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Importance of Gravitational Wave EM Counterparts

" Combining the two teaches us much more about the astrophysical objects
" Enables measuring the redshift, and constrains the speed of gravity waves

® Also constrains the Hubble constant (expansion rate of the Universe; GW170817):
* Using the redshift + GW data alone: H, = 70.012%% km s™! Mpc™?! (Abbott et al. 2017)

&

*%* Adding short GRB jet modeling (afterglow LC + VLBI) constrains our viewing angle from the
jet (angular momentum) axis giving: Hy = 70.3%23 km s™! Mpc~?! (Hotokezaka et al. 2019)
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GRB Theoretical Framework:

"Progenitors:

<Long: massive stars
+Short: binary mergers (NS-NS, BH-NS?)

long GRB

"Acceleration: fireball or magnetic?

"Prompt y-rays: dissipation — internal shocks or magnetic reconnection?
Emission mechanism?

"Deceleration: the outflow decelerates (by a reverse shock for low
BZ
ATthpc?

magnetizations o = < 1) as it sweeps-up the external medium

"Afterglow: from the long-lived forward shock going into the external medium;
as the shock decelerates the typical frequency decreases: X-ray =2 optical = radio




GW170817 /| GRB170817A: NS-NS merger

" First NS-NS merger detected in gravitational waves (GW)

" First electromagnetic counterpart to a GW event

¢ The short GRB 170817A (very under-luminous, 1.74 s y-GW delay)
¢ Optical (IR to UV) kilonova emission over a few weeks
s X-ray (> 9 d; still barely detected) to radio (>16 d) afterglow

" First direct sGRB - NS-NS merger assoaatlon (Elchler+ 1989)

® First clear-cut kilonova
" Dow = 43%3

(z = 0.009783) 2 kpc from
host center in projection
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GW170817 /| GRB170817A: Kllonova

('h)

® Observations req uire two com ponents The Origin of the Solar System Elements

¢ First blue/fast, lanthanide-poor = >

~ (104 — 20 o~ _ ' sronstar?_ ﬂdﬂ¥,ﬁ,w
Mej = (1% — 2%)Mg , vej ~ (0.2 = 0.3)c | 1

+*»* Second red/slow, lanthanide-rich ;A AﬂﬂAA;dAAJ’
" Synthesized large amounts of heavy

elements (may dominate the cosmic r-process A4 .4 44 .4444.

nucleosynthesis, heavy metals e.g. gold, platinum) | — ro————

ESA/NASA/AASNova

squeezed dynamical squeezed dynamical
v ~ 0.2c-0.3c v ~ 0.2c-0.3c

E tidal dynamical tidal dynamical tidal dynamical
3 v ~ 0.2¢c-0.3c v ~ 0.2c-0.3c v ~ 0.2c-0.3c

disk wind disk wind disk wind
v £ 0.1c v < 0.1c v < 0.1c

Neutron Star + Neutron Star Neutron Star + Neutron Star Neutron Star + Black Hole
long lived neutron star remnant remnant prompt collapse to black hole black hole remnant
(Kasen et al. 2017)




GW170817 /| GRB170817A: Remnant

- Ml,z = pre-merger NS IVlgravitational
" post-merger total mass: M, =M, + M,

" Final mass M; = 0.93M. due to:

** GW & neutrino energy losses
** Mass ejection during the merger

= A stable NS or SMNS = P,=1ms = E,, = 10°?° erg,

Tsq =~ 20B;{ days = would contradict afterglow
observations (also what produces the GRB/afterglow?)

" The argument can be reversed to constrain NS EoS &
My ax S 2.17M® (Margalit & Metzger 2017; Rezzolla et al. 2018)
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GW170817 /| GRB170817A: The Time Delay

w1l s 4-1071
C

" The At = 1.74 s delay between the GW chirp signal & the sGRB onset =

" A HMNS may explain At = 1.74 s by tyuns S 0.5s & t,,~1 s
(Moharana & Piran 2017 find t,,,~0.5 s for SGRBs, from a plateau in their duration distribution, d Ngrg/dT¢rB)

" Direct BH formation = a shorter jet breakout time t,, = the jet is less likely to be chocked

" If the prompt y-rays are beamed away from us (large I'A8), the implied on-axis L, jso & Epeak

are very high — inconsistent with their observed correlation (JG+ 2017) & implying large
compactness (Matsumoto+ 2019) = they must arise from 'A8 < 1 = a jet with angular structure

Relativistic beming (abberation of light)
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GRB170817A: Afterglow Observations
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GRB170817A: Afterglow Observations
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Analogy to rising [, : X-ray Plateaus

m Possible solutions:

Evolution of shock microphysical
parameters (JG, Konigl & Piran 2006)

Energy injection into external shock:
1.long-lived relativistic wind

2.slower gjecta catching up

(Sari & Meszaros OO Nousek+ 06; JG & Kumar 06)
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Analogy to rising [, : X-ray Plateaus

m Possible solutions:

Evolution of shock microphysical
parameters (JG, Konigl & Piran 2006)

Energy injection into external shock:

1.long-lived relativistic wind

2 Islower ejecta catching u
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Analogy to rising F, : Off-Axis Viewing

m The emission 1s initially strongly
beamed away from our L.0.S

N\ semi-analytic|’
S\ top-hat jeti]

m [, rises as beaming cone widens

® When beaming cone reaches LoS
F, peaks & approaches on-axis F,

m The rise 1s much more gradual
for hydrodynamic simulations
due to slower matter at the jet’s - o
sides with non-radial velocities (JG et al. 2002)

(JG et al. 2001) (JG, Ramirez-Ruiz & Perna 2005) T
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Outfiow Structure: Breaking the Degeneracy (Gill & JG 18)

m The lightcurves leave a lot of degeneracy between models

m The degeneracy may be lifted by calculation the afterglow images &

polarization (e.g. Nakar & Piran 2018; Nakar et al. 2018)

m We considered 4 different models including both main types
Sph+E;;: Spherical with energy injection E(>u=IB)ou=, 1.5<u<4
QSph+Emj: Quasi-Spherical+energy injection E(>u)Xu™>, Ui, 0=1.8 U0
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Outfiow Structure: Breaking the Degeneracy (Gill & JG 18)

m The lightcurves leave a lot of degeneracy between models

m The degeneracy may be lifted by calculation the afterglow images &
polarization (e.g. Nakar & Piran 2018; Nakar et al. 2018)

m We considered 4 different models including both main types

GJ: Gaussian Jet (in e =dE/dQ, I',-1) . =600, 6. =4.7°

PLJ: Power-Law Jet; e=€072,,-1=(I-1)0, 0 = [1+(6/6.)2]/2,T_=100,06.=5°, a=4.5,b=2.5
m Asthereis a lot of freedom we fixed: p=2.16, ,=n,=1073,0,_,.=27°
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Outfiow Structure: Breaking the Degeneracy (Gill & JG 18)

m Tentative fit to GRB170817A afterglow data (radio to X-ray)
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Outfiow Structure: Breaking the Degeneracy (Gill & JG 18)

m New data that came out established a peak at t,¢, ~ 150 days
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Outfiow Structure: Breaking the Degeneracy (Gill & JG 18)

m The jet models decay faster (closer to post-peak data: F, o« t~4%)
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Afterglow Images: Flux Centroid, Size, Shape

m The flux centroid motion: a potentially powerful diagnostic

m It may be hard to tell apart models based on the image size
alone, but a much higher axis-ratio is expected for jet models
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Afterglow Images: Flux Centroid, Size, Shape

m The flux centroid motion: a potentially powerful diagnostic

m It may be hard to tell apart models based on the image size
alone, but a much higher axis-ratio is expected for jet models
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Afterglow Images: Flux Centroid, Size, Shape

m The flux centroid motion: a potentially powerful diagnostic

m It may be hard to tell apart models based on the image size
alone, but a much higher axis-ratio is expected for jet models
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Afterglow Images: Flux Centroid, Size, Shape

m The flux centroid motion: a potentially powerful diagnostic

m It may be hard to tell apart models based on the image size
alone, but a much higher axis-ratio is expected for jet models
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Afterglow Images: Flux Centroid, Size, Shape

m The flux centroid motion: a potentially powerful diagnostic

m It may be hard to tell apart models based on the image size
alone, but a much higher axis-ratio is expected for jet models

Radio flux centroid motion: semi- analytlc Agree with radio afterglow images from simulations
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GRB 170817A: polarization UL = post-shock B-field

" Jet angular structure & 6}, well constrained = breaks degeneracies
® Assuming a shock-produce B-field with b = Z(B”Z)/(Bf) (JG & konigl 03; Gill & JG 18)
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GRB 170817A: polarization UL = post-shock B-field

" Jet angular structure & 6}, well constrained = breaks degeneracies
® Assuming a shock-produce B-field with b = Z(B”Z)/(Bf) (JG & konigl 03; Gill & JG 18)
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GRB 170817A: polarization UL = post-shock B-field

" Jet angular structure & 6}, well constrained = breaks degeneracies
® Assuming a shock-produce B-field with b = Z(B"Z)/(Bf) (JG & konigl 03; Gill & JG 18)
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GRB 170817A: polarization UL = post-shock B-field

More realistic assumptions = B-field in collisionless shocks: (Gill & JG 2020)
® 2D emitting shell = 3D emitting volume (local BM76 radial profile)

" B-field evolution by faster radial expansion: L', / g 4 oc x{7-21//(8-2K)

= B-field isotropic in 3D with B’, = €B’, (Sari 1999); € = £ x(7'2k)/(8'2'<)

................... £=1.3
0 —— 3D Volume Integral : TI(£f) ’
L e, 3D Volume Integral : H(g?) ]
0.4 %, ——- 2D Infinitely Thin Shell : TI(b) 7 , :
- — GJ i % %
"2 4, S == ia] E shock normal |
= : K\\\;\xm < 0.12 at 244 days - = 0.65

! , ! - -' £=0.5 £=03
£ or &F or b %% %
0.57 < &< 0.89 | |




Constraining the Opacity of the Universe

m y-rays from distant sources can pair produce (yy — e*e™)
on the way to us with the extragalactic background light (EBL)

m This can test the transparency of the Universe and constrain
EBL models (or the massive star formation rate at z = 1)

m GRBs are already competitive with AGN, & probe higher z

m EBL likely detected (with blazars: LAT+IACTs; Dominguez+2013; Acciari+2019)

= Bllacs ® GRBs (Pass6) = Kneiiee - gh UV
o FSRQs + new GRBs (Pass8) — Salamon & Stecker = w
== Salamon & Stecker = w,
=1 = Stecker et al, - baselin
== Stecker et al, - fast evol
w==  Stecker et al, - empirical
. Ackermann et al,
Finke et al,
*, Franceschini et al,
— - . 5 == Gilmore et al,
>107] : .
g " (Abdo et al. 2010;
S\ d. e, Atwood et al. 2013)
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Testing for Lorentz Invariance Violation

(using GRB was first suggested
by:Ammelino-Camelia et al. 1998) _

Why GRBs? Very bright & short
transient events, at cosmological
distances, emit high-energy y-rays

(D. Pile, Nature Photonics, 2010)
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Testing for Lorentz Invarlance Violation

GRB 090510 is much better than the rest :
(short, hard, very fine time structure)

Abdo+ 2009, Nature, 462, 331: 1t direct ,..

time-of-flight limit beyond Plank scale == """ g1 =T
on linear (n = 1) energy dispersion: P ] o
1 ;(,..,.,... L
Vph /C D 1 iz(l‘l'n)(Eph /EQ ) E 1 2E anck (L:"G-v»
(robust, conservative, 2 independent methods) N e

Vasileiou+ 2013: 3 different methods,
4 GRBs (090510 is still the best by far),
the limits improved by factors of a few

Vasileiou+ 2015, Nature Phys., 11, 344:
stochastic LIV — motivation: space-time
foam (1% Planck-scale limit of its kind) |




Conclusions: Short GRBs & Multimessenger Astrophysics

m GW170817 is uniqgue with a wide range of implications
m GW speed:|["2¥ — 1‘ < 4 -1071%; Kilonova: r-process elements

C

m Merger Remnant: BH or HMNS = BH = M, < 2.17Mg

m Two main types of explanations for the rising afterglow flux
energy distribution with proper velocity (r) or with angle (0)

m Possible diagnostics to distinguish between them

The post-peak flux decay slope

Flux centroid motion or image axis ratio
m Later flux centroid motion observations: f3,,, =4.1 £ 0.5
m Polarization UL: shock-produced B-field 0.57 < ¢, < 0.89

B GRBs can also constrain Lorentz Invariance Violation or the EBL
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