Magnetic acceleration
of GRB Jets

Jonathan Granot
Open University of Israel

The 1st Capitol Chat, on “GRBs and their prompt emission radiation mechanism”, June 9, 2015, GWU, Washington DC, USA
Ideal MHD acceleration: numerical + analytic results (Komissarov 09; Lyubarsky 09; Tchekhovskoy 10)

- **Unconfined** flows rapidly lose lateral causal contact, become radial & stop accelerating when $\Gamma_\infty \sim \sigma_0^{1/3}$ & $\sigma_\infty \sim \sigma_0^{2/3} \gg 1$ (Goldreich & Julian 1970; Tomimatsu 1994; Beskin et al. 1998)

- **Weak confinement**: $p_{\text{ext}} \propto z^{-\alpha}$ with $\alpha > 2 \Rightarrow$ lose lateral C.C. become conical & stop accelerating later; **causal contact loss**: $\Gamma_\infty \sim \sigma_0^{1/3}\theta_{\text{jet}}^{-2/3}$, $\sigma_\infty \sim (\sigma_0\theta_{\text{jet}})^{2/3}$, efficient conversion: $\Gamma_\infty \theta_{\text{jet}} < 1$

- **Strong confinement**: $p_{\text{ext}} \propto z^{-\alpha}$ with $\alpha < 2 \Rightarrow$ stay in causal contact $\Gamma \propto z^{\alpha/4}$ and reach $\Gamma_\infty \sim \sigma_0$, $\sigma_\infty \sim 1$, $\Gamma_\infty \theta_{\text{jet}} \leq 1$

- Hydromagnetic launching naturally helps avoid high baryon loading that limits the maximal possible asymptotic L.F.

- Acceleration of steady, relativistic supersonic flows:

 Thermal: fast, robust, efficient

 Magnetic: slow, delicate, less efficient
The “σ-problem”: for a “standard” steady ideal MHD axisymmetric flow

- \(\Gamma_\infty \sim \sigma_0^{1/3} \) & \(\sigma_\infty \sim \sigma_0^{2/3} \gg 1 \) for a spherical flow; \(\sigma_0 = B_0^2/4\pi \rho_0 c^2 \)
- In PWN the solution is dissipation of the striped wind
- However, this doesn’t work in relativistic jet sources

- Jet collimation helps, but not enough: \(\Gamma_\infty \sim \sigma_0^{1/3} \theta_{jet}^{-2/3} \)
 \(\sigma_\infty \sim (\sigma_0 \theta_{jet})^{2/3} \) & \(\Gamma \theta_{jet} \leq \sigma^{1/2} \) (~1 for \(\Gamma_\infty \sim \Gamma_{max} \sim \sigma_0 \))
- Still \(\sigma_\infty \geq 1 \Rightarrow \) inefficient internal shocks, \(\Gamma_\infty \theta_{jet} \gg 1 \) in GRBs
- Sudden drop in external pressure can give \(\Gamma_\infty \theta_{jet} \gg 1 \) but still \(\sigma_\infty \geq 1 \) (Tchekhovskoy et al. 2009) \(\Rightarrow \) inefficient internal shocks
Alternatives to the “standard” model

- **Axisymmetry**: non-axisymmetric instabilities (e.g. the current-driven kink instability) can tangle-up the magnetic field (Heinz & Begelman 2000)

 - If $\langle B_r^2 \rangle = \alpha \langle B_\phi^2 \rangle = \beta \langle B_z^2 \rangle$; $\alpha, \beta = \text{const}$ then the magnetic field behaves as an ultra-relativistic gas: $p_{\text{mag}} \propto V^{-4/3}$

 - \(\Rightarrow \) magnetic acceleration as efficient as thermal

- **Ideal MHD**: a tangled magnetic field can reconnect (Drenkham & Spruit 2002; Lyubarsky 2010 - Kruskal-Schwarzschild instability (like R-T) in a “striped wind”) magnetic energy \(\rightarrow \) heat (+radiation) \(\rightarrow \) kinetic energy

- **Steady-state**: effects of strong time dependence (JG, Komissarov & Spitkovsky 2011; JG 2012a, 2012b)
Impulsive Magnetic Acceleration: $\Gamma \propto R^{1/3}$

Useful case study:

Initial value of magnetization parameter:

$$\sigma_0 = \frac{B_0^2}{4\pi\rho_0 c^2} \gg 1$$

1. $\langle \Gamma \rangle_E \approx \sigma_0^{1/3}$ by $R_0 \sim \Delta_0$
2. $\langle \Gamma \rangle_E \propto R^{1/3}$ between $R_0 \sim \Delta_0$ & $R_c \sim \sigma_0^2 R_0$ and then $\langle \Gamma \rangle_E \approx \sigma_0$
3. At $R > R_c$ the sell spreads as $\Delta \propto R$ & $\sigma \sim R_c/R$ rapidly drops

- Complete conversion of magnetic to kinetic energy!
- This allows efficient dissipation by shocks at large radii

Δ is a vacuum "wall"

$\sigma_0 = B_0^2 / 4\pi\rho_0 c^2 > 1$

$t_0 \approx R_0/c$
$t_c \approx R_c/c$

Complete conversion of magnetic to kinetic energy!

This allows efficient dissipation by shocks at large radii
1st Steady then Impulsive Acceleration

- Our test case problem has no central engine: it may be, e.g., directly applicable for giant flares in SGRs; however:
- In most astrophysical relativistic (jet) sources (GRBs, AGN, μ-quasars) the variability timescale \(t_v \approx R_0/c \) is long enough \((> R_{ms}/c) \) that steady acceleration operates & saturates (at \(R_s \))
- Then the impulsive acceleration kicks in & leads to \(\sigma < 1 \)

\[
\theta_j \approx \left(\frac{\sigma_0 \theta_j}{\sigma_0} \right)^{2/9} R_{lc} \quad \theta_j \approx \left(\frac{\sigma_0 \theta_j}{\sigma_0} \right)^{4/9} R_{ms} \quad \theta_j \approx \left(\frac{\sigma_0 \theta_j}{\sigma_0} \right)^{2/3} R_s \quad \theta_j \approx \left(\frac{\sigma_0 \theta_j}{\sigma_0} \right)^{4/3} R_0 \quad \theta_j \approx \left(\frac{\sigma_0 \theta_j}{\sigma_0} \right)^{4/9} R_{cr,h} \quad \theta_j \approx \left(\frac{\sigma_0 \theta_j}{\sigma_0} \right)^{2/3} R_{cr,t} \quad \theta_j \approx \left(\frac{\sigma_0 \theta_j}{\sigma_0} \right)^{2/9} R_c
\]