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ABSTRACT
We study the linear and non-linear development of the Kruskal–Schwarzchild instability in
a relativisitically expanding striped wind. This instability is the generalization of Rayleigh–
Taylor instability in the presence of a magnetic field. It has been suggested to produce a
self-sustained acceleration mechanism in strongly magnetized outflows found in active galac-
tic nuclei, gamma-ray bursts, and micro-quasars. The instability leads to magnetic reconnec-
tion, but in contrast with steady-state Sweet–Parker reconnection, the dissipation rate is not
limited by the current layer’s small aspect ratio. We performed two-dimensional (2D) rela-
tivistic magnetohydrodynamic (RMHD) simulations featuring two cold and highly magnetized
(1 ≤ σ ≤ 103) plasma layers with an anti-parallel magnetic field separated by a thin layer of
relativistically hot plasma with a local effective gravity induced by the outflow’s acceleration.
Our simulations show how the heavier relativistically hot plasma in the reconnecting layer
drips out and allows oppositely oriented magnetic field lines to reconnect. The instability’s
growth rate in the linear regime matches the predictions of linear stability analysis. We find
turbulence rather than an ordered bulk flow near the reconnection region, with turbulent ve-
locities up to ∼0.1c, largely independent of model parameters. However, the magnetic energy
dissipation rate is found to be much slower, corresponding to an effective ordered bulk velocity
inflow into the reconnection region vin = β inc of 10−3 � β in � 5 × 10−3. This occurs due to the
slow evacuation of hot plasma from the current layer, largely because of the Kelvin–Helmholtz
instability experienced by the dripping plasma. 3D RMHD simulations are needed to further
investigate the non-linear regime.
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1 IN T RO D U C T I O N

Relativistic outflows are ubiquitous in the Universe. They are usu-
ally collimated into narrow jets, which are either observed directly,
namely in active galactic nuclei (AGNs; e.g. jets in M87 and Cygnus
A), or inferred indirectly from multiwavelength observations in
X-ray binaries, i.e. micro-quasars (e.g. Fender, Belloni &
Gallo 2004), gamma-ray bursts (GRBs; e.g. Kumar & Zhang 2015),
and tidal disruption events (e.g. Krolik & Piran 2012). Relativis-
tic outflows typically arise from accretion on to a rapidly spinning
central compact object, such as a black hole (BH) or a neutron star
(NS), which leads to the expulsion of matter and entrained magnetic
fields at relativistic speeds. In pulsar winds and possibly in some
GRBs the relativistic outflow is powered by the rotational energy
of a rapidly rotating NS central source, rather than accretion. The
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launching, collimation, and acceleration of relativistic outflows to
high bulk Lorentz factors � � 1 in such a variety of systems is an
active area of research.

The composition of relativistic jets or outflows in the different as-
trophysical sources, and in particular their degree of magnetization,
is highly uncertain and of great interest. Pulsar winds are almost
certainly Poynting flux dominated near the central source, and most
likely so are the outflows from AGNs and tidal disruption events
(TDEs) of a star by a supermassive BH. In AGNs and TDEs, since
the central accreting BH is supermassive, then even close to it the
Thomson optical depth τ T may not be high enough for thermal ac-
celeration by radiation pressure – the main competition to magnetic
acceleration – to work efficiently (e.g. Ghisellini 2012). In GRBs
or micro-quasars, however, thermal acceleration could also work
(τ T � 1 is possible, or even likely), and the dominant accel-
eration mechanism is less clear. Nonetheless, there is a grow-
ing consensus that such outflows are launched hydromagneti-
cally with the magnetic fields playing a critical role (see for e.g.

C© 2017 The Author(s)
Published by Oxford University Press on behalf of the Royal Astronomical Society

Downloaded from https://academic.oup.com/mnras/article-abstract/474/3/3535/4655055
by University of Toronto user
on 11 January 2018

mailto:rsgill.rg@gmail.com
mailto:granot@openu.ac.il
mailto:lyub@bgu.ac.il


3536 R. Gill, J. Granot and Y. Lyubarsky

reviews by Spruit 2010; Pudritz, Hardcastle & Gabuzda 2012;
Granot et al. 2015).

Here, we consider outflows that are at least initially Poynting flux
dominated. One of the most important open questions about such
outflows that start out highly magnetized near the central source
is how they convert most of their initial electromagnetic energy
to other forms, namely bulk kinetic energy and the energy in the
random motions of the particles, which also produce the radia-
tion we observe from these sources (i.e. the outflow acceleration,
energy dissipation, and particle acceleration and radiation). Obser-
vations of the relevant sources, such as AGNs, GRBs, or pulsar wind
nebulae, suggest that the outflow magnetization σ (the Poynting-
to-matter energy flux ratio) is rather low at large distances from
the source. This is known as the σ problem, namely how to trans-
form from σ � 1 near the source to σ � 1 very far from the
source.

Poynting flux dominated outflows are often treated under the sim-
plifying assumptions of ideal magnetohydrodynamic (MHD), axi-
symmetry, and steady state. However, under these conditions, it is
very hard to achieve σ < 1 (or σ � 1) far from the source that would
enable efficient energy dissipation in internal shocks (Komissarov
et al. 2009; Lyubarsky 2009, 2010a; Tchekhovskoy, McKinney &
Narayan 2008, 2009; Tchekhovskoy, Narayan & McKinney 2010),
where the acceleration requires external pressure confinement and
is tightly coupled to the collimation of the jet. While this process
could lead to σ ≈ 1, this requires rather restrictive conditions.

Alternatively, the non-axi-symmetric kink instability could
randomize the direction of the magnetic field, causing it to
behave more like a fluid and enhancing magnetic reconnec-
tion, which both increase the acceleration and help lower the
magnetization (Lyubarsky 1992; Eichler 1993; Spruit, Foglizzo
& Stehle 1997; Begelman 1998; Giannios & Spruit 2006;
Bromberg & Tchekhovskoy 2016). However, such a global MHD
instability could develop only if the proper Alfvén (lateral) crossing
time is less than the propagation time, which implies �θ jet < 1,
where � is the jet Lorentz factor and θ jet is its half-opening angle.
This condition is quite restrictive, e.g. it could hardly be fulfilled in
GRBs (e.g. Tchekhovskoy et al. 2010). Moreover, even if the kink
instability develops, it is still not clear whether the flow is disrupted
or simply helically distorted.

An efficient conversion of electromagnetic energy into kinetic and
thermal energy of the plasma is possible in impulsive flows that have
a strong time variability (Granot, Komissarov & Spitkovsky 2011;
Lyutikov 2011). The maximal Lorentz factor � and minimal mag-
netization σ that can be reached by a single thick shell (of a few
tens of light seconds, comparable to the duration of a long GRB) is
somewhat limited due to the interaction with the external medium
(Levinson 2010; Granot 2012a). This may be alleviated if the out-
flow consists of many thinner, well-separated sub-shells (Granot
2012b; Komissarov 2012), where even if the collisions between
these sub-shells as they expand radially start at σ � 1 then gradual
dissipation and subsequent acceleration can still occur via multiple
passages of weak shocks.

An alternative option that we will focus on in this work involves
magnetic energy dissipation in a striped wind. The prime example
of a striped wind is a pulsar wind, where the pulsar acts as an oblique
rotator with misaligned rotation and magnetic field symmetry axes,
where the magnetic field of the outflowing MHD wind in the equa-
torial belt switches its polarity twice in each rotation period. The
structure of the magnetic field advected at velocity v with the parti-
cle outflow is that of a striped-wind (Michel 1971; Coroniti 1990;
Michel 1994; Lyubarsky & Kirk 2001), with field lines reversing

polarity over a lab-frame length scale of λB ≈ πv/	. The polarity
reversal between columns of magnetic field is marked by the pres-
ence of a current sheet towards which the magnetized fluid flows at
a fraction of the Alfvén speed in the fluid-frame. Magnetic recon-
nection in these current layers helps accelerate the flow and heats
up particles creating a relativistically hot plasma in these current
layers.

In pulsar winds, a striped-wind arises naturally and magnetic field
dissipation has been shown to be the main energy conversion mech-
anism there (Lyubarsky & Kirk 2001; Kirk & Skjæraasen 2003;
Pétri & Lyubarsky 2007; Sironi & Spitkovsky 2011). Moreover,
a broadly similar magnetic field configuration in the outflow may
arise from accretion on to a BH, due to stochastic flipping of the
magnetic field polarity, possibly due to instabilities in the accretion
disc (McKinney & Uzdensky 2012). This would result in a striped
wind with shells of correspondingly random width and magnetic
field polarity. Magnetic energy dissipation in a striped wind has re-
ceived particular attention in the study of relativistic outflows (� �
100) in GRBs, where the central engine (CE; a BH or a fast-rotating
magnetar) launches a Poynting flux dominated outflow that suffers
magnetic reconnection at a radial distance r ∼ 1012–1014 cm from
the CE and produces the ∼200 keV − MeV gamma-ray emission in
the prompt phase (e.g. Drenkhahn & Spruit 2002; Giannios 2008). In
general, magnetic reconnection that does not necessarily result from
having a striped-wind configuration has also been invoked in many
works over the traditional internal-shock scenario to explain the
prompt GRB emission due to it being more efficient in strongly mag-
netized flows (e.g. Thompson 1994; Lyutikov & Blandford 2003;
Giannios & Spruit 2006; Lyutikov 2006; Zhang & Yan 2011).

Astrophysical plasmas near compact objects are inherently rela-
tivistic and collisionless (e.g. Lyutikov & Lazarian 2013), and they
require some source of anomalous resistivity in order for recon-
nection to proceed. The rate of reconnection is set by the inflow
velocity vin = β inc of the magnetized fluid into the current layer. In
fast reconnection models (e.g. Petschek 1964), it can be a fraction
of the Alfvén speed, which approaches the speed of light in Poynt-
ing flux dominated outflows. It was shown by Lyubarsky (2005)
and then confirmed using numerical simulations by, e.g., Watanabe
& Yokoyama (2006) and Guo et al. (2015) that β in ∼ 0.1 when
magnetic reconnection occurs in the relativistic Petschek regime.

It is worth noting that in most analytic and numerical works on
reconnection the plasma is allowed to freely stream out of the re-
gion surrounding the X-point along the reconnection layer. In more
realistic configuration featuring multiple X-points along the recon-
nection layer, the hot plasma that is produced by the reconnection
accumulates in the region between X-points and its dynamical ef-
fect can eventually slow down or even prevent further reconnection.
This motivated search for mechanisms that could evacuate the hot
plasma from the reconnection layer, which as a result would allow
further reconnection and increase the reconnection rate.

This motivated the suggestion that magnetic reconnection in
Poynting flux dominated relativistic outflows with a striped wind
structure can be facilitated by the Kruskal–Schwarzschild insta-
bility (KSI) of the current sheet (Lyubarsky 2010b). This is an
analogue of the Rayleigh-Taylor instability (RTI) in strongly mag-
netized flows (e.g. Lyatsky & Goldstein 2013). It was shown that
as the flow accelerates the current layer feels an effective (comov-
ing) gravity g = c2d�(r)/dr in the opposite direction. Since the
enthalpy density of the relativistically hot plasma in the current
layer is larger than that of the cold magnetized plasma below it, the
current sheet becomes susceptible to the KSI just like an interface
between a lighter fluid below a heavier one would be to the RTI. As
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the hot plasma drips out of the reconnection layer, it allows further
magnetic reconnection that produces more hot plasma and accel-
erates the flow, thus creating a positive feedback loop, and makes
this instability self-sustained. Therefore, it can potentially account
both for the acceleration of the flow and for the energy dissipation,
which leads to particle acceleration and the radiation that we ob-
serve. Moreover, this mechanism completely avoids the limitations
of the classical Sweet–Parker resistive reconnection model and may
yield fast reconnection rates. This is achieved by the downward (in
the direction of the effective gravity force) dripping of hot plasma
from the current layer where its removal is otherwise limited by the
narrow width of the current layer in the Sweet–Parker model. By
conservation of mass, faster removal of hot plasma from the current
layer allows a faster inflow rate of cold magnetized gas, and thus a
higher reconnection rate.

The focus of the present work is to quantitatively understand the
structure and temporal evolution of the KSI using 2D relativistic
MHD (RMHD) simulations. The primary goals are (i) to confirm
the growth rate of the instability in the linear stage as calculated by
Lyubarsky (2010b) using a linear stability analysis and (ii) to obtain
the energy dissipation rate in the non-linear regime, which can only
be done using MHD simulations. To this end, in Section 2 we briefly
discuss the results of the linear theory and in Section 3 present
the numerical method used for the 2D simulations. We present
the results from the simulations in Section 4, where we discuss
perturbation modes with wavelength much larger and comparable
to the width of the current layer. In Section 5, we infer the rate
of reconnection from the rate of magnetic field dissipation in the
simulated volume and discuss the role of the Kelvin–Helmholtz
instability (KHI) and buoyancy in limiting this rate in Section 6.
We discuss some implications of this work in Section 7. We adopt
Lorentz–Heaviside units and set the speed of light c = 1 throughout
Sections 3–6.

2 LINEAR STA BILITY ANALYSIS

We consider a relativistically expanding outflow moving with bulk-
Lorentz factor �. In the fluid-frame, we consider a non-magnetized,
relativistically hot slab of plasma of width 
, surrounded by a cold
but strongly magnetized plasma with B = −sign(z)B0x̂. The mag-
netic field has opposite polarity on either side of the current layer
(see Fig. 1). The dynamical equations for the plasma, in the ideal
MHD limit, follow directly from conservation laws (e.g. Landau &
Lifshitz 1966)

∂μ(ρuμ) = 0, ∂μT μν = 0 (1)

for μ = 0, 1, 2, 3, where ∂μ = (∂/∂(ct),∇) is the four-derivative,
uμ = (γ c, γ v) is the fluid four-velocity. The velocity v and Lorentz
factor γ = [1 − (v/c)2]−1/2 are measured in the outflow’s bulk
frame, in which the simulation is performed. The stress-energy
tensor receives contributions from both the plasma and electromag-
netic components, T μν = T

μν
pl + T μν

em , such that (e.g. Goedbloed,
Keppens & Poedts 2010)

T μν = wuμuν

c2
+ pημν − bμbν, (2)

where
√

4πbμ = [
γ (B · v)/c, B/γ + γ (B · v)v/c2

]
is the mag-

netic field four-vector, and ημν = diag(−1, 1, 1, 1) is the
Minkowski metric. The enthalpy density in the fluid rest frame
in each layer is

w = ρc2 + γ̂

γ̂ − 1
p, (3)

Figure 1. Striped wind with reconnecting layer in the comoving frame. The
hot reconnection layer (2) of width 
 and enthalpy density w′

0 is surrounded
by two (1 and 3) cold but strongly magnetized layers with magnetic field B0.
Here, the field lines are shown as completely anti-parallel in the two layers;
however, more generally they can also be slightly misaligned. The enthalpy
density of the magnetized layers is w0 = w′

0/2. As the flow accelerates in the
ẑ-direction, the layers feel an effective gravity g = −gẑ = −c2d�(r)/drẑ.

where ρ and p are the fluid-frame plasma mass density and pressure,
and γ̂ is the adiabatic index. In the strongly magnetized layer, the
pressure is dominated by that of the magnetic field, for which γ̂ → 2
and pB = B2/8π.

From equation (1), and keeping only the terms non-vanishing to
first order in the perturbative expansion that follows, we find

∂ρ

∂t
+ ∇ · (ρv) = 0, (4)

w
∂v

∂t
= −c2∇p + (B · ∇)B

4π
+ wg. (5)

The (B · ∇)B/4π term represents the force due to magnetic tension
and wg is the effective gravity force felt by the fluid in the bulk-
flow frame. As the flow accelerates in the ẑ-direction, the inertial
acceleration is aligned in the opposite direction, g = −gẑ. These
equations are further supplemented by the flux-freezing condition:

∂B
∂t

= ∇ × (v × B), (6)

and the equation of state

d

dt

(
p

ργ̂

)
= 0, (7)

which expresses the adiabatic condition and only holds in the lin-
ear stage when no magnetic flux is destroyed by reconnection.
The zeroth order equations, expressing the equilibrium state of
the fluid, yield ∂ρ0/∂t = ∂p0/∂t = ∂w0/∂t = ∂B0/∂t = 0 and
∂xp0 = ∂yp0 = 0, with vertical pressure stratification condition
due to the effective gravity

∂zp0 = −w0g

c2
, (8)

which for a homogeneous density has the solution

p0(z) = p0(0) − w0
gz

c2
= p0(0)

[
1 + O

(gz

c2

)]
, (9)

suggesting that on length scales z � c2/g, the pressure is also ho-
mogeneous. Furthermore, noting that both in the hot unmagnetized
central layer and in the two cold but strongly magnetized layers
p0 ∼ w0, the pressure stratification condition leads to the result


 � c2

g
≡ Ldyn, (10)
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Figure 2. Set-up of the simulation box, which is rotated here by 90◦ with
respect to the illustration of the striped wind with a reconnecting layer as
shown in Fig. 1. The magnetic field lines go into the page in region 1 and
come out of the page in region 3.

in order to have a small fractional change in the initial pressure
across the central layer. Here, Ldyn is the dynamical length below
which the effective gravity g is approximately constant and above
which it may change significantly. This may be understood since
g = c2d�(r)/dr ∼ c2�/r so that c2/g ∼ r/� is of the order of the
causal length in the radial direction. Defining the corresponding co-
moving dynamical time, tdyn ≡ Ldyn/c, this corresponds to gtdyn ∼ c,
i.e. a Newtonian free-fall velocity of order c is achieved over the
dynamical time.

By considering small amplitude perturbations in the equilibrium
quantities and adopting the ansatz that the perturbed quantities vary
harmonically (e.g. ρ1 ∝ exp (i[ky − ωt]), where k is the wavenum-
ber and ω is the wave frequency), Lyubarsky (2010b, see for full
derivation of the linear growth rate) obtained the following dis-
persion relation for modes orthogonal to the equilibrium magnetic
field,

ω2
± = ±gk

(
5 + 4

tanh(k
)

)−1/2

. (11)

The growth rate of the instability is then given by η = Im(ω−),
which asymptotes to the following in the small (k
 � 1) and large
(k
 � 1) wavelength limits

η =
{√

gk

3 , k
 � 1(
g

2

)1/2
k3/4
1/4, k
 � 1.

(12)

3 2 D N U M E R I C A L S I M U L AT I O N S

To study the linear and non-linear growth rates and structure of
the KSI, we have conducted MHD simulations in 2D using the
publicly available code ATHENA (v4.2; Stone et al. 2008; Beckwith &
Stone 2011). ATHENA is a grid-based code that can solve the equations
of relativistic MHD (RMHD) using Godunov methods. The problem
under study is inherently relativistic with adiabatic index γ̂ = 4/3
in the relativistically hot plasma layer, and therefore, we used the
special relativity module of ATHENA with the HLLD Riemann solver,
a third-order reconstruction of the primitive variables and Van-Leer
integrator.

The KSI is simulated in a box of size (Ly, Lz) = (0.1, 0.2), where
−0.05 ≤ y ≤ 0.05 and −0.1 ≤ z ≤ 0.1. The current layer has (fluid-
frame) width 
 = 0.01 and the initial setup for the anti-aligned
magnetic field case is shown in Fig. 2, where the strength of the
equilibrium magnetic field is set by the magnetization σ of the cold
plasma layer [here, we set c = 1 and use Lorentz–Heaviside units

so that factors of 4π are ignored; see Beckwith & Stone (2011) for
equations of relativistic MHD in these units]

σ0 ≡ wB,0

wm,0
= b2

0

ρ0 + 4pg

→
cold

b2
0

ρ0
, (13)

where an adiabatic index of γ̂ = 4/3 has been assumed for a rela-
tivistically hot gas. The mass density in the cold magnetized layers
is assumed to be ρ0, c = ρ0 = 1 with a density contrast ρ0, h = 3ρ0, c

in the hot unmagnetized layer. At the initial moment, all layers are
assumed to be in pressure equilibrium with homogeneous pressure
p0 = σ 0/2. The characteristic velocity of the system is the relativis-
tic Alfvén velocity

vA =
√

σ0

1 + σ0
=

√
fσ , (14)

where 0 ≤ fσ ≡ σ 0/(1 + σ 0) ≤ 1 is the fraction of the total energy in
magnetic fields, and for which the crossing time tA = Lz/vA. Pres-
sure homogeneity is maintained so long that the condition given
in equation (10) is met, with the magnitude of the effective gravity
setting the scale of the simulation box z � g−1. The code uses reflec-
tive boundary conditions in the ẑ-direction and periodic boundary
conditions in the ŷ-direction. To initiate the instability, the equilib-
rium state is perturbed by introducing a velocity perturbation of the
form

v1z(y, z) = v1

2

[
sin

(
2πm0y

Ly

)] [
1 + cos

(
2πz

Lz

)]
, (15)

where m0 is the mode number in the ŷ-direction and the correspond-
ing wavelength is λ0 = Ly/m0. This form of the perturbation ensures
that no net momentum is imparted to the fluid elements in the sim-
ulation box. In addition, it is ensured that the perturbation velocity
vanishes at the left and right boundary of the simulated region in
order to suppress any spurious boundary effects. The perturbation
amplitude is set to be a small fraction of the Alfvén speed, such that
κv ≡ v1/vA � 1.

To measure the growth rate of the instability in the linear stage,
we follow the treatment by Jun, Norman & Stone (1995) and write
the Fourier amplitude of the density perturbations as

fm(z) = 1

Ly

∣∣∣∣∣
∫ Ly/2

−Ly/2
δρ(y, z)e−i2mπy/Ly dy

∣∣∣∣∣ , (16)

where the perturbations are obtained by using the measure
δρ(y, z) = [ρ(y, z)/ρ̄(z)] − 1, which gives the amplitude of the
density departure from the average density

ρ̄(z) = 1

Ly

∫ Ly/2

−Ly/2
ρ(y, z)dy. (17)

The growth for a given mode m is then obtained by averaging the
mode amplitude over different length scales 
z = z2 − z1 around
the perturbed hot layer,

〈fm〉 = 1

z2 − z1

∫ z2

z1

fm(z)dz. (18)

In the following, temporal evolution of fluid quantities is shown
using the simulation time. The time-step for the simulation depends
on the resolution {Ny, Nz} = {512, 1024} and the CFL number
C = 0.5, such that 
t = C Min[Lz/Nz, Ly/Ny] = 0.977 × 10−4.

4 SI MULATI ON R ESULTS

In 2D, the instability mode can either be transverse or parallel to
the equilibrium magnetic field. Here, we present results for the
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Figure 3. Development of the KSI from the linear to the non-linear stage, shown here using the fluid mass density, in the single wavelength (m0 = 1) λ0 = 0.1
case. The initial velocity perturbation amplitude κv = v1/vA = 10−6 of the Alfvén speed in the magnetized layer. The effective gravity points downwards and
has magnitude g = 0.01, which gives a causal size of z = g−1 = 100 over which pressure homogeneity is maintained. The magnetization σ 0 = 10 and the
density contrast between the cold magnetized and the hot unmagnetized layer is ρ0,h/ρ0,c ≡ ψ = 3 with ρ0,c = 1.

transverse case, which as expected evolves similarly to the hydro-
dynamic case since the magnetic field does not play any role in
stabilizing the instability. In the parallel case, unstable perturba-
tions can be stabilized by magnetic field tension.

4.1 Large wavelength (k� � 1) mode

It is instructive to first study the much simpler single wavelength
mode, m0 = 1, before undertaking more complicated scenarios.
Fig. 3 demonstrates the development of the KSI for m0 = 1 by
showing snapshots of the plasma rest mass density ρ at different
simulation times. The anti-aligned equilibrium magnetic field lines
go into (out of) the page in the region above (below) the hot layer.
The wavelength of the initial velocity perturbation is λ0 = Ly and
we choose a small enough κv so that the instability in driven only
by the effective gravity and not by the initial conditions. To that
end, we have carried out simulations to establish the upper limit on
κv < 10−5 below which the current layer remains stable for g = 0,
such that the initial perturbations do not grow over time. On the
other hand, a high κv > 10−5 disrupts the hot layer, regardless of
the magnitude of g, and drives the mixing of the two magnetized
fluids; however, the instability in this case is artificial and not driven
by the effective gravity.

The mode amplitude, averaged over the mixing region of extent

z, should grow exponentially with time in the linear stage, such
that ln 〈fm〉 ∝ ηmt. We plot this quantity for different sizes of the
mixing region, 
z, in the left-hand panel of Fig. 4 and compare
it with predictions from the linear theory, which are shown with
arbitrary normalization since only their slope is relevant here. The
different stages of the instability shares many similarities with the
RTI (compare with e.g. fig. 6 of Jun et al. 1995) and can therefore
be understood in a similar manner.

The instability proceeds in three separate stages and its growth
rate at any given time can be inferred from the slope of the curves
in Fig. 4:

(1) Superlinear stage: This stage simply reflects the response
of the current layer to the initial condition where the interface is
disturbed by the initial velocity perturbation. This excites several
small wavelength (m > 1) modes at early times as can be seen
in the mode spectrum shown in the right-hand panel of Fig. 4.
At this stage, the spatially averaged mode amplitude 〈fm〉 grows
superexponentially.

(2) Linear stage: Very quickly (∼20 light-crossing times of the
width of the box) the instability enters the linear stage where the
growth rate is determined by the dominant m ∼ m0 = 1 mode and
the magnitude of the effective gravitational acceleration; the power
in modes much larger than m0 is relatively small in this stage. Due
to significant mixing of modes higher than m0, the resultant growth
rate corresponds to a mode with λ = 0.08 � λ0 = 0.1. The linear
stage commences at the same time in all averaged regions of size

z, which is expected since 
z is centred at the current layer. The
same behaviour is seen for the time at which the instability enters the
non-linear stage. In addition, since the growth rate of the instability
in the linear regime only depends on the magnitude of the effective
gravity and initial wavelength of the mode, it is not expected to vary
with 
z. The growth rate curves shown in Fig. 4 show excellent
agreement with this expectation.

(3) Sub-linear stage: Eventually, the non-linear stage of the insta-
bility sets in and the growth rate of the instability slows down. This
is marked by a plateau in the Fourier mode amplitude with time.

It is important to stress here that the ‘linear’ stage – stage (2) above
– that is used for comparison actually corresponds to ln 〈fm〉 ∝ ηmt,
i.e. a linear growth of the logarithm of the perturbation amplitude
〈fm〉, and therefore to an exponential growth of 〈fm〉 itself.
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Figure 4. Left: growth of the density perturbation mode amplitude for the 2D simulation shown in Fig. 3. The spatially averaged Fourier mode amplitude for
a given mode m grows exponentially with time in the linear regime, such that 〈fm〉 ∝ eηmt , where ηm is the growth rate of the mode. Different curves show
the growth rate of the single wavelength mode (m = 1) averaged in the ẑ-direction over different mixing regions of size 
z centred at the middle of the hot
unmagnetized layer. Also shown is the dependence of 〈f1〉 on the magnitude of the initial velocity perturbation κv, while keeping 
z = 0.05. The prediction of
the linear theory (with arbitrary normalization) from equation (11) for a mode with wavelength λ ≈ λ0 is shown with dashed lines. Right: temporal evolution
of the mode spectrum.

Figure 5. Development of the KSI for a higher value of g = 0.1, with the rest of the parameters same as Fig. 3.

The growth rate of the instability scales as η ∝ g1/2, and there-
fore a higher effective gravity g should lead to a more evolved state
at a given simulation time t. This can indeed be clearly seen in
Fig. 5, which shows the evolution of the KSI for a higher effec-
tive gravity, g = 0.1 (e.g. by the deeper penetration of the density
fingers below the hot current layer). Furthermore, the asymme-
try between the upper and lower regions is now much clearer. It
is interesting to note that the hot plasma dripping from the cur-
rent layer does not simply move downwards in an approximately

straight line, but instead starts to curl upwards. This effect is in-
vestigated in more detail in Section 6, where we discuss the effects
of buoyancy and secondary plasma instabilities on the dripping
blobs.

In the left-hand panel of Fig. 6, we compare the growth rate of the
mode amplitudes for the two cases with g = {0.01, 0.1}, where the
higher effective gravity causes the instability to reach the linear stage
earlier in time as compared to the lower g case. In the non-linear
stage, a higher g causes the unmagnetized overdense regions to drip
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Figure 6. Left: comparison of growth rates obtained for the two cases with m0 = 1 and g = {0.01, 0.1} to that expected from linear theory (dash–dotted
lines, with arbitrary normalization). Right: temporal evolution of volume-averaged quantities for the single-wavelength (m0 = 1) case shown in Fig. 3. Shown
here are the magnetic field energy density (top), thermal energy density (middle), and the Lorentz factor of fluid elements (bottom) for two different velocity
perturbation amplitudes and different effective gravity.

faster into the lower cold magnetized region (Lyubarsky 2010b).
This displacement of large volumes of the hot layer downwards
is reciprocated by the upward movement of bulk plasma from the
lower region. The meeting of the rising bulk plasma blobs with
thinner regions of the hot layer leads to the launching of thin plumes
upwards (like when a stone is thrown into water).

The dripping of the unmagnetized fluid brings the two magne-
tized fluids of the striped wind into contact that undergo resistive
dissipation of the entrained magnetic field. This has the effect of
destroying magnetic energy and consequently heating up the fluid.
As a result, the thermal energy should increase due to increase in
the amount of hot fluid. The temporal evolution of volume averaged
magnetic energy density 〈Ub〉, thermal energy density 〈Uth〉, and
Lorentz factor of fluid elements 〈γ 〉 − 1 is shown in the right-hand
panel of Fig. 6. Since the bulk motion of the fluid elements re-
mains non-relativistic, most of the dissipated energy goes into the
internal energy of the relativistic gas rather than the kinetic energy.
Although the growth rate of the mode amplitude did not show any
dependence on κv, the temporal evolution of the magnetic energy,
and correspondingly the thermal pressure, indeed does. A larger
κv yields a faster magnetic energy decay rate in the earlier part of
the non-linear phase; the two rates are similar in the later part. The
former result is also true for the case with higher effective gravity.

4.2 Wavelength comparable to the size of the current sheet
(k� ≈ 1)

Higher mode number perturbations (m0 > 1) with wavelength com-
parable to the size of the current layer are most interesting, as they
are expected to yield vigorous disruption of the current layer. To
achieve that we introduce perturbations with mode number m0 = 10
or equivalently with wavelength λ0 = 
 = 0.01. The development
of the instability in this case for g = 0.1 is shown in Fig. 7. In com-
parison to the single-wavelength case, the instability clearly shows
more structure, which simply reflects the smaller wavelength of the
seed perturbation. In both cases, the density fingers eventually pen-

etrate to approximately similar depths at similar simulation times.
This is expected since the effective gravity is the same in both cases.

In the linear stage, the instability grows at the rate for a mode with
λ ∼ λ0, as shown in the left-hand panel of Fig. 8, where excitation
of various modes with both m < m0 and m > m0 can be seen in the
right-hand panel. The mode spectrum is more complex in this case
and lacks the clear suppression of power for modes away from m0,
as was seen in the single wavelength case.

To glean further information regarding the dynamical evolution
of the instability, in Fig. 9 we show the state of the thermal pressure
to rest mass density ratio pg/ρ, magnetic field orthogonal to the
page bx, magnetization σ , and the fluid velocity v in the y–z plane,
along with the density ρ for comparison. These quantities are shown
at time t = 9, where their state serves as a proxy to the amount of
mixing that has occurred between the magnetized and unmagnetized
fluids as well as the two magnetized fluids with oppositely oriented
magnetic field lines. The degree of mixing between the magnetized
and unmagnetized fluids, as it appears in the plot showing σ , is a
good indicator of the amount of magnetic diffusivity that artificially
dissipates magnetic energy. On the other hand, the level of mixing
between the two magnetized fluids, as can be seen most clearly
in the plot showing bx, is what determines the rate of magnetic
energy dissipation. We stop the simulation before the density fingers
reach the bottom of the simulation box to avoid the final solution
from being affected by the boundary conditions. Since there is no
large scale directed flow towards the hot layer, the mixing is purely
determined by the action of the effective gravity. The unmagnetized
hot fluid has to drip out before the two magnetized regions can come
into contact and undergo magnetic reconnection.

5 R E C O N N E C T I O N R ATE

Most magnetic reconnection models feature an ordered bulk flow
towards the current layer, in which case the velocity of this bulk
flow, vin, just upstream of the current layer provides a good measure
of the reconnection rate. However, this is a good measure of the
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Figure 7. Development of the KSI from the linear to the non-linear stage for the high mode number (m0 = 10) initial velocity perturbation case, with
κv = v1/vA = 10−7 and g = 0.1. The other parameters are the same as in Fig. 3.

Figure 8. Left: growth of the density perturbation mode amplitude for the 2D simulation shown in Fig. 7. The three curves correspond to the Fourier amplitude
of the mode m = 10 averaged over different mixing regions of size 
z centred at the middle of the hot unmagnetized layer. The prediction of the linear theory
(with arbitrary normalization) from equation (11) for a mode with wavelength λ ≈ λ0 is shown with dashed lines. Right: temporal evolution of the mode
spectrum in the linear stage for the simulation shown in Fig. 5.

reconnection rate only if the flow towards the current layer is ordered
on large scales. In the simulations shown in this work, we find that
the fluid motions in the mixing region are highly turbulent and lack
order on larger scales. In the left-hand panel of Fig. 10, we plot the
peak velocity in the ẑ-direction, which is orthogonal to the direction
of the equilibrium magnetic field, ẑ ⊥ b0. The peak velocity of
|vz| ∼ 0.1 is reached near the middle of the simulation box, where the
current layer was initialized and where the two magnetized regions
undergo the maximum amount of mixing and reconnection. Near

the top and bottom of the simulation box, where no reconnection
is expected, the fluid velocity remains much smaller. Furthermore,
practically the same level of peak velocity is attained, regardless
of κv, g, and σ 0, in all the simulations that we performed. This
suggests that |vz|∼ 0.1 is the maximum attainable turbulent velocity.
Nevertheless, it appears that in our physical set-up |vz| does not serve
as a good measure of the actual reconnection rate.

An alternative measure of the reconnection rate that works bet-
ter in our case may be obtained by directly calculating from the
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Figure 9. State of various quantities for the high mode number (m0 = 10) perturbation with g = 0.1 at t = 9. Shown here are the gas density (ρ), ratio of gas
pressure and density (pg/ρ), the x̂-component of the magnetic field (bx), magnetization (σ ), and gas velocity (v).

Figure 10. Left: peak velocity in the ẑ-direction at a given z-coordinate and across all y values, for the simulation shown in Fig. 9 with high mode number
(m0 = 10) perturbation and g = 0.1. In the highly mixed region, near the middle of the simulation box where the current layer was initialized, fluid velocities
reach |vz| ∼ 0.1, where the initial velocity perturbation amplitude was 10−7vA. The peak vz shows no clear dependence on κv, g, or σ 0. Right: magnetic energy
dissipation rate due to reconnection in the simulated volume (|Ėb| ≈ LyLzb|ḃ|) for m0 = 10 perturbation. The result from a low-resolution [256 × 512]
simulation is also shown.

simulation results the rate at which the magnetic field energy is
dissipated. The temporal evolution of the dissipated power,

− Ėb = − d

dt

∫ Lz/2

−Lz/2
dz

∫ Ly/2

−Ly/2
dy

1

2
b2(y, z), (19)

for both m0 = 1 and m0 = 10 cases is shown in the right-hand panel
of Fig. 10, including results from a low-resolution (256 × 512)
simulation. In all cases, there is a surge in the dissipation rate at

very early times followed by saturation of the rate, which happens
very quickly. The simulation is stopped at t = 10 at which point the
density fingers almost reach the bottom of the simulation box. The
magnetic field energy dissipation rate, after it has saturated, allows
a straightforward determination of the reconnection rate,

|Ėb| = 2vinLy

b2
0

2
= σ0ρ0,cLyvin, (20)
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Figure 11. Reconnection rate as a function of the effective gravity g and
fluid magnetization σ 0. The rate of reconnection is defined using an effective
upstream velocity vin that is inferred from the rate of dissipation of magnetic
field energy density. In the upper panel g = 0.1 and σ 0 = 10 in the lower
panel; κv = 10−7 for both panels. The dissipation rate for two values of the
density ratio ψ ≡ ρh,0/ρc,0 = {1, 3} is shown as a function of σ 0 in the top
panel.

which yields |Ėb| = vin for σ 0 = 10, ρ0, c = 1 and Ly = 0.1. We stress
that here vin represents the velocity of an ordered bulk inflow that
would produce the same magnetic energy dissipation rate as the one
that is produced in our simulations where the central mixing region
is highly turbulent with no clear bulk flow. In this sense, it serves as
an effective bulk velocity, which is useful mainly for the purpose of
comparison with the results of other magnetic reconnection models.

The dependence of vin on σ 0 and g is shown in Fig. 11, which
indicates that as σ 0 increases the efficiency of the reconnection
process aided by the turbulent mixing declines. This can be under-
stood as follows. The growth rate of the instability depends on the
enthalpy density contrast between the hot and cold regions, such
that η ∼ √

�gk where � = (wh,0 − wc,0)/(wh,0 + wc,0), and wh,0

and wc,0 are, respectively, the initial enthalpy densities of the hot
and cold regions. For ρh,0 = ψρc,0 = ψ and the initial pressure
p0 = b2

0/2 = σ0ρc,0/2 = σ0/2, we find

� = 1

3

(
1 + 2(ψ − 2)

1 + ψ + 3σ0

)
−→
σ0→∞

1

3
, (21)

where � < 1/3 for ψ < 2 and � > 1/3 for ψ > 2. Therefore, when
σ 0 ∼ a few the magnitude of ψ around the critical value of ψc = 2
causes the growth rate of perturbations to diverge, as shown in the
top panel of Fig. 11, which leads to a higher or lower vin; in the
high-σ 0 limit, vin saturates regardless of the magnitude of ψ .

While in the high-σ 0 limit vin → 10−3 for g = 0.1, increasing
the effective gravity shows a promising increase in the reconnec-
tion rate. However, the maximum value of g in the simulation is
limited by the dynamical time tdyn = g−1 = 10–100 for g = 10−1–
10−2. This time-scale should be longer than the free-fall time of
a given fluid element where tff = √

2δz/g = √
2 for g = 0.1 and

δz = Lz/2 = 0.1, the half length of the simulation box, i.e. one re-
quires tff/tdyn = √

Lz/Ldyn < 1, which corresponds to g < 1/Lz = 5
for Lz = 0.2. The same result can be obtain from another consid-
eration, that as g increases the length scale over which the total
pressure is homogeneous also shrinks, which necessitates the need
for a pressure gradient. The initial pressure was assumed to be

uniform in all simulations since the vertical length of the simulation
box Lz � Ldyn = g−1.

The reconnection rate at g � 1 can only be probed at scales much
smaller than used thus far in all the simulations. In order to do that,
we ran additional simulations with a box size that was smaller by a
factor of 10−3 for g = 103, σ 0 = 10, and κv = 10−7. The resulting vin

is shown as the last point in the bottom panel of Fig. 11 that clearly
shows the saturation of the reconnection rate at vin ≈ 5 × 10−3; this
rate is expected to be slightly lower for σ 0 � 1.

6 TH E RO L E O F BU OYA N C Y, K H I A N D
VO RTI CI TY

The KSI causes unmagnetized blobs with higher enthalpy density
to drip out of the hot plasma layer and sink into the lower en-
thalpy density magnetized cold plasma. These sinking blobs are
subject to the RTI, which also gives rise to a secondary Kelvin–
Helmholtz instability (KHI) that can grow over a few hundreds of
light-crossing times (or sound crossing times) of the blob and shred
it completely (see e.g. Reynolds et al. 2005; Dong & Stone 2009,
for discussion of buoyant blobs in galaxy clusters, where the bub-
bles are shredded after few sound-crossing times of the bubble).
The blobs are also accelerated downwards more slowly because of
the buoyancy force that acts in the direction opposite to gravity and
has magnitude Fb ≈ −wcVb g, where wc is the enthalpy density
of the ambient (cold) fluid and Vb is the volume displaced by the
blob. This yields a reduced downward acceleration of the blob with
magnitude geff = (wh − wc)g/wh ≈ (wh, 0 − wc, 0)g/wh, 0 = g/2.

The effect of the buoyancy force and the KHI can be seen in
Fig. 12, where we show the motion of a hot unmagnetized blob in
a cold magnetized fluid. The hot blob, in pressure equilibrium with
the cold magnetized fluid, is initialized with downward velocity
vb = 0.01 to mimic the downward dripping of hot plasma from
the hot layer. Soon, the ram pressure exerted by the ambient fluid
flattens the blob into a thin ribbon, the sides of which are curled
upwards due to the KHI. In the last snapshot of Fig. 12, we show the
velocity vectors. The KHI gives rise to two symmetrical vortices that
cause a drag force on the stretched-out blob that largely balances the
downward pull acting on it by the effective gravity, after correcting
for the buoyancy force.

Interestingly, there is hardly any mixing between the blob and am-
bient fluid, which suggests that instabilities on the smallest scales
at the interface between the blob and external fluid are suppressed.
This behaviour is contrary to what lower density blobs rising buoy-
antly in higher density inter-galaxy-cluster medium experience in
numerical simulations. In the absence of any viscosity, the blobs are
shredded and destroyed completely over few sound-crossing times.
As shown by Reynolds et al. (2005) and Dong & Stone (2009),
viscosity stabilizes the secondary RTI and KHI and keeps the blob
intact but still stretched out into a structure similar to what is shown
in Fig. 12. The simulation shown in Fig. 12 does not have any arti-
ficial viscosity but only that due to numerical diffusion at the grid
scale, which is small but enough to suppress small-scale instabilities
at the interface between the blob and ambient fluid.

The slower motion of the hot plasma due to such instabilities has
a profound effect on the rate of reconnection. As argued earlier,
reconnection in the scenario explored here depends critically on
evacuation of hot plasma from the current layer. This allows the
cold magnetized fluids with opposite polarity to come into contact
and dissipate magnetic energy. If the dripping of plasma out of the
hot layer slows down, then so will the rate of reconnection.
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Figure 12. Density snapshots of an un-magnetized blob with initial downward velocity vb = 0.01 in a magnetized fluid. The uniformly magnetized fluid, with
magnetic field pointing out of the page, is cold and has magnetization σ = 10. Gravity points downward with g = 0.1. The blob is flattened due to the ram
pressure of the ambient fluid. Onset of the KHI leads to the development of symmetrical vortices as shown in the last snapshot, which provide an effective drag
force that approximately balances the effective gravity accounting for the buoyancy force.

7 D ISCUSSION

The ordered bulk inflow velocity vin upstream of the current sheet is
generally taken as a measure of the reconnection rate. In the steady-
state Sweet–Parker reconnection, the inflow velocity is limited by
the aspect ratio of the current sheet, such that vin = (δ/L)vA, where
δ and L are, respectively, the half width and half length (parallel
to the upstream field direction) of the reconnection layer. Since in
astrophysical plasmas usually δ/L � 1, the Sweet–Parker recon-
nection cannot satisfy the fast energy dissipation rates needed in
any bursting phenomena. Alternatively, 2D and 3D MHD simula-
tions of relativistic reconnection have shown that vin ∼ 0.1vA (e.g.
Watanabe & Yokoyama 2006), confirming the analytic result of
Lyubarsky (2005).

It is important to note that these simulation are inherently different
from the scenario explored here. In reconnection simulations similar
to what is shown in Watanabe & Yokoyama (2006), plasma is forced
out of the finite simulation box along the current layer due to the
magnetic tension of the reconnected field lines. This allows the
current layer to be evacuated at a much faster rate and yield high vin.
In addition, such simulations also invoke an explicit finite resistivity,
which greatly aids in enhancing the reconnection rate by setting up
an X-type neutral point at the outset.

In this work, we find turbulence rather than an ordered bulk flow
in the reconnection region. Nonetheless, for comparison purposes
we define vin as the ordered bulk inflow velocity that would produce
the same magnetic reconnection rate as we find in our simulations
(see equation 20). With this definition, we find that 10−3 � β in

� 5 × 10−3, which is slower by up to two orders of magnitude.
While β in increases initially with increasing effective gravity, it
quickly saturates at its final, but still low, value of β in ≈ 5 × 10−3

(for σ 0 = 10) due to the KHI, which produces vorticity and an
effective drag force that inhibits fast evacuation of hot plasma from
the current layer. We solve the equations of ideal MHD without any
explicit resistivity. Therefore, magnetic field diffusion is minimal
(only that due to numerical diffusion at the grid scale) that leads to
most of the magnetic field away from the current layer to remain
undisturbed. It is likely that the inclusion of finite resistivity could
potentially significantly increase the reconnection rate.

Radiative cooling of particles in the current layer was neglected
in this work; however, it can play an important role in determining
the structure of the current layer and evolution of the KSI. If the
scattering optical depth of the hot current layer is initially high, then
radiation will remain trapped inside it until photons can efficiently
diffuse out of it. This particular scenario was explored analytically
by Bégué, Pe’er & Lyubarsky (2017), where they showed that in the
optically thick case the pressure in the current layer is dominated
by the radiation field, and the width of the layer remains larger by
many orders of magnitude as compared to the optically thin case. In
the latter case, since radiation can stream out, loss of pressure leads
to compression of the current layer and therefore a large increase
in gas density, which may in turn enhance the KSI. Interestingly,
they showed that whether radiation streams out or remains trapped
in the current layer has no effect on the dynamics of the outflow.

It was shown by Drenkhahn (2002), Lyubarsky (2010b), and
Bégué et al. (2017) that a Poynting flux dominated outflow with a
striped wind structure will accelerate due to dissipation of energy
via magnetic reconnection, such that d�/d ln r ∝ (β inr)1/3 for r < rs,
where rs is the saturation radius. The saturation radius rs ∝ �2

∞/βin

is the point where most of the initial magnetic energy has already
been tapped so that beyond it no further acceleration due to magnetic
reconnection is possible and the flow simply coasts at a fixed �∞.
Therefore, a higher reconnection rate (β in > 0.1) can yield a (up to
an order of magnitude) lower saturation radius. As argued earlier,
this can be facilitated by the existence of even a small resistivity in
the flow.

In this work, we assumed an ideal scenario of completely anti-
parallel magnetic field lines close to the current layer. In order
to make this picture more realistic, allowance should be made for
magnetic field shear between the two regions (1 and 3) with opposite
polarity, such that there is a finite misalignment angle θ1, 3 between
the field lines. Understanding of the KSI in this case is important,
since magnetic field line tension of the misaligned field lines can
stabilize the instability. This will be the subject of a future analytic
work (Gill, Granot, & Lyubarksy in preparation). Exploring such
a scenario numerically necessarily requires 3D simulations, which
are also left for a future study.
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