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7Dipartimento di Fisica, Università di Trieste, I-34127 Trieste, Italy
(Received 28 February 2013; published 4 June 2013)

We analyze the MeV/GeV emission from four bright gamma-ray bursts (GRBs) observed by the Fermi

Large Area Telescope to produce robust, stringent constraints on a dependence of the speed of light

in vacuo on the photon energy (vacuum dispersion), a form of Lorentz invariance violation (LIV) allowed

by some quantum gravity (QG) theories. First, we use three different and complementary techniques to

constrain the total degree of dispersion observed in the data. Additionally, using a maximally conservative

set of assumptions on possible source-intrinsic, spectral-evolution effects, we constrain any vacuum

dispersion solely attributed to LIV. We then derive limits on the QG energy scale (the energy scale where

LIV-inducing QG effects become strong, EQG) and the coefficients of the Standard Model Extension. For

the subluminal case (where high-energy photons propagate more slowly than lower-energy photons) and

without taking into account any source-intrinsic dispersion, our most stringent limits (at 95% C.L.) are

obtained from GRB 090510 and are EQG;1 > 7:6 times the Planck energy (EPl) and EQG;2 > 1:3�
1011 GeV for linear and quadratic leading-order LIV-induced vacuum dispersion, respectively. These

limits improve the latest constraints by Fermi and H.E.S.S. by a factor of �2. Our results disfavor any

class of models requiring EQG;1 & EPl.

DOI: 10.1103/PhysRevD.87.122001 PACS numbers: 11.30.Cp, 04.60.�m, 98.70.Rz

I. INTRODUCTION

While general relativity and Quantum Field Theory have
each enjoyed impressive success so far, their formulations
are currently inconsistent, hence motivating searches for
unification schemes that can collectively be subsumed
under the name of Quantum Gravity (QG) theories.
These theories generally predict the existence of a natural
scale at which the physics of space-time, as predicted by
relativity theory, is expected to break down, hence requir-
ing modifications or the creation of a new paradigm to
avoid singularity problems. This scale, referred to as
the ‘‘quantum gravity energy scale’’ EQG, is in general

expected to be of the order of the Planck scale [1],

EPl �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðℏc5Þ=Gp ’ 1:22� 1019 GeV, or in some cases

lower (e.g., for some QG scenarios such as loop quantum
gravity).

Since relativity precludes an invariant length, the intro-
duction of such a constant scale violates Lorentz invariance
(LI). Thus, tests of LI are strongly motivated by the search

for a theory of QG [2]. Additional motivations for testing
LI are the need to cut off high-energy (ultraviolet) diver-
gences in quantum field theory and the need for a consis-
tent theory of black holes [3,4].
The idea that LI may be only approximate has been

explored within the context of a wide variety of suggested
Planck-scale physics scenarios. These include the concepts
of deformed relativity, loop quantum gravity, noncommuta-
tive geometry, spin foam models, and some string theory
(M theory) models (for reviews see, e.g., Refs. [5–7]). These
theoretical explorations and their possible consequences,
such as observable modifications in the energy-momentum
dispersion relations for free particles and photons, have
been discussed under the general heading of ‘‘Planck scale
phenomenology.’’
There is also the motivation of testing LI in order to

extend or limit its domain of applicability to the highest
observable energies. Since the group of pure LI transfor-
mations is unbounded at high energies, one should look
for its breakdown at high-energy scales, possibly through
effects of Planck scale physics but perhaps through the
effects of other unknown phenomena. To accomplish such
a program, tests of the kinematics of LI violation (LIV)
within the context of physical interaction dynamics, such
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as quantum electrodynamics or standard model physics
(e.g., [8–12]), have been proposed. Fruitful frameworks
for this kind of analysis, useful for testing the effects of
LIVat energies well below the Planck scale, are the Taylor
series expansion originally proposed in the seminal paper
by Amelino-Camelia et al. [13] and the more comprehen-
sive Standard Model Extension (SME) parametrization of
Kostelecký and collaborators [14–16]. These phenomeno-
logical parameterizations can be viewed as low-energy
effective field theories, holding at energies E � EPl and
providing an effective framework to search for LIV at
energies far below the Planck scale.

One manifestation of LIV is the existence of an energy-
dependent ‘‘maximum attainable velocity’’ of a particle
and its effect on the thresholds for various particle inter-
actions, particle decays, and neutrino oscillations [8].
Assuming that the mass of the photon is zero, its maximum
attainable velocity can be determined by measuring its
velocity at the highest possible observable energy. This
energy is, of necessity, in the gamma-ray range. Since we
know that LI is accurate at accelerator energies, and even at
cosmic-ray energies [17], any deviation of the velocity of a
photon from its low energy value, c, must be very small at
these energies. Thus, a sensitive test of LI requires high-
energy photons (i.e., gamma rays) and entails searching for
dependencies of the speed of light in vacuo on the photon
energy. The method used in this study to search for such an
energy dependence consists of comparing the time of flight
between photons of different energies emitted together by a
distant astrophysical source. As will be shown in the next
section, the magnitude of a LIV-induced difference on the
time of flight is predicted to be an increasing function of
the photon energy and the distance of source. Thus, be-
cause of the high-energy extent of their emission (up to
tens of GeV), their large distances (redshifts up to a value
of �8), and their rapid (down to ms scale) variabilities,
gamma-ray bursts (GRBs) are very effective probes for
searching for such LIV-induced spectral dispersions [13].

There have been several searches for LIV applying a
variety of analysis techniques on GRB observations. Some
of the pre-Fermi studies are those by Lamon et al. [18] using
INTEGRAL GRBs; by Bolmont et al. [19] using HETE-2
GRBs; by Ellis et al. [20] using HETE, BATSE, and Swift
GRBs; and by Rodrı́guez-Martı́nez et al. using Swift and
Konus-Wind observations of GRB 051221A [21]. The most
stringent constraints, however, have been placed using
Fermi observations, mainly thanks to the unprecedented
sensitivity for detecting the prompt MeV/GeV GRB emis-
sion by the Fermi Large Area Telescope (LAT) [22,23].
These constraints include those by the Fermi LAT and
Gamma-Ray Burst Monitor (GBM) Collaborations, using
GRBs 080916C [24] and 090510 [25] and by Shao et al.
[26] and Nemiroff et al. [27], using multiple Fermi GRBs.
In addition to these GRB-based studies, there have been
some results using TeVobservations of bright active galactic

nuclei flares, including the MAGIC analysis of the flares of
Mrk 501 [28,29] and the H.E.S.S. analysis of the excep-
tional flare of PKS 2155-304 [30,31]. It should be noted that
the studies above did not assume any dependence of LIVon
the polarization of the photons, manifesting as birefringence
[32]. In the case that such a dependence exists, constraints
on LIV effects can be produced [11,33–35] that are 13
orders of magnitude stronger than the dispersion-only con-
straints placed with time-of-flight considerations (as in this
work). It should be added that there is a class of theories that
allow for photon dispersion without birefringence that can
be directly constrained by our results (e.g., [36]).
The aim of this study is to produce a robust and com-

petitive constraint on the dependence of the velocity of
light in vacuo on its energy. Our analysis is performed on a
selection of Fermi-LAT [23] GRBs with measured red-
shifts and bright GeVemission. We first apply three differ-
ent analysis techniques to constrain the total degree of
spectral dispersion observed in the data. Then, using a set
of maximally conservative assumptions on the possible
source-intrinsic spectral evolution (which can masquerade
as LIV dispersion), we produce constraints on the degree of
LIV-induced spectral dispersion. The latter constraints are
weaker than those on the total degree of dispersion, yet
considerably more robust with respect to the presence of a
source-intrinsic effects. Finally, we convert our constraints
to limits on LIV-model-specific quantities, such as EQG and

the coefficients of the SME.
The first method used to constrain the degree of disper-

sion in the data, named ‘‘PairView’’ (PV), is created as part
of this study and performs a statistical analysis on all the
pairs of photons in the data to find a common spectral lag.
The second method, named ‘‘Sharpness-Maximization
Method’’ (SMM), is a modification of existing techniques
(e.g., DisCan [37]) and is based on the fact that any spectral
dispersion will smear the structure of the light curve,
reducing its sharpness. SMM’s best estimate is equal to
the negative of a trial degree of dispersion that, when
applied to the actual light curve, restores its assumed-as-
initially-maximal sharpness. Finally, the third method em-
ploys an unbinned maximum likelihood (ML) analysis to
compare the data as observed at energies low enough for
the LIV delays to be negligible to the data at higher
energies. The three methods were tested using an extensive
set of simulations and cross-checks, described in several
appendixes.
Our constraints apply only to classes of LIV models that

possess the following properties. First, the magnitude of
the LIV-induced time delay depends either linearly or
quadratically on the photon energy. Second, this depen-
dence is deterministic; i.e., the degree of LIV-induced
increase or decrease in the photon propagation speed
does not have a stochastic (or ‘‘fuzzy’’) nature as postu-
lated by some of the LI models (see Ref. [38] and refer-
ences therein). Finally, the sign of the effect does not
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depend on the photon polarization—the velocities of all
photons of the same energy are either increased or de-
creased due to LIV by the same exact amount.

In Sec. II we describe the LIV formalism and notation
used in the paper, in Sec. III we describe the data sets used
for the analysis, in Sec. IV we describe the three analysis
methods and the procedure we used to take into account
possible intrinsic spectral-evolution effects, in Sec. V we
present the results, in Sec. VI we report and discuss their
associated systematic uncertainties and caveats, and finally
in Sec. VII we compare our results to previous measure-
ments and discuss their physical implications. We present
our Monte Carlo simulations used for verifying PV and
SMM in Appendix A, the calibrations and verification tests
of the ML method in Appendix B, a direct one-to-one
comparison of the results of the three methods after
their application on a common set of simulated data in
Appendix C, and cross-checks of the results in
Appendix D.

II. FORMALISM

In QG scenarios, the LIV-induced modifications to the
photon dispersion relation can be described using a series
expansion in the form

E2 ’ p2c2 �
�
1� X1

n¼1

s�
�

E

EQG

�
n
�
; (1)

where c is the constant speed of light (at the limit of
zero photon energy), s� is the ‘‘sign of LIV,’’ a theory-
dependent factor equal to þ1 (�1) for a decrease (in-
crease) in photon speed with an increasing photon energy
(also referred to as the ‘‘subluminal’’ and ‘‘superluminal’’
cases). For E � EQG, the lowest-order term in the series

not suppressed by theory is expected to dominate the sum.
In case the n ¼ 1 term is suppressed, something that can
happen if a symmetry law is involved, the next term n ¼ 2
will dominate. We note that in effective field theory,
n ¼ d� 4, where d is the mass dimension of the dominant
operator. Therefore, the n ¼ 1 term arises from a
dimension-5 operator [39]. It has been shown that odd
mass-dimension terms violate CPT [14,40]. Thus, if
CPT is preserved, then the n ¼ 2 term is expected to
dominate. In this study, we only consider the n ¼ 1 and
n ¼ 2 cases, since the data used in this study are not
sensitive to higher order terms.

Using Eq. (1) and keeping only the lowest-order domi-
nant term, it can be found that the photon propagation
speed uph, given by its group velocity, is

uphðEÞ ¼ @E

@p
’ c�

�
1� s�

nþ 1

2

�
E

EQG

�
n
�
; (2)

where c � lim E!0uphðEÞ. Because of the energy depen-

dence of uphðEÞ, two photons of different energies Eh > El

emitted by a distant source at the same time and from the

same location will arrive on Earth with a time delay �t
which depends on their energies. We define the ‘‘LIV
parameter’’ �n as the ratio of this delay over E

n
h � En

l [41],

�n � �t

En
h � En

l

’ s�
ð1þ nÞ
2H0

1

En
QG

� �n; (3)

where

�n �
Z z

0

ð1þ z0Þnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� þ�Mð1þ z0Þ3p dz0 (4)

is a comoving distance that also depends on the order of
LIV (n), z is redshift, H0 is the Hubble constant, and ��

and�M are the cosmological constant and the total matter
density (parameters of the �CDM model).
In the SME framework [15], the slight modifications

induced by LIV effects are also described by a series
expansion with respect to powers of the photon energy.
In this framework, LIV can also be dependent on the
direction of the source. Including only the single term
assumed to dominate the sum, �n is given by

�n ’ 1

H0

�X
jm

0Yjmðn̂Þcðnþ4Þ
ðIÞjm

�
� �n; (5)

where n̂ is the direction of the source, 0Yjmðn̂Þ are spin-

weighted spherical harmonics, and cðnþ4Þ
ðIÞjm are coefficients

of the framework that describe the strength of LIV. In the
SME case of a direction-dependent LIV, we constrain the
sum (enclosed in parentheses) as a whole. For the alter-
native possibility of direction independence, all the terms

in the sum become zero except 0Y00 ¼ Y00 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ð4�Þp

. In

that case, we constrain a single cðnþ4Þ
ðIÞ00 coefficient.

The coordinates of n̂ are in a Sun-centered celestial
equatorial frame described in Sec. V of Ref. [15], directly
related to the equatorial coordinates of the source such that
its first coordinate is equal to 90�—declination and the
second being equal to the right ascension. Finally, the

coefficients cðnþ4Þ
ðIÞjm can be either positive or negative de-

pending on whether LIV-induced dispersion corresponds to
a decrease or increase in photon speed with an increasing
energy, respectively, (i.e., the sign of the SME coefficients
plays the role of the s� factor of the series-expansion
framework).
In the important case of a d ¼ 5modification of the free

photon Lagrangian in effective field theory, Myers and
Pospelov have shown that the only d ¼ 5 (n ¼ 1) operator
that preserves both gauge invariance and rotational sym-
metry implies vacuum birefringence [39]. In such a case,
and as was mentioned in the Introduction, significantly
stronger constraints can be placed using the existence of
birefringence than with just dispersion (as in this work).
For this reason, in this paper and when working within the
given assumptions of the SME framework, we proceed
assuming that the d ¼ 5 terms are either zero or dominated

CONSTRAINTS ON LORENTZ INVARIANCE VIOLATION . . . PHYSICAL REVIEW D 87, 122001 (2013)

122001-3



by the higher-order terms and constrain the d ¼ 6 terms,
which are not expected to come with birefringence.

Our aim is to constrain the LIV-related parameters in-
volved in the above two parametrizations: the quantum
gravity energy EQG (for n ¼ f1; 2g and s� ¼ �1) and the

coefficients of the SME framework (for d ¼ 6 for both the
direction dependent and independent cases). To accom-
plish this, we first constrain the total degree of spectral
dispersion in the data, �n, and then using the measured
distance of the GRB and the cosmological constants, we
calculate lower limits on EQG through Eq. (3) and confi-

dence intervals for the SME coefficients using Eq. (5). We
also produce an additional set of constraints after account-
ing for GRB-intrinsic spectral evolution effects (which can
masquerade as LIV). In that case, we first treat �n as being
the sum of the GRB-intrinsic dispersions �int and the
LIV-induced dispersion �LIV, then we constrain �LIV as-
suming a model for �int, and finally constrain EQG and the

SME coefficients using the constraints on �LIV.
We employ the cosmological parameters determined

using WMAP 7-year data, �M ¼ 0:272 and �� ¼ 0:728
[42], and a value of H0 ¼ 73:8� 2:4 km s�1 Mpc�1 as
measured by the Hubble Space Telescope [43].

III. THE DATA

We analyze the data from the four Fermi-LAT
GRBs having bright GeV prompt emission, and measured
redshifts, namely GRBs 080916C, 090510, 090902B,
and 090926A. We analyze events passing the
P7_TRANSIENT_V6 selection, optimized to provide in-
creased statistics for signal-limited analyses [44]. Its main
difference from the earlier P6_V3_TRANSIENT selection
used to produce previous Fermi constraints on LIV [24,25]
consists in improvements in the classification algorithms,
which brought an increase in the instrument’s acceptance,
mostly below �300 MeV.1

We reject events with reconstructed energies less
than 30 MeV because of their limited energy and angular
reconstruction accuracy. We do not apply a maximum-
energy cut. In the case of GRB 080916C, however, we
removed an 106 GeV event detected during the prompt
emission, since detailed analyses by the LAT
Collaboration2 showed that it was actually a cosmic-ray
event misclassified as a photon.

We keep events reconstructed within a circular region of
interest (ROI) centered on the GRB direction and of a
radius large enough to accept 95% of the GRB events
according to the LAT instrument response functions, i.e.,
a radius equal to the 95% containment radius of the LAT
point spread function (PSF). Because the LAT PSF is a
function of the true photon energy and off-axis angle (the
angle between the photon true incoming direction and the

LAT boresight), the PSF containment radius is calculated
on a per-photon basis. In this calculation, we approximate
the (unknown) true off-axis angles and energies with their
reconstructed values, something that induces a slight error
at low energies. Below �100 MeV, the LAT angular re-
construction accuracy deteriorates and the 95% contain-
ment radius becomes very large. To limit the inclusion of
background events due to a very large ROI radius and also
reject some of the least accurately reconstructed events, we
limit the ROI radius to be less than 12�. The GRB direction
used for the ROI’s center is obtained by follow-up ground-
based observations (see citations in Table I) and can be
practically assumed to coincide with the true direction of
the GRB.
The above data are further split and cut depending on the

requirements of each of the three analysis methods (as
described below). Figure 1 shows the light curves and the
event time versus energy scatter plots of the GRBs in our
sample, and Table I shows the GRB redshifts and �1 and �2

distances [defined in Eq. (4)].

A. Time interval selection

The analyzed time intervals are chosen to correspond
to the period with the highest temporal variability,
focusing on the brightest pulse of each GRB. This choice
is dictated by the fact that GRB emission typically exhibits
spectral variability, which can potentially manifest as a
LIV-dispersion effect (see discussion in Sec. VI for details
on GRB spectral variability). By focusing on a narrow
snapshot of the burst’s emission, we aim to obtain con-
straints that are affected as little as possible by such GRB-
intrinsic effects. Starting from this requirement, we select
the time intervals to analyze, hereafter referred to as the
‘‘default’’ time intervals, using a procedure we devised
a priori and applied identically on all four GRBs.
We start by characterizing the brightest pulse in each

GRB by fitting its time profile with the flexible model used
by Norris et al. [51] to successfully fit more than 400 pulses
of bright BATSE bursts,

IðtÞ ¼
�
A exp ½�ðjt� tmax j=�rÞv� t < tmax ;

A exp ½�ðjt� tmax j=�dÞv� t 	 tmax ;
(6)

where tmax is the time of the pulse’s maximum intensity A,
v is a parameter that controls the shape of the pulse, and�r

TABLE I. Distances of analyzed GRBs.

GRB Redshift �1 �2

080916C 4:35� 0:15 [47] 4.44 13.50

090510 0:903� 0:003 [48] 1.03 1.50

090902B 1.822 [49]a 2.07 3.96

090926A 2:1071� 0:0001 [50] 2.37 4.85

aThis GRB had a spectroscopically measured redshift, which
implies an error at the 10�3 level.

1For a detailed list of differences, see [45].
2See [46].

V. VASILEIOU et al. PHYSICAL REVIEW D 87, 122001 (2013)

122001-4



and �d are the rise and decay time constants. For
v ¼ f1; 2g, the equation describes a two-sided exponential
or Gaussian function, respectively. We use the best-fit
parameters (as obtained from a maximum likelihood analy-
sis) to define a ‘‘pulse interval’’ extending from the time
instant that the pulse height rises to 5% of its amplitude to
the time instant that it falls to 15% of its amplitude.
We choose such an asymmetric cut because of the long
falling-side tails of GRB pulses.

We then expand this initial ‘‘pulse interval’’ until no
photons that were generated outside of it (at the source)
could have been detected inside of it (at the Earth) due to
LIV dispersion, and also until no photons that were gen-
erated inside of it (at the source) could have been detected
outside of it (at the Earth) due to LIV dispersion. We use
conservative values of EQG;1 ¼ 0:5� EPl and EQG;2 ¼
1:5� 1010 GeV for the maximum degree of LIV disper-
sion considered in extending the time interval, values
which correspond to roughly one half of the stringent and
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robust limits obtained by Fermi [25] and H.E.S.S. [30,31].
The interval resulting from this expansion is the one
chosen for the analysis (hereafter referred to as the
‘‘default’’ interval). The main reason for extending the
interval is to avoid constraining the possible emission
time of the highest-energy photons in the initial ‘‘pulse
interval’’ to a degree that would imply an artificially small
level of dispersion.

The choice of time interval for GRB 090510 and n ¼ 1
is demonstrated in Fig. 2. The (default) time intervals for
all GRBs are shown in Fig. 1 with the vertical solid (n ¼ 1)
and dashed lines (n ¼ 2), and are also reported in Table II.

IV. DATA ANALYSIS

A. PairView and sharpness-maximization methods

Because the way we calculate confidence intervals is
identical between PV and SMM, we first describe how the
best estimate of the LIV parameter is calculated by each of
these two methods and then proceed to describe their
common confidence-interval calculation procedure.

1. Best-estimate calculation: PairView

The PV method calculates the spectral lags li;j between

all pairs of photons in a data set and uses the distribution of
their values to estimate the LIV parameter. Specifically, for
a data set consisting ofN photons with detection times t1...N
and energies E1...N, the method starts by calculating the
N � ðN � 1Þ=2 photon-pair spectral lags li;j for each i > j,

li;j �
ti � tj
En
i � En

j

; (7)

(where n is the order of LIV), and creates a distribution of
their values.

Let us examine how the distribution of li;j values de-

pends on the properties of the data and LIV dispersion. For
a light curve comprising at emission a single �-function
pulse and for a dispersion �n, the li;j distribution will

consist of a single �-function peak at a value of exactly
�n. For a light curve comprising (at emission) a finite-width
pulse, the now nonzero time differences between the
emission times of the events behave as noise, inducing a

nonzero width to the distribution of li;j. Similarly to the

previous ideal case, however, the li;j distribution will be

peaked at approximately �n. For a realistic light curve
consisting of one or more peaks superimposed on a
smoothly varying emission, the distribution of li;j will be

composed of a signal peak centered at ��n (consisting of
li;j values created primarily by events i, j emitted tempo-

rally close and with not too similar energies) and a
smoother underlying wide background (consisting of the
rest of the li;j values).

Following the above picture, the estimator �̂n of �n is
taken as the location of the most prominent peak in the li;j
distribution. This peak becomes taller and narrower, thus
more easily detectable, as the variability time scale de-
creases and as the width of the energy range increases.
Searching for the peak using a histogram of the li;j

values would require us to first bin the data, a procedure
that would include choosing a bin width fine enough to
allow for identifying the peak with good sensitivity but also
wide enough to allow for good statistical accuracy in the
bin contents. We decided not to use a histogram to avoid
the subjective choice of bin width. Instead, we use a kernel
density estimate (KDE), as it provides a way to perform
peak finding on unbinned data, and as it is readily imple-
mented in easy-to-use tools with the ROOT TKDE
method.3 We use a Gaussian kernel for the KDE and a
bandwidth chosen so as to minimize the mean integrated
squared error calculated between the KDE and a very
finely binned histogram of the photon-pair lags.

2. Best-estimate calculation:
Sharpness-maximization method

SMM is based on the fact that the application of any
form of spectral dispersion to the data (e.g., by LIV) will
smear the light curve decreasing its sharpness. Based on
this, SMM tries to identify the degree of dispersion that
when removed from the data (i.e., when the negative value
of it is applied to the data) maximizes its sharpness. This
approach is similar to the ‘‘dispersion cancellation’’
(DisCan) technique [37], the ‘‘minimal dispersion’’

TABLE II. Configuration details.

Time range (s) � N100 � Ntemplate Nfit Ecut (MeV)

All methods SMM PV & SMM Likelihood

GRB n ¼ 1 n ¼ 2 n ¼ 1 n ¼ 2 n ¼ 1 n ¼ 2 n ¼ f1; 2g n ¼ f1; 2g n ¼ 1 n ¼ 2 n ¼ f1; 2g
080916C 3.53–7.89 3.53–7.80 50 30 59 59 2.2 82 59 59 100

090510 �0:01–3:11 �0:01–4:82 50 70 157 168 1.5 148 118 125 150

090902B 5.79–14.22 5.79–14.21 80 80 111 111 1.9 57 87 87 150

090926A 8.92–10.77 9.3–10.76 25 30 60 58 2.2a 53 48 47 120

aThe spectral model for this GRB also includes an exponential cutoff with preset e-folding energy Ef ¼ 0:4 GeV in accordance with
Ackermann et al. [52].

3See [53].
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method [54], and the ‘‘energy cost function’’ method
[28,54]. The most important difference between these
approaches is the way the sharpness of the light curve
is measured.

We start the application of SMM by analyzing a data set
consisting of photons with detection times ti and energies
Ei to produce a collection of ‘‘inversely smeared’’ data
sets, each corresponding to a trial LIV parameter �n, by
subtracting En

i � �n from the detection times ti. For each
of the resulting data sets, the modified photon detection
times are first sorted to create a new set t0i, and then the
sharpness of its light curve is measured using t0i and Ei.
After this procedure has been applied on a range of trial
LIV parameters, we find the inversely smeared data set
with the sharpest light curve and select the trial �n value
used to produce it as the best estimate of �̂n.

In their analysis of the data from a flare of the blazar Mrk
501, the MAGIC Collaboration [28] quantified the sharp-
ness of the light curve using an ‘‘energy cost function,’’
which was essentially the sum of the photon energies
detected in some predefined time interval chosen to corre-
spond to the most active part of the flare. Scargle et al. [37]
explored a range of different cost functions to measure the
sharpness of the light curve, including Shannon, Renyi, and
Fisher information, variance, total variation, and self-
entropy, finding that the Shannon information is the most
sensitive. In this study, we use a function S that is similar to
the Shannon information and defined as

S ð�nÞ ¼
XN��

i¼1

log

�
�

t0iþ� � t0i

�
; (8)

where � is a configurable parameter of the method.
Different values of � will tune the algorithm to evaluate

the sharpness of the light curve focusing on intervals con-
sisting of different numbers of events (i.e., of � events) or
equivalently focusing on different time scales. As a result,
the choice of � affects the performance of the algorithm in
two ways. For a small value of � (up to �3), some of the
durations in the denominator of Sð�nÞ can become rela-
tively very small, making some of the 1=ðt0iþ� � t0iÞ terms

very large. In this case, Sð�nÞ can fluctuate significantly as
a function of the trial lag, decreasing the accuracy with
which the best LIV parameter can be measured. For too
large values of �, the algorithm essentially tries to mini-
mize the total duration of the analyzed data, focusing on
time scales larger than the variability time scale, ending up
with a diminished sensitivity (in practice the peak of S
becomes flatter). These effects are demonstrated in Fig. 3.

To choose the value of �we first generate a large number
of simulated data sets inspired by the GRB under study,
then apply the method using a series of different � values,
and finally we choose the � value that produces the most
constraining median upper limit on �n (for s� ¼ þ1).
These simulated data sets are constructed similarly to the
procedure described in Appendix A using a light-curve

template produced by a KDE of the actual light curve,
with the same statistics as the data, a spectrum similar to
that in the data and without any spectral dispersion applied.
Finally, it should be noted that the method’s description

above was for the case of zero source-intrinsic spectral
evolution effects, since the light curve of the GRB mission
at the source was treated as being maximally sharp.
This picture is equivalent to assuming that there is an
initial (imaginary) maximally sharp signal that is first
distorted by GRB-intrinsic effects and then by LIV. In
that case, the constraints provided by SMM will be on
the aggregate effect.

3. Confidence-interval calculation

The PV and SMM methods produce a confidence
interval on the best LIV parameter by means of a random-
ization analysis.
We start by producing 105 randomized data sets by

shuffling the association between energies and times of
the detected events. Because the total number of events and
the distributions of energies and times are identical be-
tween the actually detected and the randomized data sets,
their statistical power (i.e., their ability to constrain the
dispersion) is similar. However, because of the random-
ization, any dispersion potentially present in the actual data
is lost. After the set of randomized data sets is constructed,
the best LIV parameter is measured on each one of them
and the measurements are used to create a (normalized to
unity) distribution fr.
We then define the measurement error on �n (for the

general case of any �n) as E ¼ �̂n � �n and the probability
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FIG. 3. Curves of SMM’s sharpness measure Sð�nÞ versus the
trial value of the LIV parameter �1, each produced using a
different � value. These curves were generated using the GRB
090510-inspired data set described in Appendix A after the
application of a dispersion equal toþ0:04 s=GeV (value denoted
with the vertical line). The circles denote the maxima of the
curves, the positions of which are used to produce �̂1. As can be
seen, too small or too large values of � correspond to a reduced
accuracy for measuring the position of the peak.
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distribution function (PDF) of E as PEð�Þ, where � is a
random realization of E. We assume that PE has a negli-
gible dependence on �n (at least for the range of values of
�n expected to be present in the data) and approximate

PEð�Þ ’ PEð�j�n ¼ 0Þ: (9)

The PDF PE for the case of a zero �n, PEð�j�n ¼ 0Þ, can be
identified as the normalized distribution fr produced using
our randomization simulations. Thus,

PEð�Þ ’ frð�Þ: (10)

Since E is a quantity with a known PDF, and since it
depends on the unknown parameter �n, it can be used as a
pivotal quantity to construct a two-sided confidence inter-
val (CI) of confidence level (C.L.) for �n as

C:L: ¼ Prðqð1�C:L:Þ=2 < E < qð1þC:L:Þ=2Þ
¼ Prðqð1�C:L:Þ=2 < �̂n � �n < qð1þC:L:Þ=2Þ
¼ Prð�̂n � qð1þC:L:Þ=2 < �n < �̂n � qð1�C:L:Þ=2Þ
¼ PrðLL < �n < ULÞ; (11)

where LL ¼ �̂n � qð1þC:L:Þ=2 and UL ¼ �̂n � qð1�C:L:Þ=2
are the lower and upper limits defining the CI, and
qð1�C:L:Þ=2 and qð1þC:L:Þ=2 are the ð1� C:L:Þ=2 and

ð1þ C:L:Þ=2 quantiles of fr.
To produce a lower limit on EQG for the subluminal

or the superluminal case, we use Eq. (3), substituting �n
with its lower or upper limit, respectively, and solve
for EQG.

B. Likelihood method

The ML fit procedure used in this work has been devel-
oped and applied by Martinez and Errando [29] to MAGIC
data for the 2005 flare of Mkn 501 and by Abramowski
et al. [31] to H.E.S.S. data for the gigantic flare of PKS
2155-304 in 2006. This section describes its key aspects, its
underlying assumptions, and the details of its application to
GRB data.

The ML method consists in comparing the arrival
time of each detected photon with a template light
curve which is shifted in time by an amount depending
linearly or quadratically on the event’s energy. For a fixed
number of independent events, Nfit; with energies and

times, fEi; tigi¼1;Nfit;
observed in the energy and time inter-

vals, ½Ecut; Emax � and ½t1; t2�, the unbinned likelihood
function is

L ¼ YNfit;

i¼1

PðEi; tij�nÞ; (12)

where P is the PDF of observing one event at energy E
and time t, given �n. For an astrophysical source observed
by a gamma-ray telescope, it is PðEi; tij�nÞ ¼
RðEi; tij�nÞ=Npred, where R is the expected differential

count rate at energy E and time t and Npred ¼REmax

Ecut

Rt2
t1 RðE; tj�nÞdEdt is the total number of events pre-

dicted by the model. For a pointlike source observed by
the Fermi-LAT,

RðE; tj�nÞ ¼
Z 1

0
FðEt; tj�nÞAeffðEtÞDðEt; EÞdEt; (13)

where FðEt; tj�nÞ is the model for the photon flux which is
incident on the LATat the photon (true) energy Et and time
t, whereas AeffðEtÞ4 and DðEt; EÞ are the LAT effective
area and energy redistribution functions, respectively. As
the energy resolution with the LAT is better than 15%
above 100 MeV [44], we can neglect any energy misre-
construction effects. Assuming no spectral variability and
that the flux spectrum follows a power law with possible
attenuation at the highest energies, then

FðE; tj�nÞ ¼ 	0E
��e�E=Effðt� �nE

nÞ; (14)

where � is the time-independent spectral index, Ef is the
cutoff energy, and the function fðtÞ is the time profile of the
emission that would be received by the LAT in case of a
null LIV-induced lag �nE

n. We explain further below how
the function fðtÞ is derived from the data in practice.

Finally, defining the observed spectral profile as �ðEÞ ¼
	0E

��e�E=EfAeffðEÞ, we obtain
PðE; tj�nÞ ¼ �ðEÞfðt� �nE

nÞ=Npred: (15)

Thus, the ML estimator �̂n of the LIV parameter �n
satisfies

�XN
i¼1

@ log fðti � �nE
n
i Þ

@�n
� Nfit;

Npred

@Npred

@�n

�
�n¼�̂n

¼ 0: (16)

For the brightest LAT-detected GRBs, Nfit; * 50 typically

(see Table II), thus a good estimate of the sensitivity
offered by the estimator �̂n can be obtained by considering
the ideal case of the large sample limit. In this regime, �̂n is
unbiased and efficient like any ML estimator. Namely, its
variance reaches the Cramér-Rao bound, e.g., given by
Eq. (9.34) on p. 217 of [55],

V½�̂n� ¼
�
Nfit;

Z Emax

Ecut

Z t2

t1

1

P

�
@P

@�n

�
2
dEdt

��1
: (17)

As the time profile can be measured up to very large times
in case of large photon statistics, one can show that the
standard deviation of �̂n is simply given by

4The effective area also depends on the direction of the source
in instrument coordinates, which is a typically continuously
varying quantity. We can drop the time dependence by approx-
imating AeffðEt; tÞ with its averaged over the observation value
AeffðEtÞ.
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�½�̂n� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nfit;hg2ihE2nih

q ; (18)

where hg2i ¼ Rþ1
�1 f0ðtÞ2=fðtÞdt ( ¼ 1=�2 for a Gaussian

time profile of standard deviation �), hEm�nih¼REmax

Ecut
Em�n�ðEÞdE=�h and �h¼

REmax

Ecut
�ðEÞdE. The above

expression for�½�̂n� is a good approximation (within a factor
of 2 to 3) of the actual standard deviation of �̂n, and it gives a
useful estimate of the expected sensitivity.However, our final
results are based on a proper derivation of confidence inter-
vals as described further below in this section.

The spectral profile�ðEÞ is constant with time since � is
assumed to be constant during the considered time interval
(see further discussions on possible spectral evolution
effects in Sec. VI). The spectral profile is also independent
of the LIV parameter and is only used as a weighting
function in the PDF normalizationNpred. For these reasons,

we approximate the spectral profile by a power-law func-
tion (with a fixed attenuation when needed),

�ðEÞ / E��e�E=Ef : (19)

The spectral index � is obtained from the fit of the above
function to the time-integrated spectrum SðEÞ observed by
the LAT,

SðEÞ ¼
Z t2

t1

FðE; tj�nÞAeffðEÞdt: (20)

In practice, we define a Ecut 2 ½100; 150� MeV and we
fit the spectrum SðEÞ aboveEcut (see Fig. 7 for an example)
in order to obtain a fairly good estimate of the spectral
index, namely � ’ � within errors (see discussion in
Sec. VI regarding this approximation). For the case of
GRB 090926A, we use a power-law function that has an
exponential break, in accordance with the findings of
Ackermann et al. [52].

Knowledge of the time profile fðtÞ is crucial for the ML
analysis. Typically, Ecut divides the LAT data set in two
samples of roughly equal statistics. The ML analysis is
performed using events with energies above Ecut, whereas
the fit of the light curve CðtÞ observed by the LAT below
Ecut is used to derive the time profile,

CðtÞ ¼
Z Ecut

Emin

�ðEÞfðt� �nE
nÞdE ’ �lf½t� �nhEnil�;

(21)

where Emin ¼ 30 MeV, �l ¼
REcut

Emin
�ðEÞdE and hEnil ¼REcut

Emin
En�ðEÞdE=�l. The Taylor expansion used in

Eq. (21) is justified as LIV-induced lags are effectively
negligible for low-energy events, and it yields the time
profile

fðtÞ ¼ C½tþ �nhEnil�=�l ’ CðtÞ=�l: (22)

In practice, we fit the light curve CðtÞ with a function
comprising up to three Gaussian functions (see for example

Fig. 6). The fit is performed on events detected in a time
interval somewhat wider than the default time intervals
(defined in the beginning of Sec. IV) to allow for better
statistics and because the calculations need an estimate of
the GRB flux at times that are also external to the default
time intervals.
We then proceed with calculating the likelihood function

L for a series of trial values of the LIV parameter �n and
plotting the curve of �2� ln ðLÞ ¼ �2 ln ½Lð�nÞ=Lð�̂nÞ�
as a function of �n. We first produce a best estimate of �n,
�̂n, equal to the location of the minimum of the�2� ln ðLÞ
curve. We also produce a CI on �n for an approximately
two-sided C.L. (90%, 99%) using the two values of �n
around the global minimum at �̂n for which the curve
reaches a values of 2.71 and 6.63, respectively.5 Hereafter
we refer to these CIs as being obtained ‘‘directly from the
data.’’ In addition, we produce a set of ‘‘calibrated’’ CIs on
�n, using Monte Carlo simulations and as described in
Appendix B. The calibrated CIs take into account intrinsic
uncertainties arising from the ML technique (e.g., due to
biases from the finite size of the event sample or from an
imperfect characterization of the GRB’s light curve), and
are, most importantly, constructed to have proper coverage.
Our final constraints on the LIV parameter and the LIV
energy scale are produced using the calibrated CIs.
As a final note, we would like to stress that the time shift

�nhEnil in Eq. (22) has been set to zero following
Refs. [29,31]. This implies that the time correction of any
event entering the likelihood function is overestimated by a
factor 1=
n, with 
n ¼ 1� hEnil=En 2 ½0:5; 1:0� for E 2
½0:1; 30� GeV, n ¼ 1 and, e.g., hEil ¼ 50 MeV. In princi-
ple, ignoring this time shift would thus produce an addi-
tional uncertainty �̂n � �n which is negative on average.
This would also slightly distort the likelihood function since

n varies with photon energy, possibly causing a reduction
in sensitivity. In the large sample limit, one can show that
the bias of the estimator takes the form bn ’ ��nhEnil �
hEnih=hE2nih, namely the fractional bias bn=�n is negative
and decreases with increasing hardness of the spectrum. In
practice, it ranges from �0:5% to �8% for spectral hard-
nesses similar to the ones of bursts we analyzed. In addition,
due to the limited photon statistics available in our analysis
and to the relatively small values of �n likely to be present in
the data, the ratio bn=�½�̂n� is also negligible (a few percent
at most). One should, however, keep this effect in mind for
future analyses of much brighter sources and/or in case of
significant detections of LIV effects.

C. Estimating the systematic uncertainty due to
intrinsic spectral evolution

So far we have concentrated on characterizing the
statistical uncertainties of our measurements. However,

5These two values correspond to the (90%, 99%) C.L. quantile
of a �2

1 distribution.
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systematic uncertainties can also be very important and
should be taken into account, if possible. Here, we describe
how we model the dominant systematic uncertainty in our
data, namely the intrinsic spectral evolution observed in
GRB prompt-emission light curves. A detailed discussion
of this phenomenon is given in Sec. VI.

For simplicity, in our introduction of LIV formalism
(Sec. II), we implicitly ignored the presence of
GRB-intrinsic effects (which can in general masquerade
as a LIV-induced dispersion), and instead just used the
quantity �n to describe the degree of dispersion in the
data. However, �n describes the total degree of dispersion
and is, in general, the sum of the LIV-induced degree
of dispersion, described by a parameter �LIV, and the
GRB-intrinsic degree of dispersion, described by a pa-
rameter �int, i.e.,

�n ¼ �int þ �LIV:

Our methods do not differentiate between the different
sources of dispersion. Instead, they directly measure and
constraint their sum �n. We can either ignore any intrinsic
effects (i.e., assume �int ’ 0) and proceed directly to con-
strain LIV using the obtained CI on �n or we can first
assume a model for �int, proceed to constrain �LIV, and
finally constrain LIV using the CI on �LIV. The second
approach is more appropriate for constraining LIV, since
its results are more robust with respect to the presence of
GRB-intrinsic effects.6

In principle, one could try to model �int using some
knowledge of the physical processes generating the de-
tected GRB emission or possibly using phenomenological
models constructed from large sets of MeV/GeV observa-
tions of GRBs. Unfortunately, because of the scarcity of
GRB observations at LAT energies, neither approach has
reached a mature enough stage to produce trustworthy and
robust predictions of GRB spectral lags (at such energies).
Thus, any attempts to model �int would, at this point, likely
end up producing unreliable constraints on LIV. However,
a more robust and conservative approach can be adopted,
as follows.

Since we do not have a model for �int that reliably
predicts GRB-intrinsic lags, we instead choose to model
it in a way that produces the most reasonably conservative
constraints on �LIV.

One of the main considerations behind modeling �int is
the reasonable assumption that our measurements of �n are
dominated by GRB intrinsic effects or in other words that
our constraints on �n also apply to �int. We start with the
fact that we already have obtained a coarse measurement of
the possible magnitude of �int, provided by our constraints
on �n. Specifically, we know that the value of �int (for a

particular observation) is not likely larger than the width of
the allowed range of �n, as described by its CIs.7 Thus, we
start with the working assumption that the width of the
possible range of �int is equal to the possible range of �n (as
inferred by our CIs on it).
Second, we assume that the �int has a zero value on

average. This is a reasonable assumption given that we
analyze in this study only cases where there is no clear
detection of a spectral lag signal (i.e., �n is consistent with
zero within the uncertainty of its measured value).
Moreover, this also avoids the need for introducing by
hand a preferred sign for h�inti.
In principle, there are infinite choices for a particular

shape of �int given our constraint for its width and (zero)
mean value. We choose the one that produces the least
stringent (the most conservative) overall constraints on
�LIV, by modeling �int so that it reproduces the allowed
range of possibilities of �n. For example, if our measure-
ments imply that the data are compatible with (i.e., they
cannot exclude) a positive �n, then we appropriately adjust
�int to match (explain) this possibility. This approach leads
to confidence intervals on �LIV that have the largest pos-
sible width. Other choices for modeling �int can produce
intervals more stringent either at their lower or their upper
edge, but they cannot produce more stringent overall (i.e.,
when considering both their edges) constraints. The im-
plementation of our model for �int, defined as P�intð~�intÞ
with ~�int being a random realization of �int, depends on the
particular method PV/SMM versus ML and is described
separately below.
For constructing CIs on �LIV with PVand SMM, we use

a similar approach as in Eq. (11). However, instead of using
as a pivotal quantity E ¼ �̂n � �n, we now use

E0 ¼ �̂n � �LIV ¼ �̂n � �n þ �int ¼ E þ �int: (23)

If we define the PDF of E0 as PE0 ð�0Þ, where �0 is a random
realization of E0, and if q0ð1�C:L:Þ=2 and q0ð1þC:L:Þ=2 are its

ð1� C:L:Þ=2 and ð1þ C:L:Þ=2 quantiles, then starting
from C:L: ¼ Prðq0ð1�C:L:Þ=2 < E0 < q0ð1þC:L:Þ=2Þ, we derive

a CI on �LIV of confidence level (C.L.),

C:L: ¼ PrðLL0 < �LIV <UL0Þ
¼ Prð�̂n � q0ð1þC:L:Þ=2 < �LIV < �̂n � q0ð1�C:L:Þ=2Þ:

(24)

Similarly to the CI on �n which depends on the quantiles
of PE (approximated by fr), the CI on �LIV depends on the

6Since the majority of previously published LIV constraints
have not taken into account GRB-intrinsic effects, limits of the
first approach are still useful for comparing experimental results
across different studies.

7The alternative case of a large �int being approximately
canceled by an oppositely large �LIV seems extremely unlikely
since it would require the improbable coincidence of LIV
actually existing, that the sign of the dispersion due to LIV
being opposite of the sign of the dispersion due to intrinsic
effects, and that the magnitudes of the two effects be comparable
for each of the four GRBs (a ‘‘conspiracy of Nature’’).
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quantiles of PE0 . Assuming that the two components of E0
(E and �int) are independent, PE0 is given by the convolu-
tion of their PDFs,

PE0 ð�0Þ ¼
Z 1

�1
frð�0 � ~�intÞP�intð~�intÞd~�int: (25)

Up to now, we have described a general way to produce
CIs on �LIV, independent of the particular choice of P�int .

We mentioned above that we would like to choose a model
for �int such that it matches any part of the parameter space
for �n not excluded by the data. From the expression of the
lower and upper limits for �n Eq. (11) we observe that a
large (say) positive tail in the fr distribution implies that
our observations are compatible with (they cannot exclude)
a symmetrically negative part of the parameter space of �n,
and vice versa. Based on this observation, we choose to
model P�intð~�intÞ as frð�~�intÞ. With this choice, Eq. (25)

becomes

PE0 ð�0Þ ¼
Z 1

�1
frð�0 � ~�intÞfrð�~�intÞd~�int ¼ PACð�0Þ;

(26)

where PACð�0Þ is defined as the autocorrelation function
of fr with argument �0. As an autocorrelation function,
PE0 ð�0Þ is an even function with maximum at zero. Because
of this symmetry, its ð1þ C:L:Þ=2 and ð1� C:L:Þ=2 quan-
tiles, q0ð1þC:L:Þ=2 and q0ð1�C:L:Þ=2, respectively, are equal.

Thus, the confidence interval in Eq. (24) is symmetric
around the observed value �̂n. Finally, since h�inti was
chosen to be zero, in addition to �̂n being our best estimate
for �n, it is also our best estimate for �LIV. A demonstration
of the application of this method for GRB 090510,
PairView, and n ¼ 1 is shown in Sec. V, in Fig. 12.

The confidence interval on �LIV is wider than the one
calculated on �n by a degree that depends on the width and
shape of the possible variations in �int (and thus of fr). In
the simple case of fr following a Gaussian distribution,

then the width would increase by a factor of
ffiffiffi
2

p
. In our

case, the function fr does not always follow a Gaussian,

hence the increase is not in general equal to
ffiffiffi
2

p
.

For the case of the MLmethod, we follow the same main
idea (i.e., assume a P�int following our observational un-

certainty on �n and produce confidence intervals on �LIV)
but apply it a different way. In this case, we run a second set
of calibration simulations, in which the likelihood function
is modified to include a not-necessarily-zero delay due to
GRB-intrinsic effects. Specifically, Eq. (14) becomes

F0ðE; tj�LIV; ~�intÞ ¼ 	0E
��e�E=Effðt� �LIVE

n � ~�intE
nÞ:

(27)

In each iteration of the simulation, we sample a different
random value ~�int from the assumed P�int PDF and proceed

normally to produce a distribution of lower and upper
limits on �LIV, the means of which will define our

confidence interval on �LIV. The P�int distribution is chosen

in a similar way to the PV/SMM case using the distribu-
tions of �̂n produced during the first set of calibration
simulations. The properties of the generated confidence
intervals produced with this approach are the same as those
constructed by the PV/SMM methods.
We would like to add a point on the meaning of the

distribution P�int . In general, the properties of the emission

from a given GRB depend on two factors: the initial
properties describing the GRB’s generating system (e.g.,
mass, rotation speed, environment, redshift, etc.) and the
randomness involved in the physical processes involved in
producing the emission. We can imagine the �int quantity
as a constant unknown parameter (a ‘‘true parameter’’) that
describes the range of possibilities for both factors men-
tioned above, thus P�int can be considered as its Bayesian

prior. We can alternatively imagine the existence of some
true parameter �int;0 ¼ h�inti (chosen to be zero) that de-

pends solely on the progenitor properties, and that, during a
GRB explosion, a random realization ~�int is produced
depending on the �int;0 of that particular GRB system. In

this case, we can imagine P�int as a frequentist description

of the range of possible ~�int values occurring among an
infinite number of GRBs, all initiated by the same initial
conditions (i.e., having the same �int;0). Based on the

above, P�int can be considered as a Bayesian prior or

alternatively as a frequentist statement of the possible
values of ~�int across infinite repetitions of a GRB—the
particular choice, however, does not matter.
As a final note we should mention that our approach

assumes that the experimental results allow the possibility
of �n being zero. With some additional assumptions, how-
ever, this approach can be generalized to include the case
of a detection of a nonzero �n. For example, we could make
the assumption that a detected nonzero total dispersion is
merely result of GRB-intrinsic effects, allow for h�inti to
take a nonzero value (with �̂n being the most conservative
choice), and produce a final confidence interval on a resid-
ual �LIV (that would still be consistent with a zero �LIV).

8 It
can be said that this method allows us to quantify the
degree to which GRB-intrinsic effects reduce our ability
to detect a residual LIV-induced dispersion.

V. RESULTS

The configuration of our methods is shown in Table II, in
which we report the range (relative to the GBM trigger
time) of the analyzed data samples (common to all the

8If a nonzero dispersion is detected, it would also be interest-
ing to test the alternative possibility that this dispersion might
indicate a nonzero value of �LIV, rather than be fully attributed to
�int as assumed in our method. Since most GRB properties vary
weakly throughout the burst prompt emission, we may expect
�int to also do so. In such a case, varying the time interval could
change the measured value of �int, while not affecting �LIV.
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methods), the value of SMM’s smoothing parameter �, the
numbers of events used with PVand SMM N100, and some
quantities relevant to the ML method, namely the fitted
index � of the observed spectrum SðEÞ, the number
of events in the two parts of the data used for fitting the
light-curve template Ntemplate and for calculating the

likelihood Nfit, and the energy separating these two parts
of the data Ecut.

It is known that the spectra of LAT-detected GRBs
typically comprise two spectral components: a Band (two
smoothly connected power laws [56]) plus a power-law
function. These components do not necessarily have the
exact same light curves and their spectra do not evolve in
an identical fashion. As a result, an analysis of a data set
consisting of events from both of these components might
exhibit GRB-intrinsic spectral evolution that may be erro-
neously interpreted as LIV. This can be an important
systematic uncertainty, and is discussed further in
Sec. VI. To reduce the influence of this effect, we per-
formed the PV and SMM analyses on a data set starting
from 100MeV (instead of 30MeV), a choice made a priori
to reduce the contamination from the Band spectral com-
ponent.9,10 Because of the greater demand for statistics of
the ML method, we did not apply such a minimum-energy
cut for this method, and instead we used the events from
Ecut down to 30 MeV for the light-curve template con-
struction. As a result, any differences in the temporal

properties of the two spectral components might have
affected the ML method more than the other two methods.
However, the magnitudes of any such uncertainties are
limited by the typically small contribution of the Band
component to the analyzed data and are likely smaller
than the statistical errors.
We produce constraints for the following two confidence

levels: a 90% two-sided (or equivalently 95% one-sided)
C.L. and a 99% two-sided (or equivalently 99.5%
one-sided) C.L. In the following, the ‘‘one-sided’’ or ‘‘two-
sided’’ designations of the C.L.s may be omitted for brevity.
An example plot used for choosing SMM’s � parameter,

here for the case of GRB 090510 and n ¼ 1, is shown in
Fig. 4. For this case, we chose the value of � ¼ 50,
corresponding to the minimum of the curve. The flatness
of the curve around the minimum implies a weak depen-
dence of the method’s sensitivity on � (in the vicinity of the
minimum).
Figure 5 demonstrates the application of the PV and

SMM methods on GRB 090510 for n ¼ 1. The top panels
show how the best estimate of the LIV parameter is mea-
sured, specifically from the location of the maximum of the
KDE of the photon-pair lag distribution for PV (left col-
umn) and from the location of the maximum of the sharp-
ness measure S for SMM (right column). The bottom
panels show the distributions fr of the best LIV parameters
in the randomized data sets, used for constructing the CIs.
Their asymmetry and features (inversely) follow the shape
of the analyzed light curves. The mean value of fr can be
used as an estimate of the bias of �̂n. Except for GRB
090510, the magnitude of the bias is considerably smaller
than the variance of fr (i.e., up to �10% of the variance);
for GRB 090510, it increases up to 50% of the variance.
The absolute value of the median of fr is for all cases
smaller than �10% of the variance. We correct �̂n for
biases by subtracting from it the mean value of the fr
distribution. The verification simulations of PV/SMM (de-
scribed in Appendix A) show that the coverage of the
produced CIs is approximately proper even for asymmetric
or non-zero-mean fr distributions, such as the ones shown.
The light-curve template for GRB 090510 used by the

ML method is shown in Fig. 6. Any statistical errors
involved in the generation of the light-curve templates
are properly included in the calibrated CIs of the ML
method, as described in Appendix B.
We show the spectral fit of the observed events from

GRB 080916C in Fig. 7, which is used to calculate the
spectral index � used by the ML method. The drop in the
spectrum at low energies is caused by the sharp decrease of
the LAT effective area at those energies. In all cases, we
choose Ecut to be larger than the energy that this instru-
mental cutoff becomes important. This ensures that the
spectral index � of the observed events is a good approxi-
mation of the index � of the incoming GRB flux (within
statistical errors). It allows us to considerably simplify the
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FIG. 4. The median of the distribution of 99% C.L. upper
limits (generated from simulated data sets inspired by the
detected light curve) versus �. The error bars show the 1�
statistical uncertainty (arising from the finite number of simu-
lated data sets). This distribution is used for choosing the value
of SMM’s � parameter for the GRB 090510 n ¼ 1 application.

9The spectrum of GRB 080916C comprises just one spectral
component (Band). Thus, even though we did not need to reject
the 30–100 MeVevents for that GRB, we still applied this cut for
consistency between the four analyzed data sets.
10The particular value of 100 MeV is also the minimum energy
typically used in LAT science analyses, since the LAT recon-
struction accuracy starts to deteriorate below this energy.
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ML analysis by not having to deconvolve the instrument’s
acceptance from the observed data or having to include the
instrument’s response in the likelihood function.

Finally, Fig. 8 demonstrates the application of the ML
method, showing all the �2� ln ðLÞ curves. We use the
locations of the minima and the shapes of these curves to
produce the best estimates and the (obtained directly from
the data) CIs on �n, respectively. These curves are not
exactly parabolic (and/or a transformation to a parabolic
shape is not always possible). Therefore, any CIs produced

based solely on their shape do not have an exactly proper
coverage. The calibratedML CIs (described in Appendix B)
have by construction proper coverage, and are the ones used
to constrain the quantities of the LIV models.

A. Constraints on the total degree of dispersion, �n

Table III reports our constraints on the total degree of
dispersion, �n, and Fig. 9 shows our CIs on �n plotted
versus the distance �n. According to LIV models [i.e.,
Eq. (3)], the magnitude of the observed dispersion due to
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LIVis proportional to�n. Thus, a positive correlation of �n
and �n may imply a nonzero LIVeffect. In our case and as
can be seen from Fig. 9, no such correlation is evident.
Additionally, all of our 99%CIs are compatiblewith a zero
�n. Both features show that a LIV effect, if any, is domi-
nated in this analysis by statistical and systematic (likely
arising from GRB-intrinsic effects) uncertainties. Finally,

we note that the results of the three methods (for the same

GRB) are in good agreement to each other (i.e., they have

considerable overlap), evidence in support of the validity

of each method.
Table IV presents lower limits on EQG calculated using

our constraints on �n. The 95% lower limits are also plotted

versus the redshift in Fig. 10. These limits do not take into

account any GRB-intrinsic spectral evolution. Thus, while

they are maximally constraining, they may not be as robust

with regards to the presence of such intrinsic systematic

uncertainties.
Indeed, as we observed from, e.g., Fig. 10, some of our

90% C.L. CIs are offset to a degree that their edges
(i.e., limits) are very close to zero (e.g., GRB 090926A).
For those CIs, the corresponding limits on EQG are con-

straining to a suspicious degree, given the considerably
larger width of their CIs. It would be more acceptable
if any very constraining limits were associated with corre-
spondingly narrow CIs, contrary to what happens with
some of the GRBs in our study. This feature required
further scrutiny, hence, we examined our data and results
in detail, and concluded that the CIs are offset likely
because of GRB-intrinsic spectral evolution effects.
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FIG. 9. Our CIs on the total degree of dispersion in the data �n, obtained without taking into account any source-intrinsic
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TABLE III. Our measurements on the LIV parameter �n describing the total degree of dispersion in the data. The limits are for a
two-sided 99% C.L.

GRB name PairView SMM Likelihood (from actual data) Likelihood (Calibrated)a

(Lower Limit, Best Value, Upper Limit) (s GeV�1) n ¼ 1
080916C �0:46 0.69 1.9 �0:49 0.79 2.3 �0:75 0.1 0.72 �0:85 
 
 
 0.77

090510 (�103) �73 �14 27 �74 �12 30 �25 1 6 �9:8 
 
 
 8.6

090902B �0:36 0.17 0.53 �0:25 0.21 0.62 �0:25 0.25 0.55 �0:63 
 
 
 0.96

090926A �0:45 �0:17 0.15 �0:66 �0:2 0.23 �0:45 �0:18 0.02 �0:56 
 
 
 0.18

(Lower Limit, Best Value, Upper Limit) (s GeV�2) n ¼ 2

080916C �0:18 0.45 1.1 �0:0031 0.88 2 �0:9 0.12 1.1 �0:83 
 
 
 0.8

090510 (�103) �3:9 �0:63 0.88 �4:1 �0:68 0.85 �2:5 �0:1 0.3 �0:32 
 
 
 0.23

090902B (�103) �26 17 48 �18 24 60 �60 10 45 �120 
 
 
 110

090926A �0:18 �0:021 0.13 �0:12 �0:06 0.012 �0:38 �0:06 0.11 �0:44 
 
 
 0.14

aThese are the ML CIs used for subsequently constraining LIV.
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For the case of GRB 090926A, the 90% C.L. CIs
on �1 from our three methods, and the CIs on �2
from SMM for both C.L.s are either not consistent with
zero or considerably offset towards negative values
(something which produces spuriously stringent upper
limits on �n). For example, the n ¼ 1 CIs (not shown in
the tables) are ð�0:33;�0:17;�0:0010Þ s=GeV11 for PV,
ð�0:41;�0:20; 0:010Þ s=GeV for SMM, and ð�0:25;
�0:18;�0:13Þ s=GeV for ML (from data). As a result,
the 95% C.L. lower limits on EQG;1 for the subluminal

case (s� ¼ þ1) are either suspiciously strong (SMM)
or they could not be calculated at all (PV). The top left
panel of Fig. 11 shows the E> 100 MeV events from
GRB 090926A processed by PV and SMM. As can be
seen, the highest-energy photon in the data has an
energy of �3 GeV and is detected �0:5 s before the
main pulse. Our three methods predict that this event was
most likely initially emitted in coincidence with the
main pulse, and that it had been subsequently advanced
by LIV to be detected before it. This case, shown in

the top right panel of Fig. 11, implies a �̂1 ’
�0:5 s=3 GeV ¼ �0:17 s=GeV, in accordance with the
measured values. In the simulations performed for PV and
SMM, such relatively small values were rare. Specifically,
they occurred in a fraction of the iterations approximately
equal to the ratio of the number of photons detected at
least as early as the 3 GeV photon (4) over the total
number of photons (58 for n ¼ 1), i.e., only 5–6%. This
resulted in our 95% (one-sided) C.L. upper limits on �1
being negative or too small.
The physical reason for these too negative CIs and �̂1

values may be GRB-intrinsic spectral evolution effects,
likely associated with the presence of spectral cutoff Ef ’
0:4 GeV during the main bright pulse [52]. If this cutoff
did not exist, more GeV photons might have been detected
during this bright pulse, while if the cutoff also existed
right before this pulse, the 3 GeV photon might have not
been detected. Both cases would correspond to a �̂1 closer
to zero, and weaker, though, less spurious constraints. We
conclude that our results from GRB 090926A are likely
affected by a GRB-intrinsic spectral evolution, artificially
strengthening (weakening) our limits on EQG produced

using �n for the subluminal (superluminal) case.

TABLE IV. Lower limits on EQG for linear (n ¼ 1) and quadratic (n ¼ 2) LIV for the subluminal (s� ¼ þ1) and superluminal
(s� ¼ �1) cases. The C.L. values are one-sided. These limits were produced using the total degree of dispersion in the data, �n.

GRB name PairView SMM Likelihooda

n ¼ 1, s� ¼ þ1 (EPl units)

95% 99.5% 95% 99.5% 95% 99.5%

080916C 0.11 0.081 0.09 0.067 0.22 0.2

090510 7.6 1.3 5.9 1.2 5.2 4.2

090902B 0.17 0.13 0.15 0.11 0.12 0.074

090926A 
 
 
 0.55 8 0.35 1.2 0.45

n ¼ 1, s� ¼ �1 (EPl units)

95% 99.5% 95% 99.5% 95% 99.5%

080916C 18 0.33 5.4 0.31 0.2 0.18

090510 0.56 0.48 0.57 0.48 11 3.6

090902B 0.38 0.2 0.86 0.28 0.37 0.11

090926A 0.24 0.18 0.2 0.12 0.17 0.15

n ¼ 2, s� ¼ þ1 (1010 GeV units)

95% 99.5% 95% 99.5% 95% 99.5%

080916C 0.31 0.28 0.24 0.21 0.35 0.33

090510 6.7 3.3 13 3.3 8.6 6.4

090902B 0.8 0.72 0.73 0.64 0.64 0.49

090926A 0.67 0.48 9.1 1.6 0.48 0.47

n ¼ 2, s� ¼ �1 (1010 GeV units)

95% 99.5% 95% 99.5% 95% 99.5%

080916C 
 
 
 0.69 
 
 
 5.2 0.34 0.32

090510 1.9 1.5 1.9 1.5 9.4 5.4

090902B 1.6 0.97 3.5 1.2 0.64 0.46

090926A 0.51 0.42 0.51 0.5 0.31 0.26

aCalculated using the calibrated limits.

11(lower limit, best estimate, upper limit).
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Contrary to the case of GRB 090926A, for which the
results hint towards negative �1 values, the results from
GRB 080916C hint towards positive values. This either
does not allow us to calculate lower limits on EQG for the

superluminal case (PV and SMM for n ¼ 2; 95% C.L.) or
produces spuriously constraining results (PV and SMM for
n ¼ 1 at 95% C.L., and SMM n ¼ 2 at 99.5% C.L.).

A likely physical explanation for this positive lag is the
progressive hardening of the prompt-emission spectrum of
GRB 080916C at LAT energies. According to broadband
time-resolved spectroscopic studies [24], that spectrum can
be adequately described by a Band function, the high-
energy component of which, �, is initially very soft at a
value of�2:63� 0:12 during [0.004–3.58] s, hardens con-
siderably to a value of �2:21� 0:03 during [3.58–7.68] s,
after which it stays constant (within statistics) to a value of

�2:16� 0:03 up to at least 15.87 s. Based on this pattern,
some soft-to-hard spectral evolution is expected at least for
the beginning of our analyzed intervals ([3.53–7.89] s for
n ¼ 1 and [3.53–7.80] s for n ¼ 2). Similarly to the GRB
090926A case, we conclude that our GRB 080916C con-
straints on EQG (produced using �n) might also be affected

by GRB spectral evolution, artificially strengthening our
superluminal-case limits and weakening our subluminal-
case limits for PV and SMM.
Finally, we notice that both of the calibrated ML

lower limits on �n for GRB 090510 are considerably
more constraining by about an order of magnitude than
those from PV/SMM. We feel that this difference can be
explained by the reduced sensitivity of the PV/SMM
methods for constraining lower limits of the LIV
parameter in the presence of long tails of the emission
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after the main peak, a feature of our chosen data set from
GRB 090510. This effect was demonstrated in the one-
to-one comparisons of the three methods described in
Appendix C and illustrated in the left panel of Fig. 20.
Therefore, we attribute it to differences between the
methods’ sensitivities.

B. Constraints using the LIV-induced degree
of dispersion, �LIV

The spuriously strong limits mentioned above imply that
our sensitivity actually reaches the level of GRB-intrinsic

effects. This motivated us to produce an additional set of
constraints, this time on �LIV, taking into account intrinsic
effects and according to the methodology in Sec. IVC. As
an illustration of this method, Fig. 12 shows the intermedi-
ate plots involved the calculation of the CI on �LIV for GRB
090510, PairView, and n ¼ 1.
For simplicity we do not report the CIs on �LIV.

Instead, we just report the final limits on the LIV-model
quantities, after averaging over the three methods.
Tables V and VI show our new 95% C.L. limits on
EQG and on the SME coefficients, respectively. Our

lower limits on EQG are also illustrated with the
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FIG. 11. SMM’s results for GRB 090926A and n ¼ 1. Top left: photons detected in the default time interval, top right: SMM’s
maximally-sharp version of these events. The curves/lines in the top row act as guides to the eye for the effects of a dispersion equal to
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horizontal bars in Fig. 10, along with those produced
without correcting for intrinsic effects (from �n; shown
with the markers). As can be seen, the limits produced
using �LIV are considerably weaker than those produced
using �n. The biggest difference is for the cases of GRBs
090926A and 080916C, which had some spuriously

strong limits that we attributed above to source-intrinsic
effects.

VI. SYSTEMATIC UNCERTAINTIES

In this section, we discuss several systematic effects
potentially influencing our results, namely those originat-
ing from the source and those having instrumental origins.
Any dispersion induced by non-GRB standard physical
processes is expected to be negligible compared to the
dispersion produced by LIV [57].

A. Systematic uncertainties from GRB-intrinsic effects

GRB-intrinsic effects that can cause systematic uncer-
tainties in our results fall into the following two main
categories:
(i) the presence of multiple spectral components in the

data not evolving with temporal coincidence, and
(ii) spectral evolution during the course of the burst or

during each individual pulse.
A full physicalmodeling of the emission processes occurring
in the GRBs considered here is beyond the scope of this
paper. Instead, we utilize published time-resolved spectral
analyses to estimate the influence of any observed spectral
evolution on our results. In the initial Fermi papers on the
GRBs analyzed in this study [24,52,58,59], the prompt-
emission spectra were fitted in relatively coarse time bins
from keV to GeV energies with the combination of the
empirical Band function with a high-energy power law. It
was found that typically the Band component peaks at
& MeV energies, whereas the power-law component be-
comes dominant at LAT energies (i.e., above�100 MeV).
In the case of GRB 080916C, the spectrumwas well fitted

by a Band function only, while the significance of the exis-
tence of an additional power-law component was found to be
small. Some soft-to-hard spectral evolution could be present
in the beginning of our analyzed intervals, as was discussed
in the previous section. The broadband keV–GeV spectrum
of the following three other bursts is best represented by a
combination of both spectral components:

TABLE VI. Our 95% C.L. limits on the SME coefficients, averaged over the three methods and calculated using the CIs on �LIV
(i.e., taking into account GRB-intrinsic effects).

Model Source Quantity Lower limit (10�20 GeV�2) Upper limit (10�20 GeV�2)

Vacuum 080916C
P

jm0Yjmð145�; 120�Þcð6ÞðIÞjm �8:7 20

090510
P

jm0Yjmð117�; 334�Þcð6ÞðIÞjm �0:31 0.16

090902B
P

jm0Yjmð63�; 265�Þcð6ÞðIÞjm �3:4 5.2

090926A
P

jm0Yjmð156�; 353�Þcð6ÞðIÞjm �11 5.2

Vacuum isotropic 080916C cð6ÞðIÞ00 �31 70

090510 cð6ÞðIÞ00 �1:1 0.57

090902B cð6ÞðIÞ00 �12 18

090926A cð6ÞðIÞ00 �37 19
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FIG. 12. Demonstration of the generation of CIs on �LIV for
GRB 090510, PairView, and n ¼ 1. The thin curve shows the
normalized distribution fr used to approximate PEð�Þ (the same
distribution is also shown with different binning in the bottom left
panel of Fig. 5), the thick curve shows the autocorrelation function
PE0 ð�0Þ calculated using Eq. (26), and the dashed lines show its 5%
and 95% quantiles used for constructing the 90% C.L. CI on �LIV.

TABLE V. Our 95% C.L. lower limits on EQG, averaged over
the three methods and calculated using the CIs on �LIV (i.e.,
taking into account GRB-intrinsic effects).

n ¼ 1 (EPl) n ¼ 2 (1010 GeV)
GRB name s� ¼ þ1 s� ¼ �1 s� ¼ þ1 s� ¼ �1

080916C 0.11 0.32 0.28 0.56

090510 1.8 3.2 4.0 3.0

090902B 0.11 0.32 0.58 1.1

090926A 0.72 0.15 0.78 0.41
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(i) in GRB 090510, the high-energy power law starts
from the onset of the main emission in the LAT (at
�0:5 s post-trigger) and dominates the Band com-
ponent at energies above �100 MeV after �0:7 s
posttrigger.

(ii) In GRB 090902B, the high-energy power law is
detected from the trigger time, and completely
dominates the Band component in the LAT energy
range. The spectral hardness of the emission in the
LAT energy range is relatively constant during the
time interval analyzed in this study.

(iii) In GRB 090926A, the high-energy power law starts
at the time of the bright pulse observed at �10 s
posttrigger and persists until �22 s. Our analyzed
time interval corresponds to the main bright pulse,
during which the power-law component dominates
the emission in the LAT energy range, while exhib-
iting a high-energy spectral break with a cutoff
energy Ef � 0:4 GeV.

Since the two spectral components may be originat-
ing from different physical regions of the burst and/or
may be generated by physical processes evolving in
different time scales, one might not necessarily expect
them to be detected with exact temporal coincidence.
This might lead to spurious signals originating from
intrinsic effects rather than LIV. There is only one
case (GRB 090510) for which the LAT data during the
analyzed time intervals cannot be sufficiently approxi-
mated to contain a single spectral component, discussed
in detail below.

Using the spectral fits published in Ref. [58], we esti-
mate that about half of the LAT-detected events from
GRB 090510 below �100–200 MeV can be attributed
to the Band component during the main episode observed
around �0:8 s posttrigger (comprising the bulk of the
events in our analyzed time interval). This non-negligible
fraction can potentially affect the ML method, which
essentially compares the time profiles between the low-
(below �100–150 MeV) and high-energy emissions in
the LAT. On the other hand, its effect on the PV and
SMM methods is weaker because these methods analyze
a subset of the data produced with a higher-energy cut
(E> 100 MeV), for which only & 15% of the events are
estimated to be associated with the Band component.
Fortunately, evidence from cross checks performed in
this work and from previously published results shows
that this effect likely has a negligible influence on our
results. Specifically, a cross-correlation analysis between
the time profiles of the keV–MeVemission (dominated by
the Band component) and of the >100 MeV emission
(dominated by the power-law component) of GRB
090510 from 0.6 to 0.9 s [58] did not show any evidence
of a time lag between the two spectral components.
Furthermore, as shown in Appendix D, the PV and
SMM CIs produced using the data above 30 MeV are in

good agreement with the results produced with the
default cut of E> 100 MeV. We conclude that the inclu-
sion of events related to the Band component for
GRB 090510 did not cause any significant distortions in
any of our analyses.
Another potential source of systematic uncertainties

is the spectral evolution detected with high significance
in most LAT GRBs. One of its manifestations is the
E> 100 MeV emission detected by the LAT having a
systematically delayed onset with respect to the keV/
MeV emission detected by the GBM [22]. Even though
this spectral evolution can manifest as LIV, it happens
so rapidly that typically only a very small fraction of
the emission is detected during this transition.
Furthermore, after the emission in the LAT is estab-
lished, it usually continues with a relatively stable
degree of spectral hardness, at least according to the
coarsely binned time-resolved spectral analyses men-
tioned above.
For example, for the case of GRB 090510, cross-

correlation analyses between the GBM-detected keV/
MeV and LAT-detected E> 100 MeV emissions revealed
that the onset of the E> 100 MeV emission trailed the
onset of the keV/MeV emission by �0:2–0:3 s [58].
This offset implies the existence of a delay between the
LAT data below and above 100 MeV, something that can
potentially affect our results. However, the number of
events detected during the onset of the LAT emission
(� 0:5–0:75 s) is negligible. Specifically, only �8% of
the events above 30 MeV and within the default n ¼ 1
interval were detected during the onset of the LAT
emission. Furthermore, and as mentioned above, once the
GRB 090510 emission is establishes in the LAT energy
range, its spectral hardness remains relatively stable.
We conclude that spectral evolution during the course of
the emission of GRB 090510 affects only a very small
fraction of the analyzed events. Thus, it is not expected to
have a considerable influence on our results.
GRB 090926A is a peculiar case, as a strong spectral

variability has been observed even after the onset of the
high-energy emission in the LAT [52]. From the trigger
time and until �10 s, the high-energy power-law compo-
nent is not detectable and the emission is well described by
a single Band component. At�10 s, a bright pulse appears
(comprising the bulk of the events in our analyzed time
interval), during which the power-law component becomes
very bright dominating the emission and exhibiting a spec-
tral cutoff at high energies. After the bright pulse, the two
components become comparable in flux, while the cutoff
of the power-law component appears to be increasing in
energy. Clearly, the results of a LIVanalysis on an interval
wide enough to include all these spectral-evolution effects
would be strongly affected by them. By focusing only on a
narrow snapshot of the GRB 090926A’s emission (i.e., the
main bright pulse), during which the GRB spectrum is
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assumed not to vary too much,12 we considerably reduced
our exposure to such effects.

At shorter time scales, the spectral hardness of GRB
pulses is known to be correlated to their intensity and
fluence at keV–MeV energies [62]. Due to the difficulty
of measuring the GRB spectrum on a pulse-per-pulse basis
with the limited photon statistics available to the LAT,
there has been no evidence that this correlation extends
to higher energies. However, the light curves of the GRBs
analyzed in this study exhibit sharp peaks and fast varia-
bility, thus the presence of any spectrotemporal correla-
tions at high energies might, in principle, affect our results.
This incomplete knowledge of GRB properties at high
energies constitutes an intrinsic limitation of our model
(e.g., it is unclear if the factorization in Eq. (14) holds at
LAT energies at short time scales) and represents a major
source of systematic uncertainty in any GRB-based study
of LIV.

B. Systematic uncertainties from instrumental effects

The probability of the LAT detecting an event of some
energy depends on many factors, including the off-axis
angle of the photon, with the probability being approxi-
mately inversely dependent on the off-axis angle. As a
result, a constant-spectrum source observed at progres-
sively larger (smaller) off-axis angles will correspond to
a data set of a progressively harder (softer) average recon-
structed energy. Such a data set may erroneously appear
as containing a nonzero degree of spectral evolution.
Fortunately, this effect is negligible for our observations
since for the time scales under consideration the off-axis
angles of the GRBs were almost constant.

The energy-reconstruction accuracy of the LAT depends
primarily on the true energies of the events. For the ana-
lyzed data set, about 90% of photons with energy greater
than 1 GeV are predicted to have a reconstructed energy
within �� 20% of their true energy [44], which can be
used to produce a rough estimate of the error on the
produced limits on EQG of up to 20% (90% C.L.). To verify

this rough estimate we generated a collection of data sets
derived from GRB 090510 by smearing the detected
energies according to the energy dispersion function of
the instrument. For simplicity, during the production of
the data sets we assumed that the detected energy was the
true one. The 90% and 99% C.L. upper and lower limits
varied by a factor of �10% (n ¼ 1) and �15% (n ¼ 2)
(1�), in agreement with the rough estimate.

The effective area of the LAT, corresponding to the
P7_TRANSIENT_V6 selection used in this work, is

typically an increasing function of the energy up to
�100 GeV. It starts from a zero value at few MeV and
increases with increasing energy at a rate that is initially
rapid but then gradually flattens above �100 MeV. In the
ML analysis, we have ignored the dependence of the
effective area on the energy and approximated the spec-
trum of incoming events with the spectrum of detected
events (i.e., � ’ �). Because of this dependence, the spec-
trum of detected events appears slightly harder (less steep)
than the spectrum of incoming events. This could affect the
results of the ML analysis, depending on how sensitive it is
on using an exactly correct spectral index. However, we
have verified that the difference between the two spectral
indices is always smaller than the statistical error of our
measured spectral index, i.e., j�� �j<��. Thus, any
systematic uncertainties by this approximation are domi-
nated by the statistical uncertainty of determining the true
source spectrum.
The effects from background contamination are ex-

pected to be negligible, since the background rate for our
data selection is very low, of the order of 0:1ð10�3Þ Hz
above 0.1 (1) GeV.
The errors on the redshifts have a negligible effect on the

lower limits on EQG. A 1� change in the redshift of

GRB 080916C causes a relative change of about 10�2 on
the final limits. For the other GRBs in our sample, the
relative change is also negligible, at the level of 10�3 or
smaller. The errors on the cosmological parameters give an
error of �3%.

VII. DISCUSSION AND CONCLUSION

We derive strong upper limits on the total degree
of dispersion, �n, in the data of four LAT-detected
GRBs. We use three statistical methods, one of which
(PV) was developed as part of this study. The previously
published most stringent limits on �n (at 95% C.L;
subluminal case) have been obtained for n ¼ 1 by
the Fermi GBM and LAT Collaborations using GRB
090510 (EQG;1 > 3:5EPl; DisCan; Supplementary

Information of Ref. [25])13 and for n ¼ 2 by H.E.S.S.
using the bright flares of PKS 2155-304 (EQG;2 > 6:4�
1010 GeV; ML [31]). Our results from GRB 090510,
namely EQG;1 > 7:6EPl (PV) and EQG;2 > 1:3�
1011 GeV (SMM), improve these constraints by a factor
of �2.14

In the above comparisons we do not consider other more
constraining limits that were either produced in a very

12It should, however, be noted that even though an increase of
the cutoff energy within the pulse could not be significantly
detected due to the limited LAT statistics at GeV energies, an
interpretation of this cutoff as arising from internal-opacity
effects does predict an associated evolution during the course
of the spike [60,61].

13That work also reported lower limits on EQG;1 as high as 10
EPl. These limits, however, were not associated with a well
quantified confidence level, but rather with a degree of con-
fidence (‘‘very high’’ to ‘‘medium’’). Thus, they cannot be
directly compared to the exact-C.L. limits produced in this work.
14At the 99% level, we improve on the Fermi limits EQG;1 >
1:2EPl (DisCan) by a factor of �4.
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model-dependent manner or are of a moderate statistical
significance.15 Specifically, Chang et al. [63] tried to take
into account intrinsic GRB time delays by estimating them
using the magnetic-jet GRB-emission model. However,
our knowledge of GRB physics is not complete enough
to be able to predict such intrinsic lags with sufficient
certainty. Thus, even though such an approach proceeds
in the right direction, it is highly sensitive to the particular
choice and configuration of the employed model. Nemiroff
et al. [27] took an innovative approach with which they
zoomed in on the micro-structure of the burst’s emission
above 1 GeV to produce very stringent constraints that
were based, however, on observables of low statistical
significance.16,

To investigate why our GRB 090510 results are more
constraining than the previous Fermi analysis of the same
GRB, we applied the PV method to the same exact data
used in the original Fermi publication. We used identical
energy, time, and event selection cuts (as reported for the
DisCan method), and obtained again more constraining
results than the original Fermi publication by a factor of
�2–4 (depending on the C.L.). Additionally, we repeated
our PV and SMM analyses using the configuration deter-
mined in this paper (i.e., time interval, energy range, �) but
using the P6_V3_TRANSIENT event selection of the pre-
vious Fermi work. The resulting constraints were again of
equal or higher strength (see Appendix D). These results
show that the methods employed in this work are more
sensitive than the previous Fermi analyses.

Our measurements are compatible with a zero degree of
total dispersion in all the analyzed GRBs (at 99% C.L.).
However, among these results, there are some spuriously
strong limits on the total degree of dispersion, which we
interpret as a product of GRB-intrinsic spectral-evolution
effects.

Using a maximally conservative set of assumptions to
account forGRB-intrinsic effects, we constrain any residual
dispersion in the data attributed solely to LIV, �LIV. The
resulting CIs on �LIV are less stringent than those on �n,
albeit more robust with respect to the presence of
GRB-intrinsic effects, and thus, more appropriate for con-
straining LIV. Our assumptions describe the worst-case
scenario for GRB-intrinsic effects, and, as such, correspond

to a maximum overall decrease in sensitivity. Our best
constraints in the linear/subluminal case at 95% C.L. are
EQG;1 * 2EPl for GRB 090510 and EQG;1 * 0:1EPl for the

other three GRBs. We obtain results of similar strength in
the linear/superluminal case.
As a final notewewould like tomention that we considered

combining the results from the four GRBs to produce a single
result that would be more constraining and/or less affected by
anyGRB-intrinsic spectral-evolution effects (hoping that they
might average out). However, we noticed that our GRB
090510 measurement is overall considerably more constrain-
ing than the other three cases. Thus, a combined result would
not be very different from that of GRB 090510. Additionally,
we do not expect that the intrinsic spectral-evolution effects
for short GRBs (i.e., GRB 090510) are similar to those in long
GRBs (other three cases). Thus, a combined analysis aimed at
producing more robust results would have to be performed on
short and long GRBs separately. Also, because our sample
contains only a small number of longGRBs, we do not expect
the average of their intrinsic effects to be an accurate repre-
sentation of the typical long-GRB intrinsic evolution.
Therefore, a combined result obtained using the three long
GRBs, would still be considerably less robust compared to
each of the maximally conservative CIs on �LIV we produced
here. e conclude that there are no sufficient sensitivity or
robustness benefits that a combined analysis of this limited
data set can bring.
There are many theoretical indications that Lorentz invari-

ancemaywell break down at energies approaching the Planck
scale. They come from the need to cut off the UV divergences
in quantum field theory and black hole entropy calculations
[65], from various quantum gravity scenarios such as in loop
quantum gravity [66], some string theory and M-theory sce-
narios, and non-commutative geometry models. There is one
way to prescribe Lorentz invariance; there are many ways to
violate Lorentz invariance. Kinematic tests of Lorentz invari-
ance violation in QED depend on the possibility that the
Lorentz violating terms can be different for electrons and
photons [9]. It becomes even more complicated when had-
ronic interactions are considered. Many of these other tests,
while quite sensitive, depend on the differences between the
individual maximum attainable velocities of various particle
species [8]. In the context of effective field theories [39],
birefringence tests have already produced very strong con-
straints on LIV [11,34]. Photohadronic interactions have also
provided some powerful constraints [10].
One particular model inspired by string theory concepts

presents the prospect that only photons would exhibit an
energy-dependent velocity [36]. This model envisions a
universe filled with a gas of pointlike D-branes that only
interact with photons. It predicts that vacuum has an
energy-dependent index of refraction that causes only a
retardation. Since all photons are retarded, there is no
associated vacuum birefringence effect, even though the
degree of retardation has a first order dependence on the

15An annually updated table of constraints on LIV can be
found at [64].
16They identified two pairs and one triplet of E> 1 GeV
photons in a 0.17 s interval of GRB 090510, with each photon
being detected within �1 ms of each other. The triplet, which
contained the 31 GeV photon, was used to place a stringent
constraint. They calculated a probability of �3� for such a
bunching of photons to arise by chance from a uniform emission
in time. However, this significance is overestimated since it
doesn’t account for the number of trials taken. Moreover, it
does not reflect the confidence of their limit, since it strongly
relies on associating the emission time of the 31 GeV photon
with a tentative ms ‘‘pulse.’’
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photon energy. The absence of an associated birefringence
and the low-order (n ¼ 1) dependence of the predicted
delay on the photon energy, render our results particularly
unique for testing such a model.17 Indeed, our constraints
obtained using the total degree of dispersion, �n, reiterate
and support the previously published results from Fermi
[25], strongly disfavoring by almost an order of magnitude
this model, and, in general, any class of models requiring
EQG;1 & EPl. Our maximally conservative set of constraints

obtained using �LIV also support the above statement.
More GRB observations at high energies will allow us

to improve GRB models and produce robust predictions
on GRB-intrinsic delays (i.e., on P�int), which will lead to

more constraining CIs on �LIV. Additionally, a larger
collection of CIs on �n can be used for disentangling
LIV-induced delays, which have a predicted dependence
on the redshift, from the source-frame value18 of GRB-
intrinsic delays, which can be assumed to not have a
redshift dependence or at least to have a different depen-
dence than �LIV (see for example the approach in
Refs. [18–20]). Future simultaneous observations of
GRBs at MeV/GeV energies with Fermi-LAT and at GeV
energies with HAWC [69] will have considerably in-
creased statistics at GeV energies and a lever arm that
extends to an even higher energy than this work, properties
that can provide uniquely constraining results.
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APPENDIX A: PVAND SMM
VERIFICATION TESTS

We thoroughly tested the PVand SMM methods using a
large number of simulated data sets to check for biases on
the best estimates of the LIV parameter, to verify the
proper coverage of the produced CIs, and to examine
the robustness of the techniques (e.g., to find which prop-
erties of the data could alter the validity and accuracy
of the results).
We performed the verification tests on a variety of

collections of data sets, with each collection corresponding
to a different light-curve and spectrum template, and to a
different LIV parameter. The data sets of a collection
represented the possible outcomes of the observation of
the same exact source by a large number of identical
detectors. By comparing the fraction of produced CIs
that included the true value of the LIV parameter to their
C.L., we verified the coverage of these CIs. By repeating
this exercise on a diverse collection of data sets (produced
with, e.g., different statistics, number of pulses, light-curve
asymmetry, pulse shape, spectral properties, degree of
dispersion), we verified the robustness of the techniques.
Our verification tests were performed on collections

comprising ten thousand simulated data sets, with each
of these sets being constructed in the following two steps:
first, its photon energy–time pairs were randomly sampled
from the light-curve and spectral template of the particular
collection, and then a common degree of dispersion was
applied.
We used two kinds of functional templates for the light

curve. We started with simple synthetic templates com-
posed of superpositions of Gaussian pulses of different
widths, amplitudes, and means, and continued with tem-
plates inspired from the actually observed GRB light
curves. As an example, we show in Fig. 13 two of the
light-curve templates used in our simulation. Both were
inspired by actual detections, namely GRBs 090902B (top
panel) and 090510 (bottom panel), representative cases of
a long and short GRB, respectively. We obtained the

17It has been argued that the D-brane model in Ref. [36] would
suppress pair production interactions of ultrahigh energy (UHE)
photons with cosmic microwave background photons, resulting
in a flux of UHE photons in conflict with observations [67]. This
would appear to be an independent argument against it.
However, in Ref. [68], it was argued that because electrons are
not affected by the D-brane medium and because the pair
production interaction involves an internal electron at the tree
level, the resulting LIV effect in pair production is suppressed.
Thus, this model is not ruled out by constraints on the UHE
photon flux.
18The degree of intrinsic dispersion at the source is smaller than
the observed degree of (intrinsic) dispersion at the Earth by a
factor of ð1þ zÞnþ1 due to the relativistic expansion of the
Universe, causing time dilation and redshift.
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light-curve templates using kernel density estimation
(shown with the curve) of the actual light curves
(histograms).

In all tested configurations, the energy spectrum of the
nondispersed data sets followed a power law, and extended
from 100 MeV to 40 GeV. For the GRB-based data sets we
used an identical number of events as in the actual obser-
vations, and for the synthetic ones we simulated a range
that was similar to that typically observed.

We chose the maximum range of tested LIV parameters so
that the simulated degree of dispersion did not distort the
tested data too much. This way, we avoided the unrealistic
possibility of having the highest-energy photons be disjoint
and external from the bulk of the emission. To accomplish
this, the magnitude of the tested LIV parameter was
not considerably larger than about the light-curve half-
width divided by the highest simulated energy raised to
the n power.

We did not include any energy and temporal reconstruc-
tion instrumental effects (i.e., it was assumed that all
photons were detected with the same energy-independent
and constant-in-time efficiency). A full simulation includ-
ing the LAT response to the GRB signal would also model
any effects from a time-dependent effective area and of any
inaccuracies in the event-energy reconstruction. The de-
pendence of the results on both factors is expected to be
very small, as discussed in Sec. VI.

As a demonstration of the verification process we
present some of the diagnostic plots produced using the
GRB 090510 light-curve template shown in the bottom
panel of Fig. 13 and a zero LIV parameter.

One of the first steps after a collection of data sets was
constructed was to examine its distribution of associated
confidence intervals. The top panel of Fig. 14 shows a stack

of the confidence intervals produced by PV, and the bottom
panel shows the distributions of lower and upper limits
corresponding to these confidence intervals. The two ex-
ternal vertical lines in the latter figure denote the distribu-
tion medians, and the middle vertical line shows the mean
of the best estimates. By comparing the mean of the best
estimates to the actual LIV parameter we checked for the
presence of biases in the best estimates.
Figure 15 shows two calibration plots produced by our

simulations. These plots show the average best estimate
and upper/lower limits on the LIV parameter for different
injected values of �n. As can be seen, the methods properly
measure the injected valuewith negligible bias. Furthermore,
their sensitivity does not have a considerable dependence
on the injected degree of dispersion.
As mentioned in Sec. IVA, the distribution fr is used as

an approximation of the PDF of the measurement error of
E, PE . Since E is a random variable (taking different values
� across the simulated data sets), the quantity Cð�Þ ¼R
�
0 PEð~�Þd~� is also a random variable. Cð�Þ behaves

similarly to a p-value, hence, C�Uð0; 1Þ. We use the
theoretical expectation of the uniformity of the PDF of
C, to verify whether the distribution fr (produced using
our randomization simulations described in Sec. IVA) is a
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good approximation of PE , an approximation that is a
cornerstone of our CI-construction procedure. If this is
indeed valid, then the empirical distribution, PCemp

, of the

quantity Cempð�iÞ ¼
R�i
0 fr;ið~�Þd~�, where �i and fr;i are

the realizations of E and fr in the i-th simulated data set,
should also be distributed as a Uð0; 1Þ.

Figure 16 shows a normalized version of PCemp
produced

using the GRB 090510 inspired simulated data sets, PV,
and �1 ¼ 0 s=GeV. As can be seen, the empirical distribu-
tion is indeed uniform, supporting the validity of our
approximation fr � PE.

PCemp
is also used for verifying the coverage of the

produced CIs, for any C.L.19 Since the quantiles of the fr
distribution are used for constructing our CIs, any erro-
neous distortions of fr (and equivalently any deviations of
PCemp

from uniformity) will be associated with an improper

coverage of the CIs. For example, if the CIs were erro-
neously undercovering, then PCemp

would acquire a V

shape. On the other hand, if the CIs were erroneously
wide (over covering), then PCemp

would acquire a � shape.

By verifying the uniformity of PCemp
across its full range of

values, we effectively tested the proper coverage of the CIs
across the whole range of C.L.s (to the degree that the
available statistics permitted).

Using the verification tests mentioned above, we also
found that
(i) the sensitivities of both methods depend on the

asymmetry on the light curve. Specifically, the lon-
ger the tail in the rising or falling side of the light
curve is, the smaller the sensitivity of setting an
upper or lower limit on �n, respectively, becomes.
The coverage, however, remains proper even for
highly asymmetric light curves (e.g., like the one
shown in the bottom panel of Fig. 13).

(ii) Miscoverage and bias can increase and sensitivity
can decrease if the light curve includes separated
bright pulses, due most likely to some form of
interference between the individual pulses. This
systematic uncertainty becomes more prominent
with the SMM method and when using large values
of the � parameter. Our default data selection al-
ways includes a single bright pulse, so this problem
does not affect our results.

(iii) Bias and miscoverage is larger for strongly spec-
trally distorted light curves, i.e., those produced
with a LIV parameter large enough that the
highest-energy component is temporally disjoint
from the bulk of the emission. The actual data did
not appear to be spectrally distorted to the degree
required for this systematic uncertainty to appear.
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FIG. 17. A calibration plot obtained by the ML method on an
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the best estimates of �1 and the intervals correspond to the mean
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19We also performed the simple test of counting the fraction of
CIs of a collection of data sets that included the true (injected)
value of the LIV parameter to verify that the fraction was, as
expected, equal to their C.L., for two different values of
C.L.: 90% and 99%.
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(iv) Tests performed on synthetic light curves comprising
several pulses of a different spectral index (so as to
simulate aGRB-intrinsic spectral evolution) revealed
that this evolution is typically picked up by our
methods as a non-zero LIV parameter. something
that reflects perhaps the most important irreducible
uncertainty in our results. It is, however, fortunate
that the additional GRB-intrinsic spectral evolution
did not always dominate the simulation results, and
that while there may be some non-zero bias, the
miscoverage of the CIs was typically not severe.

APPENDIX B: MAXIMUM LIKELIHOOD
METHOD TESTS AND CALIBRATIONS

1. Verification tests

We verified the ML method using Monte Carlo simula-
tions, in a similar fashion to the PV/SMM methods, as
described in the previous appendix. We performed tests on
simple synthetic data sets as well as on data sets closely
resembling the four GRBs in our sample. One of the main
tests was the construction of calibration curves, in which
we verified whether an injected LIV parameter was prop-
erly measured with a reasonable degree of statistical
accuracy.

As an illustration of these tests, we show in Fig. 17 a
calibration plot demonstrating the simulation results from a
GRB 0900510-inspired data set. The markers and the
intervals show the average best estimates and 99% C.L.
CIs on �1, respectively. These averages were calculated

across the different simulated realizations of the GRB
emission. Our tests did not reveal any significant biases
or other systematics.

2. Calibrated confidence intervals

We construct calibrated CIs on �n by first generating
several thousand simulated data sets having the same exact
statistics as the actual data but with event energies and
times randomly sampled from the fitted spectral and light-
curve templates (e.g., such as from the templates shown in
Figs. 7 and 6, respectively). We then apply the ML method
to each one of them, using the same configuration as its
application on the actual data, and calculate a CI and a best
estimate on �n for each one of them. After all of the data
sets have been processed, we calculate the average of the
produced low and upper limits. Since we do not apply any
spectral dispersion to the simulated data sets, we shift the
mean low and upper limit values by the value of �̂n as
measured from the actually detected data set, to finally
produce a single calibrated CI.20
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FIG. 18. Distributions of the lower and upper 99% C.L. limits for n ¼ 1 (left pad) and n ¼ 2 (right pad) for GRB 090510.
The vertical lines denote the means of the distributions, used for constructing the calibrated CIs.

20In this last step and for simplicity, we make the assumption
that the sensitivity of the method has a small dependence on �n,
at least for the small possible values �n is expected to have
(given past observations). Thus, we effectively assume that our
simulating a zero-LIV-parameter data set and then offsetting the
mean upper and lower limits is equivalent to simulating a �̂n
LIV-parameter data set and constructing a calibrated CI directly
from the mean lower and upper limits.
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The CIs are constructed using a pair of thresholds on
�2� ln ðLÞ common to all the simulated data sets, and
chosen to ensure their proper coverage. Specifically,
these thresholds are chosen so that exactly a fraction
ð1� C:L:Þ=2 of the simulated lower limits and a fraction
ð1þ C:L:Þ=2 of the simulated upper limits are greater or
smaller, respectively, than the value of �n in the simulated
data sets (equal by construction to zero).

The calibration procedure includes the refitting of a
light-curve template for each simulated sample. Thus, the
produced CIs properly include the systematic uncertainties
arising from the light-curve template generation procedure.
On the other hand, for computational simplicity, we do not
refit a spectral template and instead use the one obtained
from the actual data. Thus, the calibrated CIs do not
include uncertainties from the spectral fit. These are, how-
ever, negligible, since, as we have seen from toy
Monte Carlo simulations and from the calculations de-
scribed in Sec. IVB, the final results depend weakly on
the spectral index, contrary to their stronger dependence on
the light-curve template.

To illustrate the method, we show some intermediate
results from its GRB 090510 application. Figure 18 shows

the distributions of low and upper limits obtained from
the simulated data sets. The mean values of these distribu-
tions are offset by �̂n to produce our single calibrated upper
and lower limits (i.e., those shown in the last column of
Table III). From the mean of the simulated best estimates
of the LIV parameter (see, e.g., Fig. 19) we estimated the
bias of �̂n. In all cases, the bias was negligible with respect
to the root mean square of the simulated best estimates.

APPENDIX C: COMPARISON OF THE METHODS

We compared the three methods by applying them to
the same collection of simulated data sets to verify their
validity and to help us explain any discrepancies observed
in their application on the actual data. The simulated
data of this test were produced using the GRB 090510-
inspired light-curve template shown in Fig. 13 of
Appendix A and no extra applied dispersion (i.e., �n
was zero by construction).
For the ML method we used CIs calculated directly

from the data (instead of from calibration simulations).
However, we adjusted the two threshold values of
�2� ln ðLÞ used to produce its lower and upper limits, to
ensure a proper coverage (evaluated across the simulated
data set).
The first and third panel of Fig. 20 show the obtained

distributions of lower and upper limits, respectively. As can
be seen, the sensitivities of the three methods are very
similar. In the first panel, we also see that the ML method
is slightly more sensitive when producing lower limits. We
used this finding to explain in Sec. V why the ML method
produced more constraining limits than the other two
methods on �1 and GRB 090510.
The histograms of the best estimates of the LIV parame-

ter (middle panel of Fig. 20) peak, as expected, near the
true value of the LIV parameter, set equal to zero. The PV
and SMM best-lag distributions peak at slightly more
negative values than the approximately zero position of
the ML method’s distribution. This can be attributed to the
increased asymmetry of the PV and SMM distributions
(skewness �0:75) compared to the asymmetry of the
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likelihood distribution (skewness�0:39), which moves the
mode to lower values than the mean or the median.
However, for considerations regarding the bias of the
best estimates, the important fact is that both the median
and the mean of these distributions are negligible com-
pared to their root mean square. Thus, the effect of any
biases on the coverage of the produced CIs is expected to
be negligible (as has been verified by the dedicated simu-
lation tests).

The two-dimensional histograms in Fig. 21 provide a

deeper view of how our methods compare. For the majority

of the simulated data sets, there is a close correspondence

between their results. The PVand SMM results are the most

similar, implying that these two methods probe the data in a

similar fashion. The existence of differences between the

methods’ results highlights their complementarity.
Finally, we note that more than 99% of the examined

triplets of 90% C.L. CIs (one per simulated data set) are

overlapping. This fraction is even larger (more than
99.9%), if CIs of a higher C.L. (99%) are examined (not
shown here). This large fraction of overlapping CIs
shows that the troubling possibility of the three methods
not allowing a common part of the parameter space is
extremely unlikely.

APPENDIX D: ANALYSIS CROSS-CHECKS

We examined how the 99% CIs on �n vary with respect
to changes in the configuration of our methods and the data
selection, to cross-check the validity and robustness of the
results, and to gain insight on the behavior of our methods.
Specifically,
(i) we repeated the analysis excluding the highest-

energy photon in the data, since it is expected to

provide the most information about LIV dispersion.
(ii) We applied our methods on an extended time

interval extending from the GRB trigger up to
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FIG. 21 (color online). One-to-one comparisons of the 95% (one-sided) C.L. lower and upper limits (left and right columns,
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the time that the temporal variability has con-

siderably subsided. The time intervals, selected with

visual inspection, are 0–20 s for GRB 080916C,

�0:01–10 s for GRB 090510, 0–60 s for

GRB 090902B, and 0–40 s for GRB 090926A.

The extended time intervals allow for maximal

statistics, but at the same time potentially

include a large degree of GRB-intrinsic spectral

evolution that can, however, masquerade as LIV

dispersion.

(iii) we repeated the PV and SMM analyses with data

produced using an earlier version of LAT’s event

selection, P6_V3_TRANSIENT [23], also used by

Fermi to constrain LIV [24,25].
(iv) Finally, we repeated the PVand SMM analyses start-

ing from 30 MeV instead of their default 100 MeV.

While this change corresponds to increased statistics,

it comes, however, with a larger contamination from

the Band spectral component, which can increase the

GRB-intrinsic systematic uncertainties.
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data, instead of using calibration simulations.
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For the case of ML, we do not expect the calibrated CIs
to vary in a considerably different way than the CIs ob-
tained directly from the data, during the tests mentioned
above. Thus, for simplicity, we only present ML results
obtained directly from the data.

The test results are shown in Fig. 22. In all cases, the CIs
produced by different methods (and for the same test) are
in agreement with each other (i.e., they have some over-
lap). Their widths and centers do change somewhat across
tests, something expected considering the different statis-
tics and degrees of GRB-intrinsic spectral evolution in the
different data sets.

The removal of the highest-energy event, as expected,
widened the produced CIs. Themagnitude of the increase in
their widths is a probe for the degree with which our
methods draw information from the single highest-energy
event and also for the systematic uncertainty associated
with the possibility of that event being background.
Because of the very low background contamination in the
data, the highest-energy photons are typically securely
associated to the GRB (see, e.g., the Supplementary
Information of Ref. [25] regarding the association of the
31 GeV photon to GRB 090510). Thus, we do not consider
the option of removing the highest-energy photon to in-
crease the robustness of the results warranted.

The changes brought by the use of the extended time
interval did not correspond to a specific pattern. They were
likely caused by the inclusion of emission of energy con-
siderably higher than that included in the default time
interval or the inclusion of significantly more GRB-
intrinsic spectral evolution (likely in the case of GRB
090926A). Perhaps the most significant change happened
with GRB 080916C and n ¼ 2 on the PVand SMM results.
For this case, the extended interval included at 13 GeV
photon detected �16:54 s posttrigger, of an almost ten

times higher energy than the rest of the photons a decade
in energy higher than that of the rest of the photons. As
such, it dominated the PV/SMM estimation procedures
with the edges of the confidence intervals on �2 roughly
corresponding to the time difference between its detection
time and the edge of the analyzed interval divided by the
square of its energy. The case of GRB 090926A is likely
affected by both the inclusion of a very energetic event
(� 7 times higher energy than the rest of the events) and
the strong spectral evolution observed throughout this
burst’s emission. We observe that the choice of time inter-
val can significantly affect the final results, and conclude
that an a priori and carefully chosen selection for the
time interval, as in this work, is important for the validity
of the results.
Repeating the analysis with the P6_V3_TRANSIENT

data set did not bring any considerable changes to the
produced CIs, supporting the case that the improved
limits produced in this work, when compared to past
Fermi analyses of GRB 090510 [25], are a result of more
sensitive analysis techniques rather than of a more con-
straining data set.
Finally, repeating the PV/SMM analyses starting from a

lower minimum energy (30 MeV) did not change the
results that the systematic effects induced by the presence
of two spectral components in the data are limited.
We also repeated the ML analysis for GRBs 080916C

and 090510 after performing some configurational changes
affecting the light curve parametrization, such as using
asymmetric (instead of symmetric) Gaussian pulses, a
larger number of Gaussian pulses, different bin widths
for the histogram used in producing the template (e.g.,
such as the one shown in Fig. 6), or different Ecut values
to split the data. The CIs varied up to a factor of �2 with
respect to CIs obtained with the default configuration.
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(1997).
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