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Outline of the Talk: what will or will not be covered

m GRBs: select highlights from the recent decade

GRB170817A/GW170817: 1t EM-GW counterpart (sGRB, kilonova, afterglow),
r-process elements synthesis, jet angular structure & large off-axis viewing angle

Polarization: GW170817 UL = constraints on B-field structure in the afterglow shock;
GRB180720B: reverse to forward shock transition; afterglow pol. from structured jets

Prompt GRB: dissipation (IS/rec), emission (syn/Compt/SSC/had) (Rahaman)

TeV emission: from nearby GRBs — afterglow, reverse shock, prompt? (777)

GRB 221009A (B.O.A.T): bright in TeV, shallow jet, 6-12 MeV line (Salafia)
m Einstein Probe X-ray transients: mostly GRBs, start earlier, last longer (Hamidani)
m ULGRB 250702B: ~day long, unclear origin (some type of collapsar or TDE?)

m Magnetars / FRBs: - FRBs from a Galactic magnetar, SGR 1935+2154 (28.4.2020)
Persistent Radio Sources (PRSs) associated with repeating Fast Radio Bursts (FRBs)
Extragalactic Magnetar Giant Flares- current sample and prospects



GW170817 /| GRB170817A: NS-NS merger

" First electromagnetic counterpart to a GW event

¢ The short GRB 170817A (very under-luminous, 1.74 s y-GW delay)
¢ Optical (IR to UV) kilonova emission (1t clear-cut) for a few weeks
s X-ray (> 9 d; still barely detected) to radio (>16 d) afterglow
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GW170817 /| GRB170817A: Kllonova
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® Observations req uire two com ponents The Origin of the Solar System Elements

¢ First blue/fast, lanthanide-poor = >

~ (104 — 20 o~ _ ' sronstar?_ ﬂdﬂ¥,ﬁ,w
Mej = (1% — 2%)Mg , vej ~ (0.2 = 0.3)c | 1

+*»* Second red/slow, lanthanide-rich ;A AﬂﬂAA;dAAJ’
" Synthesized large amounts of heavy

elements (may dominate the cosmic r-process A4 .4 44 .4444.

nucleosynthesis, heavy metals e.g. gold, platinum) | — ro————

ESA/NASA/AASNova

squeezed dynamical squeezed dynamical
v ~ 0.2c-0.3c v ~ 0.2c-0.3c

E tidal dynamical tidal dynamical tidal dynamical
3 v ~ 0.2¢c-0.3c v ~ 0.2c-0.3c v ~ 0.2c-0.3c

disk wind disk wind disk wind
v £ 0.1c v < 0.1c v < 0.1c

Neutron Star + Neutron Star Neutron Star + Neutron Star Neutron Star + Black Hole
long lived neutron star remnant remnant prompt collapse to black hole black hole remnant
(Kasen et al. 2017)




GW170817 /| GRB170817A: Remnant Type

- Ml,z = pre-merger NS IVlgravitational
" post-merger total mass: M, =M, + M,

" Final mass M; = 0.93M. due to:

** GW & neutrino energy losses
** Mass ejection during the merger

= A stable NS or SMNS = P, =1 ms = E, = 10°?° erg,

Tsq =~ 20B;{ days = would contradict afterglow
observations (also what produces the GRB/afterglow?)

" The argument can be reversed to constrain NS EoS &
My ax S 2.17M® (Margalit & Metzger 2017; Rezzolla et al. 2018)
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GRB170817A: Afterglow Observations
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GRB170817A: Afterglow Observations
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Analogy to rising [, : X-ray Plateaus

m Possible solutions:

Evolution of shock microphysical
parameters (JG, Konigl & Piran 2006)

Energy injection into external shock:
1.long-lived relativistic wind

2.slower gjecta catching up
(Sari & Meszaros OO Nousek+ 06; JG & Kumar 06)
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Analogy to rising F, : Off-Axis Viewing

m The emission 1s initially strongly
beamed away from our L.0.S

N\ semi-analytic|’
S\ top-hat jeti]

m [, rises as beaming cone widens

® When beaming cone reaches LoS
F, peaks & approaches on-axis F,

m The rise 1s much more gradual
for hydrodynamic simulations
due to slower matter at the jet’s - o
sides with non-radial velocities (JG et al. 2002)

(JG et al. 2001) (JG, Ramirez-Ruiz & Perna 2005) T
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Outfiow Structure: Breaking the Degeneracy (Gill & JG 18)

m The lightcurves leave a lot of degeneracy between models

m The degeneracy may be lifted by calculation the afterglow images &

polarization (e.g. Nakar & Piran 2018; Nakar et al. 2018)

m We considered 4 different models including both main types
Sph+E;;: Spherical with energy injection E(>u=IB)ou=, 1.5<u<4
QSph+Emj: Quasi-Spherical+energy injection E(>u)Xu™>, Ui, 0=1.8 U0
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Outfiow Structure: Breaking the Degeneracy (Gill & JG 18)

m The lightcurves leave a lot of degeneracy between models

m The degeneracy may be lifted by calculation the afterglow images &
polarization (e.g. Nakar & Piran 2018; Nakar et al. 2018)

m We considered 4 different models including both main types

GJ: Gaussian Jet (in e =dE/dQ, I',-1) . =600, 6. =4.7°

PLJ: Power-Law Jet; e=€072,,-1=(I-1)0, 0 = [1+(6/6.)2]/2,T_=100,06.=5°, a=4.5,b=2.5
m Asthereis a lot of freedom we fixed: p=2.16, ,=n,=1073,0,_,.=27°

20

| 1053=| T T T T |5103

- T T . ]

I T ™ 3107

5 3 —= ‘\\ E
15 B 1050 ;.§ S \\ ]

[ S N Ji0 =
| Sa0%f S e 1Y =
&0 e F I N— 1 =
= i iz 48[ JEL R o— T ] &
'E 10 ?_'D 10 ; D _100 <
£ i @ a7 ~

g — 10%F ] I
= S ol 1 =

: w ?r D — 6(0) _510,1 \;o/

. 10F - ug(0) ]
[ 104 — GJ, Bomin = 1077 Nemeod 102
[ jouf — PLJ, a=45,b=25 E
(6] 1042:l 1 1 1 1 1 1 1073
100 0 5 10 15 20 25 30

¢ [deg]



Outfiow Structure: Breaking the Degeneracy (Gill & JG 18)

m Tentative fit to GRB170817A afterglow data (radio to X-ray)

Gaussian

Jet

Spherical
+

Energy
Injection

F, [mJy x (D/40Mpc) ™

F, [mJy x (D/40Mpc) ™

101 —————rrry . 3
F — 1 = 3 GHz E
[ GJ ]
| —v = 6 GHz |
E — i = 2 6V (F), x 200)
3 hr =1 keV (F, x 2500) T
10 3
- s 1
1072 E
101k I'. = 600 € = 107995
F 0. = 4.7° ep = 1073 3
- Hobs = 27° P = 2.16 ]
10,5 aal M M PR aal M M PRI
100 101! 102 103
t [days]
10t E T T 3
F — 1 = 3 GHz ]
[ Sph + Eiyj ]
100_—1/:6GHZ i
E e = 2 6V (F), x 200)
 — hrv = 1 keV (F, x 2500) T
107 E
1072
1073 E
i Fjso = 10°°%7 g = 10773 ]
104 U0, min = 1.5 € = 1071 |
Uo,max — 4 €EB = 1075 E
s s =6 p=2.16 ]
1075 il M M aal L M PR
109 10! 102 103

t [days]

F, [mJy x (D/40Mpe)

F, [mJy x (D/40Mpc) ™

10'E —— 2 3
F —— 7 = 3 GHz ]
i 6 GH PLJ ]
o a=45 4 Power
F — hr = 2 eV (F, x 200) 3
i b=2.5 ] L
i he = 1 keV (F, x 2500) 1 Law
107 F s _» E
: 1 Jet
10’25—
10*35—
104 ;
10,5 M M PR | aal ]
100 10! 102 103
t [days]
10'E T T 3
F — 1 = 3 GHz OSph 5 3
B - P -+ inj ] .
100k —vv =6 GHz Oor. — 27° ] QuaSI
F — hrv = 2 eV (F, x 200) E S h . I
- e = 1 keV (F, x 2500) ] opnerica
10 .
102 Energy
F Injection
1073 E
E Ek,iso - 1050.69 g — 1073 E
104 U0, min = 1.8 €. = 10—t .
E Uo,max — 4 €Ep — 1073 E
’ s =>5.5 p=2.16 1
1075 M M MR | M M M aal M L
100 10! 102 103
t [days]



Outfiow Structure: Breaking the Degeneracy (Gill & JG 18)

m New data that came out established a peak at t,¢, ~ 150 days
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Outfiow Structure: Breaking the Degeneracy (Gill & JG 18)

m The jet models decay faster (closer to post-peak data: F, o« t~4%)
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Afterglow Images: Flux Centroid, Size, Shape

m The flux centroid motion: a potentially powerful diagnostic

m It may be hard to tell apart models based on the image size
alone, but a much higher axis-ratio is expected for jet models
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Afterglow Images: Flux Centroid, Size, Shape

m The flux centroid motion: a potentially powerful diagnostic

m It may be hard to tell apart models based on the image size
alone, but a much higher axis-ratio is expected for jet models
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Afterglow Images: Flux Centroid, Size, Shape

m The flux centroid motion: a potentially powerful diagnostic

m It may be hard to tell apart models based on the image size
alone, but a much higher axis-ratio is expected for jet models
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Afterglow Images: Flux Centroid, Size, Shape

m The flux centroid motion: a potentially powerful diagnostic

m It may be hard to tell apart models based on the image size
alone, but a much higher axis-ratio is expected for jet models
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Afterglow Images: Flux Centroid, Size, Shape

m The flux centroid motion: a potentially powerful diagnostic

m It may be hard to tell apart models based on the image size
alone, but a much higher axis-ratio is expected for jet models

Radio flux centroid motion: semi- analytlc Agree with radio afterglow images from simulations
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GRB Polarization probes the B- fleld & Jet structures:

" Prompt GRB: hard X-ray — soft y-ray

= hard to measure = no clear detections
(stay tuned: POLAR-2, LEAP, COSI, eXTP)
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® Reverse Shock: also probes original ejecta, but in optical to radio = detections

< Probes B-field structure & turbulence in the ejecta near the deceleration epoch

< Radio UL [Igccp,(1day) < 7% = rules out ordered B-field (coherent over 8z = 1/T) or
toroidal B-field + dE /dQ « 8~2 structured jet; allows 85 < 10™2 patches (JG & Taylor 2005)

% RINGO2 GRB120308A: Il,,:(240 — 323 s) = 28 & 4% = ordered B-field (Mundell et al. 2013)

< ALMA GRB190114C: Ilg; ccy,(2.2 = 5.2 hr) = 0.9 = 0.6% with AGP(Z.Z - 5.2 hr) = 54°
(first GRB radio polarization) = favors patches with 85~1073 (Laskar et al. 2019)

mlAfterglow:|optical & radio — probes jet angular structure & B-field structure in

collisionless relativistic shocks



GRB 170817A: polarization UL = post-shock B-field

" Jet angular structure & 6}, well constrained = breaks degeneracies
® Assuming a shock-produce B-field with b = Z(B”Z)/(Bf) (JG & konigl 03; Gill & JG 18)
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GRB 170817A: polarization UL = post-shock B-field

" Jet angular structure & 6}, well constrained = breaks degeneracies
® Assuming a shock-produce B-field with b = Z(B”Z)/(Bf) (JG & konigl 03; Gill & JG 18)
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GRB 170817A: polarization UL = post-shock B-field

" Jet angular structure & 6}, well constrained = breaks degeneracies
® Assuming a shock-produce B-field with b = Z(B"Z)/(Bf) (JG & konigl 03; Gill & JG 18)
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GRB 170817A: polarization UL = post-shock B-field

More realistic assumptions = B-field in collisionless shocks: (Gill & JG 2020)
® 2D emitting shell = 3D emitting volume (local BM76 radial profile)

" B-field evolution by faster radial expansion: L', / g 4 oc x{7-21//(8-2K)

= B-field isotropic in 3D with B’, = €B’, (Sari 1999); € = £ x(7'2k)/(8'2'<)
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Reverse + Forward Shock Polarization: (Arimoto et al. 2023)

" < 300 s: ejecta; B,,, + turbulence "<300s:RS; P:5 = 1%,0p =70°
" 0.3-2 ks: turbulence-induced P ¥ 0.3-2 ks: P ~ 2-8%, Bp varies
" RS = FS dominance @ ~103s
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Afterglow Polarization from Shallow Jets (Birenbaum et al. 2024)
P peaks near the jet brgak time  Fpax ® qal'%[O.QSS ‘;anh(O.34 — 2.3logp &) — 0.02]

" Particularly energetic GRBs
seem to have shallow Jets
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constrain its jet structure &
post-shock B-field structure
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Afterglow Polarization from Steep Jets (a > 2; Birenbaum et al. 2026)

P peaks near the jet breaktime  P,x = W(a,q) [Atanh(—Blog( ¢ + C) — D]
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ULGRB250702B: Prompt Emission *

T T T
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Ultra-Long GRBs:
25 ks
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ULGRB250702B Afterglow: X-ray, IR, radio

" Extinction: Ay = 0.847 mag (MW) + 2 — 9 mag (host); Ny = (3 —5) X 10%? cm ™2

e ~~ ] = Stratified external medium
i (O’Connor et al. 2025) .,
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' GRB 250702; Time since Ty (s)
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ULGRB250702B: GRB or TDE?

© GRB 250702B (July 1)
@ GRB 250702B (July 2)
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ULGRB250702B: Einstein Probe: X-ray starts 1 day earlier

Eyiso(pre-peak) ~ 10°2> erg ™ Insight-HXMT/HE + Fermi /GBM: ~50 s
| precursor found ~25 hr before the main peak

Ex iso(peak) ~ 10°3 erg (Zhang+26)
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What can it be?

® Unusual type of collapsar (variant of long GRBs)? He-core + NS/BH?
(JWST rules out a typical broad-line SN Ic, associated with LGRSs)

" Extreme Ultra-Long GRB? (maybe, but unclear what ULGRBs are...)

" TDE-SMBH: offset from host + tyy, = 0.5s > %‘g = Mgy < 5 X 10*M

" TDE-stelar-mass-BH (micro-TDE): possible (Beniamini, Perets & JG 2025)
" TDE-IMBH: possible (MS or WD?); tyy, = 0.5s & I' > 56 still favor a

stellar-mass BH engine

TDE-IMBH of WD:
Timescales & lightcurve
shape don’t quite match

(Eyles-Ferris
et al. 2026)
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A milli-TDE Model for GRB250702B: MS Star Disrupted by IMBH
(JG, Peters, Gill, Beniamini, O’'Connor 2025)

GRB250702B Afterglow Fit: Bondi Accretion:
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A milli-TDE Model for GRB250702B: MS Star Disrupted by IMBH

(JG, Peters, Gill, Beniamini, O’Connor 2025)

Inferred Bondi Radius:

Rg = Ry (ng/msm)?/?
= 0.56%931 n-?/% pc

Inferred IMBH Mass:

Mo
= 6.55+353 x 103n,%/%c2¢ Mg

k =—1.60 1+ 0.17 (consistent with -3/2)
n(r) =ny(r/Ry)~% Ry = 1018 cm
logionz0=0.36+0.28

Bondi Accretion:

r

r
>

R4 Ry = 2GMg/c
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A milli-TDE Model for GRB250702B: MS Star Disrupted by IMBH
(JG, Peters, Gill, Beniamini, O’'Connor 2025)

Inferred Bondi Radius:

Rg = Ry (ng/mism)?/3
~2/3
pC

= 0.56%015 g
Inferred IMBH Mass:
Mo
= 6.55+353 x 103n,%/%c2¢ Mg

* Also consistent with the observed
afterglow emission coming from r < Rj

k =—1.60 1+ 0.17 (consistent with -3/2)
n(r) =ny(r/Ry)~% Ry = 1018 cm
loglo nd,o = 0.36 i 0.28

R (in pc)
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1014
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Bondi Hoyle Lyttleton Accretion:
Modified Bondi Radius (vgy added):

Rp 2GMe __ VBH
> = > ; M =
1+M cs(1+M#4) Cs

Modified infered IMBH Mass:
Mg = 6.55*3351 x 103n; %/ c2,(1 + M%) Mg

Ry, =

T M
v > 2 = MBH < 5% 10* = vgy < 28ny °km/s
©

)
accreted (—I—) not accreted
|

|
' (Armitage 2022)
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(Kaaz, Antoni & Ramirez-Ruiz 2019)



Relevant Timescales: Main Sequence vs. White Dwarf

Disruption to 15t periastron passage (r; — r

p):

2R3 L i0E N
s e

s (MS),

354RYE, M % (WD).

Orbital time of the most bound debris:
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tmin ~
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Where Ag ~ 1 for frozen in approx, or

~ 73 for efficient dissiption near ry

(B = r¢/1, = penetration factor)

{)\I\NI;% \“\ debris
* The observed timescales greatly s ".‘
prefer a MS star over a WD + ey
. . . \ | 1010 |
*Fora WD r, S rigcg is possible, in \ / :
] ™ ™ . %\k\\, II 10_12 F
which case no accretion disk or jet 3% Y e -
1d L\ Yy stellar BH IMBH MBH
wou orm \ '\‘ / 1014 . TR Ctel el d il Cl ol
/ 100 101 102 10° 104 105 108 107

108 10° 10"
M,/ Mg



Relevant Timescales: Main Sequence vs. White Dwarf

Disruption to 1%t periastron passage (r, — r):
2R3 LR i S | y
 Veom. Sl e ) . 4 |- .
Orbital time of the most bound debris: | _ L _
tmin & ne Ag,—11 M'léf RB/QM = (MS) ' For RCiI‘C ~ ZT — zrt/ﬁr tacc ~ tvis(Rcirc):
3.5 x 101 Ag 1 M2 RIZ M} s (WD). e~ 45><104B_3/2ajh M, ‘Z’/Ozs
o Approximate rise and peak timescales:
:m I 1 _1_}1!? o tX rise ™ tcire + lace , tmain ~ tmin + tacc ;
e T N i | 8 U e w8510 o858t ML R3/ 2 ML s,
o “i;;; ‘ - + o o LR TR e e
LR | T 1 e~ 325100 g0 h2 0T z{g ;,
: - fip et %@-’#H b A Energetics limit on the jet beamin factor:
£ o :

: it i \([T® )/ 1.4%10%4 er
i " Restirame tme (days) ) LJ fo < 6.4 % 10_477j,—277’y,—1M*,0 (ffb)< -

(Li et al. 2025 EP collaboration) 0.5 E’y,iso



Persistent Radio Sources (PRSs) of Repeating FRBs: Implications
for Magnetar Progenitors (Rahaman, Acharia, Beniamini & JG 2025)

" A handful of confirmed/candidate PRSs associated with repeating FRBs ORS of
" Appear to have large DM, large + variable R, low-Z high-SFR hosts FRB 121202A
" Model: synchrotron emission from a compact Magnetar Wind Nebula (MWN)

| Property | FRB20121102A | FRB 20190417A | FRB 201905208 | FRB 20201124A | FRB 20240114A 8

z (redshift) 0.193 0.128 0.241 0.098 0.130
Host galaxy Dwarf Dwarf Dwarf Spiral Dwarf ] :
DM [pc cm ™3] 558 1379 1204 413 528 A ARIE e
DM o5t rest < 203 > 1228 137 — 707 150 — 220 142 + 107 :
RM, . [rad m™2] (044 —15)-10° (504 —644)-10° (-36 —20)-10* —661+ 42 449 + 13
offsetprs rre [PC] < 40 < 26 < 80 < 188 < 28
R0 [pC] < 0.7 (at5 GHz) < 23 <9 < 700 <04
Vobs [GHZ] 126 1.4 1.5,3,5.5 6,15,22 0.65,1.3,5 ..
F, [u]y] 180 (at3GHz) 190 (at14GHz) 202 (at3GHz) 8,20,30 (6,15,22) 66,72,46(.65,1.3,5) (Snelders et
a (spectral index) ~ —0.2 — —1 ~124+04  —041+004 1.00+043  —0.34+0.21 al. 2025)
1 pp—1 29 28 - - 28 Co-spatiality
L, [ergs™ Hz™'] 2 %10 8 X 10 3x10 2 %10 2 %10 confirmed

(1 A T T) (1 A /TT) (1 "7 CLI~\ {7 CIT-\ ™ 112\



One Known Galactic Magnetar Wind Nebula: Swift 11834-0846

" Quite rare (1 out of over 30 Galactic magnetars)
= MWN size: diffusion-dominated cooling length of X-ray emitting e®
" Spindown power or Bgino1e decay cannot power the MWN s .

.
" B, decay can power the MWN for a current By, = 101°° G o
through outflows associated with bursting activity (e.g. giant flares) e

(Younes  XMM-Newton (
et al. 2016) 3-4.5keV,

P =248 s . .
P 706% 1012 g ¢! Asomated with SNR W41
Tc =49 kyr (n=3)
t=r7,—10° yr
B,=10" G

Leg =2 x 10°* erg 571

CXOU J183434.9:084443
Swift J]1834.9-0846

(JG et al. 2017)




Persistent Radio Sources (PRSs) of Repeating FRBs: Implications
for Magnetar Progenitors (Rahaman, Acharia, Beniamini & JG 2025)

PRS of FRB 121102A the best constrained source

QRS121102

4 %102

52.57"
3 x 102
52.56" LV ~ 2
., 2x10°
g. 52.55" a erg
s 3 X 1027 —=
= s Hz
52.54” LL:: 102 L
# GMRT (Resmi et al. 2020) ‘ vsa < O 5 GHZ
+33°08'52.53" 6 % 10! $ VLA (Chatterjee et al. 2017)
g VLA (Chen et al. 2023)
58.703" 53.70(2"02000) 58.701°  531758.700° $ VLA (Chen et al. 2023) Vm < 3 GHZ
) ) 4 x 101 — ~
Rmax = 0.7 pc (imaging) o 0 v, > 22 GHz
v [in GHZz] C
(Marcote et al. 2017)
Req ~ 0.1 pc (equipartition) Rin < Req < R ax
Rmin — O- 03 pC (SCIntI||atI0n) PRS is very com pact

(Chen et al. 2023)



Persistent Radio Sources (PRSs) of Repeating FRBs: Implications
for Magnetar Progenitors (Rahaman, Acharia, Beniamini & JG 2025)

" Magnetar Wind Nebula (MWN = PRS candidate) is confined in a SuperNova Remnant (SNR)

" Can a millisecond-magnetar work? (Murase et al. 2016; Metzgar et al. 2017; Margalit &
Metzgar 2018; Omand et al. 2018; Murase et al. 2021; Bhattacharya et al. 2024)

" No —the compact size and minimal age exclude this!!!

‘= Rsnr — Rsxm Msnr
USNR 2(Erot + -ESN)

1
_ 2.5 Ri73 M3 P _3yr for Erot > Esn,
~ 1 1

F= ESN + Erot (Total SNR Energy)

This source is already observed for over 13 years




Persistent Radio Sources (PRSs) of Repeating FRBs: Implications
for Magnetar Progenitors (Rahaman, Acharia, Beniamini & JG 2025)

® Equipartition/minimum nebular energy: " After a characteristic time, t.witch, the nebular
switch

Eeq ~ 10%° erg energy input is dominated by B;,; decay
: : . 2.5
" To power the FRB: Bg;, = 10'* G " We require Bj,¢ decay time: tg ~ 1072 yr > tgq
(Lu & Kumar 2018, Beniamini & Kumar 2025) (Other.B-powered models need months: Murase+16, Metzger+17,
Margalit & Metzgar 18, 1051 ;
" For an age of t > 13 years spindown cannot Omand+18, Murase+21,
1050}
power the MWN Bhattacharya+24) o
1051 F T ladB
 —— Pj, -2=1,B4,14 =1 (Rotation)
tqg = 10? yr, Bint, 16 = 3 (Magnetic decay) E,m‘” oV by (P o2=1) i .
|- & Nebular energy & gttt = E E
— 10590} Inaccessible (QRS 121102) =, [ Ei (P _3=1) [ ;
on i N S et ol S e -
o = B0 i s
]-L{.I: 1049 E : . 10% i \\\‘\ B0 {E.rr_1h=1]'§ i
4 Eeq E A MW 104 EE\\\MEE
i . 10t 3 S d i
105=2—95=T 9060 10T T ior 103 ' S D
t [in yr] 10-*  107% 10* 10°f  1p-! 10° 10t 104 107

t[in yr]



Persistent Radio Sources (PRSs) of Repeating FRBs: Implications
for Magnetar Progenitors (Rahaman, Acharia, Beniamini & JG 2025)

Model favored by all of the observations:
Extreme magnetar & weak SN explosion

® Extreme initial internal B-field:
B, ~ (1 — 3) x 101® G with a rather small decay

time tg ~10% — 10%° yr

= \Weak SN explosion: Egy ~ 10°? — 10°1 erg given to
an an ejected mass of Mg ~ (3 — 10)Mg

" Age of PRS/FRB source: 13 yr <t < 100yr

" The slowest allowed By, decay time tqpmax ~ 500 yr
favors a sub-energetic SN explosion Egy ~ 10°° erg
with Me; = 10 M & a low-ionization fraction (~3%)

® Similar results hold for the PRS of FRB 20190520B
" PRS of FRB 20201124A is rather poorly constrained

v [in GHz]

mz ]

1[:1 ]

100_

10!

Vm=2GHz, L, =2x10%°ergs~! Hz"!

100
hhhhhhhhhhhhhhhhhhhhhhhhhhh Ve == Vs a0
ve =22 GHz o
I 80
N . - -~~~ - - .
70
60
\. LY
[ * ~
\_x, v =2 GHz . ]°°
= ]
N 40
\_\ “'._‘\.
-
................... g P e 30
""'-..‘ . -
Vsa < 0.5 GHz "~ 20
-...‘:L\q?_\_ L
. e ==-1p
L 100
Ry B{Harcnte et al 2!‘.)1?} 10
]_R-:U? pc (5 GHz)
R(Ku-band 12-18 GHz)
................ Reg.....t...............SCintillation F10°
(Cheen 'et’al. 2023}
R(K-band 18-26 GHz)
104
tlinyr]

B l[Iin mG]

in pc]

1=

R



Extragalactic Magnetar Giant Flares (GFs)

" There are 3 known Galactic GFs (including the 5.3.1979 GF from SGR 0526-66 in the LMC)
" Similar energy in pulsating tail (~10**erg ): ee~y that is trapped on closed field lines
" The initial spike energy varies greatly (Egpike/Erain~1 — 10%°): what cannot be trapped
" 2 of the 3 Galactic GFs created a radio nebula, implying u = I'f~1 outflow: Ex~E e
® Recently: 10 good candidates for extragalactic GFs (only the initial spike is detectable)
" Sculptor galaxy (3.5 Mpc): I'~100, Ey ~ Egpjxe ~10*¢>erg (similar to SGR 1806-20)
Observed delay of emission from outflow collision with an (Fermi-LAT 2021]
external bow-shock sell: At = Re’“[(;_ﬁ ) . :Ce;‘; ~17RsI5 % s A

(LAT ~GeV photons at 19, 180, 284 s)

100 T T T

.. 4.8 GHz Lightcurve axis ratio ~ 2:1_—

COUNTSDS5 8

+
*
tos

4,
Ty

‘ (Gelfand etal. 2005)

Time since fare (day:

s)

1000 1z=0o

uniform

Relative Dec (ma
o

: T T W - f{l | : I;:
e H’ W | L i 4
» N HM& i " SGR 1806-20

H'u.‘m ! HHW

“\Wide one-sided outflow

evacuated
cavity

| VLA 8.5 GHz (Taylor+ 2005) |
U S bow shock

regions 200 0 —-200
patchy structure concentric structure Relative RA (mas) (JG et al 2006) shell

|
| AHMWHHMD




Extragalactic Magnetar Giant Flares (GFs) (Beniamini et al. 2025)

o =1

" Each magnetar is born with initial B-field By of energy Eg (, which
92N

decays on timescale 74 o and powers the GFs: | dE.E; Py ffl|EB|
t
2
" Power law energy distribution: ———- « E;Se Et/Ect (s ~ 1.7 from obs.)
t

with cutoff energy: Ec,t — fEfdipEB (T), fdip — Edip/EB; fE — Ec,t/Edip
" Allow beaming: observed isotropic energy E = E;/f, (E; = true energy)

® Allow for a distribution in By: P(By) o Bo_ﬁ Brin < By < Bpax
" Detailed predictions: can constrain magnetar properties by fits to data

100 . —————— 1016 : < T
[ fe faip/ fo = 0.01 3 1 fafumag = 0.06, f& faip/fo = 0.1
1 fefap/fo=10.1 |] [ fa fmag = 0.006, f& faip/ fo = 0.1 ]
I:Ifl:'f(lip/fh =1 [:‘fﬂfnm;.', = 006. flff(lip/fl; =1 ) 1 015
107
50 10'9F
- 21018
= g2 B 10°
10 :E“
o[ f volume @32 energy]
10 limited : limited |
107 h .
1 i 14 5 -
10 10 . NP DU B
14 15 16
10 10 10 0 1 1015 1010 1078

By [G]

®lerg em )
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