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ABSTRACT

We use data on the image size of the radio afterglow of GRB 030329 to constrain the physical parameters of this
explosion. Together with the observed broadband spectrum, this data overconstrains the physical parameters, thus
enabling us to test different GRB jet models for consistency. We consider two extreme models for the lateral
spreading of the jet: model 1, with relativistic expansion in the local rest frame, and model 2, with little lateral
expansion as long as the jet is highly relativistic. We find that both models are consistent with the data for a
uniform external medium, while for a stellar wind environment model 1 is consistent with the data but model 2 is
disfavored by the data. Our derivations can be used to place tighter constraints on the dynamics and structure of
GRB jets in future afterglows, following a denser monitoring campaign for the temporal evolution of their image
size.

Subject headinggs: gamma rays: bursts — ISM: jets and outflows — polarization —
radiation mechanisms: nonthermal — relativity — shock waves

Online material: color figures

1. INTRODUCTION

It has long been recognized that direct imaging of gamma-
ray bursts (GRBs) can provide important constraints on their
physical parameters (Waxman 1997; Sari 1998; Panaitescu &
Mészáros 1998; Granot et al. 1999a, 1999b; Granot & Loeb
2001). Unfortunately, the characteristic size of a GRB image is
only of order 1 �as about a day after the GRB at the Hubble
distance, and so it cannot be resolved by existing telescopes.
Nevertheless, indirect constraints on the image size of GRB
afterglows were derived based on the transition between diffrac-
tive and refractive scintillations (Goodman 1997) in the radio af-
terglow of GRB 970508 (Frail et al. 1997; Waxman et al. 1998),
and based on microlensing by a star in a foreground galaxy
(Loeb & Perna 1998) for the optical light curve of GRB 000301C
(Garnavich et al. 2000; Granot & Loeb 2001; Gaudi & Loeb
2001; Mao & Loeb 2001; Gaudi et al. 2001).

Obviously, the challenge of imaging a GRB is made easier
for nearby sources, where the late radio afterglow extends over
a wide, possibly resolvable angle (Woods & Loeb 1999; Cen
1999; Wang & Loeb 2001; Paczyński 2001; Granot & Loeb
2003). Recently, Taylor et al. (2004) have used a VLBI cam-
paign to measure, for the first time, the angular size and proper
motion of the radio afterglow image of the bright, nearby
(z ¼ 0:1685) GRB 030329. The diameter of the afterglow
image was observed to be�0.07 mas (0.2 pc) after 25 days and
0.17 mas (0.5 pc) after 83 days, indicating an average velocity
of �4.1c–5.7c. This superluminal expansion is consistent with
expectations of the standard relativistic jet model (Oren et al.
2004). The projected proper motion of GRB 030329 was mea-
sured to be smaller than 0.3 mas for 80 days following the
GRB.

Here we use the data of Taylor et al. (2004) to constrain the
physical parameters of GRB 030329 based on detailed mod-
eling of the collimated relativistic hydrodynamics of GRB
afterglows. Since the current state-of-the-art modeling of af-
terglow jets is still flawed with uncertainties (Rhoads 1999;

Sari et al. 1999; Granot et al. 2001; Kumar & Granot 2003;
Salmonson 2003; Cannizzo et al. 2004), we use this data to
critically assess some classes of models that were proposed in
the literature. An important difference between relativistic ra-
dio jets of GRBs and the better studied relativistic radio jets
of quasars (Begelman et al. 1984) or microquasars (Mirabel &
Rodrı́guez 1999) is that active quasars often inject energy over
extended periods of time into the jet while GRB sources are
impulsive. Although quasar jets remain highly collimated
throughout their lifetimes, GRB jets decelerate and expand
significantly once they become nonrelativistic, �1 yr after the
explosion. The hydrodynamic remnant of a GRB eventually
becomes nearly spherical only after �5 ; 103 yr (Ayal & Piran
2001).

The outline of the paper is as follows. In x 2 we discuss the
expected image size of radio afterglows and its relation to the
observed flux density below the self-absorption frequency. In
x 3 we analyze the expected temporal evolution of the after-
glow image size. The expected linear polarization is discussed
in x 4, while the surface brightness profile across the image and
its effects on the estimated source size are considered in x 5.
Finally, we apply these derivations to the radio data of GRB
030329 (x 6) and infer the physical parameters from the mea-
sured spectrum (x 7). We conclude in x 8 with a discussion of
our primary results and their implications.

2. THE IMAGE SIZE
AND SYNCHROTRON SELF-ABSORPTION

In GRB afterglows, relativistic electrons are accelerated in
the advancing shock wave to a power-law distribution of en-
ergies, dN=d�e / ��p

e for �e � �m. For p > 2, the minimal
Lorentz factor of the electrons is given by

�m ¼ p� 2

p� 1

� �
mp

me

�e(�� 1); ð1Þ

where �e is the fraction of the internal energy behind the shock
in relativistic electrons and � is the bulk Lorentz factor of the
shocked fluid. There is a spectral break at �m ¼ �syn(�m), the
synchrotron frequency of electrons with �e ¼ �m. Another
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break in the spectrum occurs at �c ¼ �syn(�c), the synchrotron
frequency of an electron that cools on the dynamical time.

At sufficiently low frequencies, below the self-absorption
frequency �sa , the optical depth to synchrotron self-absorption
�� becomes larger than unity, causing an additional break in the
spectrum. In this spectral range, the emitted intensity is given
by the Rayleigh-Jeans part of a blackbody spectrum, where the
blackbody temperature is taken as the effective temperature Teff
of the electrons that are emitting the radiation at the observed
frequency �. In the local rest frame of the emitting fluid this
may be written as

I 0� 0 ¼
2(� 0)2

c2
kBTeA ¼ 2(� 0)2

c2
�eAmec

2; ð2Þ

where primed quantities are measured in the local rest frame
of the emitting fluid, while unprimed quantities are measured
in the observer frame (the rest frame of the central source).
When �sa >�m, the emission at �m <� < �sa is dominated by
electrons for which � � �syn(�e) / � 2

e , giving �eA / �1=2 and
F� / I� / �5=2. For �m > �c there is fast cooling and all the
electrons cool significantly within a dynamical time (Sari et al.
1998). When �m > max (�c; �sa), then as � decreases below �sa
the distance l behind the shock where ��(l ) ¼ 1 decreases. The
electrons in that location, which are responsible for most of
the observed emission, have had less time to cool after passing
the shock and therefore have a higher TeA ¼ �eA(mec

2=kB).
In this case �eA / 1=l / ��5=8 and F� / �11=8 (Granot et al.
2000). At a sufficiently small distance behind the shock, smaller
than lc , an electron with an initial Lorentz factor �m does not
have enough time to cool significantly after crossing the shock.
Therefore, most electrons within a distance of lc from the shock
have �e � �m, and the effective temperature in this region is
TeA � �mmec

2=kB. At sufficiently low frequencies (below �ac;
see Granot et al. 2000), l becomes smaller than lc and �eA � �m
independent of �, and therefore F� / � 2 at � < �ac. For slow
cooling (�m < �c), �eA � �m and F� / � 2 immediately below
�sa.

The observed specific intensity is given by I� ¼ (�=� 0)3I 0� 0 and
� 0=� ¼ (1þ z)�(1� � cos � )� (1þ z)=�, where z is the source
redshift and � is the angle between the direction to the observer
and the velocity vector of the emitting material in the observer
frame. The observed flux density is F� ¼

R
d� cos �̃I� � �I� ,

where �� �(R?=DA)
2¼ (1þ z)2�(R?=Dp)

2¼ (1þ z)4�(R?=DL)2

and �̃ ffi tan �̃ ¼ R?=DAT1 are the solid angle and angular
radius of the source image, respectively. Here R? is the radius of
the observed image (its apparent size on the plane of the sky)
and DA, Dp, and DL are the angular, proper, and luminosity
distances to the source, respectively. Thus one obtains I� �
½�=(1þ z)�3½2(� 0)2=c2�kTeA � ½�=(1þ z)�2� 2�eAme and (Katz
& Piran 1997)

F� � 2�� 2me��eA(1þ z)
R?
Dp

� �2

: ð3Þ

In deriving equation (3) the specific intensity I� was assumed
to be uniform across the observed image. A more accurate
calculation would have to integrate over the contribution to the
observed emission from different radii R and angles � from the
line of sight for a fixed observed time t (e.g., Granot et al.
1999b), which results in a nonuniform I� across the image.
Therefore, when using equation (3) one must choose some ef-
fective value for I� that should correspond to its average value
across the image. Since I� depends on �, this is equivalent to

choosing an effective value of�. Since� depends on R, one also
has to find at which R or � should the value of � be evaluated
in equations (1) and (3). Usually �sa < �m < �c , in which case
�eA � �m, so that I� depends on � not only through the Lorentz
transformations but also through the value of �m; i.e., � enters
into both equations (1) and (3). Comparing equation (3) with the
more accurate expression calculated by Granot & Sari (2002)
using the Blandford-McKee (1976) self-similar spherical solu-
tion, we find that the two expressions are in relatively good
agreement4 if � is evaluated just behind the shock at the loca-
tion where R? is located. This should be a good approximation
before the jet break time in the light curve,

tj ¼
(1þ z)

4c

(3� k)E

2�Ac2

� �1=(3�k)

�2
0

� 0:66(1þ z)(E51=n0)
1=3(�0=0:1)

2 days k ¼ 0;

0:34(1þ z)(E51=A�)(�0=0:1)
2 days k ¼ 2:

(
ð4Þ

At t > tj, however, it is less clear how well this approximation
holds, and it might be necessary to evaluate � at a different
location. In particular, as we shall see below, this approxima-
tion does not work well for model 2 with k ¼ 0, where � needs
to be evaluated near the head of the jet, rather than at the side of
the jet where R? is located.
The image size is given by R? ¼ max (R sin � ) along the

equal arrival time surface (see Fig. 1). The equal arrival time
surface is the surface from where photons that are emitted at
the shock front arrive to the observer simultaneously. Since the
emission originates only from behind the shock front, the pro-
jection of the equal arrival time surface onto the plane of the sky
(i.e., the plane perpendicular to the line of sight) determines
the boundaries of the observed image and its apparent size (see
Fig. 1). For a spherical shock front with any R(tlab), R? ¼
max (R sin � ) is located at an angle �� that satisfies cos �� ¼
�� (see Appendix A), where �� and �� ¼ (1� � 2

�)
�1=2 are the

velocity (in units of c) and the Lorentz factor of the shock front5

at ��. This implies that R?(t) ¼ R�(t)=��(t), where R�(t) ¼
R(t; cos � ¼ ��) is the radius of the shock at �� ¼ arccos ��.
Therefore �� ¼ �sh(R�) and �� ¼ �sh(R�). Although the shock
front is probably not simply a section of a sphere (Granot et al.
2001), we consider this a reasonable approximation for our pur-
pose. The expression for �� in the more general case of an
axially symmetric shock is given in Appendix A.
The apparent speed, �ap ¼ ½(1þ z)=c�(dR?=dt), has a simple

form for a point source moving at an angle � from our line of
sight, �ap ¼ �sh sin �=(1� �sh cos � ). Substituting cos � ¼ �sh

in this expression gives �ap ¼���� ¼ (�2
� � 1)1=2, or �� ¼ (1þ

�2
ap)

1=2 and �� ¼ �ap=(1þ �2
ap)

1=2. In Appendix B we show that
this result holds for any spherically symmetric shock front, and
we also generalize it to an axially symmetric shock. Finally, the
Lorentz factor � of the shocked fluid just behind the shock at
�� is related to the Lorentz factor of the shock itself, ��, by
�2
�¼(�þ1)½�̂(�� 1)þ 1�2=½�̂(2� �̂)(�� 1)þ 2� (Blandford

4 We find that the ratio of the numerical coefficient in eq. (3) to that
in Granot & Sari (2002) is in this case 1:09(3p� 1)=(3pþ 2) for k ¼ 2 and
1:71(3p� 1)=(3pþ 2) for k ¼ 0.

5 Note that we use �sh or �sh for the location of the emitting fluid, which is
always just behind the shock. On the other hand, we use � or � (which are
slightly smaller than �sh or �sh, respectively) for the Lorentz transformations of
the emitted radiation, since these are the bulk velocity and Lorentz factor of the
emitting fluid.
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& McKee 1976), where �̂ is the adiabatic index of the shocked
fluid. For ��31, �̂ ¼ 4=3 and � ¼ ��=

ffiffiffi
2

p
.

3. THE TEMPORAL EVOLUTION OF THE IMAGE SIZE

For simplicity, we consider a uniform GRB jet with sharp
edges and a half-opening angle �j , with an initial value of �0.
The evolution of the angular size of the image and its angular
displacement from the central source on the plane of the sky,
for viewing angles �obs > �0 from the jet axis, was outlined in
Granot & Loeb (2003). Here we expand this discussion to in-
clude viewing angles within the initial jet opening angle, �obs <
�0, for which there is a detectable prompt gamma-ray emis-
sion (similarly to GRB 030329, which is considered in the next
section). For �obs < �0, R? is the observed size of the image,
while for �obs > �0 it represents the displacement with respect
to the central source on the plane of the sky.

In this section we concentrate on a viewing angle along the
jet axis, �obs ¼ 0, and in the next section we briefly outline the
expected differences for 0<�obs <�0. For �obs ¼ 0, the ob-
served image is symmetric around the line of sight (to the ex-
tent that the jet is axisymmetric). At t < tj the edge of the jet
is not visible and the observed image is the same as for a
spherical flow: R?/ (Eiso=A)1=2(4�k)t (5�k)=2(4�k)/ (E=A)1=2(3�k)

t
�1=2(4�k)
j t (5�k)=2(4�k) for an external density profile 	ext¼ Ar�k ,
i.e., a ¼ (5� k)=2(4� k), where a � d ln R?=d ln t. Here E is
the true kinetic energy of the jet and Eiso ¼ f �1

b E is the isotropic
equivalent energy, where fb ¼ 1� cos �0 � �20=2 is the beaming
factor. At t < tj the flow is described by the Blandford-McKee
(1976) self-similar solution, which provides an accurate ex-
pression for the image size (Granot et al. 1999a; Granot & Sari
2002),

R? ¼ 22�k(17� 4k)(4� k)5�kEisoc
3�k t 5�k

�(5� k)5�k(1þ z)5�kA

� �1=2(4�k)

¼
3:91 ; 1016(Eiso;52=n0)

1=8½tdays=(1þ z)�5=8 cm k ¼ 0;

2:39 ; 1016(Eiso;52=A�)
1=4½tdays=(1þ z)�3=4 cm k ¼ 2:

(

ð5Þ

At t > tNR the jet gradually approaches the Sedov-Taylor self-
similar solution, asymptotically reaching R? / (Et 2=A)1=(5�k),
i.e., a ¼ 2=(5� k). At tj < t < tNR there is a large uncertainty
in the hydrodynamic evolution of the jet, and in particular in its
rate of sideways expansion. We therefore consider two extreme
assumptions that should roughly bracket the different possible
evolutions of R?(t): (1) relativistic lateral expansion in the
comoving frame (Rhoads 1999; Sari et al. 1999), for which
�j � max (�0; �

�1) so that at tj < t < tNR we have � � ��1
j �

��1
0 exp (�R=Rj), and (2) little or no lateral expansion, �j � �0
for t < tNR, in which case appreciable lateral expansion oc-
curs only when the jet becomes subrelativistic and gradually
approaches spherical symmetry. We refer to these models as
model 1 and model 2, respectively. Model 2 is also motivated
by the results of numerical simulations (see Fig. 2) that show
only modest lateral expansion as long as the jet is relativistic
(Granot et al. 2001; Kumar & Granot 2003; Cannizzo et al.
2004). These numerical results are also supported by a simple
analytic argument that relies on the shock jump conditions for
oblique relativistic shocks (Kumar & Granot 2003).

Figure 3 schematically shows the evolution of R?(t) for these
two extreme models, both when viewed on-axis (�obs < �0), as
required for seeing the prompt gamma-ray emission, and for
�obs � 90	, as will typically be the case for GRB jets found in
nearby Type Ib/c supernovae (Paczyński 2001; Granot & Loeb
2003; Granot & Ramirez-Ruiz 2004; Ramirez-Ruiz & Madau
2004). For �obs<�0 at tj<t< tNR, we have R?/ (E=A)1=2(3�k)t1=2

for model 1 and R?/ (Eisot=A)
1=(4�k) / (E=A)1=(3�k)(t=tj)

1=(4�k)

for model 2. Therefore, with k ¼ 2 we have a ¼ 1
2
for both mod-

els, despite their very different jet dynamics. For k ¼ 0 we have
a ¼ 1

2
for model 1 and a ¼ 1

4
for model 2.

In model 1, the jet is already relatively close to being spher-
ical (i.e., �j �1) at tNR ¼ tNR(E ), where RNR(E )¼ ctNR(E ) ¼
½(3� k)E=4�Ac 2�1=(3�k), and its radius is similar to that of the
Sedov-Taylor solution, RST(E; t)¼ 
(Et 2=A)1=(5�k), correspond-
ing to the same time t, where 
 ¼ 
(k; �̂) �1. Therefore, we
expect it to approach spherical symmetry in a few dynamical
times, i.e., when the radius increases by a factor of b � a few,
corresponding to a factor of �b(5�k)=2 in time, and the transi-
tion between the asymptotic power laws in R?(t) is expected to
be smooth and monotonic.

Fig. 1.—Schematic illustration of the equal arrival time surface (thick black line), namely, the surface from where the photons emitted by the shock front arrive at
the same time to the observer (on the far right-hand side). The maximal lateral extent of the observed image, R? , is located at an angle ��, where the shock radius and
Lorentz factor are R� and �� ¼ �sh(R�), respectively. The area of the image on the plane of the sky is S? ¼ �R2

?. The shock Lorentz factor �sh varies with R and �
along the equal arrival time surface. The maximal radius Rl on the equal arrival time surface is located along the line of sight. If, as expected, �sh decreases with R,
then �l ¼ �sh(Rl) is the minimal shock Lorentz factor on the equal arrival time surface.
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In model 2, however, the jet becomes subrelativistic only at
RNR(Eiso) ¼ ctNR(Eiso), which is a factor of �(Eiso=E )1=(3�k) ¼
f �1=(3�k)
b

� ��2=(3�k)
0 larger than RNR(E ) ¼ ctNR(E ) and a factor

of �f �1=(5�k)
b

� ��2=(5�k)
0

larger than RST[E, tNR(Eiso)]. It also
keeps its original opening angle, �j � �0, until tNR(Eiso), and
hence at this time the jet is still very far from being spheri-
cal. Thus, once the jet becomes subrelativistic, we expect it to
expand sideways significantly and to become roughly spheri-
cal only when it has increased its radius by a factor of b �
a few. This should occur, however, roughly at a time tsph when
RST(E; tsph) ¼ bRNR(Eiso), i.e.,

tsph=tNR(Eiso) � f
�1=2
b b(5�k)=2 �

ffiffiffi
2

p
��1
0 b(5�k)=2: ð6Þ

This is a factor of �f
�1=2
b � 14(�0=0:1)

�1 larger than the ex-
pected transition time in model 1, and for b � 2 3 gives a factor
of�(80 220)(�0=0:1)

�1 for k ¼ 0 and�(40 70)(�0=0:1)
�1 for

k ¼ 2. During this transition time, R?(�obs < �0) grows by a
factor of �f

�1=2
b b � ��1

0 b while R?(�obs � 90
	
) grows by a

factor of �b. This implies that during the transition,

hai ¼

ln b� (1=2) ln fb
½(5� k)=2� ln b� (1=2) ln fb

�obs < �0;

ln b

½(5� k)=2� ln b� (1=2) ln fb
�obs ¼ 90	;

8>><
>>: ð7Þ

and 0< hai< 2=(5� k) for �obs <�0 while 2=(5� k)< hai< 1
for �obs ¼ 90	, where hai � 2=(5� k) in the limit b3 ��1

0

(which is not very realistic). The other limiting value of hai � 0
for �obs < �0 and hai � 1 for �obs ¼ 90	 is approached in the
limit bT��1

0 . Typical parameter values (b � 2 3, �0 � 0:05
0:2) are somewhat closer to the latter limit. For example, for
k ¼ 0, b ¼ 2:5, and �0 ¼ 0:1 we have hai � 0:722 for �obs < �0

and hai � 0:185 for �obs ¼ 90	. This demonstrates that for on-
axis observers there should be a sharp rise in R?, while for
observers at �obs � 90	 there should be a very moderate rise
in R? during the transition phase from the asymptotic tjT
tTtNR and t3 tNR regimes. Furthermore, as is illustrated in
Figure 3, this transition would not be monotonic in model 2.
This is because during the transition a passes through values
larger (smaller) than both of its asymptotic values for �obs <
�0 (�obs � 90

	
).

For comparison, and in order to perform a quantitative com-
parison with the data, we consider a simple semianalytic model
where the shock front at any given lab-frame time occupies a
section of a sphere within � < �j and R? is located at �? ¼
min(��; �j). The observer time assigned to a given �?(tlab) is
t ¼ tlab � ½R(tlab)=c� cos �?(tlab). We follow Oren et al. (2004)
with minor differences: (1) we choose the normalization of
R? at tTtj so that it will coincide with the value given by the
Blandford-McKee solution (i.e., eq. [5]), and (2) the lateral
spreading velocity in the comoving frame, �j, for model 2
smoothly varies from �jT1 at tTtNR to the sound speed,
�j � cs=c, at t > tNR. The latter is achieved by taking �j to be
the sound speed suppressed by some power of �.
Figure 4 shows the resulting R?(t) for ISM (k ¼ 0) and

stellar wind (k ¼ 2) environments and different recipes for �j .
For a given �j recipe, R?(t) depends on E/A and �0. The values
of these parameters that were used in Figure 4 are indicated in
the figure. For k ¼ 2 the spread in R?(t) for the different �j

recipes is smaller than for k ¼ 0. This is understandable since
the asymptotic values of a are the same for models 1 and 2.
There is still a nonnegligible spread, however, since the as-
ymptotic value of a ¼ 1

2
at tjTtTtNR is not reached.6 At

t3 tNR all recipes for �j approach the same value of R?(t),
except for �j ¼ 0, for which R?(t) is smaller by a factor of
sin �0. For �j ¼ 0 and k ¼ 0 there is a pronounced flattening in
R?(t) at�1.2 days, which is a factor of�7 larger than the value
of tj ¼ 0:165 days that is implied by equation (4). We must
stress that this simple model becomes unrealistic around tNR.
The apparent velocity of a point source is �ap ¼ � sin �=(1�

� cos � ). For �obs > �0 , as long as �j <�obs and t < tNR we
have �ap � 2�2

sh�=½1þ (�sh� )
2� � 2=�. For �obs ¼ �=2 we have

�ap ¼ �sh, which is close to 1 at t < tNR. For �sh31 and � >
��1
sh we have �ap � sin �=(1� cos � ), so that �ap > 1 for �obs <

�=2 and �ap < 1 for �obs > �=2 (i.e., for the counter jet, as-
suming a double-sided jet; see Fig. 2 of Granot & Loeb 2003).
For �obs < �0 we have �ap ¼ ���� � �� at t < tNR. At t < tj we
get �? ¼ �� < �0 and the shock front is roughly spherical with
an approximately uniform Lorentz factor within � P ��, so that
�� � �sh. At tj < t < tNR we have �� � �j � ��1

sh and �ap �
�� � �sh for model 1, suggesting that using �(��) for calcu-
lating the emission (i.e., in eqs. [1], [3], and [8]) is a reason-
able approximation. For model 2, �� � �j � �0 and �ap � �� �
2�0�2

sh
, so that7 ��=�sh � 2�0�sh < 1, suggesting that �(��)

underestimates the effective value of the emissivity-weighted
�, which enters the expressions for the observed emission. This
results from the fact that in model 2 most of the emission at

Fig. 2.—Evolution of the jet half-opening angle �j as a function of radius R
for various illustrative cases. The solid line shows the evolution derived from
two-dimensional hydrodynamic simulations (Granot et al. 2001). The different
lines give the maximal polar angle � of the shock front (which is obtained at a
relatively small radius where a minor fraction of the emission is produced) and
the average values of � within the jet when averaged over the circumburst gas
density and over the total emissivity. Most of the emission comes from within
the original jet opening angle, �0 ¼ 0:2. Also shown is the evolution of �j (R)
predicted by simple semianalytic models. Three illustrative cases are depicted
in which the lateral expansion speed is assumed to be �j ¼ 0, 3�1/2, and 1 in
the local rest frame (Rhoads 1999; Sari et al. 1999; Oren et al. 2004). Since
the onset of lateral expansion in the simple models takes place at a somewhat
larger radius (Rj), a higher value of gas density is adopted for these models in
order to show more easily their different qualitative behaviors. [See the
electronic edition of the Journal for a color version of this figure.]

6 This is because it takes a long time to approach this limit for k ¼ 2, which
is longer than the dynamical range between tj and tNR.

7 Here �sh represents the uniform-shock Lorentz factor in the simple semi-
analytic model described at the end of x 2, where the shock at any given tlab
occupies a section of a sphere and abruptly ends at �j , and at tj < t < tNR R? is
located at �j. On the other hand, �� ¼ �sh(��) is the Lorentz factor at the angle
�� where R? is located for a smooth and continuous (and therefore more re-
alistic) shock front, for which �sh changes with � at a given tlab .
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tj < t < tNR originates from �< �0 , where � is higher than at
��k �0 (see Fig. 2 and Granot et al. 2001).

4. LINEAR POLARIZATION

For 0< �obs < �0 the image would not be symmetric around
the line of sight, but its typical angular size would be similar to
that for �obs ¼ 0. If there is significant lateral spreading at t > tj,
then this should cause the image to become more symmetric
around our line of sight with time. This, by itself, might be a

possible diagnostic for the degree of lateral spreading. The de-
gree of asymmetry in the observed image should also be re-
flected in the degree of linear polarization and its temporal
evolution. While the image might be resolved only for a very
small number of sufficiently nearby GRBs, the linear polari-
zation might be measured for a larger fraction of GRBs.

Contrary to naive expectations, for very slow lateral ex-
pansion (�jT1) the polarization decays faster after its peak at
t � tj, compared to lateral expansion at the local sound speed,

Fig. 3.—Schematic plot of the evolution of the observed afterglow image size R? of a uniform GRB jet with sharp edges. The jet is viewed either from within the
initial jet opening angle, �obs < �0 (top), or from �obs � 90	 (bottom). The solid line is for model 1 (relativistic lateral expansion in the local rest frame), and the dashed
line is for model 2 ( little or no lateral expansion before tNR ). The dotted line in the top panel represents jets (in model 2) with a smaller �0 and the same true energy E,
which converge to the same self-similar dynamics and therefore the same R?(t) after the jet break time tj. Also shown are the ratios of various values of R? and t.

RADIO AFTERGLOW OF GRB 030329 417No. 1, 2005



�j ¼ cs=c� 3�1=2, in the comoving frame (Rossi et al. 2004).
A very fast lateral expansion in the local frame close to the
speed of light (�j � 1) leads to �j � max (�0; �

�1) and to three
peaks in the polarization light curve, where the polarization
position angle changes by 90

	
as the degree of polarization

passes through zero between the peaks (Sari 1999). When there
is a slower lateral expansion or no lateral expansion at all
(Ghisellini & Lazzati 1999), there are only two peaks in the
polarization light curve, where again the polarization posi-
tion angle changes by 90	 as the degree of polarization passes
through zero between the peaks. The peak polarization is
higher for �j � 0 (�15%–16%), compared to �j ¼ 3�1=2 (�9%)
(Rossi et al. 2004). The maximal observed degree of polari-
zation is, however, usuallyP3%, suggesting that the magnetic
field configuration behind the shock is more isotropic than a
random field fully within the plane of the shock (Granot &
Königl 2003), which is expected if the magnetic field is pro-
duced by the Weibel instability (Medvedev & Loeb 1999).
This changes the overall normalization of the polarization light
curve, and hardly affects its shape (Granot & Königl 2003).
Since the overall normalization is the most pronounced dif-
ference between slow and fast lateral expansion, and since it
is very similar to the effect of the degree of anisotropy of the
magnetic field behind the shock, it would be very hard to con-
strain the degree of lateral expansion from the polarization
light curves. There are also other possible complications, such
as a small ordered magnetic field component (Granot & Königl

2003), which can induce polarization that is not related to the
jet structure.
Taylor et al. (2004) put a 3 � upper limit of 1% on the linear

polarization in the radio (� ¼ 8:4 GHz) at t ¼ 7:71 days. They
attribute the low polarization to synchrotron self-absorption.
Indeed, �sa is above 8.4 GHz at this time, but only by a factor
of �2. One might expect a suppression of the polarization in
the self-absorbed region of the synchrotron spectrum, since
it should follow the Rayleigh-Jeans part of a blackbody spec-
trum and depend only on the electron distribution (i.e., the ‘‘ef-
fective temperature’’), and not on the details of the magnetic
field (Granot et al. 1999b). The optical depth to self-absorption
does, however, depend on the details of the magnetic field and
may thereby vary with the direction of polarization. Therefore,
there might still be polarization at � P �sa, which will go to zero
in the limit �T�sa. An ordered magnetic field in the shocked
fluid through which the emitted synchrotron radiation propa-
gates on its way to the observer might induce some polarization
in the observed radiation (Sagiv et al. 2004). These effects are
suppressed roughly by a factor of the square root of the ratio
between the magnetic field coherence length and the width of
the emitting region (which is of the order of the typical path
length of an emitted photon through the shocked plasma before
it escapes the system).

5. THE SURFACE BRIGHTNESS PROFILE

Taylor et al. (2004) use a circular Gaussian profile for
their quoted values, and also tried a uniform disk and thin ring.
They find that a Gaussian with an angular diameter size of
1 mas is equivalent to a uniform disk with an angular diameter
of 1.6 mas and a thin ring with an angular diameter of 1.1 mas.
At t < tj the jet dynamics are close to that of a spherical flow,
since the center of the jet is not in causal contact with its edge,
and the dynamics can be described by the Blandford-McKee
(1976) spherical self-similar solution (within the jet, at �< �0).
The surface brightness in this case has been investigated at
length in several works (Waxman 1997; Sari 1998; Panaitescu
& Mészáros 1998; Granot et al. 1999a, 1999b; Granot & Loeb
2001). The surface brightness profile of the image, normalized
by its average value across the image, is the same within each
power-law segment of the spectrum, but changes between dif-
ferent power-law segments (Granot & Loeb 2001). The af-
terglow image is limb brightened, resembling a ring, in the
optically thin part of the spectrum, and more uniform, resem-
bling a disk, in the self-absorbed part of the spectrum. This can
affect the angular size of the image that is inferred from the
observations (Taylor et al. 2004), where the angular diameter
for a uniform disk (thin ring) is a factor of 1.6 (1.1) larger than
the values quoted by Taylor et al. (2004) for a circular Gaussian
surface brightness profile. This effect would be more important
at � P �sa, where the afterglow image resembles a uniform disk
rather than a thin ring.
One should keep in mind that the image size of GRB 030329

was inferred well after the jet break time, t3 tj, and relatively
close to the nonrelativistic transition time, t � tNR. However, at
tj < t < tNR the jet dynamics is poorly known, and this uncer-
tainty must necessarily be reflected in any calculation of the
afterglow image at this stage, which could only be as good as
the assumed dynamical model of the jet. The afterglow image
at this stage was calculated by Ioka & Nakamura (2001) as-
suming lateral expansion at the local sound speed (Rhoads
1999), similar to our model 1. They find that at t < tj the surface
brightness diverges at the outer edge of the image, which is an
artifact of their assumption of emission from a two-dimensional

Fig. 4.—Evolution of the source size (or more precisely, its diameter 2R? )
as a function of time, for a uniform density environment (k ¼ 0; top) and for a
stellar wind (k ¼ 2; bottom). Different recipes are considered for the lateral
spreading velocity in the comoving frame, �j. See text for more details. [See
the electronic edition of the Journal for a color version of this figure.]
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surface (Sari 1998; Granot & Loeb 2001) identified with the
shock front. Calculating the contribution from all the volume
of the emitting fluid behind the shock makes this divergence
go away, except for certain power-law segments of the spec-
trum where the emission indeed arises from a very thin layer
just behind the shock (Granot & Loeb 2001). At t > tj Ioka &
Nakamura (2001) obtain a relatively uniform surface bright-
ness profile. However, this is due to the unphysical assumption
that the shock front at any given lab-frame time is part of a
sphere within some finite angle �j from the jet symmetry axis
where the jet ends abruptly. The edge of the image in this case
corresponds to this unphysical point where the jet ends abruptly
(see Fig. 5). More physically, as is shown by numerical simu-
lations (Granot et al. 2001), the shock front is not a section of a
sphere and is instead round without any sharp edges. Similarly
to the spherical-like evolution at t < tj, the edge of the image
would in this case correspond to R? ¼ max (R sin � ), and thus
the image is expected to be limb brightened for the same
qualitative reasons that apply at t < tj, even though there would
be some quantitative differences. A proper calculation of the
afterglow image at t > tj requires full numerical simulations of
the jet dynamics.

6. APPLICATION TO GRB 030329

We now apply the expressions derived in the previous section
to GRB 030329, which occurred at a redshift of z ¼ 0:1685.We
use the image angular diameter size of �s � 70 �as for8 DA �
587Mpc that was inferred at t ¼ 24:5 days (Taylor et al. 2004),
which corresponds to R? � 0:1 pc. This implies an average

apparent velocity of h�api ¼ (1þ z)R?=ct � 5:66. The instanta-
neous apparent velocity is given by �ap �½(1þ z)=c�dR?=dt ¼
ah�api, where a � d ln R?=d ln t. For GRB 030329, if we also
take into account the inferred source size of �s � 170 �as or
R? � 0:25 pc at t ¼ 83:3 days and the 2 � upper limit of �s <
100 �as or R? < 0:14 pc at t ¼ 51:3 days (Taylor et al. 2004),
we have9 a ¼ 0:71þ0:4

�0:3 (1 �). This value is between t ¼ 24:5 and
83.3 days, assuming that R?(t) followed a perfect power-law
behavior / t a with a ¼ const during this time. This is a rea-
sonable approximation for model 1 or model 2 with k ¼ 2, for
which a ¼ 1

2
at tj < t < tNR, and therefore these models are

consistent with the observed temporal evolution of the image
size. For model 1 with k ¼ 0 (see x 3), a ¼ 1

4
at tjTtTtNR, but

its value is expected to increase significantly near tNR, which
we find to be at �200 days for this model (see Table 1). There-
fore, it can still account for the observed image size at t ¼ 24:5
and 83.3 days, together with the upper limits at 51.3 days.
At t ¼ 24:5 days, however, we still expect the value of a in
model 2 with k ¼ 0 to be relatively close to its asymptotic
value of a ¼ 1

4
.

Figure 6 shows crude fits between the simple semianalytic
realization of models 1 and 2 (which is described at the end
of x 3) and the observed image size (Taylor et al. 2004). For
model 2 we have used the recipe �j ¼ ��1(cs=c) for the lateral
expansion. We have treated the value of E/A as a free parameter
whose value was varied in order to get a good fit, while the
value of �0 was determined according to the observed jet break
time tj � 0:5 days using equation (4). In the latter procedure we
take into account an increase in energy by a factor of f � 10
due to refreshed shocks (Granot et al. 2003) between tj and the
times when the image size was measured. For simplicity, we do
not include the effect of the energy injection on the early image
size. The image size that is calculated in this way is not valid
before the end of the energy injection episode (after several
days), but it should be reasonably accurate at t k 25 days, when
its value is measured. The values of E/A and �(25 days ) from
these fits are indicated in Figure 6 and in Table 1.

For a ¼ (0:25; 0:5; 0:75) we obtain �ap � (1:4; 2:8; 4:2),
�� � (1:7; 3:0; 4:4), and �(��)� (1:5; 2:4; 3:4). The values
of �(��) are similar to the values of � that were obtained from
the fit to the observed image size for model 1 and model 2 with
k ¼ 2, but the value is smaller for model 1 with k ¼ 0, as ex-
pected (see discussion at end of x 3).

Using the radio data from Berger et al. (2003), we find that
F� � 10 mJy at t � 25 days and � ¼ 4:86 GHz, which accord-
ing to the spectrum at this time is below �sa. Berger et al. (2003)
also estimated the break frequencies at t � 10 days to be �sa �
19 GHz and �m � 43 GHz, which is consistent with � < �sa <
�m at t ¼ 24:5 days. A value of p ¼ 2:25 was inferred for
GRB 030329 (Willingale et al. 2004). For the power-law seg-
ment of the spectrum, where F� / � 2 ( labeled ‘‘B’’ in Fig. 1
of Granot & Sari 2002), we have �eA � �m, for which equa-
tions (1) and (3) imply

�e �
1

2�

p� 1

p� 2

� �
(1þ z)

�(�� 1)

DA

R?

� �2
F�

mp� 2
: ð8Þ

Fig. 5.—Evolution of the source size as a function of time for t > tj. In
model 1, the lateral expansion in the local frame is relativistic, while in model 2
there is no lateral expansion at t > tj. The shock front at any given time tlab is
assumed to be part of a sphere that abruptly ends at a finite angle �j from the jet
axis. The gray dotted lines represent the equal arrival time surfaces at three
different observed times. Since the jet dynamics R(tlab) are different for models
1 and 2, the equal arrival time surfaces should be different (but in this sketch,
for simplicity, we depict them as being equal). At t > tj [where �j(R�) < ��],
the edge of the image, which determines the image size, is located at the edge of
the jet, i.e., at an angle �j instead of ��.

8 Throughout this paper we assume �M ¼ 0:27, �� ¼ 0:73, and H0 ¼
71 km s�1 Mpc�1.

9 Applying the Bayesian inference formalism developed by Reichart et al.
(2001), we determine values and uncertainties for the model parameter a.
Bayesian inference formalism deals only with measurements with Gaussian
error distributions, not with lower or upper limits. However, this formalism
can be straightforwardly generalized to deal with limits as well, using two
facts: (1) a limit can be given by the convolution of a Gaussian distribution
and a Heaviside function, and (2) convolution is associative.
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Using the above values for the flux, R?, �(��), and p for GRB
030329, equation (8) gives �e � (0:10; 0:023; 0:0099) for a ¼
(0:25; 0:5; 0:75). These values of �e are somewhat on the low
side compared to the values inferred from broadband afterglow
modeling of other afterglows (e.g., Panaitescu & Kumar 2001).
In Table 1 we show, in addition to these values of �e , the values
that are obtained when evaluating � from the fit to the image
size that is shown in Figure 6. The largest difference between
these two estimates of �e is for model 1 with k ¼ 0, for which
evaluating � from the fit to the observed source size probably
provides a more accurate estimate.

Since equation (8) relies on a small number of assumptions,
it is rather robust. However, the value of �e in equation (8) is
very sensitive to the value of R?. This is because �e / 1=R2

?�
(��1), and for �31 we have � � ��=

ffiffiffi
2

p
� �ap=

ffiffiffi
2

p
¼

ah�api=
ffiffiffi
2

p
/ R?, so that �e / R�4

? . For example, �s ¼ 45 �as
(R? ¼ 0:064 pc) at t ¼ 24:5 days, which is still within the mea-
surement errors, would imply �e ¼ (0:61; 0:14; 0:060) for a ¼
(0:25; 0:5; 0:75). The latter values, especially for a� 0:5, are

consistent with the value found byWillingale et al. (2004) from
a broadband fit to the afterglow data, �e ¼ 0:24 and 0:18<
�e < 0:31 at the 90% confidence level, and with the value of
�e � 0:16 found by Berger et al. (2003).

7. INFERRING THE PHYSICAL PARAMETERS FROM A
SNAPSHOT SPECTRUM AT tj < t < tNR

For model 1, we obtain expressions for the peak flux and
break frequencies at tj < t < tNR by using the expressions for
t < tj from Granot & Sari (2002) in order to estimate their
values at tj , and then using their temporal scalings at tj < t <
tNR from Rhoads (1999) and Sari et al. (1999). In Appendix C
we provide expressions for the peak flux and break frequen-
cies as a function of the physical parameters and solve them
for the physical parameter as a function of the peak flux and
break frequencies for both models 1 and 2. The results for
GRB 030329 are given below.
For GRB 030329, Berger et al. (2003) infer �sa � 19 GHz,

�m � 43 GHz, and F�;max � 96 mJy at t � 10 days, as well as
p ¼ 2:2. Using equations (4.13)–(4.16) of Sari & Esin (2001),
Berger et al. (2003) find Eiso;52 � 0:56�1=4

c;13
, n0 � 1:8� 3=4

c;13
, �B �

0:10��5=4
c;13 , and �e � 0:16�1=4c;13, and using a value of �j � 0:3 at

this time they infer E51 � 0:25. For the same values of the
spectral parameters and using our model 1, we obtain Eiso;52 ¼
0:16�1=4c;13, E51 ¼ 0:36�

3=8
c;13, n0 ¼ 15� 3=4

c;13, �B ¼ 0:12��5=4
c;13 , and

�e ¼ 0:24�
1=4
c;13 for k ¼ 0, and Eiso;52¼ 0:10�1=4c;13, E51¼0:43� 3=8

c;13,
A�¼1:4�1=2

c;13, �B ¼ 0:034��5=4
c;13 , and �e ¼ 0:36�1=4c;13 for k ¼ 2.

The implied values of E/A are shown in Table 1. The differ-
ences between our values and those of Berger et al. (2003) arise
from differences by factors of order unity between the coeffi-
cients in the expressions for the peak flux and break frequen-
cies. This typically results in differences by factors of order
unity in the inferred values of the physical parameters. The dif-
ference in the external density n is relatively large since it
contains high powers of �sa and �m (Granot et al. 1999b), mak-
ing it more sensitive to the exact theoretical expressions and
observational values of these frequencies.
For model 1 and k ¼ 0 we obtain E51=n0 ¼ 0:0:024�

�3=8
c;13 ,

compared to E51=n0 ¼ 0:14�
�1=2
c;13 from Berger et al. (2003) and

E51=n0 � 0:8 that we obtain from the fit to the observed image
size (Fig. 6). Because of the large uncertainty in the value of n

TABLE 1

Comparing the Values of Physical Parameters Derived from Different Observables

External Density Physical Parameter Observables Being Used Model 1 Model 2 Major Source of Uncertainty Uncertain by a Factor of

k = 0 E51/n0........................... F� (10 days) 0:024�
�3=8
c;13 0:40�

�3=8
c;13 / �

�15=4
sa ��15=8

m F
9=4
�;max �10–100

R?(t) 0.8 5 / R
6(3)
? in model 1 (2) �10 (�5)

k = 2 E51/A� .......................... F� (10 days) 0:31�
�1=8
c;13 0:10�

�1=8
c;13 / �

�5=4
sa ��5=8

m F
3=4
�;max �2–3

R?(t) 2 1.2 / R
3(1)
? in model 1 (2) �5 (�2)

k = 0 �(25 days)................... R? 2.4 1.5 R?(obs) and �(��) �1.3

R? 2.1 2.4 R?(obs) and jet model �1.1–1.2

k = 2 �(25 days)................... R? 2.4 2.4 R?(obs) and �(��) �1.3

R? 2.6 2.8 R?(obs) and jet model �1.1–1.2

k = 0 �e.................................. R?, F�<�sa 0.023 0.10 R? and �(��) in eq. (8) �10

R?, F�<�sa 0.035 0.024 R? and �(Fig. 6) in eq. (8) �5–10

F� (10 days) 0:24�
1=4
c;13 0:078�

1=4
c;13 Model and value of �c �3

k = 2 �e.................................. R?, F�<�sa 0.023 0.023 R? and �(��) in eq. (8) �10

R?, F�<�sa 0.020 0.017 R? and �(Fig. 6) in eq. (8) �5–10

F� (10 days) 0:36�
1=4
c;13 0:17�

1=4
c;13 Model and value of �c �3

Notes.—Estimates for the physical parameters of GRB 030329 derived from different observable quantities for different models of the jet lateral expansion. The
value of E/A is estimated from the spectrum at 10 days (first line) and from the fit to the observed image size (second line). The value of �(25 days) is evaluated both
as �(��) according to x 2 (first line) and from the fit to the observed image size (second line). The value of �e in the first two lines is evaluated using eq. (8) with the
values of �(25 days) from the corresponding lines. In the third line the value of �e is from the spectrum at 10 days.

Fig. 6.—Tentative fit of a simple semianalytic realization of models 1 and 2
to the observed image size (of diameter 2R? ). The physical parameters and
external density profile for each model are indicated. [See the electronic
edition of the Journal for a color version of this figure.]
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that is determined from the snapshot spectrum, and because
of the large uncertainty in the value of E/n from the fit to the
image size, these values are consistent with each other within
their reasonable errors (see Table 1). For model 1 and k ¼ 2 we
obtain E51=A� ¼ 0:31�

�1=8
c;13 , compared to E51=A� � 0:8 from

the fit to the observed image size. Here the difference between
the two values is smaller, but the uncertainty on the two values
is also smaller (see Table 1). Altogether, the two values are still
consistent within their estimated errors.

For our model 2 involving a jet with no significant lat-
eral spreading, the peak flux is suppressed by a factor of
(t/tj)�(3�k)/(4�k), where tj � 0:5 days and t=tj � 20, i.e., a factor
of �0.11 for k ¼ 0 and �0.22 for k ¼ 2. This implies (see Ap-
pendix C) Eiso;52 ¼ 4:7�1=4c;13, E51 ¼ 0:21�

3=8
c;13, n0 ¼ 0:53�3=4

c;13
,

�B ¼ 0:37��5=4
c;13

, and �e ¼ 0:078�1=4c;13 for k ¼ 0, and Eiso;52 ¼
0:98�

1=4
c;13, E51 ¼ 0:29� 3=8

c;13, A� ¼ 1:4�1=2c;13, �B ¼ 0:071��5=4
c;13

, and
�e ¼ 0:17�1=4

c;13
for k ¼ 2. For model 2 with k ¼ 0 we get

E51=n0 ¼ 0:40�
�3=8
c;13 , compared to E51=n0 � 5 from the fit to the

observed image size. These two values are consistent within the
large uncertainties on both values (see Table 1).

For model 2 with k ¼ 2 we obtain E51=A� ¼ 0:10�
�1=8
c;13 ,

compared to E51=A� � 1:2 from the fit to the observed image
size. In this case, however, the errors on these two values are
relatively small (see Table 1). This is because (1) the image size
is linear in E/A, which corresponds to a relatively strong de-
pendence, and therefore the observed image size can constrain
the value of E/A relatively well, and (2) the expression for E/A
from the spectrum contains relatively small powers of the
break frequencies and peak flux and thus has a correspondingly
small uncertainty. Therefore, the two values of E51/A� are
farther apart than is expected from the uncertainty on these
values. Thus, one might say that the data disfavor model 2 with
k ¼ 2. It is difficult, however, to rule out this model altogether,
because of the uncertainty in the exact expressions for the
break frequencies and peak flux at tj < t < tNR.

8. DISCUSSION

We have analyzed the data on the time-dependent image size
of the radio afterglow of GRB 030329 (Taylor et al. 2004) and
constrained the physical parameters of this explosion. The im-
age size was measured after the jet break time tj in the after-
glow light curve, where existing theoretical models still have
a high level of uncertainty regarding the jet dynamics. This
motivated us to consider two extreme models of the lateral
expansion of the jet: model 1, where there is relativistic lateral
expansion in the local rest frame of the jet at tj < t < tNR, and
model 2, with no significant lateral expansion until the tran-
sition time to a nonrelativistic expansion tNR. We have tested
the predictions of these models against the observations, for
both a uniform (	ext ¼ Ar�k , with k ¼ 0) and a stellar wind
(k ¼ 2) external density profile.

The observational constraints included comparisons be-
tween (1) the value of the postshock energy fraction in rela-
tivistic electrons �e that is inferred from the source size and flux
below the self-absorption frequency and its value from the

snapshot spectrum at t � 10 days, (2) the value of E/A that is
inferred from the source size and its value from the snapshot
spectrum at t � 10 days, and (3) the observed temporal evo-
lution of the source size and the theoretical predictions. We
have found that most models pass all these tests. The only ex-
ception is model 2 with k ¼ 2, involving a relativistic jet with
little lateral expansion (well before tNR) that is propagating in a
stellar wind external medium, which does poorly on constraint
3 above.

We have found that for a jet with little lateral expansion be-
fore tNR (our model 2), the jet would become roughly spherical
only long after tNR (see eq. [6] and the discussion around it).
This introduces a fast growth in the image size near tNR for on-
axis observers with �obs < �0 (see Fig. 3, top) that detects the
prompt gamma-ray emission (as in the case of GRB 030329).
For an observer at �obs � 90	, as would typically be the case
for GRBs that might be found in nearby Type Ib/c supernovae
months to years after the supernova explosion (Paczyński 2001;
Granot & Loeb 2003; Ramirez-Ruiz &Madau 2004), this causes
a very slow increase in the image size near tNR (see Fig. 3,
bottom).

Our conclusions differ from those of Oren et al. (2004), who
argue that model 2 with k ¼ 0 is the only model that can be
ruled out, while the other models are consistent with the data.
We find that model 2 with k ¼ 0 is consistent with the data (as
well as model 1), while model 2 with k ¼ 2 is disfavored by the
data. The different conclusion regarding model 2 with k ¼ 0
arises since we choose a value of E/n that gives the observed
image size at 25 days, instead of the value from the snapshot
spectrum that was used by Oren et al. (2004), and since we
allow for some lateral spreading around tNR, which is expected
physically, while they assumed zero lateral expansion. The
latter provides a good fit to the observed source size at 83 days
and is consistent with the upper limit at 53 days. The different
conclusion regarding model 2 with k ¼ 2 arises since Oren
et al. (2004) did not address constraint 2.

The formalism developed in this paper would be useful for
the analysis of future radio imaging of nearby GRB afterglows.
The forthcoming Swift satellite10 is likely to discover new
GRBs at low redshifts. Follow-up imaging of their radio jets
will constrain their physical properties and reveal whether the
conclusions that we derived for GRB 030329 apply more gen-
erally to other relativistic explosions.
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APPENDIX A

THE ANGLE �� ON THE EQUAL ARRIVAL TIME SURFACE WHERE R? IS LOCATED

The time at which a photon emitted at a lab-frame time tlab and at spherical coordinates (r, �, �) reaches the observer is given by

t ¼ tlab � (R=c) cos � ðA1Þ

10 See http://swift.gsfc.nasa.gov.
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and is referred to as the observed time, where for convenience the direction to the observer is chosen to be along the z-axis (i.e., at
� ¼ 0). Let the location of a spherically symmetric shock front (or any other emitting surface for that matter) be described by
r ¼ R(tlab), and that of an axially symmetric shock front by r ¼ R(tlab; � ). We now calculate the angle �� on the equal arrival time
surface (which is defined by t ¼ const) where R? ¼ max (R sin � ) is located. At this point on the equal arrival time surface we have

0 ¼ @R sin �

@�

� �
t

¼ @R sin �

@�

� �
tlab

þ @R sin �

@tlab

� �
�

@tlab
@�

� �
t

¼ R(cos �þ R̃� sin � )þ �rc sin �
@tlab
@�

� �
t

; ðA2Þ

where we use the notions (@R=@tlab)� ¼ �rc and R̃� ¼ (@ ln R=@�)tlab . From equation (A1) we have

0 ¼ @t

@�

� �
t

¼ R

c
(sin �� R̃� cos � )þ (1� �r cos � )

@tlab
@�

� �
t

; ðA3Þ

so that

@tlab
@�

� �
t

¼ R

c

R̃� cos �� sin �

1� �r cos �

� �
: ðA4Þ

Substituting equation (A4) into equation (A2) we obtain

cos � ¼ �r � R̃� sin � ¼
1

c

@R

@tlab

� �
�

� sin �

R

@R

@�

� �
tlab

: ðA5Þ

For a spherically symmetric shock R̃� ¼ 0 and cos �� ¼ �r(��) ¼ ��, where in this case �r is the shock velocity at the point on the
equal arrival time surface where � ¼ �� and R? is located. For a shock with axial symmetry we have

cos �� ¼
�r � R̃�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

r þ R̃2
�

q
1þ R̃2

�

; ðA6Þ

�r ¼ ��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R̃2

�

q
; ðA7Þ

where �� is the shock velocity component normal to the shock front in the rest frame of the upstream medium, which is the one that
enters into the shock jump conditions (Kumar & Granot 2003).

APPENDIX B

THE APPARENT VELOCITY

The apparent velocity, �ap ¼ ½(1þ z)=c�(dR?=dt), for a point source moving with a velocity � at an angle � from our line of sight is

�ap ¼
� sin �

1� � cos �
: ðB1Þ

For a spherical shock front moving at a constant velocity �sh , R? is located at a constant angle �� that satisfies cos �� ¼ �� ¼
�sh ¼ const (according to eq. [A5]), so that the apparent velocity of the edge of the observed image is simply given by substituting
cos �� ¼ �� in equation (B1). This gives

�ap ¼ ���� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
� � 1

q
: ðB2Þ

We now show that this result holds for any spherically symmetric shock front. At t þ dt we have

��(t þ dt) ¼ ��(t)þ d��; ��(t þ dt) ¼ ��(t)þ d��; d�� ¼ d cos �� / dt; ðB3Þ

and since equation (B2) holds for a sphere moving at a constant velocity, we have

R sin �ð Þ(t þ dt; ��) ¼ R?(t)þ ��(t)��(t)c dt þ O(dt 2): ðB4Þ

Now, since R? is located where (@R sin �=@� )t ¼ 0, then

R?(t þ dt) ¼ R sin �ð Þ(t þ dt; �� þ d��) ¼ R sin �ð Þ(t þ dt; ��)þ O(dt 2) ¼ R?(t)þ ��(t)��(t)c dt þ O(dt 2); ðB5Þ

and therefore equation (B2) holds for any spherically symmetric shock front.
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Finally, for an axially symmetric shock front, we obtain, based on considerations similar to those in the spherical case,

�ap ¼
�r sin ��

1� �r cos ��
; ðB6Þ

where �� and �r are given by equations (A6) and (A7), respectively.

APPENDIX C

SOLVING FOR THE PHYSICAL PARAMETERS FROM A SNAPSHOT SPECTRUM AT t > tj

The most common ordering of the spectral break frequencies at tj < t < tNR is �sa < �m < �c, for which we obtain

�sa ¼ 2:08 ; 109
( p� 1)8=5

( p� 2)(3pþ 2)3=5
(1þ z)�4=5��1

e �
1=5
B n

8=15
0 E

4=15
51 t

�1=5
days Hz; ðC1Þ

�m ¼ 1:35 ; 1016
p� 2

p� 1

� �2

( p� 0:67)(1þ z)�2e�
1=2
B n

�1=6
0 E

2=3
51 t�2

days Hz; ðC2Þ

�c ¼ 1:75 ; 1013( p� 0:46)e�1:16p(1þ z)�1�
�3=2
B n

�5=6
0 E

�2=3
51 (1þ Y )�2 Hz; ðC3Þ

F�;max ¼ 131( pþ 0:14)(1þ z)2�
1=2
B n

1=6
0 E

4=3
51 t�1

daysD
�2
L;28 mJy ðC4Þ

for a uniform external medium (k ¼ 0), and

�sa ¼ 3:85 ; 109
( p� 1)8=5

( p� 2)(3pþ 2)3=5
(1þ z)�4=5��1

e �
1=5
B A8=5

� E
�4=5
51 t

�1=5
days Hz; ðC5Þ

�m ¼ 1:05 ; 1016
p� 2

p� 1

� �2

( p� 0:69)(1þ z)�2e�
1=2
B A�1=2

� E51t
�2
days Hz; ðC6Þ

�c ¼ 1:15 ; 1011(3:45� p)e0:45p(1þ z)�1�
�3=2
B A�5=2

� E51(1þ Y )�2 Hz; ðC7Þ

F�;max ¼ 201( pþ 0:12)(1þ z)2�
1=2
B A1=2

� E51t
�1
daysD

�2
L;28 mJy ðC8Þ

for a stellar wind environment (k ¼ 2), where Y is the Compton y-parameter, A� ¼ A=(5 ; 1011 g cm�1), tdays ¼ t=(1 day), �B is the
fraction of the internal energy behind the shock in the magnetic field, and Qx � Q=(10x ; the cgs units of Q). The emission depends
only on the true energy in the jet, E, and does not depend on its initial half-opening angle �0, since at t > tj (or equivalently when �
drops below ��1

0 ), the dynamics become independent of �0; i.e., the jet begins to expand sideways exponentially with radius in a self-
similar manner that is independent of �0 (Granot et al. 2002). Solving the above sets of equations for the physical parameters yields

Eiso;52 ¼ 0:104
f0( p)

f0(2:2)
�
�5=6
a;9 �

�5=12
m;13 �

1=4
c;14

F�;max

1 mJy

� �3=2

t
�1=2
days (1þ z)�2D3

L;28(1þ Y )1=2; ðC9Þ

E51 ¼ 0:0136
g0;E( p)

g0;E(2:2)
�
5=12
a;9 �

5=24
m;13�

3=8
c;14

F�;max

1 mJy

� �3=4

t
5=4
days(1þ z)�1D

3=2
L;28(1þ Y )3=4; ðC10Þ

n0 ¼ 0:0714
gn( p)

gn(2:2)
�
25=6
a;9 �

25=12
m;13 �

3=4
c;14

F�;max

1 mJy

� ��3=2

t
7=2
days(1þ z)5D�3

L;28(1þ Y )3=2; ðC11Þ

�B ¼ 2:42
g0;B( p)

g0;B(2:2)
�
�5=2
a;9 �

�5=4
m;13 �

�5=4
c;14

F�;max

1 mJy

� �1=2

t
�5=2
days (1þ z)�3DL;28(1þ Y )�5=2; ðC12Þ

�e ¼ 0:355
g0; e( p)

g0; e(2:2)
�
5=6
a;9 �

11=12
m;13 �

1=4
c;14

F�;max

1 mJy

� ��1=2

t
3=2
days(1þ z)D�1

L;28(1þ Y )1=2 ðC13Þ

for a uniform density, where f0( p) ¼ e0:29p( p� 1)1=2(3pþ 2)�1=2( p� 0:67)5=12( p� 0:46)�1=4( pþ 0:14)�3=2, g0;E( p) ¼ e0:435p( p�
1)�1=4(3pþ2)1=4( p�0:67)�5=24( p�0:46)�3=8( pþ0:14)�3=4, gn( p)¼ e0:87p( p�1)�5=2(3pþ2)5=2( p�0:67)�25=12( p�0:46)�3=4( pþ
0:14)3=2, g0;B( p) ¼ e�1:45p( p� 1)3=2(3pþ 2)�3=2( p� 0:67)5=4( p� 0:46)5=4( pþ 0:14)�1=2, and g0; e( p) ¼ e0:29p( p� 2)�1( p�
1)1=2(3pþ 2)1=2( p� 0:67)�11=12( p� 0:46)�1=4( pþ 0:14)1=2. For a stellar wind environment we find

Eiso;52 ¼ 0:0674
f2( p)

f2(2:2)
�
�5=6
a;9 �

�5=12
m;13 �

1=4
c;14

F�;max

1 mJy

� �3=2

t
�1=2
days (1þ z)�2D3

L;28(1þ Y )1=2; ðC14Þ
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E51 ¼ 0:0161
g2;E( p)

g2;E(2:2)
�
5=12
a;9 �

5=24
m;13�

3=8
c;14

F�;max

1 mJy

� �3=4

t
5=4
days(1þ z)�1D

3=2
L;28(1þ Y )3=4; ðC15Þ

A� ¼ 0:0262
gA( p)

gA(2:2)
�
5=3
a;9 �

5=6
m;13�

1=2
c;14t

2
days(1þ z)(1þ Y ); ðC16Þ

�B ¼ 0:680
g2;B( p)

g2;B(2:2)
�
�5=2
a;9 �

�5=4
m;13 �

�5=4
c;14

F�;max

1 mJy

� �1=2

t
�5=2
days (1þ z)�3DL;28(1þ Y )�5=2; ðC17Þ

�e ¼ 0:526
g2; e( p)

g2; e(2:2)
�
5=6
a;9 �

11=12
m;13 �

1=4
c;14

F�;max

1 mJy

� ��1=2

t
3=2
days(1þ z)D�1

L;28(1þ Y )1=2; ðC18Þ

where f2( p)¼ e�0:113p( p�1)1=2(3pþ2)�1=2( p�0:69)5=12(3:45�p)�1=4( pþ0:12)�3=2, g2;E( p)¼ e�0:169p( p�1)�1=4(3pþ2)1=4( p�
0:69)5=4(3:45� p)5=4( pþ 0:12)3=4, gA( p)¼ e�0:225p( p�1)�1(3pþ 2)( p� 0:69)�5=6(3:45�p)�1=2, g2;B( p)¼ e0:563p( p�1)3=2(3p þ
2)�3=2( p�0:69)5=4(3:45�p)5=4( pþ0:12)�1=2, and g2; e( p)¼ e�0:113p( p�2)�1( p�1)1=2(3pþ2)1=2( p�0:69)�11=12(3:45� p)�1=4

( pþ 0:12)1=2.
As was pointed out by Sari & Esin (2001), the expressions for the physical parameters that are derived from the instantaneous

(‘‘snapshot’’) spectrum do not depend on the external density profile (i.e., on the value of k in our case), up to factors of order unity.
This is because the instantaneous spectrum samples only the instantaneous external density just in front of the afterglow shock,
next(r). The expression for the external density n for a uniform medium (k ¼ 0) represents the density just in front of the shock for a
general density profile that varies smoothly and gradually with radius, n $ next(r), where in our case next ¼ Ar�k=mp. However, for a
nonuniform density next changes with radius and therefore with time. In our case, we assume that the functional form of next(r) is
known (i.e., we fix the value of k) and express the density normalization A as a function of the instantaneous values of the peak flux
and break frequencies.

We note that the expressions for the physical parameters at tj < t < tNR are identical to those at t < tj. This is because we assume
that the jet is uniform within a half-opening angle �j � ��1 and therefore that its emission is practically indistinguishable from that
of a spherical blast wave with the same Lorentz factor � and radius R, or equivalently,11 the same isotropic equivalent energy Eiso

[which for a spherical blast wave is equal to the true energy, and for a model 1 jet is Eiso � (2=� 2
j )E � 2�2E ] and observed time t (for

the same values of next , �e , �B , and p).
At t < tj, Eiso ¼ const and is the more interesting physical quantity, while E in equations (C10) and (C15) represents the energy

within an angle of ��1 around our line of sight, which has no special physical significance at this stage. At tj < t < tNR, however, the
situation is reversed and E ¼ const represents the true kinetic energy of the jet and is therefore of great interest, while Eiso � 2�2E
decreases with time and is no longer a very interesting physical quantity.

For model 2, the jet continues to evolve as if it were part of a spherical blast wave with the same Eiso until tNR(Eiso), and
Eiso � (2=� 2

0)E ¼ const. Therefore, the emission at tj < t < tNR is the same as from a spherical blast wave with the same Eiso, except
for the peak flux F�,max , which is suppressed by a factor of �(�0�)

2 � (t=tj)�(3�k)=(4�k). Hence, the above equations for the physical
parameters can still be used in this case with the substitution F�,max!F�,max(t/tj)

(3�k)/(4�k). In addition to this, in order to obtain the
true energy in the jet, the expression for E (eqs. [C10] and [C15]) should be multiplied by (t/tj)

�(3�k)/(4�k), which is the fraction of the
area within an angle of ��1 around the line of sight that is occupied by the jet.
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