at T̄T1 follow the behavior described in equation (117). At
very early times the exponential part starts only at very high photon energies, making it very hard to detect. When T̄ � 1 the
intermediate power-law segment disappears as "1i and "1f become nearly equal (note that the low-energy part of the curves appears flat

Fig. 12.—Same as Fig. 9, with b ¼ m ¼ 0 and �? ¼ 1, but for�R /R0 ¼ 1 and varying�, where the the spectral luminosity in the comoving frame of the shell scales as
L0
" 0 / Rb("0)1��. The middle and bottom panels are for � ¼ 2 and 3, respectively. The top panel is for � ¼ 1, for which ��� becomes independent of the photon energy ",

and therefore, the spectrum is always a pure power law, F" / "0, and the flux depends only on time but not on the photon energy. For this reason we show light curve (left)
and time-integrated spectra (right panel ) for different values of �? (see eq. [37]). [See the electronic edition of the Journal for a color version of this figure.]
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Fig. 13.—Time-integrated spectra for different values of �R /R0, while fixing the values of the other parameters. In the top panelm ¼ b ¼ 0, in themiddle panelm ¼ 3
and b ¼ �2, while in the bottom panelm ¼ 0 and b ¼ 1. The values of the other model parameters in all the panels are� ¼ 2 and �? ¼ 1. [See the electronic edition of the
Journal for a color version of this figure.]

TABLE 2

The Different Sets of Parameters for which Results

Are Shown in This Work

� m b log10(�R /R0) Figures

2 0 0 �2, �1, 0, 1, 2 9, 13

2 0 1 �2, �1, 0, 1, 2 13

2 3 �2 �2, �1, 0, 1, 2, 4 13

2 0, 1, 2 0 2 10

2 0 �2, �1, 0 2 11

2, 3, 4 0 0 0 12



in the figures since we show "��1F" which is independent of " below "1). The time-integrated spectrum varies with the value of �R /R0.
For�R /R0T1 it consists of three power-law segments, as described in equation (119). As�R /R0 increases, the central power-law seg-
ment, at "1i(T̄f ) < " < "1f (T̄f ), shrinks as "1i(T̄f ) and "1f (T̄f ) approach each other, until it disappears for �R /R0 � 1 where T̄f � 1
and "1i(T̄f ) � "1f (T̄f ) � "1�. For�R /R0 � 1 the time-integrated spectrum is described by equation (118) and consists of two power-law
segments. As�R /R0 increases above unity, the time-integrated spectrumdevelops an exponential high-energy cutoff, while the power-law
tail at high energies becomes increasingly suppressed. This occurs because if the flux at 1 < T̄ < T̄f does not drop faster than T̄

�1, which
corresponds tom(�� 2) < 2(bþ 1) (see eq. [112]) as is indeed the case for the parameter values used in Fig. 9, then the time-integrated
flux is dominated by contributions from T̄ � T̄f 31 and reflects the exponential cutoff of the instantaneous spectrum at that time,
which dominates over the high-energy power-law component that arises from the superposition of the instantaneous spectra from T̄ P 1.

Figures 10 and 11 demonstrate the effects of the two parametersm and b. As discussed above, a large value for�R /R (100) was chosen
so that the radial dependence of the Lorentz factor (�2 / R�m) and of the comoving spectral luminosity [L0

" 0 / Rb("0)1��] would have a
large effect on the light curves. For�R /R0T1 the values of m and b hardly affect the light curves (since the emission takes place over a
very small range of radii in which both� and L0

" 0 hardly vary). Figure 10 also demonstrates the dependence of T̄f onm, where in the limit
of �R /R0 31, T̄f � (�R /R0)

mþ1 (see eq. [111]).
As can be seen in Figure 10, the power-law component of the time-integrated spectrum is largely independent of m, since it originates

from the superposition of the instantaneous spectra at T̄ P 1, which are sampling a small range of emission radii. The lower energy
component, however, from the contribution of the emission at times 1 < T̄ P T̄f , is sensitive to the value of m, since it samples a large
range of emission radii. For m ¼ 0, F"(1 < T̄ < T̄f ) is constant in time (for the values of the other parameters that are used in Fig. 10),
while "1(1 < T̄ < T̄f ) / T̄ , and both effects combine to produce a very pronounced high-energy exponential cutoff. Form ¼ 1, F"(1 <
T̄ < T̄f ) / T̄�1/2 while "1(1 < T̄ < T̄f ) is constant in time, which results in a somewhat less pronounced, although still fairly large
high-energy exponential cutoff in the time-integrated spectrum. Form ¼ 2, F"(1 < T̄ < T̄f )/ T̄�2/3 while "1(1 < T̄ < T̄f ) / T̄�1/3, so
that the time-integrated spectrum in the range "1(T̄f ) < " < "1(T̄ ¼ 1) � "1� is dominated by the contributions near the time T1(") when
"1(T̄1) ¼ ". This results in a spectral slope of "f" / "�1 in the bottom panel of Figure 10.

More generally, F"<"1(T̄ )
(1 < T̄ < T̄f ) � "1��T̄ (2b�m�)/½2(mþ1)� while "1(1 < T̄ < T̄f ) � "1�T̄

(1�b�m�/2)/½(mþ1)(��1)�, so that when the
flux is dominated by the contribution from T̄ � T̄1("), then the spectral slope of the time-integrated spectrum is given by

d log "��1f"

d log "
¼ (�� 1) m(2� �)þ 2(bþ 1)½ �

2(1� b)� m�
: ð120Þ

This may be relevant if "1(1 < T̄ < T̄f ) decreases with T̄ , in which case this spectral slope is valid in the range "1(T̄f ) < " < "1�. It may
also be relevant if "1(1 < T̄ < T̄f ) increases with T̄ , as discussed below.

In Figure 11, the top panel is identical to the top panel of Figure 10 and the bottom panel of Figure 9. In the middle panel of Figure 11,
F"(1 < T̄ < T̄f ) / T̄�1 and "1(1 < T̄ < T̄f ) / T̄ 2, while in the bottom panel F"(1 < T̄ < T̄f ) / T̄�2 and "1(1< T̄ < T̄f )/ T̄ 3. Both
cases result in a very pronounced exponential cutoff at very high photon energies (which may be hard to detect), but show a shallow
spectral slope up to this exponential cutoff (whichmay be easier to detect). This again results in the spectral slope given by equation (120).
However, in this case "1(1 < T̄ < T̄f ) increases with T̄ , and therefore, this spectral slope occurs in the range "1� < " < "1(T̄f ). This is
valid, however, only if indeed the time-integrated flux in this spectral range is dominated by the contribution from near T1("). This is not
valid in the top panel of Figure 11 (where it is dominated by the contribution from T̄ � T̄f ) and is onlymarginally valid in themiddle panel
(where the contributions from all the times in the range T1(")P T̄ P T̄f are comparable). In the bottom panel of Figure 11 the flux in this
spectral range is indeed dominated by the contribution from T̄ � T̄1("), which results in a spectral slope of "f" / "�1/3 in this range.

In Figure 12, which shows the effect of varying �, the top panel corresponds to � ¼ 1, for which both the flux and the optical depth
become independent of ". As a result, we present for this case light curves for different values of �� and the corresponding integrated
spectra (which all have a flat f" and vary only in their normalization). For � ¼ 2 (Fig. 12,middle) and � ¼ 3 (Fig. 12, bottom), one can
verify that the power laws on the middle and bottom right panels have an index of approximately 4/3 and 5/2, respectively, as expected
from equation (118) after rescaling by "��1.

Finally, Figure 13 illustrates the behavior of the time-integrated spectra, as discussed at the end of x 5. All the curves show a high-
energy power-law tail with an index of about 4/3, as expected from equation (118). Moreover, given the rescaling by T0(m ¼ 0) (which
is independent of m) in Figure 13, it is easier to see that the time-integrated spectra become independent of b and m for �R /R0T1
(since in that limit, the same holds for the light curves and instantaneous spectra). As discussed in the paragraph following equa-
tion (118), the exponential cutoff is suppressed whenm(�� 2) > 2(bþ 1), as is the case on Figure 13’s middle panel only. In such a case,
the time-integrated spectra are dominated by contributions near T̄ � 1, and the effect of �R /R0 becomes negligible for �R /R0 31,
which explains the asymptotic behavior of the spectra with increasing�R /R0. Finally, for very impulsive sources, the intermediate power-
law segment in equation (119) can be discerned, albeit with difficulty.

7. DISCUSSION

We have explored in great detail a model for the temporal and spatial dependence of the opacity to pair production (�� ! eþe�) in
impulsive relativistic sources. Our simple, yet rich, model features a thin spherical shell expanding ultrarelativistically and emitting
isotropically in its own rest frame within a finite range of radii. Our two main results are the follwoing. First, while the instantaneous
spectrum (which is typically very hard to measure due to poor photon statistics) has an exponential cutoff at high photon energies, the
time-integrated spectrum over the duration of a flare or spike in the light curve (which is easier to measure) has a power-law high-energy
tail. Second, photons above this spectral break in the time-integrated spectrum arrive mainly near the onset of the flare or spike in the
light curve.
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These two features provide a unique detectable signature of opacity to pair production, making it easier to identify observationally.
Furthermore, these features are expected to be fairly robust, even if the exact details (such as the exact change in the spectral slope across
the break,�� or the exact shape of the light curve at high photon energies above the spectral break) may depend on the details of the
model (such as the exact geometry, which is assumed to be spherical in ourmodel8). The reason behind these features is that in impulsive
sources the photon field starts from zero (or more realistically a nonzero value, which is still much lower than that near the peak of the
flare or spike in the light curve) and builds up with time, so that the optical depth to pair production, ��� , increases with time, and high-
energy photons can escape mainly at early times while ��� is still below unity.

A source is considered impulsive for our purposes if the photon field in the source and its vicinity changes considerably within the
source light crossing time. In this limit the time dependence of the photon field and the resulting opacity to pair production is important.
This can naturally occur in relativistic sources, but is hard to produce in nonrelativistic sources (since it requires a relativistic signal in
order to turn the emission on or off on a timescale of the order of the light crossing time of the source). In the opposite limit, where the
photon field hardly varies within the source light crossing time, the photon field may be approximated as constant in time along the
trajectory of the photons, and can be evaluated at the time of emission (this is considered a ‘‘quasiYsteady state’’). In our model, in order
for the source to be impulsive, the duration of the emission should be at most comparable to the light crossing time of the source
(T̄f P 1 , �R /R0P 1). If the source is active for much longer times (T̄f 31 , �R /R0 31), then the photon field approaches a
quasiYsteady state9 within a few light crossing times of the emitting region (T̄f > T̄ k a few), and the time-integrated spectrum will
usually be dominated by this late-time quasi-steady emission. This can result in an exponential high-energy cutoff in the time-integrated
spectrum, which dominates over the high-energy power-law tail from the emission at early times (T̄ P1), and may also introduce an
intermediate power-law segment (described by eq. [120]).

When the source is inhomogeneous, in the sense that the optical depth to pair production out to infinity (i.e., to the distant observer),
��� , varies considerably between different parts of the emitting region, an intermediate power law can develop in the instantaneous
spectrum, due to the summation over the contributions from the different parts of the source, each of which has a different value for
the photon energy "1 at which ��� ¼ 1 and above which the local emitted spectrum cuts off exponentially. In our model this occurs at
T̄f > T̄T1, where ��� varies considerably along the equal arrival time surface to the observer (EAST-I; see right panel of Fig. 7),
and as a result, an intermediate power law develops in the instantaneous spectrum (see eq. [117]). For highly impulsive sources
(�RTR0) it is also reflected in the time-integrated spectrum (eq. [119]). Such an intermediate power-law spectrum is obtained in
quasi-steady inhomogeneous AGN jets in which the emission takes place over a wide range of radii, where "1 increases with radius and
the emission at each photon energy is dominated by the contribution from near the radius R where "1(R) ¼ " (Blandford & Levinson
1995). In our model, at later times (1P T̄ < T̄f ) the opacity becomes roughly uniform along the EATS-I (see left panel of Fig. 7),
resulting in the disappearance of the intermediate power-law segment in the instantaneous spectrum, and the exponential cutoff starts
directly from the unattenuated part of the spectrum.

Another analogy to a known result from inhomogeneous AGN jets (Blandford&Levinson1995) is a soft to hard spectral evolution at
high energies as the emissionmoves from smaller to larger radii, again since "1 increases with radius.We obtain a similar behavior if the
emission occurs over a wide range of radii,�R3R0, in the quasi-steady regime (1TT̄ < T̄f ), as can be seen in the bottom panel of
Figure 9. In the impulsive regime (T̄T1) "1 decreases with time as the opacity builds up (hard to soft evolution), while during the
quasi-steady regime (1TT̄ < T̄f ) "1 can either increase with time (soft to hard evolution; e.g., middle and bottom panels of Fig. 11),
remain constant (e.g., middle panel of Fig. 10), or decrease with time (hard to soft evolution; e.g., bottom panel of Fig. 10), depending
on the values of the model parameters. This can result in an intermediate power-law segment in the time-integrated spectrum (which is
described by eq. [120]; see also the bottom panel of Fig. 11).

We have considered a single, isolated emission episode which corresponds to a single flare or spike in the observed light curve.
Furthermore, we have assumed no background photon field at the time when the emission turns on. These are obviously idealized
assumptions and it is worth considering, at least qualitatively at this stage, the modifications that may occur when these ideal conditions
are not satisfied. For the prompt emission or X-ray flares in GRBs, the background quasi-steady photon field is usually expected to be
very low and not contribute significantly to ��� . In some nonstandard scenarios (e.g., Königl &Granot 2002; Guetta &Granot 2003) the
external radiation field may dominate ��� . In such cases our model would not be applicable, since the external radiation field would
prevent the escape of high-energy photons near the onset of the spike, resulting in ��� that is largely independent of time. This different
expected observational signature can be used in order to test suchmodels. For blazars it is not always clear whether the internal or external
radiation fields dominate ��� (and this is also somewhat model dependent), and a more careful examination of the relative strengths of
the external and internal radiation field as a function of time, Doppler factor, and radial distance would be in order (e.g., Sikora et al.
1994; Dermer & Schlickeiser 1994; Begelman et al. 2007). This interesting question deserves a more thorough treatment, which is
beyond the scope of this paper.

Regarding the assumption that the flare/spike is isolated, in many cases there are series of flares, so that except for the first flare in the
series for which our assumption should hold very well, for consecutive flares the high-energy photons could in principle pair produce
with photons emitted in previous flares. This will be highly suppressed if the time from the end of the previous flare is much larger than
its duration. Even if these two times are comparable, pair production is still significantly suppressed.10 Such a proximity in time to a
previous flare/spike will still increase ��� to some degree, but this will affect mainly the highest energy photons, with energies well
above the spectral break in the time-integrated spectrum over the duration of the flare/spike, which are relatively hard to detect due to the

8 In AGNs, for example, a cylindrical geometry may be more appropriate. We intend to study such a cylindrical geometry in a future work.
9 Here, by quasiYsteady state, we mean that neglecting the time dependence of the photon field would at most change the results by a factor of order unity, but not

qualitatively.
10 This occurs since if photons from an earlier flare are emitted at close to the radial direction, they can meet (and potentially pair produce with) photons from the later

flare only at large radii, where the photon density is smaller and the angle between the directions of the photons (in the lab frame) is small, while in order tomeet the photons
from the later flare at close to their emission radius, they must be emitted at large angles relative to the radial direction, into which few photons are emitted due to the
aberration of light (i.e., relativistic beaming).
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smaller number of photons at such high energies. Therefore, in practical terms, the differences from our idealized model are not
expected to be very large. This may even make it meaningful to integrate the spectrum over many spikes/flares in order to increase the
photon statistics, in cases where the number of photons detected in individual spikes is not large enough to enable a good spectral
analysis.

Other sources of opacity, such as scattering of photons on the pairs that are produced, are also possible. The latter, however, is
expected to build up in time on a comparable timescale to that of the opacity to pair production that we study here. Therefore, it is not
expected to have a significant impact on our main conclusions. Opacity for scattering on the electrons associated with the baryons or
with preexisting pairs within the outflow is also possible. However, it will not vary greatly within a single dynamical time and should
also affect lower energy photons (where the larger number of photons enables a better spectral analysis). Furthermore, it is sup-
pressed at high photon energies due to the reduction in the cross section in the Klein-Nishina regime. Moreover, we find a rather
unique combined spectral and temporal signature for the opacity to pair production, which could help distinguish between it and
other sources of opacity.

Sufficiently high energy photons, of energy "3 "1, have ���(")3 1 and therefore pair produce with lower energy photons. The pairs
that are produced can in turn upscatter lower energy photons to high energies and produce second-generation photons, some of which
carry a fair fraction of the initial photon energy. This produces a pair cascade, which continues until eventually (and typically after
several such cycles) the photons cascade down in energy toP"1 and can escape. This can in principle enhance the observed spectrum
near "1 (e.g., Blandford & Levinson1995), especially if there was originally more energy in higher energy photons (� < 2). In GRBs,
however, the Compton y-parameter is expected to be Y P 1, so that the pairs that are produced would radiate a good part of their energy
into the synchrotron channel, rather than inverse Compton scattering of soft photons into high-energy photons that would continue the
pair cascade. Therefore, by the time several generations of pairs are produced (in order to cascade down in energy toP"1 and escape),
most of the original energy is lost through the synchrotron channel, and only a small fraction of that energy remains in the high-energy
photons that escape. The synchrotron emission from the pairs peaks at much lower photon energies and can therefore escape. Fur-
thermore, it does not directly contribute to the spectrum at the high photon energies which are the topic of this work. In AGN jets it may
have a larger effect on the high-energy part of the spectrum.

The photons from the pair cascade reach the observer at a time delay compared to the arrival time of the original photon that initiated it
if it had not pair produced. This arises since the e� pairs gyrate in the magnetic field inside the source before upscattering a soft photon,
so that the upscattered photon moves in a direction different than the original high-energy photon that pair produced. Thus, the photons
of successive generations in the cascade perform a randomwalk (of increasing step size, since their mean free path increases as they cas-
cade down in energy), until they can escape, resulting in�T̄ � T̄ . When the source turns on, both the opacity and the unattenuated flux
initially increase with time. The increase in the opacity with time increases the time delay described above, and during this time, the
unattenuated flux rises by a larger factor. This causes the relative contribution to the instantaneous spectrum at early times to be even
smaller. This effect is more important in impulsive sources. Since the main results of our work rely on the early spectra during the rising
stage, the effects of pair cascades should not qualitatively change our conclusions. Some quantitative differences are possible,
depending on the parameter regime (e.g., a larger effect is expected for a harder initial spectrum, with � < 2).

In GRB afterglows the opacity to pair production is typically very low and therefore not expected to be detectable in the GLAST
energy range. During the afterglow, after about one day,L0;52 � 10�8 to 10�7,R � 1017 cm corresponding toR0;13 � 104, and� � 10 cor-
responding to�0;2 � 0:1. According to equation (124), this implies a huge value of "1� ("1�me c

2 � 1015Y1016 eV for� � 2). In practice,
the opacity would be even lower than this, since the typical energy of the photons that would pair produce with such high-energy photons
would be ��2/"1� corresponding to � � 1012 Hz, which is well below the assumed power-law segment of the spectrum (so that the
number density of these low-energy photons would in practice be much lower than the default value according to our assumption of a
simple single power-law spectrum). A possible exception to the very low ��� during the afterglow may be the very early afterglow in a
stellar wind environment, near Tdec which is of the order of seconds in this case. Typical parameters values there areR0;13 � 100,�0;2 � 1,
and L0;52 � 0:1, which might give "1�me c

2 as low as �100 GeV. Such values could be detected by GLAST, albeit with difficulty.
For the internal shocks model, the GRB prompt emission occurs at a much smaller radius compared to the afterglow, RGRBTRdec.

Furthermore, the luminosity of the prompt GRB emission is much larger than that of the afterglow, and the Lorentz factor is higher.
Therefore, despite the higher Lorentz factor during the prompt GRB, ��� is still much larger than during the afterglow. In models where
the prompt emission occurs near the deceleration radius, RGRB � Rdec, the values of ��� in the very early afterglow and in the prompt
emission are comparable (perhaps somewhat smaller in the early afterglow due to a smaller radiative efficiency), but ��� is typically very
low for both emission components (i.e., the effects of opacity to pair production are not expected in the GLAST energy range).

Once the spectral break in the time-integrated spectrum over the duration of a flare or spike in the light curve is observed in the data,
it can be used to constrain the values of the physical parameters of the source, namely, �2�

0 R0. A fit of our model predictions to the
data can in principle determine the values of all the model parameters: �, m, b, �R /R0, �?, and F0, which in turn determine L0 (from F0,
eq. [96]) and �2�

0 R0 (from �?, eq. [37]). In practice, however, the limited photon statistics may render such a direct fit with such a large
number of free parameters impractical. One way to overcome this problem is to fix the values of some of the model parameters, e.g.,
m ¼ b ¼ 0 and even �R /R0 ¼ 1, if necessary.

A less accurate but less computationally demanding alternative is to fit the time-integrated spectrum (over a flare or spike in the light
curve) to a parameterized function featuring a smooth transition between two power laws,

f" ¼ f0
"

"1�

� ��n(1��)

þ "

"1�

� ��n(1�����)
" #�1=n

; ð121Þ

where n and f0 determine the sharpness of the spectral break at "1� and its flux normalization, respectively, while f"T"1� / "1�� and
f" 3 "1� / "1�����. Such a fit can determine both the photon index, �, and the photon energy "1� � "1(T̄ ¼ 1) of the spectral break in
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the time-integrated spectrum, as well as F0. For�R /R0P1 and defining�T as the observed variability time (in seconds), e.g., the ob-
served FWHMof the flare or spike in the light curve,we have f0/�T � T̄f F0"

1��
1� � F0"

1��
1� �R/R0, which can be used in equation (96) to

determine L0,

L0 � �d 2
L

f0

�T

R0

�R

1þ z

2

� ���2

"��1
1� ¼ 1:3 ; 1051

R0

�R

1þ z

2

� ���2

d 2
L; z1

f0;�6

�T
"��1
1� erg s�1; ð122Þ

where f0 ¼ 10�6f0;�6 erg cm�2 and dL; z1 is dL in units of dL(z ¼ 1) � 2:05 ; 1028 cm (for standard cosmological parameters). It is hard
to determine �R /R0 without a detailed fit to the model spectra (see Fig. 13 for the dependence of the time-integrated spectrum on
�R /R0), and this is a price for the simplicity of this method and the use of simple analytic formulae rather than numerically evaluating
the set of nested integrals in order to calculate our model predictions. One can either assume�R /R0 � 1 or try to estimate its values by
eye, guided by Figure 13, if one wishes to avoid a direct fit to the model predictions.

The quantities �, L0, and "1� may in turn be used to determine �2�
0 R0. In order to do this in practice, we need to use equation (37) and

the relation

(1þ z)"1� � (�?=C�)
�1=(��1) ¼ 249C2(�=2)

5=3104(��2)L�1
0;52(�0;2)

2�R0;13

h i1=(��1)
; ð123Þ

"1�me c
2 ¼ 127MeV

(1þ z)
C2(40:2)

��2 �

2

� 	5=3(�0;2)
2�R0;13

L0;52

� �1=(��1)

; ð124Þ

where C� ¼ 100C2 is a coefficient whose value is determined numerically. The dependence of "1� on �0, R0, and � is demonstrated in
Figure 14. Since a test photon of dimensionless energy "1� pair produces primarily with photons of energy��2/(1þ z)2"1� and we fix
the value of L0 [i.e., the photon number density near (1þ z)" ¼ 1], the values of "1� becomes almost independent of � near �0 �
(1þ z)"1�½ �1/2 (which is roughly where the lines for the three values of � for the same value of "1� almost meet).
Equation (124) can be inverted in order to obtain

(�0;2)
2�R0;13 ¼ C�1

2 40:22�� �

2

� 	�5=3
L0;52

(1þ z)"1�me c
2

127 MeV

� ���1

: ð125Þ

Fig. 14.—Contour lines for the photon energy "1�mec
2 where the time-integrated spectrum over a flare or spike in the light curve steepens due to opacity to pair

production, shown in the �0-R0 plane, according to eq. (124). In the top panel "1�mec
2 is varied and � ¼ 2 is fixed, while in the bottom panel � is varied and

"1�mec
2 ¼ 1 GeV is fixed. In both panels L0;51 ¼ C2 ¼ z ¼ 1. [See the electronic edition of the Journal for a color version of this figure.]
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If one makes the additional assumption that R0 � �2
0 c�T /(1þ z), which is valid for a large class of models, then equation (125) pro-

vides the following estimate for �0,

�0 � 100(1þ z)�=(2�þ2) 1:34

C2

�

2

� 	�5=3 L0;52

(�T=1 s)

� �1=(2�þ2) "1�me c
2

5:1 GeV

� �(��1)=(2�þ2)

: ð126Þ

For GRBs, one may perform a consistency check for the assumption that R0 � �2
0 c�T /(1þ z) by comparing the value of �0 under this

assumption from opacity to pair production (eq. [126]) to the estimate for �0 from the time, Tdec, of the onset of the afterglow
emission,11

�0(Tdec) �
(3� k)Eiso

�A(2c)5�kT3�k
dec

" #1=2(4�k)

¼
128E

1=8
iso;53n

�1=8
0 T

�3=8
dec;2 ; k ¼ 0;

131E
1=4
iso;53A

�1=4
? T

�1=4
dec;0 ; k ¼ 2;

8<
: ð127Þ

where Tdec ¼ Tdec;0 s ¼ 100Tdec;2 s, Eiso ¼ 1053Eiso;53 erg is the isotropic equivalent kinetic energy in the outflow, �ext ¼ AR�k is the
external density and is assumed to be a power law with radius, which is �ext ¼ nmp for a uniform external medium (k ¼ 0) of number
density n ¼ n0 cm�3, while A ¼ 5 ; 1011A? g cm�1 for a stellar wind environment (k ¼ 2).
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APPENDIX A

CHANGES OF VARIABLES IN x 3.2

A1. CHANGE OF VARIABLE FROM (s; 
r) TO (Re;Rt)

Since we integrate over d�r ¼ d
r d
r and the integrand contains jd
e /d
rj, we can conveniently change variables from 
r to R̃e. It
is straightforward to verify that, irrespective of the position of Rt with respect to the upper bound of Re, d
e /d
rj jd
r ¼ (d
e/dR̃e)dR̃e,
with the integration over R̃e being performed from the smaller to the larger bound, and d
e /dR̃e > 0 always. Furthermore, the per-
pendicular distance from the line of sight from the center of the emitting sphere to the observer at infinity,

R? � Rt;0 sin �t;0 ¼ Rt sin �t; ðA1Þ

is constant along the trajectory of the test photon (see Fig. 2). Thus,

s ¼ Rt cos �t � Rt;0 cos �t;0; ds ¼ � R? d�t

sin2�t
¼ R?d
t

1� 
2
t

� �3=2 ¼ Rt dRtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
t � R2

?
p � Rt;0 dR̂t; ðA2Þ

where the last approximation holds since R? � R?;max � R(R?;max)/�(R?;max) ¼ O(Rt/�)TRt and the contribution from RtT
R(R?;max) is negligible for �31.

A2. INTEGRATION OVER d
r AND d"i

The local photon field derived above is symmetric around the radial direction (i.e., does not depend on 
r). As a consequence, 
r

appears only in the function �? �("t; "i; 
ti)ð Þ(1� 
ti), where 
ti is a function of cos 
r (see eq. [22]). Thus, we can write
R 2�
0

d
r ¼
2
R �
0
d
r. Next, we follow the insights of Stepney & Guilbert (1983) and Baring (1994) by performing the change of variables

("i; 
r) ! (�; u), with �2 ¼ "t"iu defined in equation (19). Defining �þ ¼ 1� cos (�r þ �t)½ �/2 and �� ¼ 1� cos (�r � �t)½ �/2, where
�þ > �� for (�t; �r)2½0; ��, equation (22) yields

R �
0
d
r ¼ 2

R �þ
��

du (�þ � ��) sin 
r½ ��1¼
R �þ
��

du (�þ � u)(u� ��)½ ��1/2. LikewiseR 1
2/"t

d"i ¼ 2
R 1
1

� d�("tu)
�1. Equation (34) now reads

���("t; �t;0;Rt;0) ¼
8�T

(4�)2me c3Rt;0

Z 1

1

dR̂t

R̂2
t

Z
dR̃e

	 3

r̃ 2
d
e

dR̃e

Z �þ

��

u duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(�þ � u)(u� ��)

p
Z 1

1

d�

�

�?(�)

�T

L0
� 2="tu	

(R̃e): ðA3Þ

A3. L0
" 0
i
(Re) ¼ L0

0("
0
i )
1��h(Re /R0).

The specific luminosity in the comoving frame is conveniently parameterized as L0
" 0 ¼ L0

0("
0)1��h(Re /R0), where h(1) ¼ 1 is nor-

malized at Re /R0 ¼ R̃eR̂t/R̂0 ¼ 1. Similarly, we want to parameterize the specific luminosity in the lab frame at R0 as L"(R0) � L0"
1��,

11 This estimate is for the Lorentz factor of the outflow after the passage of the reverse shock, so it is close to that of the original outflow before it was decelerated by the
reverse shock only as long as the reverse shock is at most mildly relativistic. For a highly relativistic reverse shock, the original Lorentz factor of the outflow can be much
larger than this value.
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even though the luminosity at a given radius is not really well defined, since the Doppler factor also depends on the angle �t;0 from the
line of sight. The normalization coefficients in the lab frame (L0) and in the comoving frame (L0

0) are the specific luminosity at R0

corresponding to a photon energy of me c
2 � 511 keV in the respective frames. Since the typical value of the Doppler factor is

	 ¼ "/"0 � �, and specifically 	(R0) � �(R0) � �0, these coefficients are related by L0"
1�� � �0L

0
0("

0)1�� and L0 � ��
0 L

0
0. Thus

motivated, we use this relation as the definition of L0, L0 � ��
0 L

0
0. Therefore, L

0
" 0
i
(Re) ¼ ���

0 L0("
0
i )
1��h(R̃eR̂t/R̂0). It is convenient

to express the optical depth ��� in terms of L0, which is approximately the observed isotropic equivalent luminosity at an observed
photon energy of 511(1þ z)�1 keV near T̄ � 1 for �RkR0. For �R /R0 � T̄f /(1þ m)T1 (see eq. [111]), the peak isotropic
equivalent luminosity at 511(1þ z)�1 keV is�T̄f L0 and the corresponding optical depth near the peak of the spike in the light curve
at the same photon energy is �T̄f �0. Therefore, L0 is practically an observable quantity, making it convenient to work with.

Equation (A3) now becomes

���("t; �t;0;Rt;0) ¼
2���

0 L0"
��1
t �T

(4�)2me c3Rt;0

Z 1

1

dR̂t

R̂2
t

Z
dR̃e

	 2þ�

r̃ 2
d
e

dR̃e

� �
h R̃e

R̂t

R̂0

� �Z �þ

��

u� duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(�þ � u)(u� ��)

p 4

�T

Z þ1

1

d���(2��1)�?(�):

ðA4Þ

From equation (8) of Baring (1994) we can write, to a very good approximation,

4

�T

Z þ1

1

d���(2��1)�?(�) � 7

6�5=3
: ðA5Þ

Making the change of variable u ! t ¼ (u� ��)/(�þ � ��), we also have (see eq. 15.3.1 in Abramowitz & Stegun 1964)Z �þ

��

u� duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(�þ � u)(u� ��)

p ¼ ���

Z 1

0

(1þ �t)�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t(1� t)

p dt � ���
�

2 F1(��; 0:5; 1;�� ); ðA6Þ

where 2F1 is a hypergeometric function and � ¼ (�þ � ��)/�� > 0. We define H�(� ) � 2 F1(��; 0:5; 1;�� ) and notice that it is
regularized by the factor � �

� when �� ! 0. Note that � is of order unity and H�(� ) is a simple polynomial when � is an integer (see
eq. 15.4.1 in Abramowitz & Stegun 1964 and our eqs. [104]Y[106] for � ¼ 1, 2, and 3.).

APPENDIX B

JUSTIFICATION FOR THE APPROXIMATIONS IN CASE 1

When calculating the photon field at the instantaneous location of the test photon in case 1, where the test photons lags behind the
shell, Rt < Rsh(tt), we have used an approximation for the value of �r, namely, equation (71), which is valid for �rT1 and breaks
down for �r � 1 which corresponds to 1� R̃e ¼ O(��2

t ). This is despite the fact that in this case �r can assume any value between zero
and �. The justification for this convenient approximation is that the contribution to the optical depth ��� from �r � 1, where our
approximation breaks, is negligible compared to the contribution from �rT1, where our approximation is valid. In order to show this
more explicitly, we examine the dependence of the integrand in the integration over dR̃e on the value of �r in the range

1

�t

T�rT1 () 1

�2
t

TR̃sh � R̃e � 1� R̃eT1; ðB1Þ

which gives us a handle (up to factors of order unity) on its dependence throughout the entire range of possible �r values. In this
intermediate range of �r values, R̃sh � R̃e � 1� R̃e since for case 1 �2

t (R̃sh � 1)P a few, and thus,

r̃ 2 ¼ R̃sh � R̃e

� �2þ R̃sh � R̃e

� �
R̃mþ1
sh � R̃mþ1

e

� �
(mþ 1)�2

t

þ O ��4
t

� �
� R̃sh � R̃e

� �2� 1� R̃e

� �2
: ðB2Þ

Likewise, equation (52) yields

d
e

dR̃e

� 1

2�2
t R̃

2
e

�2
t R̃2

sh � 1
� �

þ 1

mþ 1
1þ mR̃mþ1

e

� �
� R̃mþ2

e

� �
ðB3Þ

� fm � R̃mþ1
e

2(mþ 1)�2
t R̃

2
e

� fm � 1

2(mþ 1)�2
t

: ðB4Þ

Thus, we see that in this intermediate range of �r values d
e /dR̃e is approximately constant and is of order��2
t . Besides,H� is of order

unity, �� � �2
r , and 	 � ��1��2

r , so that

	�þ2

r̃ 2
d
e

dR̃e

� �
�H�(� ) �

1

�4þ�
t 1� R̃e

� �2
�4
r

/ 1

1� R̃e

� �2
� 4
r

: ðB5Þ
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Moreover, equation (71), which is valid for case 1 in the limit �rT1 that applies in our intermediate regime, implies that (1� R̃e)�
2
r is

approximately constant in this range of �r values given by equation (B1). Therefore, from equation (B5) we conclude that the integrand
in the integration over dR̃e is approximately constant over this range in R̃e, which is of interest here. Furthermore, the integrand must
still have a similar value, up to a factor of order unity, even for �r � 1, since the approximation of �rT1 breaks only marginally, rather
than very severely (since �r cannot have values31). As the region where our approximation breaks, �r � 1, corresponds to 1� R̃e ¼
O(��2

t ), i.e., a range of the order of ��2
t in R̃e, which is much smaller than the range over which our approximation is valid, and is also

much smaller than the range in equation (B1), we conclude that the contribution to the integral from �r � 1 can safely be neglected.

APPENDIX C

PROPERTIES OF THE PHOTON FIELD IN CASE 3

By changing the integration variable from 
r to R̃e we eliminated the need to express R̃e as a function of 
r and to calculate the
minimal value 
r which corresponds to �r;max. Nevertheless, this is still interesting in terms of the properties of the local photon field,
so it is given in this appendix. Each value of 
r may correspond to two different values of R̃e, one at the front and one at the back of the
equal arrival time surface of photons to the point (Rt; tt). Equation (89) can be rewritten as

R̃mþ2
e � R̃mþ1

e;max þ 2(mþ 1)�2
t (1� 
r)

h i
R̃e þ 2(mþ 1)�2

t (1� 
r) ¼ R̃mþ2
e � 2(mþ 1)�2

t

ctt

Rt

� 
r

� �
R̃e þ 2(mþ 1)�2

t (1� 
r) ¼ 0:

ðC1Þ

For m ¼ 0 this becomes a second-order equation with the solutions

R̃e ¼ �2
t

ctt

Rt

� 
r

� �
1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2�2

t (1� 
r)

�4
t ctt=Rt � 
rð Þ2

s" #
¼ R̃e;max þ �t�rð Þ2

2
1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4 �t�rð Þ2

R̃e;max þ �t�rð Þ2
h i2

vuuut
8>><
>>:

9>>=
>>;; ðC2Þ

where �r;max may be obtained by the condition of a single solution, i.e., that the expression in the square root vanishes. This implies

�t�r;max

� �2¼ 2� R̃e;max

� �
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R̃e;max

2� R̃e;max

 !2
vuut

2
64

3
75; ðC3Þ

where we chose the root of the equation which corresponds to the familiar result of �t�r;max � R̃e;max/2 for R̃e;maxT1.
More generally, 
r;min ¼ cos �r;max may be found by the condition that d
r/dR̃e ¼ 0. Using equation (91), this results in

(mþ 1)R̃mþ2
e � (mþ 2)R̃mþ1

e þ R̃mþ1
e;max ¼ 0; �t�r;max

� �2¼ R̃e(�r;max)
� �mþ2

: ðC4Þ

Alternatively, one can use the latter relation, which is obtained by substituting d
r /dR̃e ¼ 0 from equation (91) into equation (89), to
obtain an explicit equation for �r;max,

(mþ 1) �t�r;max

� �2 � (mþ 2) �t�r;max

� �2(mþ1)=(mþ2) þ R̃mþ1
e;max ¼ 0: ðC5Þ

APPENDIX D

THE SCALING OF ��� WITH T̄

It is instructive to explicitly derive the scaling of ��� ¼ �0("t; R̂t)F (x) with T̄ , in the two regimes 13 T̄ < T̄f and 1TT̄ < T̄f . The
only time dependence of �0 on T̄ is through R̂0 ¼ y�1(T /T0)

�1/(mþ1) (see eq. [40]), so that �0 / (1þ T̄ )(b�1þ�m/2)/(mþ1).

D1. 13 T̄ < T̄f

For 13 T̄ < T̄f , �0 is thus approximately constant and the time dependence of ��� is dominated by the the time dependence of
F (x), which we now consider in more detail. First, the maximal value of the emission angle �t;0 and correspondingly of x ¼ (�t;0�t;0)

2

along the EATS-I is given by

T � T0 ¼
R0�

2
t;0

2c
¼ T0(mþ 1)xmax () xmax(T̄ ) ¼

T̄

(mþ 1)
: ðD1Þ
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This result holds in general and can be readily obtained by noticing that xmax always corresponds to ymin ¼ (T /T0)
�1/(mþ1) and sub-

stituting the latter in equation (16). Therefore, x � xmaxT1 for T̄T1 and we are always in case 3. Second, it is straightforward to
show that

fm R̂t

� � R̂0 þ�R̂

R̂t

� ��(mþ1)

¼ 1þ T̄

1þ T̄f

 !
1þ x(mþ 1) 1� R̂�1

t

� �
1þ x(mþ 1)

<
1þ T̄

1þ T̄f
; ðD2Þ

so that for T̄ � T̄f we always have

R̃e;max ¼ R̃e;3 ¼ fm(R̂t)
1=(mþ1) ¼ R̂�1

t 1þ x(mþ 1) 1� R̂�1
t

� �� �1=(mþ1)
; ðD3Þ

F (x) ¼
Z 1

1

dR̂t

Z R̃e;3

R̂0=R̂t

dR̃e I R̂t; R̃e; x
� �

; ðD4Þ

where I (R̂t; R̃e; x) is given in equation (100), and

R̃e;min ¼
R̂0

R̂t

¼ R̂�1
t

1þ (mþ 1)x

1þ T̄

� �1=(mþ1)

: ðD5Þ

Keeping terms to first order in T̄ (and x), the range of R̃e value that is being integrated over in equation (D4) is

�R̃e ¼ R̃e;max � R̃e;min �
T̄

(mþ 1)R̂t

� x

R̂2
t

¼ O(T̄ )T1: ðD6Þ

The integrand includes in several places the expression

fm R̂t

� �
� R̃mþ1

e ¼ R̃mþ1
e;max � R̃mþ1

e � (mþ 1)R̃m
e;max R̃e;max � R̃e

� �
T1; ðD7Þ

which is either comparable to or much smaller than 1� R̃e, which also appears in the integrand, thus defining different regimes. The
relevant ratio to compare to unity is

max
R̃e;max � R̃e

1� R̃e

� �
¼ �R̃e

1� R̃e;min

¼ 1� R̃e;min

1� R̃e;max

� 1 � R̂t � 1
� ��1 T̄

mþ 1
� x

R̂t

� �
; ðD8Þ

which measures both the fractional change in 1� R̃e and the minimal value of its ratio to R̃e;max � R̃e.
For x ¼ xmax ¼ T̄ /(mþ 1), this ratio is xmax/R̂t � T̄ /(mþ 1)T1 so that 1� R̃e is both approximately constant and much larger than

R̃e;max � R̃e � fm(R̂t)� R̃mþ1
e . Therefore, the only term that varies significantly with R̃e in the inner integrand is �̄ �

�H�(� ). For � 31,
H�(� ) � �� so that �̄ �

�H�(� ) � (�̄�� )
� / T̄ �/2(R̃e;max � R̃e)

�/2 where the integration over (R̃e;max� R̃e)
�/2 results in a factor of T̄ 1þ�/2

so that altogether the inner integral is /T̄ �þ1. The outer integral is of the form
R1
1

dR̂t g(R̂t) ¼ const. For �P1, H�(� ) � 1 and
�̄ �
�H�(� ) � �̄ �

� � (�t�r � �t�t)
2� which consists of a sum of terms of the form T̄ a(R̃e;max � R̃e)

��a that on integration are /T̄ �þ1.
Thus,

F (xmax) / T̄ �þ1: ðD9Þ

Note that in this case most of the contribution to the optical depth comes from R̂t P 2 or � R̂t � 1.
For x ¼ 0, �t ¼ � ¼ 0 so thatH�(� ) ¼ 1. Furthermore, the ratio in equation (D8) becomes larger than unity for R̂t � 1 < T̄ /(mþ 1),

and in this regime, fm(R̂t)� R̃mþ1
e � R̃e;max � R̃e � 1� R̃e so that �̄� is roughly constant and the inner integrand scales as (1� R̃e)�1,

which on integration scales linearly with T̄ ,

Z 1þxmax

1

dR̂t g R̂t

� � Z 1=R̂t

(1�xmax)=R̂t

dR̃e

(1� R̃e)
� g(1)

Z xmax

0

d R̂t � 1
� �

ln
R̂t � 1
� �

þ xmax

R̂t � 1
� �

" #

¼ g(1)(2 ln 2)xmax / T̄ : ðD10Þ

For R̂t � 13 xmax ¼ T̄ /(mþ 1), the approximation discussed in the previous paragraph applies, and this part of the integration over
R̂t does not contribute significantly to the total optical depth, so that

F (x ¼ 0) / T̄ : ðD11Þ
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Physically, the lack of significant contribution to the optical depth from R̂t � 13 xmax ¼ T̄ /(mþ 1) may be understood, since the
maximal value of �r (which corresponds to Re ¼ R0) starts to decrease significantly,

max (�0�r)
2

� �
� T̄

(mþ 1)
R̂�2
t R̂t � 1þ T̄

(mþ 1)

� ��1

�
1; R̂t � 1T

T̄

(mþ 1)
;

T̄

(mþ 1) R̂t � 1
� �

R̂2
t

T1; R̂t � 13
T̄

(mþ 1)
;

8>>><
>>>:

ðD12Þ

which suppresses the opacity to pair production.

D2. 1TT̄ < T̄f

For 1TT̄ < T̄f , we have Rt;0 3R0, so that R̂0/R̂tT1 and may effectively be taken as zero. Furthermore, Re;max < RL(T̄ ) <
RL(T̄f ) ¼ R0 þ�R (since T̄ < T̄f ) so that R̃e;2 ¼ 1 and R̃e;3 ¼ fm(x; R̂t)

1/(mþ1) is given by equation (D3), and equation (98) now reads

F (x) ¼
Z R̂2(x)

1

dR̂t

Z 1

0

dR̃e I R̂t; R̃e

� �
þ
Z 1

R̂2(x)
dR̂t

Z fm(x;R̂t)
1=(mþ1)

0

dR̃e I R̂t; R̃e

� �
: ðD13Þ

In this regime neither the boundaries of integration nor the integrand, I , depend on T̄ . As a consequence, the dependence of ��� in this
regime is only through �0, and we have

���(1TT̄ < T̄f ) � �0(T̄ )F (x) / T̄ (b�1þ�m=2)=(mþ1): ðD14Þ

APPENDIX E

ON THE DEFINITION OF THE OPTICAL DEPTH

We start with the explicitly Lorentz-invariant expression for the differential interaction rate of two particles, denoted 1 and 2,
colliding with respective momenta p1 and p2, as given in equation (24a) of Weaver (1976),

R12( p1; p2) �
n1( p1)n2( p2)(1� b1 = b2) ( p1 = p2)

2 � m2
1m

2
2c

4
� �1=2

p1 = p2
c�; ðE1Þ

where p1 and p2 are the four-momenta of particles 1 and 2, respectively, m1 and m2 are their masses, n1( p1) and n2( p2) their phase-
space density, and � is the generalized Lorentz-invariant cross section, usually computed in the center of momentum frame. In equa-
tion (E1), we have explicitly written the dependence of R12 on the momenta, which is missing inWeaver (1976) in order to distinguish
it from the total interaction rate R12h i. The latter results from an integration over the phase spaces of both particles (see eqs. [2] and
[27] in Weaver 1976),

R12h i ¼ 1

1þ 	12

Z Z
R12( p1; p2)d

3p1 d
3p2: ðE2Þ

In equation (E2), the Kronecker symbol 	12 is 1 if the two particles are identical and 0 otherwise. It accounts for the fact that, for
identical particles, the double intergration counts twice each pair of interacting particles.

Now, we define R12( p1) as the interaction rate of a given particle 1 of momentum p1. It writes R12( p1) ¼
R
R12( p1; p2)d

3p2, with-
out a Kronecker symbol because there cannot be any double counting when there is no double integration. Specializing now to
��-interactions, the interaction rate R��( p1) is equal to the decrease in n1 per unit time, dn1( p1)/dt ¼ �R��( p1). Defining the differ-
ential optical depth of a particle of type 1 and momentum p1 as the corresponding attenuation per unit length, d���( p1) � �dn1/n1 ¼
R��( p1)ds/cn1, where ds is an element of the trajectory of particle 1, we obtain

���( p1) �
Z

ds R��( p1)=(cn1) ¼
Z

ds

Z
n2( p2)(1� b1 = b2)� d

3p2; ðE3Þ

where in the last equality we made use of m1 ¼ m2 ¼ 0 in equation (E1). We thus rederived equation (17) (in integral form) and
showed that there is no factor 1/2 involved because the computation of the optical depth does not warrant a double integration over the
phase space of both particles. Because they compute the total reaction rates and not the optical depth, Weaver (1976) and Stepney &
Guilbert (1983) do have this factor.

Another source of confusion arises from the fact that in their seminal paper, Gould & Schreder (1967) specialized to an isotropic
distribution for particles 2, which brings up a factor 1/2 due only to the normalization of the integration over cos �. In other words,
introducing dn � n2( p2)d

3p2 ¼ (1/2)n(")d" sin � d� in equation (E3) immediately yields their equation (7).
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