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GRB spectrum from gradual dissipation in a magnetized outflow

Ramandeep Gill,1,2‹ Jonathan Granot1,2 and Paz Beniamini 3

1Department of Physics, The George Washington University, Washington, DC 20052, USA
2Department of Natural Sciences, The Open University of Israel, P.O. Box 808, Ra’anana 43537, Israel
3Theoretical Astrophysics, California Institute of Technology, Mail Code 350-17, Pasadena, CA 91125, USA

Accepted 2020 September 15. Received 2020 September 15; in original form 2020 August 24

ABSTRACT
Modelling of many gamma-ray burst prompt emission spectra sometimes requires a (quasi) thermal spectral component in
addition to the Band function that sometimes leads to a double-hump spectrum, the origin of which remains unclear. In
photospheric emission models, a prominent thermal component broadened by sub-photospheric dissipation is expected to be
released at the photospheric radius, rph ∼ 1012 cm. We consider an ultra-relativistic strongly magnetized steady outflow with
a striped-wind magnetic-field structure undergoing gradual and continuous magnetic energy dissipation at r < rs that heats
and accelerates the flow to a bulk Lorentz factor �(r) = �∞min [1, (r/rs)1/3], where typically rph < rs. Similar dynamics and
energy dissipation rates are also expected in highly variable magnetized outflows without stripes/field-reversals. Two modes of
particle energy injection are considered: (a) power-law electrons, e.g. accelerated by magnetic reconnection, and (b) distributed
heating of all electrons (and e±-pairs), e.g. due to magnetohydrodynamic instabilities. Steady-state spectra are obtained using
a numerical code that evolves coupled kinetic equations for a photon-electron-positron plasma. We find that (i) the thermal
component consistently peaks at (1 + z)Epk ∼ 0.2 − 1 MeV, for a source at redshift z, and becomes sub-dominant if the total
injected energy density exceeds the thermal one, (ii) power-law electrons cool mainly by synchrotron emission whereas mildly
relativistic and almost monoenergetic electrons in the distributed heating scenario cool by Comptonization on thermal peak
photons, (iii) both scenarios can yield a low-energy break, and (iv) the ∼ 0.5(1 + z)−1 keV X-ray emission is suppressed in
scenario (a), whereas it is expected in scenario (b). Energy-dependent linear polarization can differentiate between the two
particle heating scenarios.

Key words: acceleration of particles – magnetic reconnection – MHD – radiation mechanisms: non-thermal – relativistic pro-
cesses – gamma-ray burst: general.

1 IN T RO D U C T I O N

The emission mechanism that powers the prompt gamma-ray emis-
sion in both short-hard (T90 � 2 s; Kouveliotou et al. 1993) and
long-soft (T90 � 2 s) gamma-ray bursts (GRBs; see e.g. Piran 2004;
Kumar & Zhang 2015 for reviews) is still a matter of debate. The
typical prompt emission spectrum is non-thermal and is traditionally
described by the empirical ‘Band function’ (Band et al. 1993),
representing a smoothly broken power law. The break photon
energy where the ELE spectrum peaks is on average measured
to be around 〈Epk〉 � 250 keV and the mean power-law photon
indices below and above Epk are 〈α〉 � −1 and 〈β〉 � −2.3,
respectively (e.g. Preece et al. 2000; Kaneko et al. 2006). One
of the main difficulties in understanding the emission mechanism
has been our ignorance of the jet composition, i.e. whether it is
kinetic energy dominated (Rees & Meszaros 1994) or Poynting-flux
dominated (Thompson 1994; Lyutikov & Blandford 2003), which
dictates the mode of energy dissipation in the outflow, e.g. internal
shocks or magnetic reconnection, respectively. When the outflow is
loaded with protons and neutrons, nuclear collisions between the
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two particle species can also dissipate energy (e.g. Beloborodov
2010).

The localization of the spectral peak to 100 keV�Epk �1 MeV
finds a natural explanation in photospheric emission models with sub-
photospheric dissipation (see e.g. Beloborodov & Mészáros 2017 for
a review). In this scenario, the spectral peak and the low-energy part
of the spectrum at photon energies E < Epk are formed by quasi-
thermal Comptonization of soft seed photons up to the thermal peak
by mildly relativistic electrons when the flow is optically thick with
Thomson optical depth 1 � τT � 100 (e.g. Eichler & Levinson
2000; Pe’er & Waxman 2004; Rees & Mészáros 2005; Giannios &
Spruit 2007; Beloborodov 2013; Vurm, Lyubarsky & Piran 2013;
Thompson & Gill 2014; Bhattacharya & Kumar 2020). Continued
dissipation as the flow becomes optically thin (τ T < 1) then gives rise
to the high-energy part of the spectrum at photon energies E > Epk

(e.g. Giannios 2006; Pe’er, Mészáros & Rees 2006; Giannios 2008;
Gill & Thompson 2014; Vurm & Beloborodov 2016). The end result
is a broadened spectrum that resembles the typical non-thermal Band
function as compared to a narrow thermal one.

Many GRBs, however, show deviations from the typical single-
component Band spectrum by having multiple spectral components
(e.g. Guiriec et al. 2016b), namely a double-hump spectral profile
(Guiriec et al. 2011, 2017) with, sometimes, an additional underlying
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power-law component that in some cases features a high-energy cut-
off (Ryde 2004, 2005; Guiriec et al. 2010, 2015a,b, 2016a). When two
spectral humps are present, one of them is modelled as being thermal
and the other non-thermal, where the latter is generally interpreted as
fast-cooling synchrotron emission from electrons with a power-law
energy distribution. The emergence of the two-component spectrum
in the internal-shock model (e.g. Mészáros & Rees 2000) as well
as in a magnetized outflow (e.g. Beniamini & Giannios 2017) has
been demonstrated analytically. Better and consistent time-resolved
spectral fits have been obtained in the observational works mentioned
above when using a two-component thermal+non-thermal model
over the traditional single-component Band function. Typically,
the thermal component is sub-dominant. However, in some (albeit
rare) cases the entire pulse is dominated by thermal (or quasi-
thermal) emission (e.g. Ryde 2004). The presence of the thermal
component in the spectra of many bursts gave the initial motivation to
consider photospheric emission models. Now, increasing incidence
for such components in GRB spectra, attributed to the wider energy
range of Fermi/Gamma-ray Burst Monitor as well as the use of
multicomponent spectral fits, gives further credence to this idea.

In addition, many GRBs have been shown to feature a low-
energy spectral break at Ebr ∼ 0.03Epk, with photon indices α1 =
−0.66 ± 0.35 for E < Ebr and α2 = −1.46 ± 0.31 for Ebr < E
< Epk (Oganesyan et al. 2017; Ravasio et al. 2019). Such a break
would be naturally produced in models that considered optically thin
synchrotron emission from fast-cooling electrons, where the break
would represent the cooling break due to synchrotron emission from
electrons cooling at the dynamical time, with photon indices α1 =
−2/3 and α2 = −3/2 (Katz 1994; Rees & Meszaros 1994; Tavani
1996; Sari, Piran & Narayan 1998; Granot & Sari 2002; Kumar &
McMahon 2008; Beniamini & Piran 2013). Under this interpretation,
the relative proximity of the two break energies suggests that the
particle injection Lorentz factor (LF) is close to the cooling LF (recall
that γ m ∝ E1/2) and therefore that synchrotron emission is produced
in the marginally fast cooling regime (Daigne, Bošnjak & Dubus
2011; Beniamini, Barniol Duran & Giannios 2018). Photospheric
emission models generally lack such a break at low energies apart
from that produced by synchrotron self-absorption of the soft seed
photon source, which typically features a much harder Rayleigh–
Jeans spectrum below Ebr with α1 = 1.

To investigate spectral formation, detailed numerical simulations
have been performed for models featuring energy dissipation in
internal shocks with power-law electrons emitting synchrotron
photons (Pe’er & Waxman 2004, 2005), neutron-proton collisional
heating with monoenergetic e±-pair injection (Vurm, Beloborodov &
Poutanen 2011; Vurm & Beloborodov 2016), and distributed heating
with quasi-thermal Comptonization of soft photospheric component
(Pe’er et al. 2006; Gill & Thompson 2014) or self-absorbed cyclo-
synchrotron emission (Stern & Poutanen 2004; Vurm et al. 2013;
Thompson & Gill 2014) as the main emission mechanisms. These
works self-consistently included the effects of e±-pair cascades
and conducted a thorough parameter space study. Many works
considered a single-collision model, in which the final spectrum
was derived from dissipation occurring over a single dynamical
time. Some only considered sub-photospheric dissipation in a flow
coasting at its terminal bulk LF, �∞. Earlier numerical works that
explored dissipation in a Poynting-flux dominated outflow, using
Monte Carlo simulations (Giannios & Spruit 2005; Giannios 2006;
Giannios & Spruit 2007; Giannios 2008), considered a thermal
distribution of electrons at (comoving) temperature T ′

e set by the
balance between volumetric heating of all particles due to magnetic
energy dissipation and their cooling due, mostly to Comptonization,

as well as synchrotron emission. These works did not include the
effects of e±-pairs on the final spectrum.

The appearance of the double-hump spectrum and low-energy
break offers additional clues for understanding the prompt GRB
emission mechanism. To this end, we consider a photospheric
emission model with sub-photospheric dissipation, occurring contin-
uously from rτ0 
 rph < rs until the saturation radius rs, from mag-
netic reconnection or magnetohydrodynamic (MHD) instabilities in
a striped-wind Poynting-flux dominated ultra-relativistic outflow.
Beniamini & Giannios (2017) carried out analytic modelling of this
scenario that yielded two-component spectra for a range of values
of the model parameters. Alternatively, in a highly time-variable
and magnetized relativistic outflow impulsive magnetic acceleration
takes place even without any magnetic-field reversals (i.e. striped-
wind) (e.g. Granot, Komissarov & Spitkovsky 2011) that leads
to a similar dynamical evolution and energy dissipation per unit
radius, where dissipation occurs through internal shocks rather than
magnetic reconnection (Granot et al. 2011; Granot 2012; Komissarov
2012). Therefore, the results of this work are generally applicable to
a wider class of Poynting-flux-dominated models.

Here, we consider two energy dissipation scenarios that acceler-
ate/heat the electrons (and created e±-pairs) differently. (i) Magnetic
reconnection in the striped wind is assumed to accelerate a fraction
ξ of the total baryonic electrons in the emission region, whose
initial Thomson optical depth is τ T0, into a power-law energy
distribution. The remaining fraction, (1 − ξ ) of the total, forms a
cold Maxwellian distribution which is initially in thermal equilibrium
with the entrained thermal radiation field for τT > τT0. (ii) MHD
instabilities, e.g. the Kruskal–Schwarzchild instability (Lyubarsky
2010; Gill, Granot & Lyubarsky 2018), lead to distributed heating of
all the particles that form a narrowly peaked distribution at a critical
energy defined by the balance between heating and cooling.

In both scenarios, energy dissipation commences at a given
optical depth τT0 and coupled kinetic equations for both particles
and photons are self-consistently evolved using a one-zone time-
dependent kinetic code that includes all relevant radiation processes
and interactions between both distributions. Most importantly, we
include the effect of e±-pair cascades that was ignored in some
earlier works due to its highly non-linear nature.

The main model is presented in Section 2, where we describe
the flow dynamics of an ultra-relativistic steady spherical flow
(Section 2.1) followed by energy dissipation and particle acceleration
(Section 2.2) and details of the thermal radiation (Section 2.3). A brief
description of the one-zone code is provided in Section 3. The two
particle heating scenarios are discussed in Section 4 and the results of
the simulations including radial evolution of the spectrum, particle
distribution, and flow parameters for scenario (i) are presented in
Section 4.1. Likewise, results for the distributed heating scenario
(ii) are presented in Section 4.2. In Section 5, we carry out a
parameter space exploration and present spectra for different outflow
parameters. Low-energy spectral breaks are discussed in Section 6
followed by a summary of this work and discussion in Section 7.

2 G R A D UA L E N E R G Y D I S S I PAT I O N I N A
RELATIVISTIC SPHERICAL FLOW

2.1 Flow dynamics

We consider a steady Poynting-flux-dominated relativistic (locally)
spherical flow with a striped wind magnetic field structure (e.g.
Lyubarsky & Kirk 2001; Bégué, Pe’er & Lyubarsky 2017), where
we follow the treatment in Beniamini & Giannios (2017) and present
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the salient points below. The characteristic length scale (λ) over
which the magnetic field lines reverse polarity is set by the size
of the light cylinder (rL), such that λ ∼ πrL = πc/
 = cP/2 =
1.5 × 107P−3 cm, where 
 = 2π/P is the central engine’s rotational
angular frequency, P = 10−3P−3 s is the spin period, and c is the
speed of light. While this description of a striped wind flow is
relevant for a millisecond magnetar central engine (e.g. Metzger
et al. 2011), more generally a magnetized outflow from an accreting
black hole arguably features stochastic flips in magnetic field polarity
over length scales λ� rL (e.g. McKinney & Uzdensky 2012; Parfrey,
Giannios & Beloborodov 2015). It is worth pointing out that a broadly
similar scenario may take place even without magnetic field flips or
reversals, for a time-variable Poynting-flux-dominated outflow. In
this case, impulsive magnetic acceleration leads to a very similar
global flow dynamics (Granot et al. 2011) in terms of �(r) and
the fraction of the total energy that is dissipated up to a radius r,
fdis(r). While there is no magnetic reconnection in this picture, energy
dissipation is driven by internal shocks within the outflow (Granot
et al. 2011; Granot 2012; Komissarov 2012) including multiple weak
shocks at r 
 rs, where σ � 1 that gradually become more efficient
and become strongest and most efficient when σ � 1 is reached at r
� rs. In this scenario, the effective shell (rather than stripe) width is
λ ∼ ctv where tv = 5 × 10−4P−3 s is the central engine’s variability
time, which is reflected in the observed variability time-scales of
the prompt GRB emission (up to cosmological time dilation). The
observed variability time is typically �tv = (1 + z)tv ∼ 1 s, and so
λ � 1010 cm.

Magnetic energy is dissipated in the flow when field lines of
opposite polarity are brought together and undergo reconnection. The
rate of reconnection is set by the inflow plasma velocity, vin = εvA,
which is a fraction ε ∼ 0.1 of the Alfvén speed. For a strongly
magnetized flow, the initial magnetization (ratio of magnetic to
particle energy flux ratio) at the jet launching radius r0 is

σ0 = LB,
,0

Lk,
,0
= β0c(B0r0)2

4π�0Ṁ
c2
= B ′

0
2

4πn′
0mpc2

� 1. (1)

Here, LB,
,0 = β0c(�0B
′
0r0)2/4π and Lk,
,0 = �0Ṁ
c2 =

β0(r0�0)2n′
0mpc3 are the initial power per unit solid angle carried by

the magnetic field, with comoving strength B ′
0 = B0/�0, and kinetic

power per unit solid angle carried by the cold baryons, with comoving
number density n′

0. The flow is assumed to achieve magnetization
σA = σ

2/3
0 at the Alfvén radius rA ∼ few × rL (Drenkhahn 2002),

at which point its proper velocity is uA = (�2
A − 1)1/2 = √

σA

and βA = uA/�A = (1 − �−2
A )1/2 = vA/c = σA/(1 + σA) ≈ 1, and

therefore vin = εc.
Under the assumption that a reasonable fraction of the dissipated

energy in the flow goes towards its acceleration, the condition
�(r)σ (r) = �0σ 0 always holds a long as σ � 1 [more generally
�(r)(1 + σ (r)) = �0(1 + σ 0] from conservation of the total specific
energy, i.e. neglecting radiative losses etc., where σ = B

′2/4πw

and w is the proper enthalpy density, which eventually leads to
�(r > rs) ≈ �∞ ≈ �0σ0 = σ0 = σ

3/2
A , where σ (r > rs) < 1 (see

e.g. Granot et al. 2011). At this point, the flow becomes kinetic
energy dominated and starts to coast at its terminal LF �∞ until it is
decelerated by its interaction with the external medium – interstellar
medium (ISM) for short-hard GRBs and stellar wind of the massive
star progenitor of long-soft GRBs. Beyond the Alfvén radius the
outflow’s bulk LF grows as a power law in radius

�(r) = �∞

(
r

rs

)1/3

, rA < r < rs, (2)

until the saturation radius,1

rs = �2
∞λ

6ε
= 1.7 × 1013�2

∞,3

(
λ

ε

)
8

cm, (3)

at which point all of the magnetic energy in the flow has been
dissipated with nothing left for further acceleration. However, further
dissipation can still occur due to internal shocks that become efficient
when σ < 1 for r > rs, as argued above.

The flow is launched Poynting-flux dominated and the total
power per unit solid angle crossing radius r is given by L
 =
LB,
 + Lk,
 + Lγ,
, where the last term represents the emitted
radiation. In the absence of any dissipation Lγ , 
 = 0, and the power
carried by the Poynting flux can be expressed in terms of the total
jet power, LB,
 = L
(1 − �/�∞) ≈ L
 for rA < r 
 rs (where 1
< � 
 �∞ and β ≈ 1), which yields an estimate of the comoving
magnetic field:

B ′ ≈
(

4πL


�2r2c

)1/2

= 4.1 × 106
L

1/2

,52

(
λ
ε

)1/3

8

r
4/3
12 �

1/3
∞,3

G. (4)

The comoving number density of the baryonic electrons in the flow
is given by n′ = L
/r2��∞mpc3 ∝ (r2�)−1, which contributes a
characteristic Thomson optical depth of

τT = n′σT r

�
= σT L


r�2�∞mpc3
= 1

L
,52

(
λ
ε

)2/3

8

�
5/3
∞,3r

5/3
12

, (5)

where σ T is the Thomson cross-section. For r < rs, � ∝ r1/3, and
therefore τ T ∝ r−5/3. However, when the flow starts to coast at � =�∞
the Thomson optical depth drops more slowly with radius, τ T ∝ r−1.
At τ T = 1 matter and radiation decouple, allowing the radiation to
stream freely, which defines the photospheric radius,

rph ≈ 1012
L

3/5

,52

(
λ
ε

)2/5

8

�∞,3
cm. (6)

Here, we have only considered the Thomson optical depth of baryonic
electrons. In Fig. 1, we show the different parameters for which rph =
rs. The vertical axis shows the typical range expected for

(
λ
ε

)
8
, where

the lower end is relevant for a millisecond magnetar central engine
and the higher end reflects the typical values based on the observed
variability time-scale of prompt GRB emission. The solid lines show
the model parameter space for fixed values of the jet power per
unit solid angle, L
 � 1052 erg s−1sr−1, the fiducial value adopted
in this work. We consider the regime with rph < rs when the flow is
heated continuously, as it transitions from the optically thick to thin
regimes. We will show below that copious pair-production ensues
when energy dissipation leads to particle acceleration into a power-
law energy distribution that emits energetic synchrotron radiation.
The created pairs extend the photospheric radius by factors of a
few.

2.2 Energy dissipation and particle acceleration

Energy is dissipated gradually in the flow, for r < rs, as magnetic field
lines of opposite polarity come into contact and undergo magnetic
reconnection. The rate of energy dissipation at any given radius can
be obtained from the Poynting-flux power, such that (Giannios &

1Throughout this work, the notation Qx denotes the value of the quantity Q
in units of 10x times its (cgs) units
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GRB spectrum from a magnetized outflow 1359

Figure 1. Parameter space for which the photospheric radius rph, due to
baryonic electrons, is equal to the saturation radius rs, shown as a function of
�∞ and (λ/ε) for fixed jet power per unit solid angle L
 (note that the outflow’s
total isotropic equivalent power is 4πL
 = 1.26 × 1053L
,52 erg s−1). We
only consider the regime where rph < rs (to the right of the lines) when the
flow is heated continuously from the optically thick to thin regime.

Spruit 2005)

dLdiss,


dr
= −dLB,


dr
= − d

dr

[
L


(
1 − �

�∞

)]

= 1

3

L


�∞

�

r
∝ r−2/3. (7)

This implies a differential dissipation dLdiss, 
 ∝ r−2/3dr or a cu-
mulative dissipation Ldiss, 
(< r) ∝ r1/3 at r0 < r < rs. At r = rs,
when � = �∞, magnetic energy dissipation peaks and stops, so
that fdis(r) = Ldiss,
(<r)/L
 = min[1, (r/rs)1/3]. Next, we relate
the dissipated power to the comoving dissipated energy density,
dLdiss,
 = r2�2c dU ′

diss, and express dr = �βcdt
′ ≈ �cdt

′
for �

� 1 and β ≈ 1, which yields

dU ′
diss

dt ′ = 1

3

L


�∞r3
. (8)

Magnetic reconnection leads to the acceleration of electrons into a
non-thermal power-law energy distribution, with dn′ ∝ γ −p

e dγe for
γ m < γ e < γ M, for which the mean energy per unit rest mass is
〈γ e〉nth = [(p − 1)/(p − 2)]γ m when p > 2. The power-law index
p has been shown to depend sensitively on the value of σ (e.g.
Sironi & Spitkovsky 2014; Guo et al. 2015; Kagan et al. 2015;
Werner et al. 2016), where it can be approximated to follow the
scaling (Beniamini & Giannios 2017)

p = 4σ−0.3. (9)

In models featuring internal shocks, 2 � p � 3 is left to vary as one of
the model parameters, whereas the σ dependence of p, as employed
here, reduces the total number of model parameter by one.

It is assumed here for simplicity that half of the dissipated
energy E′

diss goes directly into the flow’s kinetic energy (see e.g.
Drenkhahn & Spruit 2002), while the other half goes towards
particle acceleration and is divided between electrons (εeE

′
diss/2)

and protons ((1 − εe)E′
diss/2), where most of the latter energy is also

typically quickly converted into kinetic energy. In scenario (i), we
further assume that only a fraction ξ < 1 of electrons are actually
accelerated during magnetic reconnection, and the remaining fraction
(1 − ξ ) form a thermal distribution. The mean energy per baryon
is limited to σmpc2, as this is the total dissipated energy per
baryon-electron for complete magnetic dissipation; however, some
particle may in principle exceed the mean energy. Therefore, the
mean energy per accelerated electron, for a total of Ne electrons, is
given as ξ〈γe〉mec

2 = (εe/2)E′
diss/Ne = εeσmpc2/2, which yields an

estimate of the mean energy per rest mass energy of the non-thermal
electrons (Beniamini & Giannios 2017)

〈γe〉nth = εe

2ξ
σ

mp

me

= 2.3 × 103

(
εe

ξ

) (
λ
ε

)1/3

8
�

2/3
∞,3

r
1/3
12

. (10)

For a given set of flow parameters, the ratio of the parameters
εe and ξ controls the mean energy of the power-law accelerated
electrons. Since εe also controls the amount of energy put into the
power-law electrons, it also sets the normalization of the non-thermal
synchrotron emission component with respect to thermal component.

2.3 Thermal radiation

The magnetic energy in the flow is dissipated over a range of radii
(r0 < r < rs) and as the flow expands to larger radii its Thomson
optical depth drops. Therefore, for a given set of model parameters,
it is possible that energy dissipation proceeds continuously from the
optically thick to thin regions. Where most of the energy is dissipated
has consequences for the emergent radiation field spectrum. If most
of the dissipation occurs at smaller radii, when the flow is optically
thick (τ T � 1), Compton interactions between the electrons (or
pairs) and the radiation field ensure that the flow maintains (quasi-
)thermal equilibrium. In this case, the flow expands adiabatically
and since it is radiation-dominated, the scaling of comoving energy
density with comoving volume follows U ′

th ∝ V ′−4/3. The energy
density of the thermal radiation field can be related to its comoving
temperature, U ′

th = (4σSB/c)T ′4
th , where σ SB is the Stefan–Boltzmann

constant, which yields T ′
th ∝ V ′−1/3. For a steady relativistic spherical

flow expanding radially, the continuity equation yields, r2�(r)n′v =
constant, so that V

′ ∝ r2�(r). This finally implies that T ′
th(r) ∝ r−7/9

when � ∝ r1/3. The scaling of the thermal luminosity with radius
can now be expressed as Lth,
 = (4/3)r2�2cU ′

th ∝ r−4/9. If an
amount dLdiss, 
 of power is dissipated at radius rdiss, then the
thermal luminosity surviving till any radius r > rdiss is given by
dLth, 
(r) = (1/2)dLdiss, 
(rdiss)(r/rdiss)−4/9, such that the integrated
thermal luminosity is,

∫ r

0 dLth,
(r) ∝ r1/3, for r < rs, and its value
at the photosphere is

Lth,
(rph) ≈ 3

14
L


(
rph

rs

)1/3

= 8.3 × 1050 L
6/5

,52

�∞,3

(
λ
ε

)1/5

8

erg s−1 sr−1, (11)

and its comoving temperature at the photosphere is

kBT ′
th(rph) = kB

(
3Lth,ph,


16r2
ph�

2
phσSB

)1/4

� 0.2
�

1/4
∞,3

L
1/10

,52

(
λ
ε

)3/20

8

keV, (12)

and the corresponding observed energy of the Wien peak is

Epk,th(rph) = �ph

1 + z
3kBT ′

th(rph) = 210

1 + z

L
1/10

,52�

1/4
∞,3(

λ
ε

)7/20

8

keV, (13)
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1360 R. Gill, J. Granot and P. Beniamini

where kB is the Boltzmann constant. The above peak energy estimate
corresponds to that for the spectral luminosity LE. The ELE Wien
spectrum peak energy occurs at 4�kBT ′

th/(1 + z) instead. Since
T ′

th(r) ∝ r−7/12, the peak energy scaling with radius is Eth,pk ∝
r−1/4 ∝ τ

3/20
T 0 . In deriving the estimates above, we have made the

assumption that deeper in the flow, at very large optical depths, the
energy imparted to particles is readily thermalized and the efficiency
of thermalization is high.

Several works have studied the importance of the various radiative
processes that shape the (quasi-)thermal spectrum at different optical
depths (e.g. Beloborodov 2013; Vurm et al. 2013; Thompson & Gill
2014; Bégué & Pe’er 2015; Vurm & Beloborodov 2016) and its
radiative efficiency in a Poynting flux dominated flow (Pe’er 2017).
The radiation field is able to maintain a blackbody spectrum only at
extremely high optical depths (τ T � 102), where softer seed photons
are provided by double Compton scattering and/or bremsstrahlung
(in a weakly magnetized flow, σ 
 1) or cyclo-synchrotron emission
(in a strongly magnetized flow, σ > 1). At larger radii, the efficiency
of completely thermalizing the flow drops and a Wien spectrum
emerges instead at τ T � 102. Further dissipation at lower optical
depths, but still below the photosphere, acts to broaden the Wien
spectrum, producing a softer spectral slope below the spectral peak
energy and a harder one above it.

3 N U M E R I C A L T R E AT M E N T

We model the emission region using a one-zone kinetic code (see
Gill & Thompson 2014, for code details), where we include all
relevant high-energy radiation processes in a relativistic photon-
e±-pair plasma, including Compton scattering, cyclo-synchrotron
emission and self-absorption, pair production and annihilation, and
Coulomb interactions among the pairs.

The escape of radiation from an optically thin (τ T < 1) region of
comoving causal size r/�(r) is implemented using a simple ‘leaky-
box’ geometrical prescription (see e.g. Lightman & Zdziarski 1987).
When the flow is optically thick (τ T > 1), radiation is assumed to
remain within the dissipation region with no leakage. To obtain the
steady-state spectrum in the observer frame, we integrate over the
comoving spectral emissivity (see e.g. Granot, Piran & Sari 1999)
from the photospheric radius, rph(θ̃), which depends on the polar
angle θ̃ measured from the line-of-sight (Abramowicz, Novikov &
Paczynski 1991; Pe’er 2008; Beloborodov 2011), to a large radius
�max (rs, rph) where τ T 
 1 and the emission and absorption
become negligible.

Since we employ a one-zone code, which lacks any spatial and
angular information of the flow and the radiation field, the emission
is approximated to arise from essentially a blob of comoving causal
size r/� that is radially localized at r and moving with bulk LF �(r). In
addition, the leaky-box prescription is not particularly well suited to
describe the optically thin parts of the flow when radiation is expected
to stream freely. Instead, under the current prescription radiation
leaks out over a (comoving) dynamical time, t ′

dyn = r/�c, at the rate
of dn′

γ /dt ′ = −n′
γ /t ′

dyn where n′
γ is the comoving number density

of photons. Then, for a coasting flow, for which t
′ ∝ r, this would

mean that the remaining photon number density, n′
γ (r) = n′

γ,0(r0/r),
is still half at r = r0 + �r = 2r0 of that emitted a dynamical time
(radius doubling time) ago at r = r0. As a result, the radiation field
accumulates in the emission region over multiple dynamical times,
which is unphysical and may produce some artefacts. For example,
this would cause a larger suppression of the high-energy part of
the spectrum due to γ γ -annihilation for which a test photon with

energy E > �mec2/(1 + z) ‘sees’ a larger optical depth τ γ γ due to
larger number density of annihilating low-energy target photons at
energy ∼(�mec2)2/E(1 + z)2. This also leads to the emergence of a
power-law spectral break at high-energies instead of an exponential
one (e.g. Granot, Cohen-Tanugi & Silva 2008). Therefore, a more
accurate radiation transfer treatment, which is outside the scope of
this work, is needed to avoid such artefacts and include the angular
dependence of the radiation field (see e.g. Vurm & Beloborodov
2016).

4 TWO DI FFERENT PA RTI CLE HEATI NG
S C E NA R I O S

Magnetic energy dissipation due to either magnetic reconnection
or MHD instabilities commences when the flow is highly optically
thick. It continues to inject energy in the form of either power-law
(baryonic) electrons or via distributed heating of all particles, respec-
tively. The details of how particle injection/heating is implemented
in the simulation are presented in the Appendix.

Our starting point is an optically thick flow with initial Thomson
optical depth τT0 = 100. At this point, the comoving radiation field
spectrum resembles a Wien-like thermal spectrum,

dn′
γ

d ln E′ = U ′
0

6(kBTth)4
E′3 exp

(
− E′

kBT ′
th

)
(14)

characterized by its temperature T ′
th from equation (12) and

normalization given by U ′
0 = Lth,
/(4/3)r2�2c with Lth,
 =

Lth,ph,
(r/rph)1/3 = Lth,ph,
τ
−1/5
T in equation (11) for r < rs.

4.1 Injection of power-law electrons

Power-law electrons injected with γ e > γ m = [(p − 2)/(p −
1)]〈γ e〉nth, where the last equality is valid for p > 2 which is obtained
for σ < 10, emit synchrotron radiation for which the peak of the
νFν or ELE synchrotron spectrum occurs at the characteristic energy
(with p = 4 when σ = 1 at r = rs according to our parametrization
in equation 9)

Em = �

1 + z
hν ′

m = �

1 + z
γ 2

m

(
�eB ′

mec

)

≈ 1.3 × 105

1 + z

(
p − 2

p − 1

)2 (
εe

ξ

)2 L
1/2

,52�

4/3
∞,3

(
λ
ε

)2/3

8

r
5/3
12

keV

≈ 530

1 + z

(
εe

ξ

)2 L
1/2

,52

�2
∞,3

(
λ
ε

)
8

keV (p = 4) (15)

when particles are fast-cooling, i.e. when the characteristic cooling
break energy Ec < Em, where

Ec = 36π2

1 + z

�emec
3

σ 2
T

�3

B ′3r2
≈ 2.6 × 10−9

1 + z

�2
∞,3r

3
12

L
3/2

,52

(
λ
ε

)2

8

keV, (16)

and h = 2π� is the Planck’s constant. Another characteristic break
in the synchrotron spectrum appears when the emission becomes
self-absorbed by the emitting electrons. A simple estimate of the
self-absorption break energy can be obtained by noticing that at
E = Esa the synchrotron specific intensity cannot exceed that
of a blackbody. We approximate the latter using the Rayleigh–
Jeans specific intensity, I ′RJ

E′ (E′
sa) = (2E′2

sa/h
3c2)γe(E′

sa)mec
2, where

γe(E′
sa) = (E′

samec/e�B
′)1/2 is the LF of electrons radiating at the

self-absorption energy. The synchrotron specific intensity can be
obtained from I ′

E′ ∼ (P ′
E′/4π )ξn′(R/�), where R/� is the comoving
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GRB spectrum from a magnetized outflow 1361

size of the emission region and ξn
′

is the number density of
baryonic electrons that were accelerated into a power-law dis-
tribution. The synchrotron spectral power at E′ = E′

sa is given
by P ′

E′ (E′
sa) = P ′

E′,max(E′
sa/E

′
c)−1/2 for E′

c < E′
sa < E′

m. The peak
spectral power at E′ = E′

c can be approximated using the total
power emitted by a single electron, P ′

syn = (4/3)σT cγ 2
e (B ′2/8π), at

the characteristic synchrotron energy, E′
syn = γ 2

e e�B ′/mec, such that
P ′

E′,max ∼ P ′
syn/E

′
syn = σT B ′mec

2/3eh. From I ′RJ
E′ = I ′

E′ , we find the
synchrotron self-absorption energy

Esa ∼ �

1 + z

(
h3

8πmp

ξL


�∞

1

r2�

)1/3

≈ 1.4

1 + z

ξ 1/3L
1/3

,52

�
1/9
∞,3

(
λ
ε

)2/9

8
r

4/9
12

keV. (17)

This estimate is only valid when Ec < Esa < Em. In addition, it
only accounts for the number of baryonic electrons and not the total
number of particles that includes the e±-pairs, and therefore, the true
value is slightly higher by a factor (τT/τT, e)1/3, where τT = τT, e +
τT± is the total optical depth and τT, e is the optical depth due to
baryonic electrons.

At E < Esa a photon index of α = 1 is usually assumed. This
indeed holds for a uniform emission region, as is assumed in this
work, and is physically expected in our scenario (ii) for volumetric
heating. However, when the particles are heated at a moving front,
be it a shock or magnetic reconnection front as may be relevant in
our scenario (i), then the time they had to cool is proportional to their
distance from that front, so that beyond a thin cooling layer where
the minimal γ m electrons start cooling the electrons become locally
essentially mono-energetic with an energy inversely proportional to
their distance from the front. Once the emission becomes optically
thick at E < Esa the location of an optical depth of unity from which
the photons reach the observer gets closer to the front as E decreases,
corresponding to a higher temperature T

′ ∝ E
′ − 5/8 so that altogether

the observed spectral slope becomes I ′RJ
E′ ∝ E′2T ′ ∝ E′11/8 or α =

3/8 (Granot, Piran & Sari 2000; Granot & Sari 2002). Once the
location of optical depth of unity reaches the thin cooling layer where
kBT

′ ∼ γ mmec2 = const, the usual α = 1 photon index is recovered
(corresponding to a second break energy Eac, so that α = 1 at E <

Eac while α = 3/8 at Eac < E < Esa.)
In the top left-hand panel of Fig. 2, we show the spectrum in the

cosmological rest-frame of the central engine for different values
of εe. The spectrum shows a distinct peak at (1 + z)E ≈ 200 keV,
which represents the adiabatically cooled thermal component. The
spectrum below and above this peak energy is shaped by fast-cooling
synchrotron emission from power-law electrons, as shown by the
black dashed line, which peaks at E = Em ≈ 1(1 + z)−1 MeV for
the εe = 0.1 case. For smaller values of εe the synchrotron peak
moves to smaller energies and the normalization of the non-thermal
component with respect to the thermal one declines while producing a
distinct thermal bump. On the other hand, larger values of εe result in
a two-hump spectrum until the non-thermal synchrotron component
starts to dominate the spectrum completely.

The spectrum drops off sharply at two characteristic energies.
At low energies near E = Esa ≈ 0.5(1 + z)−1 keV, the synchrotron
spectrum becomes self-absorbed resulting in a sharp break. At
high energies near (1 + z)E = �mec

2 ≈ 0.2 GeV, the emission is
suppressed due to γ γ -annihilation. The position of the high-energy
spectral break is affected by the leaky-box prescription adopted in
this work, as argued in Section 3, and therefore the actual break is
expected to occur at a larger energy.

In the top right-hand panel of Fig. 2, we show the spectral slopes by
plotting dlog ELE/dlog E, where the peak (or local minima/maxima)
of the spectra occurs when the different curves cross zero. At energies
just above Esa, the spectrum is dominated by fast-cooling synchrotron
emission, and therefore has the expected slope with LE ∝ E−1/2.
Closer to the ELE peak, the spectrum deviates from this trend and
becomes harder below the peak and softer above it. This is due to
the predominance of the thermal component. However, the peak is
not as hard as expected for a Wien spectrum (ELE ∝ E4), the initial
condition here. Instead, the spectral slope just below the peak is much
softer and remains below unity which is observed for a large fraction
of GRBs (e.g. Kaneko et al. 2006). At larger energies above the
peak, the synchrotron component again tends to dominate for which
LE ∝ E−p/2 when E > Em. In our model, the value of p depends on
the magnetization σ according to equation (9) and evolves over time,
approaching p = 4 near the end of dissipation at r = rs.

The particle distribution for both electrons and positrons at r = rs,
just before the injection of power-law electron ceases, is shown in the
bottom left-hand panel of Fig. 2 as a function of the dimensionless
momentum pe = γ eβe. Since ξ = 0.2 here, the colder baryonic
electrons dominate the Thomson optical depth of the flow. However,
for larger values of εe, the fraction of produced e±-pairs increases
and starts to dominate the optical depth. Starting at high momentum,
for pe > γ m, with γ m > 100, the curves reflect the distribution of
the injected power-law electrons that cools via synchrotron emission.
The distribution of cooled electrons at 10 � pe < γ m reflects their
steady-state distributed due to cooling, where the differential number
of particles at a given γ e reflects the cooling time at that γ e, such that
dn = γedn/dγe = γene(γe) ∝ tc(γe) ∝ γ −1

e that yields ne(γe) ∝ γ −2
e .

In momentum space, ne(pe) = (dγ e/dpe)ne(γ e) = (pe/γ e)ne(γ e), and
therefore ne(pe) ∝ pe/γ

3
e . For pe � 1, pe ≈ γ e and so ne(pe) ∝ γ −2

e

and dne/d log pe ∝ dτT /d log pe ∝ p−1
e . At low pe < 1, the particle

distribution is a Maxwellian that represents the initial colder baryonic
electrons as well as the cooled injected power-law electrons and the
produced e±-pairs. Energy exchange between the cooler baryonic
electrons and the injected power-law electrons and produced e±-pairs
occurs via Coulomb scattering, which is included in the numerical
code. For larger values of εe, the mean energy of incoming power-law
electrons is also larger, which results in the respective Maxwellian
distribution having a larger temperature.

For smaller values of εe < 0.1, the total optical depth is dominated
by the baryonic electrons as shown in the bottom-right panel of
Fig. 2. When εe is increased, more energy is put into the non-thermal
component that results in increasing the number of produced e±-
pairs, as evident for the εe = 0.2 case. Due to pair production the
photospheric radius is extended to slightly larger radii by a factor
(1 + τT, ±/τT, e)3/5 over the baryonic one given in equation (6). For
example, τT, ± ≈ τT, e for εe = 0.2 that yields an enhancement in the
photospheric radius by a factor ∼23/5 ≈ 1.52. This is demonstrated
in the figure where the dotted black line shows the radial evolution
of the optical depth in the absence of pair-production, and the solid
lines show the total optical depth including e±-pairs. After a surge
in τT due to the produced pairs, the solid lines display similar
radial evolution as compared to the black dotted line that follows
τT ∝ r−5/3 for r < rs and τT ∝ r−1 for r > rs. For all the cases, the
Compton-y parameter, yC = (4/3)(〈γ 2

e 〉 − 1)τT, which measures the
importance of Compton scattering, remains smaller than unity since
the mean energy of the particles is dominated by the cooler baryonic
electrons. As we discuss below, particles in this scenario mainly cool
via synchrotron emission and Compton scattering is not important.

In the left-hand panel of Fig. 3, we show the spectrum for
different values of ξ , which sets the fraction of the injected electrons
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1362 R. Gill, J. Granot and P. Beniamini

Figure 2. Top left: Observed steady-state spectrum with injection of power-law electrons commencing at τT0 = 100. The final spectrum is obtained when the flow
becomes optically thin with τT 
 1. The black dashed line shows the synchrotron emission from power-law electrons (without the effects of γ γ -annihilation at
the highest energies). Top right: Spectral slopes where the photon index α = −2 + dlog (ELE)/dlog E. Bottom left: Electron and positron momentum distributions
at r = rs shown using the optical depth. Bottom right: Radial evolution of the bulk LF �, total optical depth of τT = τT, e + τT, ± including that due to produced
e±-pairs (τT, ±), optical depth of baryonic electrons only (τT,e) if no pairs were produced, and Compton-y parameter of pairs (yC). Magnetic energy dissipation
and acceleration of the flow halts at the saturation radius r = rs, beyond which the flow coasts at constant � = �∞. The photospheric radius due to baryonic
electrons (τT, e = 1) is extended due to production of e±-pairs (τT = 1).

accelerated into a power law. As a result, ξ affects the mean
energy of power-law electrons and consequently γ m, where both
are inversely proportional to ξ . The effect of decreasing ξ is similar
to that of increasing εe. Since the number of electrons injected into
the emission region remains fixed, increasing the mean energy of
the distribution also increases the contribution of the non-thermal
synchrotron component. Consequently, the optical depth due to pair
production also increases with increasing ξ .

The right-hand panel of Fig. 3 shows the effect on the spectrum
when the power-law index p of incoming electrons is fixed rather
than left to vary with the magnetization, as assumed in the model
here in equation (9). As the value of p is lowered, the synchrotron
spectrum at E > Em becomes harder since LE ∝ E−p/2. By using
2D and 3D PIC simulations, Sironi & Spitkovsky (2014) find that p
� 1.5 for σ � 50, which means that the synchrotron spectrum can
become even harder than shown in the figure if σ is larger in the
emission region. Indeed, this type of spectrum with a quasi-thermal

peak and a hard power-law component has been observed in, e.g.,
GRB 090902B (Abdo et al. 2009). This type of scenario can also
explain the observation of a 31.5[(1 + z)/2.82] GeV photon in the
central-engine frame in this GRB during the prompt emission since
the hard synchrotron spectrum extends to GeV energies.

4.1.1 Radial evolution of the spectrum and particle distribution

We present the radial evolution of the spectrum, the corresponding
particle distribution, and flow parameters for the case with εe = 0.1
in Fig. 4. The spectrum is obtained for different optical depths, as
shown by the black dots on the red curve in the bottom panel of
Fig. 4, and correspondingly different radii where we integrate the
comoving emissivity over radial extent �r/r = 1/2 centred on the
radius corresponding to the chosen τT. The observed steady-state
spectrum, shown by the black dashed line, is effectively a sum over
the optically thin spectra where the radial integration of the comoving

MNRAS 499, 1356–1372 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/499/1/1356/5909623 by H
im

m
elfarb H

ealth Sciences Library user on 20 N
ovem

ber 2020



GRB spectrum from a magnetized outflow 1363

Figure 3. Left: Observed steady-state spectrum from the injection of power-law electrons for different fraction ξ of total incoming electrons accelerated in
magnetic reconnection layers. Right: Spectrum for different power-law index p of the injected electrons with energy distribution n′(γe) ∝ γ

−p
e .

emissivity is performed for r > rph(θ̃ ). At early times, the spectrum
is dominated by the initial condition given by the Wein-like spectrum
from equation (14). Injection of power-law electrons gives rise to the
fast-cooling synchrotron spectrum, which builds up over time while
the thermal peak cools and dilutes due to adiabatic expansion of the
outflow. After the flow becomes optically thin (τT < 1), the thermal
peak starts to shift to higher energies since the radiation field is no
longer adiabatically cooled and the thermal peak is simply blue-
shifted to higher energies by the increasing � from its value attained
in the comoving frame at τT = 1. High-energy spectrum at energies
E > �mec2/(1 + z) is suppressed due to (γ γ → e±) pair-production.
The produced e±-pairs annihilate and yield a sharply peaked spectral
component at E = �mec2/(1 + z) at very early times.

In this case ξ = 0.2, and therefore the initial optical depth is
dominated by thermal baryonic electrons. However, copious pair
production ensues after the injection of power-law electrons and e±-
pairs start to become comparable to the baryonic electrons in optical
depth. The injection of power-law electrons also raises the mean
energy per particle 〈γ e〉, as can be seen from the rightward shift of
the peak of the thermal particle distribution in the middle panel of
Fig. 4 as well as from the radial evolution of 〈γ e〉 − 1 shown in the
bottom panel. However, the Compton-y parameter remains below
unity as the rate of heating is insufficient to make Comptonization
important. The cooled power-law electrons as well as the produced
pairs ultimately join the thermal distribution.

The power-law electrons cool primarily due to synchrotron emis-
sion. This can be understood by comparing the magnetic field energy
density to that of the thermal radiation field. For r > rτ0, where rτ0 is
the radius corresponding to τT0 when injection of power-law electron
commences, the comoving energy density of the thermal compo-
nent is U ′

th(r) = U ′
0(r/rτ0)−28/9 = U ′

0τ
−28/15
T 0 (r/rph)−28/9 since the

injected energy is no longer completely thermalized. Therefore, the
thermal component simply adiabatically cools for r > rτ0. The ini-
tial energy density is given by U ′

0 ≈ (4σSB/c)[T ′
ph(rτ0/rph)−7/12]4 =

(4σSB/c)T ′4
phτ

7/5
T 0 . The energy density of the magnetic field is given

by U ′
B = B ′2/8π, which then yields

U ′
B

U ′
th

= 69
�∞,3

(
λ
ε

)1/5

8

L
1/5

,52τ

4/15
T,e

, (18)

indicating that power-law electrons mainly cool by synchrotron
emission. In addition, Compton cooling of injected electrons is
suppressed as it occurs in the Klien–Nishina regime for photons
with energy above

E = �

(1 + z)γm

mec
2 = 171

(
ξ

εe

)
r

2/3
12

�
1/3
∞,3

(
λ
ε

)2/3

8

keV, (19)

which suggests that the non-thermal synchrotron component above
the thermal peak cannot cool the power-law electrons by inverse
Compton scattering.

The injected energy density at a given radius r̃ is reduced as the
flow expands adiabatically, such that dU ′

inj(r) = dU ′
inj(r̃)(r̃/r)−28/9,

where the injected energy density between r̃ and r̃ + dr̃ is dU ′
inj(r̃) =

(εe/2)[dU ′
diss(r̃)/dt ′]dr̃/ �c. The total injected energy density sur-

viving at r � rinj, where rinj is the radius where energy injection
commences, is obtained by integrating over r̃ that yields

U ′
inj(r) = 3

7

εeL


c�∞

1

r2�
= 9

7
εe

dU ′
diss

dt ′
r

�c
. (20)

The non-thermal emission will begin to dominate the thermal
component when U ′

th/U
′
inj < 1, where

U ′
th

U ′
inj

= 4 × 10−2
L

7/15

,52

(
λ
ε

)14/45

8

εe�
7/9
∞,3r

7/9
12

. (21)

For the fiducial parameters chosen in Fig. 4, the above condition is
not satisfied before dissipation ceases, and therefore the non-thermal
synchrotron component never fully dominates over the thermal
component. The above estimate is strictly valid when the flow is
optically thick for which the radiation field energy density follows
the scaling U ′

th ∝ r−28/9. Adiabatic cooling of the radiation field stops
once the flow becomes optically thin, at which point it only suffers
density dilution due to the volume expansion but no cooling.

4.2 Distributed Heating of Particles

Earlier we explored the scenario where a fraction of the incoming
baryonic electrons are directly accelerated into a power-law energy
distribution at magnetic reconnection sites. Here, we consider an
alternative, where magnetic energy dissipation in the flow, e.g.
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1364 R. Gill, J. Granot and P. Beniamini

Figure 4. Top: Evolution of the spectrum sampled at different total optical
depth τT that was emitted over half a dynamical time (�r/r = 1/2) centred
at the radius corresponding to τT. The observer only sees the final spectrum,
shown using a dashed black line, which is effectively a sum over the optically
thin spectra with emission arising from r > rph(θ̃). Middle: Evolution of
particle distribution that remains dominated by the initial thermal component
since ξ = 0.2 in this case. Bottom: Radial evolution of flow parameters with
black dots, marking the optical depth τT for which the spectra is shown in
the top panel.

due to MHD instabilities, leads to distributed heating of all elec-
trons (Thompson 1994; Ghisellini & Celotti 1999; Giannios 2006;
Giannios & Spruit 2007; Giannios 2008). The comoving energy
dissipation rate per unit volume, dU ′

diss/dt ′, is given in equation (8)
out of which only a fraction εe/2 goes into heating the electrons in the
emission region, such that the volumetric heating rate is dU ′

e/dt ′ =
(εe/2)dU ′

diss/dt ′. Deeper in the flow, at larger optical depths τ T � 1,
the thermal radiation field is the dominant coolant (see equation 18).
The continuous heating and simultaneous cooling of particles drives
their energy distribution to peak at a critical temperature at which
point heating is balanced by cooling. The Compton cooling rate per
unit volume for a thermal electron distribution is given by

dU ′
c

dt ′ = 4n′
e

(
kBT ′

e

mec2

)
σTcU ′

th, (22)

where again we make the simplifying assumption that approximately
half of the dissipated energy goes directly towards accelerating the
flow and the remaining half converts to the thermal radiation field
with energy density U ′

th. By equating the cooling rate to that of
particle heating, dU ′

c/dt ′ = dU ′
e/dt ′, we find the critical temperature

at which particles congregate

kBT ′
e,crit = 138

εe�
5/3
∞,3r

5/3
12

L
,52

(
λ
ε

)2/3

8

keV ≈ 132
εe

τT ,e
keV. (23)

This temperature is smaller at smaller radii or at larger optical depths,
however, it cannot become smaller than that of the thermal radiation
field. Therefore, below an equilibrium radius or above the optical
depth (Giannios 2006),

req = 5 × 1010
L

5/9

,52

(
λ
ε

)1/3

8

ε
4/9
e �

8/9
∞,3

cm (24)

τeq = 133
ε20/27

e L
2/27

,52

(
λ
ε

)1/9

8

�
5/27
∞,3

, (25)

radiation and particles are in thermal equilibrium. Above that
radius, electrons fall out of equilibrium and attain a higher effective
temperature (since the distribution becomes narrowly peaked and
does not remain Maxwellian) as compared to the thermal radiation
field. The details of how distributed heating is implemented in the
simulation are presented in the Appendix.

As the flow expands, the energy density of the thermal radiation
field declines. This increases the time-scale over which particles
are cooled by Comptonization. Particles are also cooling due to
adiabatic expansion, the time-scale for which is (see the Appendix)
t ′
ad = (3/7)r/�c ∝ r2/3 for r < rs. The Compton cooling time-

scale is t ′
c = 3mec/4σT γeU

′
th, for particles with LF γ e, where

U ′
th = U ′

0(r/rτ0)−28/9 and rτ0 is the radius corresponding to τ T0 where
heating of particles commences. Comparison of the two time-scales
yields

t ′
c

t ′
ad

= 7

4

mec
2

σT U ′
thγe

�

r
≈ 5 × 10−2

γe

r
22/9
12 �

22/9
∞,3

L
22/15

,52

(
λ
ε

)44/45

8

, (26)

which suggest that particles cool predominantly via Comptonization.
In the top left-hand panel of Fig. 5, we present the observed

steady-state spectrum for a heated flow for different values of εe.
For the chosen fiducial parameters, τ eq ≈ 32, and therefore the
condition for thermal equilibrium holds for τT0 = 100, the initial
baryonic electron Thomson optical depth at which the simulation
is initialized. In all cases, due to multiple Compton scattering, the
spectrum extends smoothly to high energies above the adiabatically
cooled thermal peak that appears at (1 + z)E ∼ 1 MeV. This energy
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GRB spectrum from a magnetized outflow 1365

Figure 5. Top left: Observed steady-state spectrum with distributed heating of particles commencing at τT0 = 100. The final spectrum is obtained at τT 
 1
when the flow is optically thin. For the chosen fiducial parameters the equilibrium optical depth is τ eq ≈ 32. Top right: Spectral slopes with the photon index
given by α = −2 + dlog (ELE)/dlog E. Bottom left: Electron and positron particle distribution at r = rs, the radius at which the mono-energetic distribution are
expected to be the hottest. Bottom right: Evolution of flow parameters with radius.

is higher due to Comptonization than that expected from adiabatic
cooling which freezes at the photospheric radius. These results are
consistent with that shown in Giannios (2006), Giannios & Spruit
(2007), Giannios (2008) who used a Monte Carlo code without pair
cascade effects. The effect of increasing εe is to put more energy into
the non-thermal Comptonized spectral component and to make the
spectrum harder above the thermal peak. In addition, for larger εe a
pronounced peak around (1 + z)E ≈ 0.5 keV develops due to self-
absorbed synchrotron emission from mildly relativistic electrons.

The low-energy spectral index, as shown in the top right-hand
panel of Fig. 5, becomes softer with increasing εe. It only approaches
the photon index α = −2 + dlog (ELE)/dlog E ∼ −1 typically
observed in prompt GRB emission for εe � 0.2, and below that the
low-energy spectrum appears to be too hard. This can be understood
by looking at the evolution of the Compton-y parameter shown in
the bottom right-hand panel of Fig. 5. For larger εe, yC is also larger
and substantially exceeds unity in the εe = 0.2 case. This results in
the Comptonization of the softer synchrotron photons towards the
thermal peak which softens the low-energy spectrum. For smaller
εe, yC remains below unity and the soft synchrotron photons are

not efficiently Comptonized to higher energies, leading to harder
low-energy spectral slopes.

The optical depth in all cases remains unaltered from the trend
expected for baryonic electrons, which suggests that pair-production
is mostly insignificant in the cases shown here. This can also be
seen in the bottom left-hand panel of Fig. 5 where the optical
depth is dominated by baryonic electrons. Only for εe = 0.2,
copious pair-production ensues at r ∼ rs as the high-energy spectrum
exceeds the pair-production threshold due to yC > 1. The particle
distributions are sharply peaked at the momentum, where heating
and cooling of particles are in balance. This is in stark contrast
with the particle distribution in the scenario with power-law electron
injection.

Since e±-pairs are subdominant and the optical depth is dominated
by the baryonic electrons, the dimensionless momentum of electrons,
pe = γeβe = (γ 2

e − 1)1/2, at which they congregate after the heating
commences at r > rτ0, can be obtained by comparing their heating and
Compton cooling rates. The cooling rate for a mono-energetic distri-
bution is dU ′

c/dt ′ = (4/3)σT cp2
en

′
eU

′
th, where U ′

th = U ′
0(r/rτ0)−28/9

is the energy density of the adiabatically cooled thermal radiation.
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1366 R. Gill, J. Granot and P. Beniamini

Then, heating and cooling balance yields

pe(r) = 2.6
ε1/2
e �

11/9
∞,3 r

11/9
12

L
11/15

,52

(
λ
ε

)22/45

8

= 2.6
ε1/2
e

τ
11/15
T ,e

. (27)

Note the above estimate is different from that derived in equation (23)
in two respects. First, it assumes monoenergetic particles and not a
Maxwellian distribution, where the former is relevant here. Secondly,
for the cooling rate it assumes the adiabatically cooled energy density
of the radiation field normalized at r = rτ0, whereas the scaling of
U ′

th ∝ r−7/3 is assumed for equation (23) since the energy given to
particles is assumed to be completely thermalized, which results in
a shallower decay profile for the radiation field energy density. This
estimate for pe strictly assumes that e±-pairs are subdominant, but
they may become important for some model parameters in which
case the above estimate will not hold. For the fiducial parameters
in Fig. 5, the electrons attain a maximum pe,max � 5 at r = rs

when εe = 0.1, as shown in the bottom left-hand panel of the
figure.

The radial evolution of the spectrum and particle distribution,
along with that of the flow parameters, for the case of εe = 0.1
is presented in Fig. 6. The initial spectrum at large optical depths
is dominated by the thermal component that adiabatically cools and
dilutes as the flow expands. Meanwhile, continuous dissipation in the
flow heats up the baryonic electrons, as evident from the rightward
shift of the narrowly peaked particle distribution (middle panel) as
well as from the rising 〈γ e〉 − 1 (bottom panel). This leads to gradual
broadening of the Wien distribution as well as the shift of the thermal
peak to higher energies. The high-energy spectrum only develops
when the flow has become sufficiently optically thin (also see e.g.
fig. 1 of Giannios 2008). Heating of the flow terminates at τT =
0.08, and therefore, the particle distribution at τT = 0.05 lacks a
sharp peak that is expected due to the balance between heating and
cooling. Notice that the particle distribution shown in the middle
panel of Fig. 6 is the instantaneous distribution at a given τT, and the
corresponding spectrum is integrated over �r/r = 1/2 while centred
at the radius corresponding to the chosen τT.

A consequence of mildly relativistic mono-energetic electrons
is the emergence of a self-absorbed cyclo-synchrotron peak at
(1 + z)E ≈ 0.5 keV. In the earlier scenario of power-law electron
injection, the spectrum showed a break around the same energy
rather than a narrow peak. This signature is a potential discriminant
between the two scenarios, and prompt GRB observations in soft X-
rays should be able to distinguish between the two particle heating
mechanisms.

5 PARAMETER SPAC E STUDY

We consider here different outflow parameters to see their effect on
the final spectrum. From equations (3) and (6), we see that a change
in the model parameters is reflected in the relative position of the
saturation radius with respect to the photospheric radius, which is
parametrized by their ratio,

κ ≡ rs

rph
= 17

�3
∞,3

(
λ
ε

)3/5

8

L
3/5
52

. (28)

Therefore, it is more intuitive to scale a given model parameter,
while the other two parameters are kept fixed, using the ratio κ with
a clear expectation. If κ is much larger than unity, a large fraction
of the dissipated energy will be injected into the emission region
when it is optically thin. This will result in a pre-dominantly non-
thermal spectrum. On the other hand, when κ ≈ 1, the spectrum

Figure 6. Top: Evolution of the spectrum with radius for the distributed
heating scenario, obtained at different optical depths τT where the spectrum
was emitted within half a dynamical time around the radius corresponding to
τT. The observed spectrum, shown using a black dashed line, is effectively
a sum over the optically thin spectra with emission arsing from r > rph(θ̃).
Middle: The corresponding particle distribution that remains sharply peaked
at the critical momentum where particle heating and cooling are balanced.
Bottom: Evolution of flow parameters. Black dots mark the optical depth for
which spectra and particle distribution are shown.
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GRB spectrum from a magnetized outflow 1367

should have a pronounced quasi-thermal component since most of
the energy was dissipated below the photosphere that led to its
thermalization.

In Fig. 7, we present a survey of the model parameter space by
showing the spectra for different values of κ for the two particle
heating scenarios. For both scenarios, the κ = 1 spectrum is
dominated by a quasi-thermal component, albeit with low-energy
spectral slope much softer than a pure thermal spectrum. The
spectrum in the distributed heating scenario is particularly interesting
as it shows a more narrowly peaked spectral component. This type
of spectra have been observed in a small number of GRBs, e.g.
GRB 990123 (Briggs et al. 1999), GRB 090902B (Abdo et al. 2009),
and GRB 130427A (Ackermann et al. 2014), which would suggest
that dissipation in these bursts was mostly sub-photospheric with
minimal energy dissipated in the optically thin parts of the flow. The
typical spectrum of GRBs is non-thermal that can be explained when
κ > 1 and for which significant fraction of the energy is dissipated
in the optically thin parts of the flow. In some bursts, e.g. GRB
110731A (Ackermann et al. 2013), a time-resolved analysis finds a
quasi-thermal spectrum for the initial few pulses followed by non-
thermal spectrum for the later pulses. This kind of spectral evolution
can be explained if κ ≈ 1 for the initial few pulses that were emitted
from a smaller radius compared to the pulses that arrived later with κ

> 1 that were emitted from a relatively larger radius (or alternatively
corresponding to a larger source variability time, tv ∼ λ/c, or a
somewhat larger �∞ ≈ σ 0).

The effect of changing the model parameters can be seen by
comparing the final spectrum in the different panels. An increase
in

(
λ
ε

)
8
, which characterizes the lab-frame width of the magnetic

field polarity reversal in a striped wind, with ε ∼ 0.1, shifts the
thermal peak towards lower energies since Epk,th(rph) ∝ (

λ
ε

)−7/20

8
.

Likewise, in the distributed heating scenario, the adiabatically cooled
but also Comptonized thermal peak energy becomes softer. When
the jet power per unit solid angle L
 is varied, the main effect is to
increase the overall normalization of the spectrum. In the distributed
heating case, the low-energy spectrum below the thermal peak also
becomes softer as κ is increased. Finally, as the saturation LF �∞
is increased for κ > 1, the spectrum shows minimal changes above
the thermal peak but becomes increasingly softer below the thermal
peak for larger �∞ in both heating scenarios. In addition, the soft
X-ray peak becomes more prominent with increasing κ . In general,
larger κ tends to produce broader Band function peaks with softer
low-energy spectra simply due to the fact that most of the injected
energy went into the non-thermal spectral component rather than
being thermalized.

6 SPECTRAL BREAK BELOW THE PEAK

A spectral break below the ELE-peak (Epk) has been observed in the
time-integrated as well as time-resolved spectra of a small number
of bursts. Such cases have been modelled as having two spectral
components where the low-energy component is thermal with its
peak located at the break energy, Eth = Ebr ∼ 100 keV, while the
high-energy non-thermal component peaks at E = Epk ∼ 500 keV,
where both components show fluctuations in the break and peak
energies by a factor of ∼2 (or more for the latter) in a time-
resolved analysis (Guiriec et al. 2015a). Alternatively, Ravasio
et al. (2018, 2019) find that a double smoothly broken power-law
(2SBPL) function obtains a slightly better fit over a two component
thermal plus non-thermal fitting function with 〈Ebr〉 ∼ 100 keV and
〈Epk〉 ∼ 1 MeV. The two spectral profiles do differ in one way. A

2SBPL spectral profile features a power law at energies Ebr < E <

Epk, whereas a two component model shows separate humps with
a slight depression in the middle in some cases depending on the
relative normalization of the thermal and non-thermal components.
How well can these two spectral profiles be distinguished from each
other depends on the quality of the data, but generally both are found
to be consistent.

In the left-hand panel of Fig. 8, we show two spectra featuring a
low-energy break for the two particle heating scenarios considered in
this work. When power-law particles are injected the resulting spec-
trum features two humps, where the low-energy hump is the thermal
component and high-energy hump is the non-thermal synchrotron
emission. In this scenario, it would be difficult to get a smoothly
connecting spectrum without any depression between the two peaks,
unless the synchrotron component completely dominates. In the case
of distributed heating of particles, a hard Comptonized spectrum
above the thermal peak can result for particle heating efficiency εe

� 0.3. The spectrum in this case extends more smoothly to high
energies, although a slight depression can be present, due to its
origin in multiple Compton scatterings. However, the distributed
heating scenario produces the second hump that would be identified
as the ELE-peak, at much higher energies than observed, even after
correcting for the source redshift. The problem lies in requiring
a significantly high (yC � 5) Compton-y parameter, which for an
optically thin flow necessarily demands high particle momenta pe

(see equation 27). As a consequence, the Comptonized hump always
appears at large energies.

In the right-panel panel of Fig. 8, we show the spectral slopes.
For the power-law injection case, the low-energy spectrum below
the thermal hump has photon index −1.8 � α1 � −1.2, whereas
the distributed heated scenario yields a harder spectrum with −1.8
� α1 � 1 for the chosen fiducial model parameters. The spectrum
above the thermal hump has α2 ∼ −1.8 in both cases. While we
do not carry out an exhaustive analysis to determine these two
spectral slopes for different model parameters, and the cases shown
here do not necessarily agree with the results of Ravasio et al.
(2019), it remains to be seen if the two particle heating scenarios
can find agreement with prompt emission spectra that show low-
energy breaks. The spectrum above the second hump shows distinct
behaviour for the two particle heating cases. When the second hump
forms due to Comptonization, the spectrum shows an exponential
decline above the peak whereas in the fast-cooling synchrotron
emission the spectrum declines more slowly. This feature can be
potentially used to distinguish between the two scenarios by fitting
to observations.

7 SUMMARY AND DI SCUSSI ON

In this work, we have carried out self-consistent one-zone kinetic
simulations of a photon–electron–positron plasma in a magnetized
outflow with a striped-wind magnetic field structure. The flow is
launched with high magnetization, σ 0 � 1, which declines with
radius as the flow expands and accelerates. The gradual dissipation
of the magnetic field energy, either due to magnetic reconnection
or MHD instabilities, accelerates the flow to terminal bulk Lorentz
factors �∞ > 100. About half of the dissipated energy is assumed
to heat the particles in the flow, out of which a fraction εe is given
to the electrons to power the prompt GRB emission. As the flow
expands, the causal volume of the emission region expands with it.
This brings in new particles into the causal region where the energy in
the outflow is dissipated, a fraction ξ ≤ 1 of which may be accelerated
into a power-law energy distribution at magnetic reconnection sites.
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1368 R. Gill, J. Granot and P. Beniamini

Figure 7. Spectra for the two heating scenarios, power-law particle injection (left) and distributed heating (right), shown for different values of κ = rs/rph and
for correspondingly different values of

(
λ
ε

)
8 (top), L52 (middle), and �∞, 3 (bottom) according to equation (28) while the remaining two parameters are kept

fixed.
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GRB spectrum from a magnetized outflow 1369

Figure 8. Left: Spectral break below the peak energy can be obtained in both particle heating scenarios. The model parameters for the two cases are (i) PL
injection – L52 = 1, �∞, 3 = 0.5,

(
λ
ε

)
8 = 4, εe = 0.4, ξ = 0.2, (ii) distributed heating – L52 = 0.1, �∞, 3 = 0.15,

(
λ
ε

)
8 = 103, εe = 0.4, ξ = 1. Right: Spectral

slopes for the two scenarios.

Alternatively, distributed heating by MHD instabilities in the flow
may volumetrically heat all the particles (ξ = 1) at the same rate
in the dissipation region. Gradual energy dissipation commences in
the optically thick part of the flow (r < rph < rs) and the flow is
continuously heated across the photospheric radius, as it becomes
optically thin until r = rs. The underlying model has four to five
parameters: (i) the jet power per unit solid angle L
, (ii) flow terminal
LF �∞, (iii) characteristic length scale over which the magnetic
field changes polarity in the lab-frame

(
λ
ε

)
, (iv) efficiency of particle

heating εe, and (v) fraction ξ of injected electrons that are accelerated
into a power-law energy distribution – not needed for the distributed
heated scenario for which ξ = 1.

The two particle heating scenarios lead to different spectra and
corresponding particle distributions. In both cases, the spectrum
exhibits two main components: a thermal component peaking at
(1 + z)Eth ∼ 0.2–1 MeV and a non-thermal component extending
to high energies from the thermal peak. The origin of the non-thermal
component is different in the two scenarios.

When power-law electrons are injected into the dissipation region,
the non-thermal component arises due to the fast-cooling synchrotron
emission. It dominates the spectrum below the thermal peak at
energies (1 + z)E � 50 keV, where it becomes self-absorbed at (1 +
z)E � 0.5 keV, and above the thermal peak at 1 MeV � (1 + z)E �
100 MeV, where the emission is suppressed at higher energies due to
γ γ -annihilation. In our model, the spectral slope of the synchrotron
emission at E > Em, with spectral power LE ∝ E−p/2, depends on the
power-law index p = 4σ−0.3 of power-law electrons, which varies
with the magnetization of the flow. This tends to produce high-energy
spectra with photon indices −2.5�β �−2.2, consistent with prompt
GRB observations. Harder power-laws above the thermal peak that
have been observed in only a few cases, e.g. GRB 090902B, can
be produced for fixed values of electron power-law index with p ∼
2. The low-energy photon index, −1.6 � α � −1.2 arises from the
combination of the thermal component and the synchrotron emission
at E < Em, for which LE ∝ E−1/2.

When the dissipated energy is distributed among all the electrons
(and the produced e±-pairs that are mostly sub-dominant in number
in the cases simulated here), the non-thermal spectrum above the
thermal peak arises due to Comptonization of the softer thermal
peak photons. This also leads to softening of the spectrum below
the thermal peak as the Compton-y parameter grows above unity
when the flow becomes optically thin. The thermal peak is pushed

to higher energies at (1 + z)E ∼ 1 MeV and the photon index of
the high-energy spectrum is −2.6 � β � −2.0 for 0.05 � εe � 0.2,
where the emission is suppressed at (1 + z)E � 100 MeV due to γ γ

annihilation. The low-energy photon index also depends on εe with α

�−1 for εe � 0.2. A distinguishing feature of the distributed heating
scenario is the appearance of soft X-ray emission at (1 + z)E ∼
0.5 keV due to self-absorbed synchrotron emission from mildly
relativistic mono-energetic particles.

Whether the final spectrum is Band-like or features a pre-dominant
quasi-thermal component depends on κ = rs/rph, the ratio of the
saturation radius to the photospheric radius, and which is always
larger than unity in this work. For κ ∼ 1, the final spectrum in
both scenarios has a dominant quasi-thermal component since most
of the energy is dissipated below the photosphere, which leads
to suppression of the non-thermal component. On the other hand,
when κ > 1, the final spectrum is more Band-like where the non-
thermal component build up as more energy is dissipated beyond
the photosphere when the flow becomes optically thin. Since most
GRBs do show a Band-like prompt spectrum, κ is typically much
larger than unity.

A broken power-law spectrum with spectral indices α1 = −2/3
and α2 = −3/2 below the ELE-peak energy are expected from a fast
cooling optically thin synchrotron emission for energies Esa < E <

Ec < Em and Ec < E < Em, respectively (Sari et al. 1998). A serious
argument against this emission model is the observation of harder
low-energy spectral slopes in a sizable fraction of GRBs (Preece
et al. 1998; Ghirlanda, Celotti & Ghisellini 2003). Nevertheless, low-
energy spectral breaks at Ebr ∼ 50–100 keV with spectral indices
expected from optically thin synchrotron emission have been found
in a number of GRBs (e.g. Oganesyan et al. 2017; Ravasio et al.
2018, 2019). If the break is indeed the cooling break, the energy
of which scales with radius as Ec ∝ r3 (see equation 16), then
having it at ∼100 keV would demand that the emission must be
at r � 3.4 × 1015 cm. At such a large radius the comoving magnetic
field, with scaling B

′ ∝ r−4/3, would reduce to merely � 81 G.
The constraints on the emission radius and the magnetic field
become even more severe if dissipation occurs in a coasting flow
(Beniamini & Piran 2014; Ravasio et al. 2018, 2019). To circumvent
these issues while keeping the same underlying emission model,
Ghisellini et al. (2019) have recently proposed that the prompt
GRB emission may be produced by power-law protons. However,
knowing that protons are inefficient at radiating away their thermal
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1370 R. Gill, J. Granot and P. Beniamini

energy as compared to electrons, the significant reduction in radiative
efficiency must be compensated by having a much larger total energy
budget, a requirement that may be too demanding. Alternatively,
these conditions can be realized within magnetically dominated
outflow models for the prompt emission, where dissipation is due
to large-scale reconnection events that are triggered far from the
central engine (Beniamini & Granot 2016; Beniamini et al. 2018).

In this work, we show that low-energy breaks can be produced in
the two particle heating scenarios considered here. This may avoid the
need to invoke protons as the main radiators and to push the emission
region farther out to large radii. At the same time, the main downside
of the smaller emission radii required in this scenario explored here is
that their associated variability time is significantly shorter than that
observed in GRB light curves. The source of variability in the model
explored here is therefore the variability of the engine itself. For the
impulsive magnetic acceleration model λ ∼ ctv and indeed tv should
be reflected in the observed light-curve variability. Observationally,
models invoking dissipation at relatively small emission radii (as
considered here) and large emission radii (as discussed above) may
be distinguished in the optical and � 100 MeV bands. In both bands,
models including dissipation at smaller radii should be strongly
suppressed due to either synchrotron self-absorption (in the optical)
or the pair-production threshold (above ∼ 100 MeV). Indeed, a
significant fraction of GRBs show a suppression of > 100 MeV
flux that is consistent with the existence of a pair production
threshold (Beniamini et al. 2011; Gill & Granot 2018; Vianello
et al. 2018).

The double-hump two-component spectrum has been seen in both
the time-resolved and time-integrated spectra of a few short-hard (e.g.
Guiriec et al. 2010) and long-soft GRBs (e.g. Guiriec et al. 2011).
In all cases, it was shown that a Band function plus power law or a
Band function plus blackbody spectrum resulted in a better fit over a
single-component Band function. Furthermore, it was found that the
non-thermal power-law component dominated the spectrum below
few tens of keV and above ∼MeV. This behaviour is the characteristic
of having power-law electrons, as seen in the top left-hand panel of
Fig. 2, where the non-thermal component is synchrotron emission.
Double hump spectra were also produced in Gill & Thompson (2014)
who carried out one-zone kinetic simulations for a pure electron–
positron plasma with strong magnetic fields. In that work, emission
above the thermal peak was produced by inverse Compton scattering
by mildly relativistic and mono-energetic e±-pairs; however, the flow
was not continuously heated across the photosphere.

In two bright GRBs (080916C and 090926A) more than two
spectral components have been shown to yield the best fit over a
single Band function (Guiriec et al. 2015a). In this case, the first two
components are the thermal and non-thermal, as discussed above, and
the third component is modelled as a cut-off power law. In the models
presented here, this third spectral component is difficult to obtain
and might require a subdominant but hotter particle distribution in
addition to the baryonic electrons. Since the mean energy per particle
is assumed to be the same for all particles in the emission region, a
separate hotter particle distribution cannot be obtained here.

The final spectrum from both particle heating scenarios shows
good agreement with observations in general. To break the degener-
acy between the two cases, additional diagnostics are needed. One
such diagnostic is the suppression of X-ray emission for (1 + z)E �
1 keV when power-law electrons are injected as compared to
observable X-ray emission in the distributed heating case (also see
e.g. Giannios 2008). Therefore, broad-band X-ray to gamma-ray
observations (e.g. Page et al. 2007) during the prompt emission phase
are needed to shed more light on this issue.

Another important diagnostic that can probe the underlying emis-
sion mechanism for the high-energy emission above the thermal
peak is the detection of prompt linear polarization (e.g. Granot 2003;
Gill, Granot & Kumar 2020). Synchrotron emission is partially
linearly polarized, and depending on the spectral index s = −1
− α when LE ∝ E−s, the maximum polarization from an ordered
magnetic field in the dissipation region is 0.5 ≤ �max = (s + 1)/(s
+ 5/3) � 0.75. Therefore, when synchrotron dominates the high-
energy emission, as in the power-law electron injection case, high
levels of polarization are expected. On the other hand, negligible
polarization is expected when the high-energy emission is attributed
to Comptonization. In this case, even though a singly Compton
scattered photon is polarized, multiple such scatterings washes out
the polarization when averaged over the entire GRB image on the
plane of the sky. Polarization with � � 0.2 is expected if the outflow
has angular structure. Polarization is also expected from synchrotron
emission below the thermal peak but above the self-absorption break
in the scenario with power-law electron injection. Therefore, in this
case, energy-resolved broad-band polarimetry should reveal a high-
level polarization at energies both below and above the peak but not
near the peak.

Prompt GRB polarization in the range 0.1 � � � 0.9 has
been possibly detected, albeit with only ∼3σ significance in most
cases, for a number of GRBs (see table 1 of Gill et al. 2020).
However, a conclusive picture has not emerged yet. More sensitive
upcoming/proposed X-ray and gamma-ray polarimetry missions,
e.g. POLAR-II and eXTP, will be instrumental in furthering our
understanding of the underlying prompt GRB emission mechanism.
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A P P E N D I X : PA RT I C L E I N J E C T I O N A N D
H E AT I N G

We briefly describe here how the two particle heating scenarios are
implemented in this work.

The comoving number density of baryonic electrons in the flow at
any given radius r can be expressed as

n′(r) = L


�∞mpc3

1

r2�
∝ r−7/3, (A1)

where the expression after the proportionality assumes r < rs for
which � ∝ r1/3. The number density of particles in the comoving
causal volume Ṽ ′ = 4πr3/� is the same as above, such that ñ′(r) =
n′(r). The number of particles in the causal volume Ñ (r) grows with
radius as the volume expands,

Ñ(r) = n′(r)Ṽ ′ = ñ′(r)Ṽ ′ = 4πL


�∞mpc3

r

�2
∝ r1/3, (A2)

where this represents a fraction (r/rs)1/3 of the total particle number
N in the lab-frame volume of a spherical shell whose characteristic
width λ ≈ rs/�2

∞ remains constant. Since no external particles are
added to this shell as it expands, N remains constant. Therefore,
when r = rs all the particles in this shell are found within the causal
volume.

The one-zone kinetic code used in this work (see Gill & Thompson
2014 for more details) evolves particle number density instead of
particle number in the causal volume. The evolution of electron
number density distribution as energy is added in the form of power-
law particles can be obtained from the evolution of the particle
number distribution

∂Ñ(pe)

∂t ′ = ∂

∂pe

[
γe

pe
AadÑ (pe)

]
+ S ′(pe), (A3)

where Ñ(pe) = ∂Ñ/∂pe is the momentum space particle number
distribution. The first term on the RHS describes the movement of
particles in momentum space, using a Fokker–Planck advection term,
due to adiabatic cooling (Aad), and in general other energy exchange
processes, namely Compton scattering, synchrotron cooling, and
Coulomb cooling, that are not discussed here but included in the
numerical code. The second term is the source term, S ′(pe) =
dÑ/dt ′dpe, which describes the injection of new power-law particles
into the causal volume. In general, S

′
(pe) receives contributions from

other processes, such as Compton scattering, pair-production and
annihilation.

The advection coefficient for the adiabatic cooling of particles is
given by

Aad = − 1

mec2

dE′
e

dt ′ = (γ̂ − 1)E′
e

mec2

d ln V ′

dt ′ = (γ̂ − 1)(γe − 1)

t ′
ad

. (A4)
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Here, we have used the scaling of particle energy with comoving
volume due to adiabatic expansion, such that E′

e = (γe − 1)mec
2 ∝

V ′1−γ̂ where γ̂ = 4/3 (5/3) is the adiabatic index for a relativistic
(non-relativistic) particle distribution. In general, the advection
coefficient includes contributions from other processes that change
the energy of particles, e.g. Compton scattering, synchrotron cooling,
Coulomb interactions, and particle heating (as described below).
The adiabatic cooling timescale is obtained from the rate of volume
expansion, where

1

t ′
ad

= d ln V ′

dt ′ = 1

r2�

d(r2�)

dt ′ = c

r2

d(r2�)

dr
= ζ

�c

r
, (A5)

where ζ = 7/3 for r < rs when � ∝ r1/3, and ζ = 2 for r ≥ rs when
� = �∞.

By expressing the LHS of equation (A3) using the number density,
we find

∂ñ′(pe)

∂t ′ = ∂

∂t ′

(
Ñ (pe)

Ṽ ′

)
= 1

Ṽ ′
∂Ñ(pe)

∂t ′ − ñ′(pe)

t ′
Ṽ ′

, (A6)

where we have conveniently defined the comoving growth time of
the causal volume, t ′

Ṽ ′ , through

1

t ′
Ṽ ′

= d ln Ṽ ′

dt ′ . (A7)

Next, we use equation (A2) to express the rate of change of the
comoving number density with comoving time in terms of Ñ and the
causal volume Ṽ ′, so that

d ln ñ′

dt ′ = d ln n′

dt ′ = −d ln V ′

dt ′ = d ln Ñ

dt ′ − d ln Ṽ ′

dt ′ = − 1

t ′
ad

=
˙̃n′

ñ′ ,

(A8)

which in turn implies

1

t ′
Ṽ ′

= 1

t ′
ad

+ 1

t ′
inj

, (A9)

where the comoving particle injection time into the causal volume is
defined by

1

t ′
inj

= d ln Ñ

dt ′ = d ln Ṽ ′

dt ′ + d ln ñ′

dt ′ = 1

t ′
Ṽ ′

+
˙̃n′

ñ′ = 1

t ′
Ṽ ′

− 1

t ′
ad

, (A10)

and ṅ′
inj is the particle injection rate per unit volume. Note that the

causal comoving volume Ṽ ′ grows faster than the total comoving
volume V

′
since it occupies an increasing fraction of it, f = Ṽ ′/V ′ =

Ñ/N = min[1, (r/rs)1/3], where 1/t ′
inj = d ln f /dt ′.

Now, using equations (A3) and (A6) lead to the equation for the
number density evolution

∂ñ′(pe)

∂t ′ = ∂

∂pe

[
γe

pe
Aad

Ñ (pe)

Ṽ ′

]
+ S ′(pe)

Ṽ ′ − ñ′(pe)

t ′
Ṽ ′

= ∂

∂pe

[
γe

pe
Aadn

′(pe)

]
+ Q′(pe) − ñ′(pe)

t ′
Ṽ ′

, (A11)

where Q′(pe) = S ′(pe)/Ṽ ′ = dÑ/dṼ ′dt ′dpe. By integrating the
above equation over pe, it can be shown that the adiabatic cool-
ing term vanishes and Q′ = ∫

Q′(pe)dpe = S ′/Ṽ ′ = ñ′/t ′
inj, where

S ′ = ∫
S ′(pe)dpe = dÑ/dt ′ so that the equation reads dñ′/dt ′ =

(1/t ′
inj − 1/t ′

Ṽ ′ )ñ′ = −ñ′/t ′
ad = ñ′(d ln ñ′/dt ′) = ˙̃n′.

The comoving rate of particle injection per unit volume per unit
dimensionless momentum comprises of two terms, where a fraction ξ

of the total is accelerated into a power-law (non-thermal) distribution

and the remaining fraction (1 − ξ ) forms a thermal distribution,

Q′(pe) = (1 − ξ )Q′(pe) + ξQ′(pe)

= (1 − ξ )Q′Q̂′
th(pe) + ξQ′Q̂′

nth(pe), (A12)

where Q̂′(pe) = Q′(pe)/Q′ represents the normalized momentum
distribution. The total energy density per unit rest mass energy of the
injected distribution can be expressed as∫

(γe − 1)Q′(pe)dp = Q′[(1 − ξ )(〈γe〉th − 1) + ξ (〈γe〉nth − 1)],

(A13)

where 〈γ e〉th is the mean energy per rest mass energy of the thermal
distribution and for the power-law distribution 〈γ e〉nth is given in
equation (10). Here, we make the assumption that the injected
thermal particles are cold, so that 〈γe〉th − 1 
 ξ

1−ξ
(〈γe〉nth − 1). The

momentum distribution of power-law electrons is given by

Q′
nth(pe) = dγe

dpe
Q′

nth(γe) = pe

γe
Q′

nth(γe) = Q′
0peγ

−p−1
e . (A14)

The normalization Q′
0 is obtained by equating the rate of energy

injection per unit volume to that given to the electrons due to
dissipation, such that

1

mec2

dU ′
e

dt ′ =
∫

(γe − 1)Q′
nth(pe)dpe =

∫
(γe − 1)Q′

nth(γe)dγe,

(A15)

which for γ M > γ m � 1 gives

Q′
0 = (p − 2)(

γ
2−p
m − γ

2−p

M

) εe

2mec2

dU ′
diss

dt ′ , (A16)

where we take γ M = γ max, the maximum LF corresponding to the
outer boundary of the particle momentum grid in the simulation.
The efficiency of acceleration is controlled by the mean energy of
the power-law electrons, which depends on ξ , and ultimately by
the minimal energy of power-law electrons γ m = [(p − 2)/(p −
1)]〈γ e〉nth.

In the distributed heating scenario, all particles (including pro-
duced e±-pairs) in the causal volume are heated at the same rate.
This volumetric heating can again be described using a Fokker–
Planck equation with only the advective term

∂ñ′
±(pe)

∂t ′ = ∂

∂pe

[
γe

pe
(Aad + A±,heat)ñ

′
±(pe)

]
− ñ′

±(pe)

t ′
ad

, (A17)

where A±,heat is the advection coefficient. The rate of change of
particle energy due to heating is obtained from the volumetric rate
of energy injection that yields

A±,heat = A ñ′
±(

ñ′+ + ñ′−
) εe

2mec2

dU ′
diss

dt ′ , (A18)

where the normalization is given by

A =
[{

γ 2
e

pe
ñ′

±(pe)

}pe,max

pe,min

− ñ′
±

]−1

(A19)

with the term in braces evaluated at the particle momentum grid
boundaries. The electron and positron distributions are evolved
separately as described by the above equations with ‘-’ and ‘+’
subscripts, respectively.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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