GRB Afterglow Polarization & GRB170817A

Jonathan Granot

Open University of Israel & George Washington University Collaborators: R. Gill, F. De Colle, A. Königl, E. Ramirez-Ruiz, T. Piran

Shedding New Light on Gamma-Ray Bursts with Polarization Data Geneva, 28 November 2018

Outline of the Talk:

- Polarization of synchrotron rad. from a relativistic source
- Afterglow: Jet structure & dynamics, B-field structure
 - Top hat vs. structured jet
 - Shock-produced vs. ordered B-field
- Reverse shock emission: optical flash & radio flare
- GRB170817A / GW170817 the afterglow emission:
 - ♦ Two main options for the early flux rise: r vs. θ dependence
 - Breaking the degeneracy: lightcurves? Images, Polarization
- Conclusions

Polarization of Synchrotron Emission

- linear polarization perpendicular to the projection of
 B on the plane of the sky (normal to the wave vector)
- The maximal polarization is for the local emission from an ordered **B**-field: $P_{max} = (\alpha+1)/(\alpha+5/3)$ where $F_v \propto v^{-\alpha}, -1/3 \le \alpha \le 1.5 \Rightarrow 50\% \le P_{max} \le 80\%$ (Rybicki & Lightman 1979; Granot 2003)

In the source rest frame:

- A uniform field produces $\mathbf{P} = \mathbf{P}_{\text{max}}$
- For a field random when projected on the plane of the sky: P = 0
- In particular, for a field isotropically tangled in 3D: P = 0

Uniform B

Random B

Shock Produced Magnetic Field:

A magnetic field that is produced at a relativistic collisionless shock, due to the two-stream instability, is expected to be tangled within the plane of the shock (Medvedev & Loeb 1999)

Pure shock-produced magnetic field:

- Symmetric w.r.t. the normal to the shock, **n**_{sh}
- Produces no net polarization for a spherical outflow
- Breaking the circular symmetry of the observed image:
 - jet viewed from $\theta_{obs} > 0$ (Sari 99; Ghisellini & Lazzati 99)
 - Scintilations (relevant for radio) (Medvedev & Loeb 1999)
 - Microlensing (rare event) (Loeb & Perna 1998)
 - Clumps, patchy shell (LC variability) (JG & Königl 2003)
- The polarization light curves for a jet depend on:
 - The jet structure: uniform (Sari 99; Ghisellini & Lazzati 99) or smoothly varying with angle from its axis (Rossi et al. 03)
 - The jet dynamics (degree of lateral spreading, etc.)
 - The magnetic field structure in the emitting region

Effect of B-field degree of anisotropy: There are a wide variety of possible B-field configurations in the emitting region that affect the local polarization

the emission is proportional to some power of the magnetic field B^{ϵ} . The total polarization from a pointlike region is then

$$\Pi_{p} = \Pi_{0} \frac{\int \cos 2\eta [B(\theta) \sin \delta]^{\epsilon} f(\theta) \sin \theta d\varphi d\theta}{\int [B(\theta) \sin \delta]^{\epsilon} f(\theta) \sin \theta d\varphi d\theta} .$$
(1)

For a power-law distribution of electrons, we have $\Pi_0 = (p+1)/(p+7/3)$ and $\epsilon = (p+1)/2$, where p is the electron power-law index, usually in the range of p = 2 to p = 2.5. Reasonable values are therefore $\Pi_0 \sim 70\%$ and $1.5 < \epsilon < 1.75$. Cooling may increase the effective p by 1/2.

For frequency integrated polarization, the emission is proportional to the square of the magnetic field, $\epsilon = 2$, and the integration can be easily done. We obtain

$$\Pi_{p} = \Pi_{0} \sin^{2} \alpha \frac{\langle B_{\parallel}^{2} \rangle - \langle B_{\perp}^{2} \rangle /2}{\sin^{2} \alpha \langle B_{\parallel}^{2} \rangle + (1 + \cos^{2} \alpha) \langle B_{\perp}^{2} \rangle /2} .$$
(2)

This is identical to the expression of Gruzinov (1999). As we remarked above, the relevant values of ϵ are probably below 2, and the integration is less simple. The results now depend on higher moments of $B(\theta)$ and $f(\theta)$, rather than simply through $\langle B_{\parallel}^2 \rangle$ and $\langle B_{\perp}^2 \rangle$. One realization of anisotropic magnetic field can be obtained from an isotropic magnetic field in which the component in the parallel direction was multiplied by some factor ξ . In the notation above this translates to

$$B(\theta) \propto (\xi^2 \sin^2 \theta + \cos^2 \theta)^{-1/2}, \quad f(\theta) \propto B^3(\theta).$$
 (3)

Polarization in the observer frame

Random field in shock plane

Ordered field in shock plane

Sari 99; Ghisellni & Lazzati 99

Granot & Königl 03

 $P \sim P_{max}$

- A structured jet has a ~10 times larger energy than a uniform jet, and implies a ~10 times smaller GRB rate
- The jet structure constrains model for the central source
- There are small differences in the light curves of the two jet structures (Granot & Kumar 2003; Kumar & Granot 2003)
- Structured jet predicts dn/dzdθ (Nakar, Granot & Guetta 2004)

† Rhoads 97,99; Sari et al. 99, ...

†† Postnov et al. 01; Rossi et al. 02; Zhang & Meszaros 02

Polarization light curves: Uniform jet

No sideways Expansion (Ghisellini & Lazzati 99)

Very fast sideways Expansion (~c in local rest frame) (Sari 1999)

Polarization light curves: Uniform jet

No sideways Expansion (Ghisellini & Lazzati 99)

Very fast sideways Expansion (~c in local rest frame) (Sari 1999)

Polarization light curves: Structured jet **P** peaks at jet break time, $\theta_p = \text{const}$, $P \leq 10\%-30\%$

Observations: Afterglow Polarization

- Linear polarization at the level of P ~ 1%-3% was detected in several optical afterglows
- In some cases **P** varied, but usually $\theta_{p} \approx \text{const}$
- Different from predictions of uniform or structured jet

Effect of Magnetic field structure: b = $2\langle B_{\parallel}^2 \rangle / \langle B_{perp}^2 \rangle$ parameterizes the asymmetry of B_{rnd} **Sign(b-1)** determines $\theta_p (P > 0$ is along the direction from the line of sight to the jet axis & P < 0 is rotated by 90°) For $b \approx 1$ the polarization is very low (field is almost isotropic) **P** \leq 3% in afterglows observations \Rightarrow 0.5 \leq b \leq 2 10 -P(b=∞) 0.750 " P(b=0)0.500 5 0.250₀

$$\mathbf{P} = \mathbf{P}_{\text{max}} / [1 + 2/(b - 1)\sin^2\theta']$$

$$\theta_0 = 5^{\circ}$$

 $E_{jet} = 3 \times 10^{51} \text{ erg}$
 $n = 1 \text{ cm}^{-3}$
 $z = 1$
 $p = 2.5$
 $\varepsilon_e = 0.1$
 $\varepsilon_B = 0.01$

Adding an ordered B-field component Motivation: amplification of ambient B-field

- At shock transition: \mathbf{B}_{\parallel} remains unchanged, \mathbf{B}_{perp} is amplified by the compression ratio $(4\Gamma \text{ for } \Gamma \gg 1) \Rightarrow$ we expect $\mathbf{B}_{\text{perp}} \gg \mathbf{B}_{\parallel}$ and for simplicity assume $\mathbf{B}_{\parallel} = \mathbf{0}$
- Afterglow observations $\Rightarrow 10^{-4} \le \varepsilon_B \le 0.1$, $P \le 0.05P_{max} \Rightarrow 10^{-5.5} \le \varepsilon_{B,ord} \le 10^{-2.5}$
- Values expected for the external medium:
 - Pulsar wind bubble (Königl & Granot 02): $\varepsilon_{B,ord} \sim 10^{-3}$ 10^{-1}
 - Stellar wind of massive star progenitor: $\epsilon_{B,ord} \sim 10^{-6}$ 10^{-4}
 - Interstellar medium (ISM): ε_{B,ord} ~ 10⁻¹⁰–10⁻⁸, however if the magnetic field is amplified in the shock preferentially in the direction of the initial field, then ε_{B,ord} can be high enough

Combining B_{ord} & B_{rnd}:
 P_{ord} ~ P_{max} ~ 60% & θ_p = 90° w.r.t. the direction of B_{ord}
 In the afterglow we must have I_{ord} ≪ I_{rnd} so that P ≤ 3% but we can still have I_{ord}P_{ord} ≥ I_{rnd}P_{rnd}
 ⇒ B_{rnd} dominates I_{total} but B_{ord} dominates IP & P_{total}

• Adding evolution of I_{ord}/I_{rnd} with radius: can explain $\theta_p \approx \text{const } \&$ variable P

Predictions for an ordered B-field:

P(t≪t_j) ~ P(t~t_j) while for jet+B_{md} models: P(t≪t_j)≪P(t~t_j)
 Emission from the original ejecta (prompt GRB & reverse shock) may have P ~ P_{max} (≤ 60%) due to an ordered B-field carried by the ejecta from the source
 If B_{ord} in the ejecta is ordered on angles 1/Γ₀ ≤ θ_B ≤ 0.1 then P ~ P_{max} × min(1,Γθ_B) due to averaging over N ~ (Γθ_B)⁻² incoherent patches

■ ⇒ P can be smaller & θ_p different in the 'radio flare' ($\Gamma \sim 10$) compared to the 'optical flash' ($\Gamma \sim \Gamma_0 \sim 300$)

Reverse shock Pol.: B-field in ejecta • The existence of a reverse shock $\implies E_{EM} \leq E_{kin}$ ($\sigma \leq 1$) ■ In the 'optical flash' the pol. should be similar to that in y-rays, but much easier to measure & more reliable If \mathbf{B}_{ord} in the ejecta is ordered on angles $1/\Gamma_0 \leq \theta_B < \theta_i$ then $P \approx P_{max} \times min(1, \Gamma \theta_{B})$ due to averaging over $N \sim (\Gamma \theta_{\rm R})^{-2}$ incoherent patches (Granot & Königl 03) \Rightarrow smaller **P** & different $\theta_{\rm p}$ in the **'radio flare'** ($\Gamma \sim 10$)

Toroidal B-field in the ejecta:

B-field	Optical Flash	Radio Flare (t~ t _j)
Shock	$\theta_{\rm obs} \lesssim \theta_{\rm j}$ -1/ Γ : $\mathbf{P} \approx 0$	pol. due to jet structure
Produced	$\theta_{\rm obs} \sim \theta_j + 1/\Gamma: P \leq 50\%$	\Rightarrow similar to afterglow
Uniform	$\mathbf{P} \sim \mathbf{P}_{\max}$	$\mathbf{P} \sim \mathbf{P}_{\max}$
Patches (θ_{B})	$\theta_{\rm B} \gtrsim 1/\Gamma_0$: P ~ P _{max}	$\mathbf{P} \sim \mathbf{P}_{\max} \times \min(1, \Gamma \theta_{B})$
Toroidal	$1/\Gamma_0 \lesssim \theta_{obs} \lesssim \theta_j$: P ~ P _{max}	structured jet: $P \sim P_{max}$ top hat: $P \sim P_{max}(\theta_{obs}/\theta_j)^2$

Upper Limits on Polarization of Radio Flare Emission (Granot & Taylor 2005)

GRB	<mark>t</mark> (days)	<mark>t</mark> j (days)	Π _L (3 σ)	<mark>Π_C (3 σ)</mark>
990123	1.25	≈ 2	< 23%	< 32%
	1.49		< 11%	< 17%
991216	2.68	~ 2	< 9%	< 15%
	1.49, 2.68		< 7%	< 9%
020405	1.19	~ 1-2	< 11%	< 19%

Probably almost no depolarization in the host galaxy

Likely no significant depolarization in the source due to different amounts of Faraday rotation; hard to rule out

Toroidal Magnetic Field:

Γ(t) follows that of the forward shock

Γ(t) follows the Blandford & McKee self similar solution

 Γ (t) follows that of the forward shock

Implications of the Upper limits on the Radio Flare Polarization

B-field	Theoretical	Theory vs.
structure	prediction	Observation
Shock	pol. due to jet structure	
Produced	\Rightarrow similar to afterglow	\mathbf{v}
Uniform	$P \sim P_{max}$	X
Patches (θ_{B})	$\mathbf{P} \sim \mathbf{P}_{\max} \times \min(1, \Gamma \theta_{B})$	$\theta_{\rm B} \lesssim P_{\rm lim} / \Gamma P_{\rm max} \sim 10^{-2}$
Toroidal	structured jet: P ~ P _{max}	X
	top hat: $P \sim P_{max}(\theta_{obs}/\theta_j)^2$	$\theta_{\rm obs}/\theta_{\rm j} \lesssim 0.4 - 0.55$

GRB 170817A: afterglow observations

GRB 170817A: afterglow observations

Analogy to rising F_v: X-ray Plateaus

Possible solutions:

- Evolution of shock microphysical parameters (JG, Konigl & Piran 2006)
- Energy injection into ext. shock:
- 1. long-lived relativistic wind
- 2. slower ejecta catching up (Sari & Meszaros 00; Nousek+ 06; JG & Kumar 06)

Viewing angle effects

Analogy to rising F_v: X-ray Plateaus

Possible solutions:

- Evolution of shock microphysical parameters (JG, Konigl & Piran 2006)
- Energy injection into ext. shock:
- 1. long-lived relativistic wind

2. slower ejecta catching up (Sari & Meszaros 00; Nousek+ 06; JG & Kumar 06)

Viewing angle effects angular

(JG, Ramirez-Ruiz & Perna 2005)

Off-Axis Afterglow Lightcurves

- The emission is initially strongly beamed away from our L.o.S
- **F**_v rises as beaming cone widens
- When beaming cone reaches LoS F_v peaks & approaches on-axis F_v ⊥²
- The rise is much more gradual for hydrodynamic simulations due to slower matter at the jet's sides with non-radial velocities

(JG, Ramirez-Ruiz & Perna 2005)

GRB170817 outflow structure: the afterglow

- A structured jet explanation (Lazzati+17; Margutti+18; Gill & JG 18;...):
- Simulation of jet breaking out of the Newtonian ejecta near a NS-NS merger site: the cocoon energizes the jet's sides/wings

Outflow structure: breaking the degeneracy (Gill & JG 18)

- The lightcurves leave a lot of degeneracy between models
- The degeneracy may be lifted by calculation the afterglow images & polarization (e.g. Nakar & Piran 2018; Nakar et al. 2018)
- We considered 4 different models including both main types
- Sph+E_{inj}: Spherical with energy injection $E(>u=\Gamma\beta) \propto u^{-6}$, 1.5 < u < 4 • QSph+E_{ini}: Quasi-Spherical+energy injection $E(>u) \propto u^{-8}$, $u_{min 0} = 1.8$

Outflow structure: breaking the degeneracy (Gill & JG 18)

- The lightcurves leave a lot of degeneracy between models
- The degeneracy may be lifted by calculation the afterglow images & polarization (e.g. Nakar & Piran 2018; Nakar et al. 2018)
- We considered 4 different models including both main types
 GJ: Gaussian Jet (in ε = dE/dΩ, Γ₀−1) Γ_c = 600, θ_c=4.7°
 PLJ: Power-Law Jet; ε = ε_cΘ^{-a}, Γ₀−1 = (Γ_c−1)Θ^{-b}, Θ = [1+(θ/θ_c)²]^{1/2}
 - $\Gamma_{\rm c} = 100, \theta_{\rm c} = 5^{\circ}, a = 4.5, b = 2.5$

• As there is a lot of freedom we fixed: p = 2.16, $\varepsilon_B = n_0 = 10^{-3}$, $\theta_{obs} = 27^{\circ}$

The outflow structure: breaking the degeneracy Tentative fit to GRB170817A afterglow data (radio to X-ray)

The outflow structure: breaking the degeneracy Tentative fit to GRB170817A afterglow data (radio to X-ray)

The outflow structure: breaking the degeneracy
 New data that came out established a peak at t_p ~150 days
 The jet models decay faster (slightly preferred by the latest data)

Decay: $\sim t^{-2.2}$ (Mooley+18)

Afterglow **Images:** Sph + R.

20

10

0

-10

-20

-20

-10

0

 $\theta_{\tilde{x}}$ [mas]

 $\theta_{\tilde{y}} \; [mas]$

$\operatorname{Log}_{10}(I_{\nu}/\langle I_{\nu}\rangle)$					
-0.5	0	0.5	1.0		

Afterglow Images: QSph + E_{inj}

Afterglow Images: GJ, PLJ

Linear Polarization Assuming a shock-produce B-field with $b \equiv 2\langle B_{\parallel}^2 \rangle / \langle B_{\perp}^2 \rangle$

Linear Polarization Assuming a shock-produce B-field with $b \equiv 2\langle B_{\parallel}^2 \rangle / \langle B_{\perp}^2 \rangle$

Afterglow Images: uniform jet simulations (JG, De Colle & Remirez-Ruiz 2018)

Conclusions:

Afterglow polarization probes jet structure & dynamics + the B-field structure behind relativistic collisionless shocks Reverse shock polarization probes B-field structure in ejecta • Optical flash ($\theta \sim 1/\Gamma_0 \leq 10^{-2}$), radio flare ($\theta \sim 1/\Gamma \sim 0.1$) Reverse & forward (afterglow) shock emission may overlap More afterglow polarization observations are needed!!! GW170817 afterglow: main explanations for the rising flux energy distribution with proper velocity (r) or with angle (θ) Diagnostics: post-peak flux decay slope, image axis ratio, flux centroid motion (image size or polarization alone: hard)

Conclusions:

Afterglow polarization probes jet structure & dynamics + the B-field structure behind relativistic collisionless shocks Reverse shock polarization probes B-field structure in ejecta • Optical flash ($\theta \sim 1/\Gamma_0 \leq 10^{-2}$), radio flare ($\theta \sim 1/\Gamma \sim 0.1$) Reverse & forward (afterglow) shock emission may overlap More afterglow polarization observations are needed!!! ■ GW170817 afterglow: main explanations for the rising flux energy distribution with proper velocity (\mathbf{r}) or with angle ($\boldsymbol{\theta}$) Diagnostics: post-peak flux decay slope, image axis ratio, flux centroid motion (image size or polarization alone: hard) • New flux centroid motion observations: $\beta_{app} = 4.1 \pm 0.5$

Conclusions:

Afterglow polarization probes jet structure & dynamics + the B-field structure behind relativistic collisionless shocks Reverse shock polarization probes B-field structure in ejecta • Optical flash ($\theta \sim 1/\Gamma_0 \leq 10^{-2}$), radio flare ($\theta \sim 1/\Gamma \sim 0.1$) Reverse & forward (afterglow) shock emission may overlap More afterglow polarization observations are needed!!! ■ GW170817 afterglow: main explanations for the rising flux energy distribution with proper velocity (\mathbf{r}) or with angle ($\boldsymbol{\theta}$) Diagnostics: post-peak flux decay slope, image axis ratio, flux centroid motion (image size or polarization alone: hard) • New flux centroid motion observations: $\beta_{app} = 4.1 \pm 0.5$ ■ ⇒ 0.7 ≤ b ≤ 1.5 in the afterglow shock (b = $2\langle B_{\parallel}^2 \rangle / \langle B_{perp}^2 \rangle$)