Polarization in Gamma-Ray Bursts

Jonathan Granot

Open University of Israel & George Washington University

Collaborators: R. Gill, A. Königl, F. De Colle, E. Ramirez-Ruiz, T. Piran

Power Law Structured Jet: \(a = b = 2, \alpha = 3/4 \)

\(\sqrt{\xi_{\text{min}}} = 10, \sqrt{\xi_{\text{max}}} = 30 \)

Jet axis

Direction to the observer

Gamma-Ray Bursts & Related Astrophysics in Multi-Messenger Era

Nanjing, China, 13 May 2019
Outline of the Talk:

- Polarization of synchrotron rad. from a relativistic source
- Afterglow: Jet structure & dynamics, B-field structure (ES)
 - Top hat vs. structured jet
 - Shock-produced vs. ordered B-field, or combining the two
 - Shock-produced B-field’s degree of anisotropy
- Reverse shock: optical flash & radio flare (ejecta B-field)
- Prompt GRB: emission mechanism, Jet structure, ejecta B
 - High P: Syn. + ordered B vs. sharp jet + special viewing angle
 - Different emission mechanisms
 - What can be learned from single GRBs or a large sample
- Conclusions
Polarization of Synchrotron Emission

- **linear polarization** is perpendicular to the projection of \(\mathbf{B} \) on the plane of the sky (normal to the wave vector)

- The maximal polarization is for the local emission from an ordered \(\mathbf{B} \)-field: \(P_{\text{max}} = \frac{\alpha + 1}{\alpha + 5/3} \) where \(F_\nu \propto \nu^{-\alpha} \), \(-1/3 \leq \alpha \leq 1.5 \implies 50\% \leq P_{\text{max}} \leq 80\% \) (Rybicki & Lightman 1979; Granot 2003)
In the source rest frame:

- A uniform field produces $P = P_{\text{max}}$
- For a field random when projected on the plane of the sky: $P = 0$
- In particular, for a field isotropically tangled in 3D: $P = 0$
Shock Produced Magnetic Field:

- A magnetic field that is produced at a relativistic collisionless shock, due to the two-stream instability, is expected to be tangled within the plane of the shock (Medvedev & Loeb 1999)

\[P = P_{\text{max}} \sin^2 \theta / (1 + \cos^2 \theta) \]
(Liang 1980)

\(n_{ph} = n_{sh} \)

Photon emitted normal to plane

Photon emitted along the plane

Magnetic field tangled within a (shock) plane
Relativistic Source:

Random field in shock plane

Sari 99; Ghisellini & Lazzati 99
Relativistic Source:

Random field in shock plane

Sari 99; Ghisellni & Lazzati 99
Relativistic Source:

Random field in shock plane

Sari 99; Ghisellini & Lazzati 99
Relativistic Source:

Random field in shock plane

Ordered field in shock plane

\[P \sim P_{\text{max}} \]

Sari 99; Ghisellini & Lazzati 99

Granot & Königl 03
Afterglow: Two “Traditional” Jet Structures

Uniform (top hat) jet:

- No sideways Expansion (Ghisellini & Lazzati 1999)
- Fast sideways Expansion (~c in local rest frame) (Sari 1999)
Afterglow: Two “Traditional” Jet Structures

Uniform (top hat) jet:

(Rhoads 97,99; Sari+99, ...)

Log(\(dE/d\Omega\))

\(\theta_0\)

Log(\(\theta\))

No sideways Expansion (Ghisellini & Lazzati 1999)

Fast sideways Expansion (~c in local rest frame) (Sari 1999)

Main Prediction:
\(P\) vanishes & reappears with \(\theta_p\) rotated by 90°
Is not clearly observed

Also: \(P \lesssim 10\%-20\%\)
While \(P_{\text{obs}} \sim 1\%-3\%\)
Afterglow: Two “Traditional” Jet Structures

Uniform (top hat) jet:

(No sideways Expansion) (Ghisellini & Lazzati 1999)

Structured jet:

(Fast sideways Expansion (~c in local rest frame)) (Sari 1999)

Log(dE/dΩ) = θ

Log(θ)

Postnov+01; Rossi+02; Zhang & Meszaros 02

Log(dE/dΩ) = θ

Log(θ)

Rhoads 97,99; Sari+99, ...

Rossi et al. 2002

polarization light curve

degree of polarization (%)
Combining Ordered B_{ord} & Random B_{rnd} Fields

- $P_{ord} \sim P_{max} \sim 60\%$ & $\theta_p = 90^\circ$ w.r.t. the direction of B_{ord}

- In the afterglow $P \leq 3\% \Rightarrow I_{ord} \ll I_{rnd}$ but we can still have $I_{ord}P_{ord} \geq I_{rnd}P_{rnd}$

- $\Rightarrow B_{rnd}$ dominates I_{total} but B_{ord} dominates $IP \& P_{total}$

$\eta = \frac{I_{ord}}{I_{rnd}} = \text{const}$

$\eta = \eta(t)$

JG & Königl (2003)
The Random B-field’s Degree of Anisotropy:

- $b = 2 \frac{\langle B_{||}^2 \rangle}{\langle B_{\perp}^2 \rangle}$ parameterizes the asymmetry of B_{rnd}
- $\text{Sign}(b-1)$ determines θ_p ($P > 0$ is along the direction from the line of sight to the jet axis & $P < 0$ is rotated by 90°)
- For $b \approx 1$ the polarization is very low (field is almost isotropic)
- $P \leq 3\%$ in afterglows observations $\Rightarrow 0.5 \leq b \leq 2$

\[P = P_{\text{max}}/[1+2/(b-1)\sin^2 \theta'] \]
(valid for $j' \propto \langle B' \sin \chi' \rangle^2$)

- $\theta_0 = 5^\circ$
- $E_{\text{jet}} = 3 \times 10^{51} \text{erg}$
- $n = 1 \text{ cm}^{-3}$
- $z = 1$
- $p = 2.5$
- $\varepsilon_e = 0.1$
- $\varepsilon_B = 0.01$

(JG & Königl 2003) t [days]
- Assuming a shock-produce B-field with $b \equiv 2\langle B^2_\parallel \rangle / \langle B^2_\perp \rangle$
- Data favor two core-dominated jet models with similar $P(t)$
GW170817/GRB170817A Afterglow (Gill & JG 18)

- Assuming a shock-produce B-field with $b \equiv 2\langle B^2 \rangle / \langle B^2 \rangle$
- Data favor two core-dominated jet models with similar $P(t)$

New: upper limit $P_{\text{lin}} < 12\%$ @ $\nu = 2.8$ GHz, $t = 244$ days (Corsi + 2018)
GW170817/GRB170817A Afterglow (Gill & JG 18)

- Assuming a shock-produce B-field with \(b \equiv 2\langle B_{||}^2 \rangle / \langle B_{\perp}^2 \rangle \)
- Data favor two core-dominated jet models with similar \(P(t) \)

\[
\theta_{\text{min}}(t) = \theta_c
\]

\[
b = 0 \quad b = 0.7 \quad b = 0.5 \quad b = 1.5
\]

\[
P_{\text{lin}} < 12\% \quad @ \quad v = 2.8 \text{ GHz}, \quad t = 244 \text{ days} \quad (\text{Corsi} + 2018)
\]
More realistic assumptions ⇒ B-field in collisionless shocks:
- 2D emitting shell → 3D emitting volume (local BM76 radial profile)
GW170817/GRB170817A Afterglow (Gill & JG19)

More realistic assumptions ⇒ B-field in collisionless shocks:

- 2D emitting shell → 3D emitting volume (local BM76 radial profile)
- B-field evolution by faster radial expansion: \(\frac{L'_r}{L'_{\theta,\phi}} \propto \chi^{(7-2k)/(8-2k)} \)
 B-field isotropic in 3D with \(B'_{r} \rightarrow \xi B'_{r} \) (Sari 1999); \(\xi = \xi_0 \chi^{(7-2k)/(8-2k)} \)

\[\begin{align*}
\xi &= 1.3 \\
\xi &= 1 \\
\xi &= 0.8 \\
\xi &= 0.65 \\
\xi &= 0.5 \\
\xi &= 0.3
\end{align*} \]
GW170817/GRB170817A Afterglow (Gill & JG 19)

More realistic assumptions ⇒ B-field in collisionless shocks:

- 2D emitting shell → 3D emitting volume (local BM76 radial profile)
- B-field evolution by faster radial expansion: \(\frac{L'_r}{L'_{\theta,\phi}} \propto \chi^{(7-2k)/(8-2k)} \)
 B-field isotropic in 3D with \(B'_r \to \xi B'_r \) (Sari 1999); \(\xi = \xi_0 \chi^{(7-2k)/(8-2k)} \)

| \(\Pi \) | < 12% at \(\approx 244 \) days

\[\xi = 1.3 \]
\[\xi = 1 \]
\[\xi = 0.8 \]
\[\xi = 0.65 \]
\[\xi = 0.5 \]
\[\xi = 0.3 \]
GW170817/GRB170817A Afterglow (Gill & JG 19)

More realistic assumptions ⇒ B-field in collisionless shocks:

- 2D emitting shell → 3D emitting volume (local BM76 radial profile)
- B-field evolution by faster radial expansion: \(\frac{L'_r}{L'_{\theta,\phi}} \propto \chi^{(7-2k)/(8-2k)} \)

 B-field isotropic in 3D with \(B'_r \rightarrow \xi B'_r \) (Sari 1999); \(\xi = \xi_0 \chi^{(7-2k)/(8-2k)} \)

\[0.48 < \xi_0 < 0.79 \]

\[|\Pi| < 12\% \text{ at } \approx 244 \text{ days} \]
Reverse shock Pol.: Ejecta B-field (Laskar + 2019)

- ALMA observed GRB190114C reverse shock at 97.5 GHz:
 $P \approx 0.9 \rightarrow 0.6\%$, $\Delta \theta_p \approx 54^\circ$ (2.2 → 5.2 hr); 1st GRB radio pol.
Reverse shock Pol.: Ejecta B-field (Laskar + 2019)

- ALMA observed GRB190114C reverse shock @ 97.5 GHz: P ≈ 0.9 → 0.6%, Δθ_p ≈ 54° (2.2 → 5.2 hr); 1st GRB radio pol.
- Low P: rules out B_{ord} (with θ_B ≥ 1/Γ) for which P ~ P_{max}
Reverse shock Pol.: Ejecta B-field (Laskar + 2019)

- ALMA observed GRB 190114C reverse shock at 97.5 GHz:
 \[P \approx 0.9 \rightarrow 0.6\%, \ \Delta \theta_p \approx 54^\circ \ (2.2 \rightarrow 5.2 \text{ hr}); \ 1^{\text{st}} \text{GRB radio pol.} \]

- Low \(P \): rules out \(B_{\text{ord}} \) (with \(\theta_B \geq 1/\Gamma \)) for which \(P \sim P_{\text{max}} \)

- \(B_{\text{ord}} + B_{\text{rnd}} \): \(\mathbb{P}|_{\text{rnd}}/\mathbb{P}|_{\text{ord}} \sim 1 \) & \(I_{\text{ord}} \ll I_{\text{rnd}} \); \(FS \) (\(t \ll t_j \)), \(RS+FS \)
Reverse shock Pol.: Ejecta B-field (Laskar + 2019)

- ALMA observed GRB190114C reverse shock @ 97.5 GHz: \(P \approx 0.9 \rightarrow 0.6\%, \Delta \theta_p \approx 54^\circ (2.2 \rightarrow 5.2\ hr) \); 1st GRB radio pol.

- Low \(P \): rules out \(B_{\text{ord}} \) (with \(\theta_B \geq 1/\Gamma \)) for which \(P \sim P_{\text{max}} \)

- \(B_{\text{ord}} + B_{\text{rnd}} \): \(\text{IP}_{\text{rnd}} / \text{IP}_{\text{ord}} \sim 1 \) \& \(I_{\text{ord}} \ll I_{\text{rnd}} \); FS \((t \ll t_j) \), RS + FS

- \(N \sim (\Gamma_{\text{ej}} \theta_B)^{-2} \) incoherent patches: \(\Gamma_{\text{ej}} \approx 15 \), \(P \sim P_{\text{max}} / N^{1/2} \) \(\Rightarrow \)

\[
\theta_B \sim P / P_{\text{max}} \Gamma_{\text{ej}} \sim 10^{-3} \) \& \(\Delta \theta_p \sim 1 \) expected over \(\Delta t \sim t \)

\[
\text{Flux density (mJy)} \quad \text{Probability density} \quad \text{Time since burst (hours)}
\]
Reverse shock Pol.: Ejecta B-field (Laskar + 2019)

- ALMA observed GRB190114C reverse shock at 97.5 GHz: $P \approx 0.9 \rightarrow 0.6\%$, $\Delta \theta_p \approx 54^\circ$ (2.2 \rightarrow 5.2 hr); 1st GRB radio pol.

- Low P: rules out B_{ord} (with $\theta_B \geq 1/\Gamma$) for which $P \sim P_{\text{max}}$

- $B_{ord} + B_{rnd}$: $|I|_{rnd}/|I|_{ord} \sim 1$ & $I_{ord} \ll I_{rnd}$; $FS (t \ll t_j)$, $RS + FS$

- $N \sim (\Gamma_{ej} \theta_B)^{-2}$ incoherent patches: $\Gamma_{ej} \approx 15$, $P \sim P_{\text{max}}/N^{1/2} \Rightarrow \theta_B \sim P/P_{\text{max}} \Gamma_{ej} \sim 10^{-3}$ & $\Delta \theta_p \sim 1$ expected over $\Delta t \sim t$

- $\Delta \theta_p \approx 54^\circ$ rules out an axi-symmetric configuration (e.g. a global toroidal B-field in the original jet; A patchy shell?)
Prompt γ-ray Polarization: hard to measure

First consider synchrotron emission:

- Shock produced B-field + $\theta_{\text{obs}} \leq \theta_j - 1/\Gamma \Rightarrow P \approx 0$
- $P \sim P_{\text{max}}$ can be achieved in the following ways:
 1. ordered magnetic field in the ejecta,
 2. special geometry: $|\theta_{\text{obs}} - \theta_j| \leq 1/\Gamma \Rightarrow$ favors narrow jets: $\theta_j \leq 1/\Gamma$ (works with a shock produced B-field)

Waxman (2003)
Narrow Jet + shock produced B-field

- High polarization + reasonable flux $\Rightarrow \theta_j < \theta_{\text{obs}} \leq \theta_j + 1/\Gamma$
- A reasonable probability for such $\theta_{\text{obs}} \Rightarrow \Gamma \theta_j \leq \text{a few}$
- Since $\Gamma \geq 100$ & $\theta_j \geq 0.05$, $\Gamma \theta_j \geq 5$ and is typically larger
Narrow Jet + shock produced B-field

- High polarization + reasonable flux $\Rightarrow \theta_j < \theta_{\text{obs}} \leq \theta_j + 1/\Gamma$
- A reasonable probability for such $\theta_{\text{obs}} \Rightarrow \Gamma \theta_j \leq \text{a few}$
- Since $\Gamma \gtrsim 100$ & $\theta_j \gtrsim 0.05$, $\Gamma \theta_j \gtrsim 5$ and is typically larger
- The jet must have sharp edges: $\Delta \theta_j \lesssim 1/4\Gamma$ (Nakar et al. 03)
- A ‘structured jet’ produces low polarization (several %)
- Most GRBs are viewed from $\theta_{\text{obs}} < \theta_j$ and are expected to have a very low polarization in this scenario
Narrow Jet + shock produced B-field

- High polarization + reasonable flux $\Rightarrow \theta_j < \theta_{\text{obs}} \leq \theta_j + 1/\Gamma$
- A reasonable probability for such $\theta_{\text{obs}} \Rightarrow \Gamma \theta_j \lesssim \text{a few}$
- Since $\Gamma \gtrsim 100$ & $\theta_j \gtrsim 0.05$, $\Gamma \theta_j \gtrsim 5$ and is typically larger
- The jet must have sharp edges: $\Delta \theta_j \lesssim 1/4\Gamma$ (Nakar et al. 03)
- A ‘structured jet’ produces low polarization (several %)
- Most GRBs are viewed from $\theta_{\text{obs}} < \theta_j$ and are expected to have a very low polarization in this scenario
- Afterglow obs. imply more random B_{rnd}: $0.48 < \xi_0 < 0.79$
Adding pulses: Random B-field in shock plane

\[y_j = \left(\Gamma \theta_j \right)^2 \]

\[F_v \propto \nu^{-\alpha} \]

\[\Delta \Gamma \sim \Gamma \] between different shell collisions (different pulses in GRB light curve) reduces \(P \) by a factor \(\sim 2 \)

\(\alpha = 1/2 \)

(Granot 2003)
Prompt γ-ray Polarization: short summary

<table>
<thead>
<tr>
<th></th>
<th>Ordered Field</th>
<th>Sharp-edge Jet</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P \sim 80%$</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>$P \sim 50%$</td>
<td>✓</td>
<td>X</td>
</tr>
<tr>
<td>$P \sim 25%$</td>
<td>$B_{\text{rnd}} \leq B_{\text{ord}}$</td>
<td>✓</td>
</tr>
<tr>
<td>$P \leq 10%$</td>
<td>$B_{\text{rnd}} > B_{\text{ord}}$</td>
<td>with $B_{\text{rnd}} \geq B_{\text{ord}}$</td>
</tr>
<tr>
<td>statistics</td>
<td>High P in all GRBs</td>
<td>low P in most GRBs</td>
</tr>
<tr>
<td>Potential problems</td>
<td>Some B_{rnd} required for Fermi acceleration</td>
<td>$\Gamma \theta_j \leq \text{a few, } \Delta \Gamma \sim \Gamma$, $B_{\text{rnd}} (0.48 < \xi_0 < 0.79)$</td>
</tr>
</tbody>
</table>
Alternative to Synchrotron: Compton Drag
(Bulk Inverse Compton Scattering of External photons)

(Lazzati et al. 2003; Dar & De Rujula 2003, Eichler & Levinson 2003)

- Requires special geometry/viewing angle, \(\theta_j < \theta_{obs} \leq \theta_j + 1/\Gamma\)
- Polarization properties similar to synchrotron + \(B_{\text{rnd}}\) with an advantage: local polarization \(P = (1 - \cos^2\theta)/(1 + \cos^2\theta)\) can reach up to 100% while \(P_{\text{max}} \sim 70\%\) for synchrotron
- Shares drawbacks of shock produced field + narrow jet
Alternative to Synchrotron: Compton Drag

(Bulk Inverse Compton Scattering of External photons)

(Lazzati et al. 2003; Dar & De Rujula 2003, Eichler & Levinson 2003)

- Requires special geometry/viewing angle, $\theta_j < \theta_{\text{obs}} \leq \theta_j + 1/\Gamma$
- Polarization properties similar to synchrotron + B_{rnd} with an advantage: local polarization $P = (1 - \cos^2 \theta)/(1 + \cos^2 \theta)$ can reach up to 100% while $P_{\text{max}} \sim 70\%$ for synchrotron
- Shares drawbacks of shock produced field + narrow jet
- It has additional problems, unrelated to polarization:
 - Explaining prompt GRB spectrum
 - Supplying external photons for all the ejected shells
 - High photon density \Rightarrow small radii \Rightarrow high $\tau_{\gamma\gamma}$

![Diagram showing scattering volume and components of electron and electric field movements.](image)
Alternative to Synchrotron: Photospheric Emission

(Comptonized radiation advected from optically thick to thin region of the jet)

(Beloborodov 11; Thompson & Gill 14; Lundman +14; Vurm & Beloborodov 16; Lundman +16)

- Need to integrate radiation transfer equations for the Stokes parameters $I(r,\mu)$ & $Q(r,\mu)$ from $\tau_T \gg 1$ to $\tau_T \ll 1$.
- $P=0$ seed photons become anisotropic at $\tau_T \leq 10 \Rightarrow P \approx 0.45P_{\text{Compton-drag}}$
Alternative to Synchrotron: **Photospheric Emission**

(Comptonized radiation advected from optically thick to thin region of the jet)

(Beloborodov 11; Thompson & Gill 14; Lundman+14; Vurm & Beloborodov 16; Lundman+16)

- Need to integrate radiation transfer equations for the Stokes parameters $I(r,\mu) \& Q(r,\mu)$ from $\tau_T \gg 1$ to $\tau_T \ll 1$.
- $P=0$ seed photons become anisotropic at $\tau_T \leq 10 \Rightarrow P \approx 0.45 P_{\text{Compton-drag}}$
- This requires symmetry breaking e.g.
 - special viewing angle: $|\theta_{\text{obs}} - \theta_j| \leq 1/\Gamma$
 - θ-dependent bulk-Γ and/or luminosity (in structured jets $P \leq 40%$)
Alternative to Synchrotron: **Photospheric Emission**
(Comptonized radiation advected from optically thick to thin region of the jet)
(Beloborodov 11; Thompson & Gill 14; Lundman +14; Vurm & Beloborodov 16; Lundman +16)

- Need to integrate radiation transfer equations for the Stokes parameters $I(r,\mu) & Q(r,\mu)$ from $\tau_T > 1$ to $\tau_T < 1$.
- $P=0$ seed photons become anisotropic at $\tau_T \lesssim 10 \Rightarrow P \approx 0.45P_{\text{Compton-drag}}$
- This requires symmetry breaking e.g.
 - special viewing angle: $|\theta_{\text{obs}} - \theta_j| \lesssim 1/\Gamma$
 - θ-dependent bulk-Γ and/or luminosity
 (in structured jets $P \leq 40\%$)

- Synchrotron + B_{ord} (spherical flow):
 Unscattered syn. photons emitted at $\tau_T \sim 1$ dominate at $E \ll E_{\text{pk}} \Rightarrow P \sim P_{\text{syn,max}}$

GRB 09092B
(Lundman + 2016)

- Wien peak from thermal Comptonization of soft synchro. photons at $\tau_T > 10$
- Wien peak broadened into non-thermal spectrum by unsaturated Comptonization at $\tau_T < 10$; Also yields $\alpha \sim -1$

- Synchrotron emission in a uniform B-field from non-thermal e^-

Fermi GBM window
Prompt GRB Polarization (Gill, JG & Kumar 2018):

- Comprehensive study in view of γ-ray polarimetry missions
- Jet structure: top hat (sharp/smooth), Gaussian, core+power-law
- Emission mechanism: synchrotron, photospheric, Compton drag
- Time resolved, integrated over single or multiple pulses

Random B-field in 2D Ordered B-field Toroidal B-field
Prompt GRB Polarization (Gill, JG & Kumar 2018):

- Model comparison: **structured jet, integrating 10 pulses**

\[\xi_c = (\Gamma_c \theta_c)^2 \quad \sqrt{\xi_{c,\text{min}}} = 10, \quad \sqrt{\xi_{c,\text{max}}} = 30 \]

\[\frac{dE}{d\Omega} \propto \Theta^{-a}, \quad \Gamma_0 - 1 \propto \Theta^{-b} \]

\[\Theta = [1+(\theta/\theta_c)^2]^{1/2} \]

\(\mathbf{B_{tor}}/\mathbf{B_{ord}} \) is favored if \(P \sim 50-65\% \) in 1 (\(\gtrsim 20\% \) in most) GRBs
Conclusions:

- Afterglow polarization probes jet structure & dynamics + the B-field structure behind relativistic collisionless shocks

\Rightarrow GW170817: $0.48 < \xi_0 < 0.79$ (B_{rnd}) + core-dominated jet
Conclusions:

- **Afterglow polarization** probes jet structure & dynamics + the B-field structure behind relativistic collisionless shocks
 - $0.48 < \xi_0 < 0.79$ (B_{rnd}) + core-dominated jet

- Reverse shock polarization probes B-field structure in ejecta
 - Optical flash ($\theta \sim 1/\Gamma_0 \lesssim 10^{-2}$), radio flare ($\theta \sim 1/\Gamma \sim 0.1$)
 - Reverse & forward (afterglow) shock emission may overlap

- **GRB190114C**: B_{ord}, axisymmetric ($B_{\text{tor}}, B_{\text{rnd}}$), $B_{\text{ord}} + B_{\text{rnd}} \times$ patchy shell?, incoherent patches: $\theta_B \sim 10^{-3}$ ✓
Conclusions:

- **Afterglow polarization** probes jet structure & dynamics + the B-field structure behind relativistic collisionless shocks

 - \[0.48 < \xi_0 < 0.79 (B_{\text{rnd}}) \] + core-dominated jet

- Reverse shock polarization probes B-field structure in ejecta

 - Optical flash \((\theta \sim 1/\Gamma_0 \lesssim 10^{-2})\), radio flare \((\theta \sim 1/\Gamma \sim 0.1)\)

 - Reverse & forward (afterglow) shock emission may overlap

- GRB190114C: \(B_{\text{ord}}, \text{axisymmetric}(B_{\text{tor}}, B_{\text{rnd}}), B_{\text{ord}} + B_{\text{rnd}}\) patchy shell?, incoherent patches: \(\theta_B \sim 10^{-3}\)

- Prompt GRB pol. probes emission mechanism & jet structure

 - Observations are improving & new planned missions

 - Theory is improving to match the upcoming observations

 - \(B_{\text{ord}}/B_{\text{tor}}\) favored if \(P \sim 50-65\%\) in 1 \((\geq 20\%\) in most) GRBs