Magnetic Fields in GRBs

Jonathan Granot

Open University of Israel

Collaborators: R. Gill, P. Beniamini, Y. Lyubarsky, T. Piran, S. Komissarov, A. Spitkovsky, C. Kouveiotou,...

Deciphering the Violent Universe Playa del Carmen, Mexico, 14 December 2017

- B-fields play many key roles in GRBs
- Accretion: instabilities (e.g. MRI), facilitate angular momentum transport, can inhibit accretion,...
- **Jet launching**: Blandford-Payne, Blandford-Znajek,...
 - a magnetar central engine? (see next talk by P. Beniamini)
- Magnetic acceleration:
 - Gradual dissipation of magnetic energy
 - Ideal MHD: steady vs. impulsive acceleration, effect of external medium & multiple sub-shells
- Jet dynamics: inside a star (also stability & dissipation) (Bromberg et al. 2014, 2015, 2016; talk by E. Sobbachi)

B-fields play many key roles in GRBs Reconnection + acceleration: K-S instability Particle acceleration (shocks or reconnection; talk by G. Kowal) Prompt GRB emission: Ightcurves from magnetic reconnection Polarization: prompt GRB, reverse shock, afterglow ■ Afterglow: GRB130427A – clear violation of E_{syn,max}

Millisecond-Magnetar GRB Central Engine?

Initial rotational energy & spin-down time:

Strict upper limit E₀ on total GRB energy (Cenko et al. 2010)
 Spin-down luminosity was argued to explain plateaus:

$$L_{\rm sd} = \frac{L_0}{\left(1 + t / t_0\right)^2} \approx L_0 \times \begin{cases} 1 & t < t_0 \\ (t / t_0)^{-2} & t > t_0 \end{cases}, \qquad L_0 = \frac{E_0}{t_0} \end{cases}$$

Requires t₀ ~ 10⁴ s, but what powers a ~30 s GRB?
 Differential rotation dissipation (Kluzniac & Ruderman 98')?

Millisecond-Magnetar GRB Central Engine?

- Rapid B-field decay, over ~T_{GRB}, tapping similar energies before and after the decay: fine tuning+unclear mechanism
- During first ~10-100 s a strong v-driven wind causes large baryon loading & small $\sigma_0 \Rightarrow$ opens field lines & increases L_{sd} by ~ $(R_L/R_{NS})^2 \sim 10^{1.5}$ but low- σ_0 wind can't make a GRB

SMNS has larger initial energy:

$$E_{\text{rot},0} \approx 1.2 \times 10^{53} \left(\frac{M}{2.5M_{\odot}}\right)^2 \left(\frac{P_0}{1 \text{ ms}}\right)^{-1} \text{ erg}$$

- "time reversal" (Kumar & Rezzolla 15'): SMNS → BH→ GRB but the collapse can't form an accretion disc (Margalit+ 15')
 Short GRBs: ~10² s extended emission? ≤ 1 s accretion but
- $\sigma_0 \leq 1 \Rightarrow$ hard to produce a GRB; ≥ 10^{52.5} erg into afterglow (lessons from GRB170817A/GW170817: talk by R. Gill)

Outflow Acceleration & Dissipation:

Fireball: thermal acceleration (by radiation pressure)

- Fast ($\Gamma \propto R$), robust, allows efficient internal dissipation
- Baryon kinetic energy eventually dominates
- ♦ Requires a small baryon loading (~10⁻⁵ M_☉)
- Naturally produces internal shocks (dissipate $\leq 10\%$ of energy)
- n-p collisions in a neutron rich outflow

Magnetic acceleration: Poynting flux dominated jets

- Steady, axisymmetric, ideal-MHD: slow, not robust or efficient
- Can naturally produce a small baryon loading
- Gradual dissipation (of alternating fields or instability induced) can enhance the acceleration & contribute to the radiation
- Strong time dependence: enhances acceleration & dissipation
- Fast reconnection can accelerate particles, produce relativistic turbulence, spikes in lightcurve & high radiative efficiencies

Impulsive Magnetic Acceleration: $\Gamma \propto \mathbb{R}^{1/3}$

1. (Γ/_E ~ 0₀ by R₀ ~ Δ₀
2. (Γ)_E ∝ R^{1/3} between R₀ ~ Δ₀ & R_c ~ σ₀²R₀ and then (Γ)_E ≈ σ₀
3. At R > R_c the sell spreads as Δ ∝ R & σ ~ R_c/R rapidly drops
Complete conversion of magnetic to kinetic energy!
This allows efficient dissipation by shocks at large radii

Impulsive Magnetic Acceleration: $\Gamma \propto \mathbb{R}^{1/3}$

- Our test case problem has no central engine! However, in most astrophysical relativistic (jet) sources (GRBs, AGN, μ-quasars) the variability timescale (t_v ≈ R₀/c) is long enough (>R_{ms}/c) that steady acceleration operates & saturates, and then the impulsive acceleration kicks in & leads to σ < 1</p>
- Interaction with the external medium: two main regimes
 "Thin shell", σ < 1: strong reverse shock, peaks at » T_{GRB}
 "Thick shell", σ > 1: weak or no reverse shock, T_{dec} ~ T_{GRB}

Impulsive Magnetic Acceleration: $\Gamma \propto \mathbb{R}^{1/3}$

- Our test case problem has no central engine! However, in most astrophysical relativistic (jet) sources (GRBs, AGN, μ-quasars) the variability timescale (t_v≈R₀/c) is long enough (>R_{ms}/c) that steady acceleration operates & saturates, and then the impulsive acceleration kicks in & leads to σ < 1</p>
- Interaction with the external medium: two main regimes
 "Thin shell", σ < 1: strong reverse shock, peaks at » T_{GRB}
 "Thick shell", σ > 1: weak or no reverse shock, T_{dec} ~ T_{GRB}
- Sub-shells in GRBs can lead to a low-σ thick shell & enable the outflow to reach higher Lorentz factors
 σ < 1 shocks: magnetic → kinetic → thermal (+radiation)
 σ >1 shocks: magnetic → thermal → kinetic (Komissarov 12')

Kruskal-Schwarzchild Instability: (Lyubarsky 2010; Gill, JG & Lyubarsky 2017)

The Magnetized analog of the Rayleigh-Taylor instability

- Hot plasma accumulates in the reconnection layer, and can prevent further reconnection
- The heavier hot plasma is unstable in the effective gravity due to the outflow's acceleration & it drips out of the layer

➡ enhances reconnection rate ⇒ increases the acceleration
 & effective gravity ⇒ creates a positive feedback loop

Kruskal-Schwarzchild Instability: (Gill, JG & Lyubarsky 2017)

2D RMHD simulation

Effective drag on sinking blob due to vorticity limits its velocity

GRB Lightcurves from Magnetic Reconnection (Beniamini & JG 2016)

- Field reversals at the source can lead to reconnection at large distances millisecond-magnetar
 — millisecond quasi-periodic variability (
 —) accreting BH
 —> stochastic field-reversal & lightcurve variability (
 //)
- Reconnection far from the source has a natural preferred direction
- For large ingoing σ reconnection leads to local relativistic outward bulk motion at $\Gamma' \sim \text{few}-\text{several} \Rightarrow$ anisotropic emission in jet's bulk frame
- Larger $\sigma \Rightarrow$ higher Γ ', larger rec. rate (v_{in}/v_A), harder particle spectrum

The Shape of Pulses in the Lightcurves

Some Other Pulse Properties

Anisotropic emission can explain the "rapid decay phase" at the end of the GRB prompt emission, or X-ray pulses that decay faster than expected for isotropic emission ("high-latitude" emission), thanks to the shorter angular time $\Delta t_{\theta} \approx R/2\Gamma^{2}\Gamma$ "

 Spectral evolution of pulses: Hard to soft for (Γ' < 2)

intensity tracking (Γ' > 2)

Photon in

lab frame

Fermi/LAT detection up to ~ 20 hr after the GRB $\blacksquare > 10 \text{ GeV } \gamma$'s observed up to hours after GRB May arise at least partly from the prompt γ-ray emission up to few 10^2 s ■ At later times there is no prompt emission, only a simple power-law decay: afterglow

- LAT detected emission up to ~ 20 hr after GRB
 >10 GeV γ's observed up to hours after GRB
 May arise at least partly
 - from the prompt γ -ray emission up to few 10² s
- At later times there is no prompt emission, only a simple power-law decay: afterglow

LAT HE photons violate:

$$E_{\text{syn,max}} \sim \frac{\Gamma}{(1+z)} \frac{m_e c^2}{\alpha} \approx 5 \left(\frac{\Gamma}{100}\right) \text{GeV}$$

- Based on a one-zone model balancing electron energy gains and losses: t_{acc} ~ t_{syn}
- $t_{acc} \sim 1/\omega_L = R_L/c$ (extremely fast) or $P_L = 2\pi/\omega_L$ (still very fast but a bit more realistic)
- An "easy way out" would be if SSC emission dominated at highest LAT energies (Fan-

Conclusions:

B-fields play an important role almost anywhere in GRBs A GRB ms-magnetar central engine faces many challenges Magnetic jet acceleration may play an important role (steady to impulsive, sub-shells, interaction with CSM) K-S instability may play a role, but with slow reconnection Reconnection driven prompt GRB has testable predictions E_{syn,max} seems to be genuinely violated in a GRB afterglow